HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals

Abstract : Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.
Document type :
Journal articles
Complete list of metadata

Contributor : Maxim Greenberg Connect in order to contact the contributor
Submitted on : Monday, November 22, 2021 - 11:49:18 AM
Last modification on : Thursday, April 7, 2022 - 1:58:17 PM
Long-term archiving on: : Wednesday, February 23, 2022 - 6:45:26 PM


fcell-08-629068 (2).pdf
Publisher files allowed on an open archive




Maxim Greenberg. Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Frontiers in Cell and Developmental Biology, Frontiers media, 2021, 8, ⟨10.3389/fcell.2020.629068⟩. ⟨halshs-03437211⟩



Record views


Files downloads