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Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation

(5meC). The clearest function of DNA methylation among members of the subphylum is

repression of potentially deleterious transposable elements (TEs). However, enrichment

in the bodies of protein coding genes and pericentromeric heterochromatin indicate

an important role for 5meC in those genomic compartments as well. Moreover, DNA

methylation plays an important role in silencing of germline-specific genes. Impaired

function of major components of DNA methylation machinery results in lethality in fish,

amphibians and mammals. Despite such apparent importance, mammals exhibit a

dramatic loss and regain of DNAmethylation in early embryogenesis prior to implantation,

and then again in the cells specified for the germline. In this minireview we will highlight

recent studies that shine light on two major aspects of embryonic DNA methylation

reprogramming: (1) The mechanism of DNA methylation loss after fertilization and

(2) the protection of discrete loci from ectopic DNA methylation deposition during

reestablishment. Finally, we will conclude with some extrapolations for the evolutionary

underpinnings of such extraordinary events that seemingly put the genome under

unnecessary risk during a particularly vulnerable window of development.
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INTRODUCTION

5-cytosine DNA methylation (5meC) is a modification conserved across all kingdoms of
eukaryotes. Most generally it is found in the CpG dinucleotide context, and there are factors that
ensure faithful daughter strandmethylation after each round of DNA synthesis (Bostick et al., 2007;
Sharif et al., 2007; Woo et al., 2008). Given the tight link with DNA replication, 5meC has high
potential to exhibit epigenetic stability. In flowering plants, so-called “epialleles”—alleles that differ
in 5meC content, not their DNA sequence—can persist for an indefinite number of generations
(Weigel and Colot, 2012). Recently it was demonstrated in the yeast Cryptococcus neoformans that
DNA methylation patterns have endured for millions of years exclusively through a maintenance
mechanism, as there is an absence of de novo DNA methylation enzymes in the genome (Catania
et al., 2020).

Standing apart from other eukaryotic lineages, it has been known for decades that mammals
exhibit two rounds of dramatic DNAmethylation reprogramming during embryonic development:
first immediately after fertilizations, and a second time in the germline (Monk et al., 1987). The
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most facile explanation for the initial 5meC erasure event is that
the embryo must level the high DNA methylation asymmetry
exhibited by the paternal and maternal gametic genomes that
arrive in the zygote (Wang et al., 2014), thus mitigating dosage
discrepancies between alleles. By the blastocyst stage, which
coincides with naive pluripotency, residual DNA methylation
(∼20% of CpGs) is largely restricted to genomic imprints and
TEs (Wang et al., 2014, 2018; Zhu et al., 2018). As the embryo
implants in the uterus, the de novo DNA methyltransferases,
DNMT3A and DNMT3B, rapidly remethylate the genome
to 70–80% CpG methylation, establishing a pattern that is
globally maintained in somatic tissue-types (Borgel et al., 2010;
Seisenberger et al., 2012; Smith et al., 2017; Zhang et al., 2018).
This whole process repeats itself in primordial germ cells (PGCs),
with a key difference being that in the germline, genomic
imprints are erased and then reset in a sex-specific manner
(Hajkova et al., 2002; Lee et al., 2002).

The last decade has seen advances in sequencing protocols and
technology that have allowed for stunning temporal resolution
of allele-specific DNA methylation patterns in early mammalian
development (Wang et al., 2014, 2018; Gkountela et al., 2015;
Zhu et al., 2018; Grosswendt et al., 2020). Nevertheless, much of
themechanistic underpinning of these processes remains lacking.
To this end, embryonic stem cells (ESCs), which are derived
from the inner cell mass (ICM) of the blastocyst, remain a
powerful model for exploring the bases of the phenomenology of
DNA methylation reprogramming. In this mini-review, we will
highlight recent findings made in mouse ESCs (mESCs) that may
help explain (1) how rapid global demethylation occurs, and (2)
how promoters remain protected from the onslaught of DNA
methylation establishment during implantation. Finally, given
that DNA methylation reprogramming is a peculiarity—one that
does not even appear to occur in our non-mammalian vertebrate
cousins—we will discuss a possible clue that might explain the
evolutionary rise of counterintuitive events.

PASSIVE AGGRESSIVE: DNA
DEMETHYLATION AFTER FERTILIZATION

DNA demethylation can occur via either passive or active
means. Passive demethylation simply requires the impairment
of maintenance DNA methylation machinery, which results in
2-fold dilution of methyl-CpGs during each round of DNA
synthesis. In mammals, active DNA demethylation occurs
through action of Ten-eleven translocase (TET) family of
dioxygenases, although the mechanism is far from intuitive:
iterative oxidation of 5meC to hydroxymethylcytosine (5hmC),
formylcytosine (5fC), and finally carboxylcytosine (5caC) will
trigger the thymine DNA glycosylase-dependent base excision
repair (TDG BER) pathway to replace modified cytosines with
unmodified versions (Kriaucionis and Heintz, 2009; Tahiliani
et al., 2009; He et al., 2011; Maiti and Drohat, 2011; Weber et al.,
2016). Oxidized forms of 5meC also impede DNA methylation
maintenance (Hashimoto et al., 2012; Otani et al., 2013; Ji et al.,
2014), thus in that sense, TET proteins contribute to passive DNA
demethylation, as well.

The extent to which the TET enzymes contribute to
the global demethylation exhibited during embryonic 5meC
reprogramming remains an active, and somewhat controversial,
area of research. Soon after fertilization, the DNA within
the paternal pronucleus becomes strongly enriched for TET3-
dependent 5hmC, relative to its maternal counterpart (Gu et al.,
2011; Iqbal et al., 2011; Wossidlo et al., 2011). Moreover, paternal
DNA methylation is rapidly erased in the zygote, before passive
dilution can even occur (Mayer et al., 2000; Oswald et al., 2000).
Therefore, it seems quite logical to posit that TET3 is responsible
for demethylating the paternal genome. However, careful genetic
dissection indicates that this is not entirely the case (Amouroux
et al., 2016). Instead, TET3 activity may help protect the paternal
genome from DNMT3A-dependent de novo DNA methylation
(Amouroux et al., 2016; Albert et al., 2020). Of course, this would
then imply there is an undiscovered mechanism of active DNA
demethylation that must be occurring in the zygote. It should
also be noted that in the early embryo, TET3 activity can lead to a
passive loss of DNA methylation, independently of base-excision
repair (Guo et al., 2014; Shen et al., 2014).

In fact, impaired DNA methylation maintenance plays an
undeniably important role in reprogramming during the first
cell divisions of preimplantation development. The maintenance
pathway primarily consists of two proteins: the methyltransferase
DNMT1 and its co-factor Ubiquitin-like, containing PHD and
RING finger domains, 1 (UHRF1, also known as NP95). While
there are many intricate layers to UHRF1/DNMT1 regulation,
at its most fundamental level the mechanism is elegantly
simple: UHRF1 recognizes hemimethylated CpG sites after DNA
replication, and recruits DNMT1 to methylated the cytosine on
the daughter strand (Bostick et al., 2007; Sharif et al., 2007)
(Figure 1).

In the past few years, studies have emerged that show UHRF1
disruption may be an important means of DNA demethylation.
On the spectrum of differentiated cell types, oocytes are quite
DNA hypomethylated: roughly 50% of CpGs are methylated in
mouse and human oocytes, compared to 70–80% in somatic
tissues (Kobayashi et al., 2012; Shirane et al., 2013; Okae
et al., 2014). Recently it was demonstrated that the protein
Developmental Pluripotency-Associated 3 (DPPA3, also known
as STELLA and PGC7) shuttles UHRF1 to the cytoplasm of
mouse oocytes (Li et al., 2018a). In the Dppa3 KO oocytes,
UHRF1 returns to the nucleus, and oocyte methylation is
increased (Li et al., 2018a; Han et al., 2019). It has been known
for decades in mouse preimplantation embryos, an oocyte-
specific isoform form of DNMT1 (oDNMT1) is enriched in
the cytoplasm, hence its access to DNA is restricted (Carlson
et al., 1992; Howell et al., 2001). While immunofluorescence
indicates that oDNMT1 still remains largely cytoplasmic in
Dppa3mutants, a proportion does enter the nucleus as well—that
is, DPPA3 activity is the best explanation for the lowlymethylated
state of the oocyte genome.

Our understanding of the DPPA3 regulation of UHRF1 has
been greatly elucidated in a mESC system. When cultured
in serum-free conditions and in the presence of MAPK and
GSK3β inhibitors (2i), mESCs exhibit globally low levels of DNA
methylation—more or less on par with the ICM cells from which
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FIGURE 1 | Mechanism of DPPA3-mediated DNA demethylation. (A) After

DNA replication, the SRA domain of UHRF1 binds to hemimethylated CpG,

flipping out the methylated cytosine. Recruitment of DNMT1 directs

methylation of the symmetrical unmethylated cytosine on the daughter strand.

Crucially, UHRF1 must bind to histone H3 through its PHD domain. DPPA3

binds to the PHD domain, disrupting UHRF1’s interaction with chromatin

leading to impaired DNA maintenance methylation. (B) Top panel: In mouse

ESCs, PRDM14 recruits TET1 and TET2 roughly 2 kb upstream of the Dppa3

promoter, leading to its demethylation and activation. Bottom panel: in Tet1/2

double mutants, increased DNA methylation at the Dppa3 gene corresponds

with repression. Thus, active demethylation of this one gene is required for

global passive demethylation. This mechanism likely does not occur during

embryonic DNA methylation reprogramming, but may help explain the wave of

DNA demethylation that occurs in the male and female germlines.

ESCs are derived (Ficz et al., 2013; Habibi et al., 2013; Leitch
et al., 2013). It was demonstrated that the underlying reason for
such lowmethylation was impairedUHRF1 activity (vonMeyenn
et al., 2016). While initially UHRF1 was shown to be unstable at
the post-translational level in 2i ESCs (von Meyenn et al., 2016),
subsequently it was demonstrated that DPPA3 is the factor that is
impeding UHRF1 function (Mulholland et al., 2020). Through a
rigorous set of biochemical and microscopy-based experiments,
Mulholland et al. showed that DPPA3 binds to UHRF1, thus
impairing the latter’s ability to bind to chromatin (Figure 1).
In the mESC system, Dppa3 mutants are marked by reduction
of UHRF1 localization to the cytoplasm, reminiscent of the
phenotype in oocytes. However, this aspect of DPPA3-mediated
UHRF1 regulation is much less drastic in the cell culture system,
thus it is not completely clear if themechanism of action is exactly
the same between oocytes and mESCs. Moreover, DPPA3 can
lead to demethylation without its nuclear export function (Du

et al., 2019). Regardless, like in oocytes, absence of DPPA3 leads
to an increased nuclear fraction of UHRF1 and a gain of DNA
methylation. Consistently, when DPPA3 is overexpressed in
other cell culture systems, there is a decrease in DNAmethylation
(Funaki et al., 2014). It should be noted that in addition to
DPPA3 action, a number of features of 2i-cultured mESCs likely
contribute to the globally DNA hypomethylated state, such as
TET protein activity, de novo DNA methyltransferase repression
(Leitch et al., 2013), and a chromatin state refractory to DNA
methylation (van Mierlo et al., 2019), to name three pertinent
examples. However, DPPA3 has clearly emerged as a dominant
player for this particular feature.

Does the role of DPPA3 in mESCs reflect a role in the
DNA demethylation occurring in preimplantation development?
While formal demonstration awaits, there are some intriguing
indications that indeed DPPA3 performs an analogous function
in vivo: during normal development, expression of certain classes
of TEs are important for activation of the proper embryonic
transcription program (Macfarlan et al., 2012; Ishiuchi et al.,
2015; Jachowicz et al., 2017); Dppa3 mutant mice exhibit
repression of at least a proportion of these elements at the
2-cell stage (Huang et al., 2017). Given the important role
of 5meC in transposon silencing, it is not outlandish to
suggest that maintenance of DNA methylation on TEs at the
heart of the Dppa3 transposon expression phenotype, with the
caveat that it is difficult to tease apart the maternal from the
embryonic effect, given these embryos were generated from
Dppa3mutant oocytes. Moreover, it should be noted that DPPA3
has been reported to protect the maternal genome from TET3-
mediated demethylation in zygotes, i.e., the inverse phenomenon
(Nakamura et al., 2007, 2012; Han et al., 2019). While not trivial
given the severe phenotype of Dppa3 maternal/zygotic mutants
(Payer et al., 2003), hopefully future work will help resolve these
apparently contradictory functions.

Finally, Mulholland et al. showed that TET1 and TET2 are
required for demethylation of Dppa3 regulatory regions, thus its
activation (Figure 1) (Mulholland et al., 2020). In other words,
targeted demethylation of one gene supports global passive
demethylation. While this is a compelling finding, it is likely
not the mechanism occurring after fertilization. Firstly, DPPA3
is already present in the maternal store of protein inherited
from the oocyte (Li et al., 2018a); secondly, TET3 is the active
TET enzyme after fertilization, not TET1 or 2; and thirdly, the
Dppa3 gene arrives unmethylated from the oocyte, thus does not
require further demethylation (Wang et al., 2014). However, this
indeed might be the mechanism to activate Dppa3 prior to the
germline DNA demethylation program. Dppa3 is expressed in
the early stages of germline specification, and importantly, in
vivo genetic analyses have revealed a role for DPPA3-mediated
demethylation in PGCs, although the link with UHRF1 was not
made (Nakashima et al., 2013). Incidentally, it has been reported
that UHRF1 is downregulated during PGC progression at both
the RNA and protein level (Kagiwada et al., 2013; Ohno et al.,
2013). It will be necessary to eventually demonstrate if the DPPA3
phenomenology observed in mESCs occur at the relevant stages
of in vivo development.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 January 2021 | Volume 8 | Article 629068

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Greenberg New Insights Into Epigenetic Reprogramming

ALWAYS WEAR PROTECTION: KEEPING
DEVELOPMENTAL GENES DNA
METHYLATION FREE

Shortly after reaching its lowest global levels of DNAmethylation,
the embryo implants into the uterine wall, which coincides with
upregulation of the de novo DNA methylation program. In a
few short days, the genome becomes highly DNA methylated.
DNMT3A and DNMT3B show preference for histone 3 lysine
36 di- and trimethylation (H3K36me2/3)-marked regions,
respectively, via binding by their PWWP domains (Dhayalan
et al., 2010). H3K36me2/3 are broadly deposited in the genome,
and may serve to enhance DNMT3A/B activity (Baubec et al.,
2015; Weinberg et al., 2019). In general though, the de novo
methyltransferases exhibit very little discrimination for genomic
compartments, with one key exception: CpG island (CGI)
promoters, which are distinguished by their markedly high
CpG content. Roughly two-thirds of promoters are CGIs,
and comprise most housekeeping and developmental genes
(Gardiner-Garden and Frommer, 1987; Larsen et al., 1992; Ku
et al., 2008). There is nothing about the sequence, per se, that
should repel de novo DNA methylation; in fact, DNMT3A/B
show a preference for CpG-rich sequences (Baubec et al., 2015).
However, keeping promoters free of methylation is absolutely
crucial for proper cellular function; DNA methylation is a
very stable epigenetic mark, and ectopic promoter methylation
can lead to long-term silencing of important genes. The ADD
domain, also harbored by both enzymes, is repelled by H3K4
methylation (Ooi et al., 2007; Otani et al., 2009; Zhang et al.,
2010; Guo et al., 2015). Given that H3K4me3 is strongly linked
with active promoters, therein lies a simple mechanism to protect
promoter sequences from DNAmethylation deposition.

During the dramatic flux of DNA methylation in
embryogenesis, there must be a means by which genes that
are not expressed during reprogramming do not become
unwilling targets of DNMT3A/B. Several years ago the discovery
was made in mESCs that a large proportion of developmental
gene promoters are “bivalently” marked—that is marked
by both H3K4me3 and the polycomb repressive complex 2
(PRC2)-deposited H3K27me3 (Azuara et al., 2006; Bernstein
et al., 2006). Also known as poised genes, these genes are silent,
thanks to PRC2-mediated repression, but at the same time
protected from DNA methylation and ready to activate upon
the proper developmental cue. Moreover, there is some evidence
that H3K27me3 marked regions may be refractory to de novo
methylation independently of the H3K4 mark (Greenberg
et al., 2017; Li et al., 2018b). Finally, TET1 is enriched at
bivalent gene promoters (Manzo et al., 2017; Gu et al., 2018).
Incidentally, TET1 contains a CxxC domain, which binds
specifically to unmethylated CpG-rich sequences, however this
domain does not appear to determine TET1 CGI localization
(Zhang et al., 2016). Both TET proteins and KDM2B—a CxxC-
domain containing complex associated with PRC1—have been
demonstrated to protect CGIs from de novo DNA methylation
(Boulard et al., 2015; Verma et al., 2018). Thus, there are several
layers of regulation to prevent DNAmethylation-based silencing.

In addition to TET and polycomb action, there must
be a sequence-based recruitment of H3K4 methyltransferase
complexes, i.e., through transcription factors. CGIs serve as
important platforms of transcription factor binding, which is
associated with alterations in DNA methylation level (Lienert
et al., 2011; Krebs et al., 2014). Indeed, integration of a number
of genome-wide datasets indicated the main determinant of
sequences that do not exhibit DNA methylation is transcription
factor binding (Kremsky and Corces, 2020). Recently, two
studies converged on two factors that play a role in protecting
bivalent genes: DPPA2 and DPPA4 (Eckersley-Maslin et al., 2020;
Gretarsson and Hackett, 2020). While both studies utilized an
mESC system, the discoveries were through different means.
DPPA2/4 are heterodimeric transcription factors that are known
to play a role in zygotic genome activation (De Iaco et al., 2019;
Eckersley-Maslin et al., 2019; Yan et al., 2019), but they also
are bound to bivalent genes (Engelen et al., 2015; Hernandez
et al., 2018; Klein et al., 2018). Intriguingly, Dppa2/4 mutant
mice exhibit developmental defects far after the embryonic
stages where developmental genes are enriched for bivalent
marks (Madan et al., 2009; Nakamura et al., 2011). Following
up on this curiosity, Eckersley-Maslin et al. showed that in
Dppa2/4 mutant mESCs, a subset of DPPA2/4 targets lose both
H3K4me3 andH3K27me3 enrichment, indicating a role for these
transcription factors in recruiting both silencing and activating
complexes (Eckersley-Maslin et al., 2020) (Figure 2). Moreover,
during differentiation to embryoid bodies, this subset of genes

FIGURE 2 | DPPA2/4-mediated regulation of developmental genes. (A)

DPPA2/4 bind a subset of developmental genes, and recruit the COMPASS

and PRC2 complexes, which deposit H3K4me3 and H3K27me3, respectively.

These genes are then poised to activate in the proper developmental context.

The H3K4me3 protects this class of promoter from de novo DNA methylation.

(B) In Dppa2/4 mutant ESCs, genes that are normally targeted by DPPA2/4

are susceptible to aberrant de novo DNA methyltransferase activity, preventing

the ability of this class of genes to activate during differentiation.
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acquire DNA methylation and fail to activate, likely because they
no longer are protected from de novo DNA methyltransferases
(Figure 2).

Gretarsson and Hackett ultimately arrived at similar
conclusions, although they discovered a role for DPPA2/4
through different means. Using a clever mESC-based CRISPR
screen, they searched for mutants that failed to activate a
methylated reporter during an in vitro model of global DNA
demethylation (Gretarsson and Hackett, 2020). Dppa2/4
were two of the top hits from the screen, but mutations
did not lead to global DNA methylation perturbations.
Consistent with the study from Eckersley-Maslin, DNA
methylation abnormalities were restricted to a proportion
of bivalently marked gene promoters. Curiously, DPPA2/4
also target LINE1 retrotransposons, although their role in
transposon regulation is less clear. It should be noted that
DNA methylation defects do not occur at all DPPA2/4
targets in the double mutant background; moreover, there
are bivalent promoters that are not DPPA2/4 targets. That
is all to say, DPPA2/4 are only two of the transcription
factors important for DNA methylation protection during
epigenetic reprogramming and there is a high probability
others exist. Nevertheless, these are two important studies that
undergird a model wherein sequence-specific transcription
factors not only prime genes for proper expression during
development, but also play a protective role against
ectopic silencing.

CONCLUDING REMARKS: DPPA3, NOT
JUST A BASIC PROTEIN

DNA methylation, if misregulated, can have dire consequences.
As discussed above, the improper de novo DNA methylation
of promoters can lead to stable silencing of key developmental
regulators. Perhaps more worrisome, the absence of DNA
methylation can result not only in the ectopic expression of
protein coding genes, but massive transposon derepression,
which can have far ranging and deleterious effects (Walsh
et al., 1998). Mouse embryos lacking either de novo or
maintenance DNA methylation machinery die shortly after
gastrulation (Li et al., 1992; Okano et al., 1999). Therefore,
mammals must have evolved compensatory mechanisms to
control the genome during not one, but two waves of DNA
methylation reprogramming (Walter et al., 2016; Hill et al.,
2018). What is more, the lowest levels of DNA methylation
occur in pluripotent stem cells and primordial germ cells—
the cell types that give rise to all somatic tissues and the
germline, respectively. It is difficult to imagine cells that are
more important for proper organismal development and
transmission of genetic material to the next generation. Why
then do mammals take such extraordinary apparent risks with
their genome? Even among vertebrates this phenomenon is
odd: zebrafish, by comparison, undergo nothing so drastic
with their methylome during embryonic development
(Skvortsova et al., 2019).

In investigating the evolutionary conservation of the Dppa3
gene, Mulholland et al. revealed it is not found outside mammals.
Amazingly, when the mouse DPPA3 protein was incubated
with the egg extracts of the amphibian Xenopus laevis, the
mouse protein inhibited the frog UHRF1. Furthermore, when the
fertilized eggs from the model fish medaka were injected with
Dppa3mRNA, the embryos exhibited dramatic hypomethylation
(Mulholland et al., 2020). Therefore, DPPA3 has evolved as
a potent DNA demethylation factor that can disrupt UHRF1
function in distant species. The authors suggest that perhaps
Dppa3 arose in the mammalian lineage in concert with the
role of transposon expression regulating the early transcription
program. This certainly is possible, however it does not explain
why global demethylation occurs exclusively in mammals, and
also why it happens twice in development.

It is notable that Dppa3 is only present in placental mammals;
marsupials and egg-laying monotremes lack the gene. Classic
experiments in the 1980s demonstrated that mouse paternal
andmaternal genomes are not equivalent—androgenetic diploids
exhibit robust placenta, whereas conversely gynogenetic diploids
harbor severely undersized placenta (Surani and Barton, 1983;
Barton et al., 1984; McGrath and Solter, 1984; Surani et al., 1984).
This result is consistent with genetic conflict theory, which states
that there is a conflict between the parental genes with regards
to offspring development (Moore and Haig, 1991). In this case,
the paternally expressed genes promote larger placenta leading to
greater resource allocation to the developing embryo and fetus at
the mother’s expense, and for the maternally expressed genes it
is the inverse. This theory was developed to explain the existence
of genomic imprinting, which is parent-specific gene expression
controlled by DNA methylation patterns inherited from the
gametes. Pertinently, neither androgenetic nor gynogenetic
embryos are viable. Given the stark DNAmethylation asymmetry
between gametes, perhaps Dppa3 evolved in order to prevent
either the paternal or maternal genome exerting too much
control with regards to inherent conflict. Imprint control regions,
in turn, evolved mechanisms to escape DNAmethylation erasure
during embryogenesis. In the case ofmarsupials, there is evidence
of germline reprogramming and genomic imprinting (Renfree
et al., 2008; Suzuki et al., 2013; Ishihara et al., 2019), however
evidence for embryonic reprogramming in both marsupials and
monotremes is limited. Hopefully future studies will interrogate
dynamic DNA methylation after conception in non-placental
mammals, which will not only provide insights into DPPA3
function, but into evolutionary theory.
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