N

N

Data ownership and interoperability for a decentralized
social semantic web
Andrei Vlad Sambra

» To cite this version:

Andrei Vlad Sambra. Data ownership and interoperability for a decentralized social semantic web.
Other [cs.OH]. Institut National des Télécommunications, 2013. English. NNT: 2013TELE0027 .
tel-00917965

HAL Id: tel-00917965
https://theses.hal.science/tel-00917965
Submitted on 12 Dec 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00917965
https://hal.archives-ouvertes.fr

TELECDM i -r{.j :-'_R ‘_1-;:_.;.;:.'“ }__.._'_-_'_-r‘
SudParis Ue~~111I

=TTl

THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et LUNIVERSITE
PIERRE ET MARIE CURIE

Spécialité : Informatique et réseaux
Ecole doctorale : Informatique, Télécommunications et Electronique de Paris
Présentée par

Andrei Vlad Sambra

Pour obtenir le grade de
DOCTEUR DE TELECOM SUDPARIS

La propriété des données et l'interopérabilité pour un Web
sémantique social décentralisé

Soutenue le : 19/11/2013

devant le jury composé de :

Josep Domingo Ferrer Professeur HDR Rapporteur

Fabien Gandon CR HDR Rapporteur
Jean-Gabriel Ganascia Professeur HDR Examinateur
Olivier Berger Ingénieur Examinateur

Yves Roudier Maitre de conférences HDR, Examinateur
Maryline Laurent Professeur HDR Directrice de these

Thése n° 2013TELE0027

TELECOM 1 ™= AR
SudParis U~

m =i

JOINT THESIS BETWEEN TELECOM SUDPARIS et LUNIVERSITE PIERRE ET
MARIE CURIE

Specialty: Computer Science and Networks

Doctoral school : Ecole Doctorale Informatique, Télécommunications et Electronique de
Paris

Presented by
Andrei Vlad Sambra

To obtain the diploma
DOCTEUR DE TELECOM SUDPARIS

Data Ownership and Interoperability for a Decentralized Social
Semantic Web

Defended on : 19/11/2013

before a jury composed of :

Josep Domingo Ferrer Professor HDR Rapporteur
Fabien Gandon CR HDR Rapporteur
Jean-Gabriel Ganascia Professor HDR Examiner
Olivier Berger Engineer Examiner
Yves Roudier Assistant professor HDR Examiner

Maryline Laurent

Professor HDR

Thesis director

Thése n° 2013TELE0027

Acknowledgement

First, I would like to express my deepest gratitude to my thesis supervisor,
Professor Maryline Laurent, for her guidance throughout my thesis, for all
the fruitful discussions that we had, and especially for her patience. Her wide
knowledge and her logical way of thinking have been of great value for me. I
would also like to thank her for being attentive towards me and providing me
with invaluable encouragements when I was lost and could not find my way.

My gratitude goes to Sir Tim Berners-Lee for having invited me to work
under his guidance at MIT, as well as for his incredible work which inspired
me to pursue this thesis.

I am very thankful to Olivier Berger, research engineer in the Informatics
Department of TELECOM SudParis, for our extensive collaboration and for
accepting to be member of the examination jury.

Many thanks go towards my colleagues and friends, from TELECOM
SudParis and beyond, which supported me during all these years. Among them
T would like to mention Aymen Boudguiga and Collins Mtita, with whom I
have shared more than just an office.

I would finally like to thank my family for their continuous love and support.
A special thank you goes to my wife Raluca for her love and constant support,
for all the late nights and early mornings, and for keeping me sane over the
past few months. Thank you for everything, but most of all, thank you for
being my best friend. I owe you everything.

This work has been funded entirely by TELECOM SudParis, member of
group Institut Mines-TELECOM.

Abstract

Ensuring personal data ownership and interoperability for decentralized social
Web applications is currently a debated topic, especially when taking into
consideration the aspects of privacy and access control. Since the user’s data
are such an important asset of the current business models for most social
Websites, companies have no incentive to share data among each other or to
offer users real ownership of their own data in terms of control and transparency
of data usage. We have concluded therefore that it is important to improve
the social Web in such a way that it allows for viable business models while
still being able to provide increased data ownership and data interoperability
compared to the current situation.

To this regard, we have focused our research on three different topics: iden-
tity, authentication and access control. First, we tackle the subject of decen-
tralized identity by proposing a new Web standard called Web Identity and
Discovery (WebID), which offers a simple and universal identification mecha-
nism that is distributed and openly extensible. Next, we move to the topic of
authentication where we propose WebID-TLS, a decentralized authentication
protocol that enables secure, efficient and user friendly authentication on the
Web by allowing people to login using client certificates and without relying
on Certification Authorities. We also extend the WebID-TLS protocol, offering
delegated authentication and access delegation. Finally we present our last con-
tribution, the Social Access Control Service, which serves to protect the privacy
of Linked Data resources generated by users (e.g. profile data, wall posts, con-
versations, etc.) by applying two social metrics: the social prozimity distance
and social contexts.

Contents

1 Introduction

1.1 Problem statement and motivation
1.1.1 Data silos, losing control over our data
1.1.2 Identity, a key factor for the decentralized social Web
1.1.3 Interoperability based on the Semantic Web and LDP

1.2 Main contributionso
1.21 WebID
1.2.2 WebID Authentication
1.2.3 Social Access Control Service

1.3 Thesis structure L

2 Identity and authentication on the Web
2.1 Related work L
2.1.1 OpenID Connect,
2.1.2 Mozilla Persona,o
2.1.3 Web Authentication
2.1.4 SAML
2.1.5 Synthesis o
2.2 Web Identity and Discovery - WebID
221 TheWebID URI
2.2.2 The WebID profile document
2.2.3 Publishing the WebID profile document
2.2.4 Extending the WeblID profile document
2.2.5 Privacy and security analysis
2.3 WebID-TLS
2.3.1 Introduction
2.3.2 WebID-TLS terminology
2.3.3 The WebID certificate
2.3.4 The WebID-TLS authentication protocol
2.3.5 Security analysis oL
2.4 WebID-TLS delegated authentication.
2.5 WebID-TLS access delegation
2.6 Conclusion

3 Access control
3.1 Related work
3.1.1 Generic access control models
3.1.2 Semantic access control mechanisms

© © 00 ~] ~T B WO N

11

12
14
15
16
18
19
20
21
22
23
25
27
27
28
29
30
36
37
39
41

3.1.3 Synthesis o o 51

3.2 Proposed social metrics for access control L. 52
3.2.1 Contexts expressed as labels. 53
3.2.2 Social proximity distance 53

3.3 Proposed Social Access Control Service 55
3.3.1 Motivating example 56
3.3.2 The Static Access Control engine 57
3.3.3 The Relationship Monitor engine 60
3.3.4 Relationship History database. 63

34 Conclusion 63

4 Building a decentralized social semantic Web 65

4.1 MyProfile 66
4.1.1 Creating auser profile, 66
4.1.2 Viewingprofiles. 68
4.1.3 Social walls and activity streams 69
4.1.4 Account recovery and pairing L. 71
4.1.5 Statistics 71

4.2 WeblID authentication 72
4.2.1 Configuring the Web server 73
4.2.2 WeblDauth 0. 73
4.2.3 WebIDDelegatedAuth, 74

4.3 Static Access Control Lo 75

4.4 Personal data stores using RWW.I/O. 76
4.4.1 Creating datastores 76
4.4.2 Managing access control for resources 7
4.4.3 Application workspaces - a complete example 78

4.5 Conclusions 81

5 Conclusions and perspectives 85

5.1 Conclusions L e 85
5.1.1 Identity and authentication 85
51.2 Accesscontrol. Lo L 87
5.1.3 Validating the proposed solutions 89

5.2 Perspective work oo 90
5.2.1 Semantic Messaging and Notifications Protocol 90
5.2.2 Transparent WebID proxy 91

List of publications 93
Appendix - Résumé en frangais 94

Introduction 95
Motivation 95

Identité et authentification surle Web 97
Identité décentralisée avec WebID 97
Authentification décentralisée avec WebID-TLS 99
L’authentification déléguée pour WebID-TLS 100
Délégation d’accés pour WebID-TLS 102

Service de controle d’accés Social 102

Le moteur de controle d’accés statique 103

Le moteur de la surveillance des relations
Validation de nos travaux de recherche
MyProfile
Authentification WebID 000
Espaces de données personnelles basés sur RWW.I/O
Conclusionso

Appendix - Examples

Bibliography

105
107
107
108
110
110

112

116

List of acronyms

AC Access Condition

ACL Access Control List

AEC Access Evaluation Context

ATR Accountability in RDF

API Application Programming Interfaces
ATR Access Tagging Rule

CA Certification Authority

CRUD Create-Read-Update-Delete

CSR Certification Signing Request

DAC Discretionary Access Control

DANE DNS-Based Authentication of Named Entities
DN Distinguished Name

DNS Domain Name System

DNSSEC Domain Name System Security Extensions
DNT Do Not Track

DOAP Description of a Project

ETag Entity Tags

FOAF Friend-of-a-Friend

FQDN Fully Qualified Domain Name

GPG GNU Privacy Guard

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IdP Identity Provider

ISP Internet Service Provider

Vi LIST OF ACRONYMS

JSON JavaScript Object Notation

LDP Linked Data Platform

LDPC Linked Data Platform Containers
LDPR Linked Data Platform Resource
MAC Mandatory Access Control

MIT Massachusetts Institute of Technology
N3 Notation 3

OTP One-Time Password

PIN Personal Identification Number

PKI Public Key Infrastructure

RBAC Role-based Access Control

RDF Resource Description Framework
RDFa Resource Description Framework in Attributes
REST Representational State Transfer
RFC Request for Comments

RM Relationship Monitor

RP Relying Party

RSA Stands for Ron Rivest, Adi Shamir and Leonard Adleman, who first pub-
licly described the cryptographic algorithm.

RWW.I/O Read-Write-Web Input/Output

S4AC Social Semantic SPARQL Security for Access Control
SAC Static Access Control

SACS Social Access Control Service

SAML Security Assertion Markup Language

SAN Subject Alternative Name

SIOC Semantically-Interlinked Online Communities

SP Service Provider

SPARQL SPARQL Protocol and RDF Query Language
SPKAC Signed Public Key and Challenge

SSL Secure Sockets Layer

SSWAC Social Semantic Web Access Control

TAKES Trustful Authentication and Key Exchange System
TLS Transport Layer Security

UT User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAC Web Access Control

WebID Web Identity and Discovery

XACML eXtensible Access Control Markup Language

vii

viii LIST OF ACRONYMS

List of examples

Oy U i W N =

o

10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27

A typical subject-predicate-object relation in Turtle. 5
A simple container represented in Turtle. 7
Request and response for the Turtle version of the document. . . 23
Accept header. oL 23
A basic WebID profile document expressed in Turtle. 24
The rdfs:seeAlso relation is used as reference for the friends sec-

tion of the profile. 24
The contents of hittps://barry.example/friends. 24
The WebID profile document containing a blog post, expressed

using SIOC.o 25

The WebID profile document extended with DOAP information. 26
The Subject Alternative Name extension of an X.509 certificate. 28
Turtle representation of a WebID profile document containing the

public key elements corresponding to a WebID certificate. 31
Representation of a typical SPARQL ASK query. 34
Complete SPARQL ASK query. 34
A successful WebID-TLS delegated authentication redirect URL. 38
The cert:secretary relation linking a secretary to Barry’s profile. . 40
Performing an HTTP GET to request a resource as a secretary

working on behalf of user Barry. 41
A simple ACL metadata file. 46
A typical ATR RuleSet., 49
Contents of a .htaccess file for user profiles. 68
RDF social wall pagination., 70
Creating a metafile for the document /private/protected.ttl. . . . 79
List of permissions required by the application myPhoto. 80
Returning the list of updated permissions. 81
Updated profile for Barry., 82
Web server configuration file for MyProfile. 113
Web server configuration file for the Relying Party. 114
Authenticating with WebIDDelegatedAuth. 115

ix

LIST OF EXAMPLES

List of Figures

1.1
1.2

2.1
2.2
2.3
24

2.5

2.6
2.7

3.1

3.2

3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
44
4.5
4.6

"Everywhere and nowhere’; an illustration by David Simonds, 2008. 2
A graph representation of Barry’s profile.

Flow of OpenID Connect (based on OAuth 2.0). 13
Flow of Mozilla Persona. 14
Flow of Web Authentication. 16
Simple deployment of the SAML 2.0 Web Browser SSO profile,

using the HT'TP POST binding. 17

The relation between the user (Tim Berners-Lee), the WebID
URI (http://www.w3.org/People/Berners-Lee/card#i) and the
profile document (http://www.w3.org/People/Berners-Lee/card). 21
Flow of WebID-TLS authentication. 31
Flow of WebID-TLS delegated authentication. 37

ATR rule ontology, as presented in Gasping for AIR Why we need
Linked Rules and Justifications on the Semantic Web [42]. 47
The AIR justification ontology, as presented in Gasping for AIR
Why we need Linked Rules and Justifications on the Semantic

Web [42]. o 48
The S4AC ontology. Dashed lines and contours are used to rep-

resent external classes, properties and relations. 50
Our representation of contextualized proximity levels, based on

Hall’s concept of personal spaces. 54
Architecture of our social access control service. 55
Graph containing all contexts defined by Barry. 57
Example of a graph for the context #friends 58
Context matching algorithm. 59
RM’s decision making process. 62
Example of an interaction between Barry and Ann. 64
Rendering of aprofile. oo oL 69
MyProfile public wall. oL 70
Generating a pairing PIN. o000 72
Static Access Control icons displayed when viewing a profile. . . 75
The RWW.I/O service. 7
ACL user interface.o L 78

xi

Xii

5.1

5.2
5.3
5.4
9.5
5.6

LIST OF FIGURES

La relation entre la personne (Tim Berners-Lee), le We-
bID (http://www.w3.org/People/Berners-Lee/card#1i) et le doc-
ument de profil (http://www.w3.org/People/Berners-Lee/card). . 98

Le flux d’authentification WebID-TLS. 100
Le flux d’authentification déléguée WebID-TLS. 101
L’architecture de notre service de controle d’accés sociale. 104
Algorithme d’appariement contextuel. 105

Le processus de la prise de décision du RM. 106

Chapter 1

Introduction

1.1 Problem statement and motivation

Over the past decade, we have witnessed a dramatic increase in the number of
social Web applications. These applications come in different forms and offer
different services such as social networks, content management systems (CMS),
software forges, bug trackers, blogging tools, or collaboration services in general.

Since the launch of the first large social networking website in 1997 [29],
the social Web has seen a significant increase in its size and usage. Rather
than simply consuming websites, users began to generate their own content
through blogging tools and social networks, marking the start of Web 2.0 and
the Semantic Web [12]. Social Websites have responded to this new trend by
providing users with the ability to create their own personal profile where they
could list friends, post photos, status updates and more. Later, some of these
websites have also provided plug-ins that were used to integrate some of their
social functionalities on other third-party websites. But what exactly is a social
website and what functionalities do these websites offer to users? Is the ability
to form a connection between users enough to consider a website to be a part
of the social Web, and how can we expect the social Web to evolve in the future?

In this thesis we will analyse and propose means to achieve data ownership
and interoperability for decentralized social Web applications, with respect to
privacy and access control. Since the user’s data are such an important asset
of the current business models for most social Websites, companies have no
incentive to share data among each other or to offer users real ownership of
their own data in terms of control and transparency of data usage. We have
concluded therefore that it is important to improve the social Web in such a
way that it allows for viable business models while still being able to provide
increased data ownership and data interoperability compared to the current
situation.

The following section of the introduction outlines the reasons and the moti-
vation that has driven us to pursue this thesis. The first topic discusses the lack
of control over users’ data. The second topic covers identity, as a key factor for

2 1. INTRODUCTION

the decentralized social Web. Finally, the third topic will be an introduction to
achieving interoperability on the Web.

1.1.1 Data silos, losing control over our data

A current practice specific to most Web services is to centralize user resources,
becoming the so-called "data silos". Often when adhering to particular services
we usually end up creating dedicated local accounts, which ties and limits us
to a particular service and/or resource. Figure 1.1 aptly illustrates this aspect,
depicting how people’s freedom within a particular social networking site is
limited and how they would like to "jump out of the walled gardens" to interact
with "other" social networking sites, such as to share their data with their friends
who may be members of other social networking sites. Furthermore, users have
no control over how their personal account data are used by applications, as
it is the case for private data that is often sent to third party companies for
advertising purposes.

Figure 1.1: ’Everywhere and nowhere’, an illustration by David Simonds, 2008.

One may argue that better privacy policies may reduce the risk of ex-
posure. However, even if users decide to protect their public data through
rigorous privacy settings, or even remove their accounts, there is no guar-
antee that the process is instant and more importantly, permanent. This is
mainly due to the fact that countries have passed laws forcing online services to
store user data for several months up to one year or an unlimited period of time.

Companies attempt to justify the practice of data silos stating that they
have better control over user actions while allegedly offering better security.
Online businesses stand to gain a lot from data mining their users in order to be
able to increase their sales, or offer targeted publicity. In most of the cases, they

1.1. PROBLEM STATEMENT AND MOTIVATION 3

offer "free" sign-up for their services and provide people with numerous attrac-
tive features, encouraging them to provide additional personal data, effectively
turning the users from customers into products which are often "sold" to third
party advertising companies. For this matter and to the detriment of users, pri-
vacy is often found as an additional feature and it is not implemented by design.

While it is true that some people join public communities and disclose
personal information in order to find new friends who share common interests,
others would simply want to have more control over their privacy. The situation
worsens when social networks force the users into providing their real names
without presenting them with alternatives, like creating multiple identities or
using pseudonyms.

A solution to the so-called data silos can be achieved through decentraliza-
tion, where users are free to host their data wherever they want. In the following
section we will discuss how decentralized identity systems play an important role
in achieving true data ownership for users.

1.1.2 Identity, a key factor for the decentralized social
Web

Before discussing decentralized social Web applications, we must first define the
concept of identity. The first question we ask ourselves is related to the form
and nature of online identities. Often, an online identity starts with a unique
identifier binding a person to a user profile describing them. The identity of a
person may also include the sum of all opinions and postings that have been
generated by that person, as well as relationships between the person and other
people, all contributing to the one’s reputation.

Since online identities also deal with personal data, a number of risks
are related to the exposure of these data [55]. There have been accounts of
employers who have been collecting information about potential employees from
their blogs [70] and social networking sites [49], and have used this information
to dismiss them or deny them jobs. A recent study [27] performed by a popular
career and resume-building website revealed that 46% of executives say they
are likely to make a hiring decision based on a prospective employee’s online
identity or Facebook profile. So far, the most common workaround for people
has been to replace real identities with pseudonyms.

Identity is easily one of the most difficult research areas on the Web, as it
requires both practical solutions and multidisciplinary research. We believe
that identity implies to be able to refer reliably to anything, abstract or real,
and in different contexts. In our day to day lives, we find the concept of
personal identity to be quite simple (i.e. our names). Yet on closer inspection,
we find that applying these concepts to a Web scale becomes quite tricky, as
is the case when we type our name into a search engine and see that it may
refer to many other people in different contexts. It becomes even worse when
it might refer to us in a context that we did not intend to.

4 1. INTRODUCTION

One way to deal with identity is to establish a common convention that
identifies particular things in a uniform manner that is easily reused in diverse
contexts. When applied to the Web, it becomes obvious that using HTTP
Uniform Resource Identifiers (URIs) as global identifiers is the preferred choice.
The key advantage of HTTP URIs over any other identification scheme (e.g.
email addresses, unique user IDs, etc.) 1is that linked data principles say
these URIs should return a useful description of what the URI identifies when
accessed in a Web browser or computer application using the HT'TP protocol.

The process of establishing one’s identity leads to identification, which is
also a key component of decentralized social Web services. Having a persistent
identity across different application domains is very difficult to achieve, since
the concept of decentralized authentication requires a considerable effort from
large entities in terms of compatibility, as well as powerful trust relationships
between all parties. Many services authenticate users based on user name and
password combinations, which results in having to remember and manage a
lot of accounts. In that respect, federated and decentralized authentication
services like OpenID [54], OAuth [22] and Mozilla Persona [68] have proven to
be quite useful. However, once the authentication has been performed, some
services still require that users have local accounts in order to manage profile
data. To this regard, WeblID, the first of our contributions, provides both a
decentralized identity platform, as well as the basis for a deceptively simple yet
secure decentralized authentication mechanism through the use of cryptography,
in the form of WebID-TLS. WebID and WebID-TLS will be presented in detail
in Chapter 2.

1.1.3 Interoperability based on the Semantic Web and
LDP

A decentralized Web application must be able to work across different
application domains, enabling different applications to interact with each
other through the use of data semantics. It is important that users be allowed
to choose where to store their data, may that be on personal servers they own
and keep in their homes, or entrusting their data to their friends or people they
trust. Users may even take advantage of a myriad of cloud storage services
available on the Web, though steps must be taken to ensure the privacy of their
data, with respect to the service providers.

The main cause for which storing data in a decentralized manner is unpop-
ular; is that major Web services have no incentive to share data among each
other or to give users more ownership than necessary for their own data. Even
though most applications provide Application Programming Interfaces (APIs)
which are dedicated to performing specific interoperability tasks, developers are
still required to have a priori knowledge of these APIs before attempting to
provide interoperability. To our knowledge, there is currently no standardized
API for decentralized Web applications, leaving at the discretion of each appli-
cation to define its own API. Recently however, a standard is being proposed
for such an API within the World Wide Web Consortium (W3C). It relies on
the Semantic Web, which refers to the Web of data [12], in order to offer true
interoperability.

1.1. PROBLEM STATEMENT AND MOTIVATION 5

The Semantic Web

The Semantic Web should be considered in some ways like a global database,
or better yet an information space. Since most of the information on the
Web is designed for human readers, though only useful for human-to-human
interaction, the Semantic Web intends to allow machines to participate in this
interaction by providing languages for expressing information in a machine
processable form. In other words, the Semantic Web offers the tools to convey
the meaning of data so that it will be understood by computers and not
misinterpreted.

The most common means used by the Semantic Web to describe information
are the Resource Description Framework (RDF) [43] and the Turtle [6] syntax.
While RDF is based upon the idea of making statements about resources (in
particular Web resources) in the form of subject-predicate-object expressions
(called triples), the Turtle syntax is utilized to express data in the RDF data
model.

A typical triple is presented in Example 1, where the subject is <> (which
refers to the current document), the predicate is foaf :maker while the object
being https://barry.example/profile#fme. All statements are contained
within the same document, residing at https://barry.example/profile, and
having as primaryTopic the inner reference 7#me pointing to a Person, namely
Barry. A visual representation of the same triples is provided as a graph in
Figure 1.2.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<> a foaf:PersonalProfileDocument ;
foaf :maker <https://barry.example/profile#tme> ;
foaf :primaryTopic <https://barry.example/profile#me> .

<#fme> a foaf:Person ;
foaf:name "Barry"
foaf:knows <https://example.edu/p/Ann#MSc> ;
foaf:weblog <http://barry.example/blog> .

Example 1: A typical subject-predicate-object relation in Turtle.

The Semantic Web facilitates cross-domain applications and services,
thanks to data being structured into ontologies and vocabularies. An ontology
formally represents knowledge as a set of concepts within a domain, and the
relationships between those concepts. Vocabularies are a less formal way of
expressing concepts or entities and the relations between them. A typical case
of a large linked data application is DBPedia', which, essentially, makes the
content of Wikipedia available in RDF. The importance of DBPedia is not only
that it includes Wikipedia data, but also that it incorporates links to other

Thttp://dbpedia.org

6 1. INTRODUCTION

foaf:PersonalProfileDocumen f

foaf:name

rdf:type >
\ / foa/f:knows

rdf:type

foaf:maker

.) foaf:weblog
WWaryToplc

Figure 1.2: A graph representation of Barry’s profile.

datasets on the Web, e.g., to Geonames?. By providing extra links expressed
as RDF triples, applications are able to exploit the semantics of data and gain
additional knowledge from other datasets. Conversely, by virtue of integrating
facts from several datasets, applications are now able to provide a better user

experience.

The Linked Data Platform

The Linked Data Platform (LDP) [67] is considered to be the first attempt
at producing a standardized API for Web applications. Essentially, it is a set
of best practices for a read-write Linked Data architecture, based on HTTP
access to Web resources that describe their state using the RDF data model. Tt
describes the use of HTTP verbs for fetching (GET), updating (POST /PATCH),
creating (PUT) and deleting (DELETE) resources from servers that expose their
resources as Linked Data. It provides several rules as well as clarifications and
extensions of the four rules of Linked Data, which are the following:

1. Use URIs as names for entities;
2. Use HTTP URIs so that people can look up those names;

3. When someone looks up a URI, provide useful information, using existing
standards (e.g. RDF, SPARQL);

4. Include links to other URIs so that more information can be discovered.

Adopting LDP is important since developers no longer have to redefine
APIs every time a new Semantic Web application is created.

LDP focuses on two important concepts, resources and containers.

Linked Data Platform Resources (LDPRs) are HTTP resources that
comply to the simple patterns and conventions in this section. HTTP requests

2http://geonames.org

1.2. MAIN CONTRIBUTIONS 7

to access, modify, create or delete LDPRs are accepted and processed by LDPR
servers. Most LDPRs are domain-specific resources that contain data for an
entity in some domain, which could be commercial, governmental, scientific,
religious, or other.

Linked Data Platform Containers (LDPCs) are collections of LDPRs,
similar to how blog posts are grouped into blogs, wiki pages are grouped
into wikis, and products are grouped into catalogues. Example 2 describes a
container and its resources.

@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix 1ldp: <http://www.w3.org/ns/ldp#> .

<> a ldp:Container;
dcterms:title "A very simple container" ;
rdfs:member <memberl>, <member2>, <member3> .

Example 2: A simple container represented in Turtle.

In the next section, we briefly present the list of our contributions, with an
in-depth discussion to follow in the next chapters.

1.2 Main contributions

1.2.1 WebID

A global distributed social Web requires that each person must be able to
control their identity, that this identity be linkable across sites - placing each
person in a Web of relationships - and making it possible to authenticate
globally with such identities.

A WebID [60] is an HTTP URI which uniquely refers to an Agent (Person,
Organization, Group, Device, etc.). A description of the WebID can be found
in the profile document, a type of Web page that any Web user is familiar
with, and which uses a standardized RDF serialization format. WebID uses
vocabularies such as Friend-of-a-Friend (FOAF) [14] to provide a complete user
profile, which is under the user’s control [59].

WebIDs can also be used to build a Web of trust by allowing people to link
together their profiles in a public or protected manner [61]. Such a Web of
trust can then be used by a Web application to make authorization decisions,
by allowing access to resources depending on the properties of an agent, such
that he/she is known by some relevant people, works at a given company, is a
family member, is part of several groups, etc..

WebID is a work-in-progress open standard within the World Wide Web

8 1. INTRODUCTION

Consortium?®, for which T am one of the authors and also an editor. More
information about WebID will be presented in Chapter 2.

1.2.2 WebID Authentication

The WebID-TLS [38] protocol enables secure, efficient and user friendly
authentication on the Web, by taking advantage of WebID and the TLS
protocol [2]. It enables people to authenticate to any site by simply clicking
on one of the certificates proposed to them by their browser. These certificates
can be created in one click by any WebID provider for their users.

The WebID-TLS protocol specifies how a Web application can authenticate
a user after requesting his certificate without requiring the certificate to be
signed by a well known Certificate Authority. It relies on client certificates to
prove that an agent possesses the private key that matches a public key stored
in the WebID profile document. This also implies that only the owner of the
private key has write access to the profile document and thus it is capable of
adding an RDF description of his/her public key.

WebID-TLS authentication can also be used for automatic authentication
by robots, such as Web crawlers of linked data repositories, which could be
agents working on behalf of users to help them in their daily tasks. The
WebID-TLS protocol is not limited to authentication on the World Wide Web,
but can in theory work with any protocol based on TLS.

WebID-TLS access delegation [69] is an important feature when applied to
decentralized applications, as it no longer requires the user’s presence when
making authenticated requests. We have provided a solution that protects user
privacy by allowing servers to respond to requests as if they were being made
by specific users, and thus serving content based on the access control policies
that are specific for the requesting user.

WebID-TLS is a work-in-progress open standard within the World Wide Web
Consortium®*. We have contributed to the technical aspects of the specification
over the past two years, and I am also one of its editors. More information
about WebID-TLS will be presented in Section 2.3 of Chapter 2.

Extending the WebID-TLS protocol

Based on WebID-TLS, we propose our third contribution, a mechanism that
enables delegated authentication. This mechanism is useful especially for
service providers that are not capable to deploy a local WebID verification
service, and thus have to rely on a third party service to act as a WebID
verifier. Section 2.4 of Chapter 2 offers a full description of this mechanism.

Access delegation is an important feature when applied to decentralized ap-
plications, as it no longer requires the user’s presence when making authenti-
cated requests. We hereby offer a solution that protects user privacy by allowing
servers to respond to requests as if they were being made by specific users, and

Shttp://w3.org
4http://w3.org

1.3. THESIS STRUCTURE 9

thus serving content based on the access control policies that are specific for the
requesting user. More information about our forth contribution can be found
in Section 2.5 or Chapter 2.

1.2.3 Social Access Control Service

Our third contribution. the Social Access Control Service (SACS) is comprised
of two distinct sub-services, a Relationship Monitor (RM) engine and a Static
Access Control (SAC) engine, each having its own particular set of tasks
(Section 3.3 of Chapter 3). SACS uses context and social proximity distance as
metrics for access control policies [58].

The Social Access Control Service is especially useful for controlling personal
user information, which is often prone to changes (e.g. status messages, phone
numbers, list of friends, etc.). To achieve a user-friendly yet robust and flexible
access control mechanism, as opposed to controlling access by separating users
into groups, we decided to take advantage of a common social practice, namely
the use of context. Context labels are assigned to both profile information data
(e.g. name, phone numbers, blog addresses, etc.) as well as to Web resources
(e.g. photos, comments, etc.). The same labels will be assigned to users, in
such a way that users labelled with a specific context (i.e. "work") can easily
be matched against resources sharing the same context.

More information on access control will be provided in Chapter 3.

1.3 Thesis structure

The thesis is structured as follows. This chapter provides the motivation
behind our research, as well as a short introduction to our contributions.

Chapter 2 describes our first four contributions. The first contribution,
Web Identity and Discovery (WebID), a simple and universal identification
mechanism that is distributed and openly extensible. It improves privacy,
security and control over how each person can identify themselves. The second
contribution, the WebID-TLS authentication protocol, enables secure, efficient
and user friendly authentication on the Web by allowing people to login using
client certificates and without relying on Certification Authorities. The third
and fourth contributions are an extension of WebID-TLS, offering delegated
authentication and access delegation.

Chapter 3 presents our fifth contribution, a Social Access Control Service
for Web applications. We begin by taking a detailed look at social context and
social proximity, as metrics for a dynamic access control system tailored for
social Web applications. When applied to the Social Access Control Service,
these metrics contribute to the system’s adaptability in terms of the dynamics
of human relationships.

All our implementation efforts are presented in Chapter 4, as means to val-
idate our research. This chapter contains all practical aspects of implementing

10 1. INTRODUCTION

a decentralized social Web, including identity, authentication, access control
and data ownership. We introduce the project MyProfile, which aims to be
a decentralized identity provider. Next, we present two open source libraries
(WebIDauth and WebIDDelegatedAuth) that are used to perform WebID-TLS
authentication. Lastly, we describe RWW.I/O, a personal data store where
different applications can store data about and for the user, and where data
are equally available between applications.

Finally, Chapter 5 summarizes our research results by providing conclusions
as well as a reflection on what we can do to improve our contributions and to
provide new research directions. As part of the perspective work, we talk about
the Semantic Messaging and Notifications Protocol (SMNP) which intends to
offer two distinct types of messages. The first type is similar to email, in that
it provides end-to-end communication between the involved parties, while the
second type consists of activity streams (i.e. updates about other users). We
also discuss the possibility of creating a transparent WebID proxy, which uses
certain parts of a user’'s WeblD profile in order to build new identities specific
to different types of services (e.g. anonymous, shopping, blogging, etc.).

Chapter 2

Identity and authentication

on the Web

Digital identity credentials such as passwords, tokens and keys are used to
ensure that only authorized users are able to access online services. Because
such services manage sensitive and valuable information, they have become
attractive targets for a variety of online attacks. For example, online financial
services must use stronger credentials for authentication to avoid fraud. Because
of serious threats and widespread theft and misuse of identity credentials, there
is considerable interest in the area of identity management, which addresses
secure use of identity credentials.

Decentralized, user-centric identity management offers better privacy and
control over the use of identity credentials, since it allows users to flexibly choose
what identity information is released to other entities in each transaction. For
instance, users may choose to use a trusted identity provider (IdP) that they
believe is the most appropriate for each transaction, or they may even use
their own identity provider, therefore allowing them to control what identity
information is disclosed to service providers (SP).

In this context, we propose an identity management system architecture
based on the concept of decentralized identity provider, which coupled with an
efficient access control system, ensures that identity credentials remain under
the user’s control.

This chapter is structured as follows. Section 2.1 provides an overview of
existing solutions. Section 2.2 presents our first contribution, Web Identity and
Discovery (WebID), followed by a privacy and security analysis. Section 2.3
presents our second contribution, the WebID-TLS authentication protocol. Sec-
tion 2.5 discusses the possibility of using a third-party authentication service in
cases where Web applications cannot directly implement the WebID-TLS proto-
col. Section 2.5 covers the topic of delegating an agent to act on behalf of a user
in order to no longer require the user’s presence when making authenticated
requests. Finally, we compile and present a list of conclusions.

11

12 2. IDENTITY AND AUTHENTICATION ON THE WEB

2.1 Related work

In this section, we start by reviewing related work in user-centric identity
management area, while discussing the issues and threats against existing
user-centric identity management schemes. We decided to investigate the
protocols which provide users with identity, authentication and attribute
exchange (i.e. providing additional data about the user), while ignoring the
protocols that focus on one specific aspect.

The identity and authentication protocols that we will present next are based
on three common entities. The first one is the user, or more commonly the
browser, which is typically responsible for authentication. Next is the service
provider (SP), which is usually a Web application. Finally, we have the identity
provider (IdP), which also acts as an attribute provider, and whose task is to
handle requests for the user’s identity data.

2.1.1 OpenID Connect

OpenID [54] is a lightweight identity management system originally designed
for relatively simple applications, such as blog services. While the OpenlD
brand has undergone several major changes, its latest iteration called OpenID
Connect [56] is a profile of OAuth 2.0 [35], optimizing certain elements of
OAuth for server-side exchange of attributes while requiring no changes to
current browsers. OAuth is a standard for granting data authorization to third
parties, allowing people to grant access to private resources after authenticating
themselves via their online identity. OpenID Connect uses OAuth 2.0 for the
authorization flow, though it adds a small number of attributes in the response
between an identity provider and the service provider. One important point
is that OpenID Connect, as it is a profile of OAuth, does not standardize any
authentication, but only specifies an HTTP redirection flow from the service
provider to the identity provider. In current implementations of OpenlD,
authentication is usually done via a user name and password combination.

Figure 2.1 depicts the necessary steps that have to be taken in order to
successfully permit to a service provider to access a user’s personal attributes.

1. A user visits a service provider (SP) that needs attributes.
2. The SP makes a request for attributes to the identity provider (IdP).
3. The user is redirected to the IdP from the SP.

4. The user authenticates to the IdP (typically using a username-password
combination), and is granted a bearer token.

5. The user is redirected back to the SP and grants an authorization token
to the SP.

6. The SP sends the authorization token to the IdP and receives an access
token (a bearer token with a specific scope and a limited lifespan).

7. While the access token is valid, the IdP sends attributes to the SP.

2.1. RELATED WORK 13

IdP @“— .~~~A SP

Figure 2.1: Flow of OpenID Connect (based on OAuth 2.0).

Authentication is out of scope of OpenID Connect specification, but the
flow usually relies on redirects and it is by default based on usernames and
passwords. Authorization relies on OAuth 2.0 and a server-side flow is fully
specified that works even when the user is offline, once the user has granted
authorization. This is a distinct advantage for use-cases involving aggregation
and inter-application communications. Therefore, we can consider that OpenID
Connect offers an "offline client; server-to-server" authorization flow.

Redirection attacks are possible with OpenID Connect. Unless the user
is aware that TLS is enabled, a malicious service provider can fool them into
redirecting to a fake identity provider site and then use that redirection to
intercept their real credentials (i.e. usually passwords). The malicious party
can then reuse the stolen credentials to provide a real authorization code to
the actual identity provider, effectively impersonating the real user. There
are a number of variations on this attack, such as a real identity provider
being provided with a malicious redirection URI to fake a valid service provider.

Even though validity lifespans, one-time authorization codes and tokens pro-
vide increased security, a bearer token can be intercepted and used in an attack.
This is possible because bearer tokens are authorization credentials which are
later used in OpenlID, once authentication has been performed. As all autho-
rization credentials are transmitted via HTTP user-agent redirections, these
credentials can be revealed possibly via HTTP referrer headers and the browser
history. Additionally, once an access token is granted, the service provider can
talk to the identity provider without any interaction with the user. The user
does not necessarily know the scope, lifetime, and kinds of access to their at-
tributes that a token provides. Furthermore, the identity provider can observe
every interaction of the user with any service provider.

14 2. IDENTITY AND AUTHENTICATION ON THE WEB

2.1.2 Mozilla Persona

Morilla Persona [68] (formally known as BrowserID) allows users to authenti-
cate by proving their identity via a werified email address, and demonstrates
the user’s ownership of the addresses to service providers using a cryptographic
proof. Unlike OpenID Connect which requires trust in the server, Persona
requires trust in the browser. The system allows an identity provider to store a
secure, revocable key representing a user authentication into a browser. It also
indicates to the browser the terms of use of the key, so that it can be expired,
invalidated, and refreshed as needed. With some additional work, it can be
used to create pseudonymous identities that allow a user to provide a different
address per service provider.

IdP SP

)

§.>

Figure 2.2: Flow of Mozilla Persona.

Figure 2.2 depicts the necessary steps to successfully authenticate using
Mozilla Persona.

1. The user attempts to identify himself/herself by providing an e-mail ad-
dress, in order to bind that address to a particular set of cryptographic
keys (for which the user then provides a proof of possession) by having
the IdP attest to that binding.

2. The browser checks to see if a private key associated with that email
address is present in the browser.

3. If no key exists in the browser for that specific email address, then the
browser generates key material and registers the public key with the IdP.

4. The browser sends a signed authentication credential to the SP.

5. The SP verifies the authentication credentials with their locally stored
database of IdP public keys, authenticates the user if verification succeeds
(not shown in diagram as this step does not happen with every transac-
tion).

2.1. RELATED WORK 15

6. The browser sends signed attributes to the SP.

As authentication is done by default using cryptographic keys as opposed
to username-passwords, it is much more secure. Furthermore, there is no
need for redirection. This specification does not explicitly set parameters for
the authorization scope, but it enables a browser-mediated flow of verified
attributes. The drawback is that it only works if the browser is online.

Although the service provider knows the identity provider’s key and will
have to check at least once with the identity provider to determine public key
of user, it does not have to check in theory more than once per e-mail (although
updates should be done at set time intervals though less frequently than user
transactions). It must be noted that using email address as identifiers enables
the linking of transactions. However, email addresses can be short-lived or they
can be used as pseudonymous.

Unfortunately, all verification of cryptographic keys from the browser is
done by a centralized service (http://www.browserid.org), which would be a
major vulnerability if compromised. Ironically, the registration to the IdP such
as http://www.browserid.org is currently done with user names and passwords.

In the end, the Mozilla Persona operation model could simply be considered
proof of a login and check email capability, similar to other systems which rely on
emails to reset forgotten passwords. Therefore, the security of the system relies
on the security of the IdP - in this case the email provider. Given the poor state
of the security for many email providers (e.g. STARTLS not providing warning
messages if TLS does not work, allowing e-mails to be transmitted as cleartext),
the possibility of email address compromise greatly affects this system.

2.1.3 Web Authentication

A recent effort comes in the form of Web Authentication [23], a JavaScript-based
cryptographic library standardized by the W3C Web Cryptography Working
Group. Web Authentication allows both OpenID Connect and Mozilla Persona
authorization flows to take place, while at the same time avoiding the dangerous
redirections used by OpenID Connect by replacing the bearer tokens with signed
tokens. The main advantage of combining OpenID Connect and Mozilla Persona
is that user attributes can be transmitted offline, thanks to OpenID Connect’s
"offline client; server-to-server" flow, while at the same time offering increased
privacy for user attributes thanks to Mozilla Persona’s "online client-to-server"
flow.

Figure 2.3 presents the combined flows of OpenID Connect and Mozilla
Persona when using Web Authentication.

1. User visits the SP and presents the authentication credential, signed by
the IdP.

2. If the user wishes to enable offline attribute access, then the user must
register its public key with the IdP and enable that flow.

16 2. IDENTITY AND AUTHENTICATION ON THE WEB

IdP R

Figure 2.3: Flow of Web Authentication.

3. The IdP signs the user’s authentication credential and any attributes to
be transmitted via the browser.

4. The SP verifies the signature of the authentication credential.

5. If the signature on authentication credential is valid, then the user is
authenticated and verified attributes can be sent via the browser if needed.

6. In the case of authorized offline flow, signed attributes are sent from the
IdP to the SP.

This sort of approach can offer identifiers that are short-lived (or pseudony-
mous) while maintaining the privacy for user attributes. We can consider email
verification to be one of many possible authentication methods, though it is
possible to transfer only signed identifiers to the relying party in cases where
another form of high-security (i.e. a smartcard) authentication is needed. How-
ever, even this system would be vulnerable to traffic analysis, though it can be
ameliorated through the use of proxies and messages being sent regularly and
padded.

2.1.4 SAML

The OASIS Security Assertion Markup Language (SAML) [32] standard defines
an XML-based framework for describing and exchanging security information
between online business partners, and which attempts to tackle the single-sign
on (SSO) problem amongst many others. This security information is expressed
in the form of portable SAML assertions that applications working across
security domain boundaries can trust. Examples of SAML deployment include
universities, Google, and Cisco. Unlike many other identity technologies, SAML
is able to provide security solutions for banking and government Web portals.
SAML is, however, often viewed as being more complex than is necessary to
support implementations requiring low levels of assurance. This has driven

2.1. RELATED WORK 17

many developers to deploy simpler technologies like OpenID in low assurance
scenarios.

In the latest version, SAML 2.0 [16], the primary use case is still Web Browser
SSO, but the scope of SAML 2.0 is broader than previous versions of SAML.
The user first authenticates to the identity provider. The user is then able to
access a resource at one or more service providers without needing to log in at
each service provider. The diagram in Figure 2.4 shows the process for what
is known as Service Provider Initiated Single Sign-on, which is what happens
when the user visits the service first, and needs to be authenticated.

SP User IdP

@ Request resource

Discover the IdP

A

Y

@ Respond with XHTML form

Request SSO service @

Identify user

Respond with XHTML form

@ P Request Assertion

Process the request and login

<€

1>

Redirect to requested resource

\/

Figure 2.4: Simple deployment of the SAML 2.0 Web Browser SSO profile, using
the HTTP POST binding.

1. The user makes a request to the SP for a specific resource. This request
may happen in a variety of ways for a variety of reasons. For example, the
user may be following a bookmark or clicking on a link from an email.

2. To begin the authentication process, the SP responds with a document
containing an XHTML form, signs it, optionally encrypts it, and encodes
it. An organization-specific host name allows the user’s organization to be
discovered. Along with the SAML Request, an HTTP parameter called

18 2. IDENTITY AND AUTHENTICATION ON THE WEB

RelayState is passed along to the IdP. This captures the location of the
resource the user originally requested.

3. The user agent issues a POST request to the SSO service at the IdP.
The SSO service processes the AuthnRequest element (by URL-decoding,
base64-decoding and inflating the request, in that order) and performs a
security check. If the user does not have a valid security context (i.e. an
existing session), the identity provider identifies the user.

4. The SSO service on the IdP validates the request, builds the SAMLRe-
sponse and responds with a document containing an XHTML form. The
value of the RelayState parameter has been preserved from Step 3.

5. The user (browser) issues a POST request to the assertion consumer ser-
vice at the SP, where the values of the SAMLResponse and RelayState
parameters are taken from the XHTML form at Step 4.

6. The assertion consumer service processes the response, creates a security
context (i.e. a session) to log the user into the SP and redirects the user
to the requested resource.

SAML does not specify the method of authentication at the identity
provider; it may use a username/password, multifactor authentication, etc.. A
directory service, which allows users to login with a user name and password,
is a typical source of authentication tokens (i.e. passwords) at an identity
provider. Any of the popular common internet social services also provide
identity services that in theory could be used to support SAML exchanges.

Since it is XML-based, SAML has extensibility, which makes it a very
flexible standard. Two federation partners can choose to share whatever
identity attributes they want in a SAML assertion (message) payload as long
as those attributes can be represented in XML. Interoperability also gives
SAML a huge advantage over proprietary SSO mechanisms, which require the
identity provider and SP to both implement the same software. Additionally, a
single SAML implementation can support SSO connections with many different
federation partners.

SAML was designed to be robust when it comes to security threats as
well as user data privacy. However, an in-depth description of possible attack
scenarios and countermeasures has been provided by OASIS in [48].

2.1.5 Synthesis

Unfortunately, neither of the aforementioned protocols offer true decentral-
ization, since service providers offer a limited number of choices for identity
providers, based on a priori trust relationships between them. Additionally,
even though some user attributes are transmitted once authentication has been
performed, the user is usually forced to create a local account on the new
service provider, thus moving from one silo to another. Moreover, username
and passwords are still the preferred choice when it comes to authentication

2.2. WEB IDENTITY AND DISCOVERY - WEBID 19

credentials, decreasing the security of the system.

In the next section we will present the first of our contributions, a decen-
tralized, user-centric identity scheme based on the Semantic Web, which hopes
to address existing issues present in popular decentralized authentication pro-
tocols.

2.2 Web Identity and Discovery - WebID

A global distributed Social Web requires that each person be able to control
their identity and that this identity be linkable across sites, thus placing each
person in a Web of relationships.

WebID [60], our first contribution, is a simple and universal identification
mechanism that is distributed, openly extensible, improves privacy, security and
control over how each person can identify themselves. It does this by applying
the best practices of Web Architecture whilst building on well established
widely deployed protocols and standards including HTML [7], URIs [11],
HTTP [10], and RDF semantics. WebID is a work-in-progress open standard
within the World Wide Web Consortium?, to which we are actively contributing.

The general idea behind WebID is that Agents (e.g. a person, an organi-
zation, a group, etc.) create their own identities by linking a unique identifier
(i.e. an HTTP URI) to a profile document, a type of Web page that any
Web user is familiar with, and which uses a standardized RDF serialization
format. The profile document contains all the necessary information to create
a Web of trust which allows people to link together their profiles in a public
or protected manner. Such a Web of trust can then be used by Web services
to make authorization decisions, by allowing access to resource depending on
the properties of an agent, such that he/she is known by some relevant people,
works at a given company, is a family member, is part of some group, etc..

Before explaining how WebID works, we must provide definitions for several
terms we have used or we will be using.

Server - a device contactable at a domain name or IP address that hosts a
number of globally accessible services.

Service - an application or agent listening for requests at a given IP address
and port number on a given server.

Requesting Agent - an agent that initiates a request to a service, on a
given server.

WebID - a URI with an HTTP or HT'TPS scheme which denotes an Agent
(Person, Organization, Group, Device, etc.).

Thttp://w3.org

20 2. IDENTITY AND AUTHENTICATION ON THE WEB

WebID Profile - an RDF document which uniquely describes the Agent
denoted by the WebID in relation to that WebID.

Dereferencing a URI - in the current context of the Semantic Web, the
operation of dereferencing a URI results in accessing the information resource
on the Web (located at the given URI) and extracting the RDF semantics from
it.

Hash URI - a URI containing a fragment identifier (i.e. #me). The hash
symbol (#) separates the URI to be looked up, the so called document URI
part of the URI which comes before the #, from the relative URI part which
is considered to be an inner reference within the document. When a hash is
present, the lookup operation is performed on the document URI.

Pointed Graph - a graph that is part of an RDF document and that can
be referred to by its relative URI (i.e. <#me>). The difference between the
named graph [17] and pointed graph is that the latter is used to refer to a
resource that is part of a named graph, and that whose context is only valid
within that named graph.

To exemplify these terms, Figure 2.5 describes the relations between Tim
Berners-Lee’s WebID (i.e. the URI) and the profile document to which it refers.

The WebID URI - http://www.w3.org/People/Berners-Lee/card#i - is an
identifier that refers to a person or more generally an agent, in this case to
Tim Berners-Lee.

The WebID Profile URI - http://www.w3.org/People/Berners-Lee/card -
denotes the document describing the agent to which the WebID URI refers. The
profile may contain any number of relations describing the agent. For example
a user can publish a depiction of himself, so that once authenticated a service
can personalize the user experience. The user can also post links to known
people, who in turn have WebIDs published on other sites, in order to create
a Social Web. More importantly, the user can publish one or more relations
to principals used by different authentication protocols. More information on
WebID authentication can be found later on in Section 2.3.

2.2.1 The WebID URI

On the Semantic Web, URIs identify not just Web documents, but also real-
world objects like people and cars, and even abstract ideas and non-existing
things like mythical heroes. We can refer to these as real-world objects or
things. For example, the person Ann is described on her homepage. Barry may
not like the look of the homepage, but may want to link to the person Ann.
Therefore, two URIs are needed, one for Ann, one for the homepage or an RDF
document describing Ann.

In our case, the WebID URI must be one that dereferences to a doc-
ument the user controls. For example, if a user Barry controls the
server hosting https://barry.example/profile, then his WebID URI can be

2.2. WEB IDENTITY AND DISCOVERY - WEBID 21

WEBID

| http://www.w3. org/People/Berners—Lee/card{#i

denotes denotes
(sense) (reference)

www.w3.0rg

/People/Berners-Lee/card

o

— |7

foaf:homePage

\

the WebID

Figure 2.5: The relation between the user (Tim Berners-Lee),
URI (http://www.w3.org/People/Berners-Lee/card#i) and the profile docu-
ment (http://www.w3.org/People/Berners-Lee/card).

https://barry.example/profile#me.

The main reason why fragment identifiers, commonly known as hashes
(i.e. #me), were introduced is that the WebID URI and the profile doc-
ument URI should not be the same. If they were the same, then there
would be no way to differentiate between the profile document’s URI -
https://barry.example/profile - and the URI pointing to the profile graph
within the document (i.e. #me), which describes the user. In other words, for
hash WebIDs, the URI without the hash denotes the profile document.

However, if hash URIs cannot be utilized, then an HTTP request on the
WebID must return an HTTP 303 response with a Location header URI referring
to the profile document. Hash URIs are encouraged when choosing a WebID
since HTTP 303 redirects impact performance for clients by means of additional
requests. From here on, all examples will contain such hash URIs.

2.2.2 The WebID profile document

Personal details are the most common requirement when registering an account
with a website. Some of these pieces of information include an e-mail address,
a name and perhaps an image depicting the user. To this regard, WebID
profiles are built using vocabularies identified by URIs, that can be placed
in subject, predicate or object position of the relations constituting an RDF
graph. The definition of each URI is found at the namespace of the URI, by
dereferencing it. For example, a foafiname relation implies that the foaf:
namespace has been previously defined as a prefix in the following way: @prefiz

22 2. IDENTITY AND AUTHENTICATION ON THE WEB

foaf: <hitp://zmlins.com/foaf/0.1/>.

The Friend-of-a-Friend (FOAF) vocabulary allows the Semantic Web
community to define an open-data social graph. This ontology describes people
and their properties, as well as links between people using RDF. In this model,
a uniform resource identifier (URI), which in our case is the WebID profile
URI, refers to FOAF data representing a person, a group, or their agents and
their respective relations. FOAF collects a variety of terms; some describe
people, some groups, some documents. Different kinds of applications can use
or ignore different parts of FOAF. FOAF descriptions are themselves published
as linked documents in the Web (e.g. using RDF /XML, N3, etc.). The result
of the FOAF profile is a network of documents describing a network of people
and properties. Each FOAF document is itself an encoding of a descriptive
network structure.

2.2.3 Publishing the WebID profile document
Content negotiation

According to W3C guidelines [39], we have a Web document (also called
information resource) if all its essential characteristics can be conveyed in a
message (e.g. a Web page, an image or a product catalogue).

In HTTP, a 200 response code should be sent when a Web document
has been accessed. However, a different Web server configuration is needed
when publishing URIs that are meant to identify entities which are not
Web documents. Web clients and servers use the HTTP protocol to request
representations of Web documents and send back the responses. HTTP has a
powerful mechanism for offering different formats and language versions of the
same Web document known as content negotiation.

When a user agent (such as a browser) makes an HTTP request, it sends
along some HTTP headers to indicate what data formats and language it prefers.
The server then selects the best match from its file system or it may generate the
desired content on demand, and then sends it back to the client. For example,
a browser could send a specific HTTP request to indicate that it wants a Turtle
representation of http://barry.example/people#me, as seen in Example 3. We
can see that since the client specified that it Accepts text/turtle, the server
responded with the appropriate Content-Type, pointing to the right document.

Browsers are also able to announce their ability to consume different
formats of RDF, through Accept headers that use ¢ (quality) values, as seen in
Example 4.

Here we see that the browser accepts RDF/XML with a q value of
0.7 and Turtle with a q value of 1.0 (the default). This means that the
browser has a slight preference for Turtle over RDF/XML, even though
the preference for Turtle doesn’t necessarily mean that every server should
send Turtle. The server has to look at the client’s preferences, and then it
must make a decision based on the quality of the different variants it could offer.

2.2. WEB IDENTITY AND DISCOVERY - WEBID 23
Request:

GET /people HTTP/1.1
Host: barry.example
Accept: text/turtle

Response:

HTTP/1.1 200 OK
Content-Type: text/turtle
Content-Location: https://barry.ezample/people

Example 3: Request and response for the Turtle version of the document.

Accept: application/rdf+xml;q=0.7, text/turtle

Example 4: Accept header.

Content negotiation is fairly complex, but in the same time it is a pow-
erful way of choosing the best variant for mixed-mode clients that can deal
with HTML and RDF, as well as a decisive factor for interoperability between
decentralized Web applications.

The profile document

The preferred format for writing WebID profile documents is the Turtle [6]
notation. The syntax is simple to use and is very similar to the SPARQL [52]
query language, which in turn resembles SQL. Turtle profile documents must
be served with the text/turtle content type.

Take for example the WebID https://barry.ezample/profile#me, for which
the WebID Profile document contains the following Turtle representation, as
seen in Example 5.

However, a WebID profile document does not need to contain only public
resources. A simple way of protecting its contents can be achieved by separating
parts of the profile information into separate documents, each protected by
access control policies. In the following example, Barry is limiting access to his
list of friends, by placing all foaf:knows relations into a separate document, as
seen in Example 6.

In this case, https://barry.example/friends is a URI pointing to an ACL
protected document containing a list of people known by Barry (cf. Example 7).

2.2.4 Extending the WebID profile document

A notable advantage of WebID over other identity schemes is that WebID can be
easily extended. By simply expressing different information through additional
vocabularies, WebID profile documents have the useful characteristic that they

24 2. IDENTITY AND AUTHENTICATION ON THE WEB

@prefix foaf: <http://xmlns.com/foaf/0.1/>

<> a foaf:PersonalProfileDocument ;
foaf :maker <#me> ;
foaf:primaryTopic <#me> .

<#me> a foaf:Person ;
foaf:name "Barry"
foaf:img <https://barry.example/picture.jpg> ;
foaf:knows <https://example.edu/p/Ann#MSc> ;
foaf:knows <https://company.com/p/Sue#i> ;
foaf:weblog <http://barry.example/blog>

Example 5: A basic WebID profile document expressed in Turtle.

@prefix foaf: <http://xmlns.com/foaf/0.1/>
Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

<> a foaf:PersonalProfileDocument ;
foaf :maker <#me> ;
foaf:primaryTopic <#me> .

<#me> a foaf:Person;
foaf:name "Barry";
foaf:img <https://barry.example/picture.jpg> ;
rdfs:seeAlso <https://barry.example/friends>

Example 6: The rdfs:seeAlso relation is used as reference for the friends section
of the profile.

@prefix foaf: <http://xmlns.com/foaf/0.1/>

<> a foaf:PersonalProfileDocument;
foaf :maker <https://barry.example/profile#tme>;
foaf :primaryTopic <https://barry.example/profile#tme>.

<https://barry.example/profile#me> a foaf:Person;

foaf :knows <https://example.edu/p/Ann#MSc> ;
foaf:knows <https://company.com/p/Sue#i> .

Example 7: The contents of hitps://barry.example/friends.

2.2. WEB IDENTITY AND DISCOVERY - WEBID 25

can be easily merged, allowing partial and decentralized descriptions to be com-
bined in interesting ways. In WebID profile documents, additional vocabularies
can be used either to extend the user’s personal profile, by means of providing
location coordinates, a list of personal interests and more, as well as to describe
different activities related to the user - e.g. the user’s blog posts, projects to
which he/she contributes, etc.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sioc: <http://rdfs.org/sioc/ns#> .
@prefix dc: <http://purl.org/dc/terms/> .

<> a foaf:PersonalProfileDocument ;
foaf :maker <#me> ;
foaf:primaryTopic <#me> .

<#me> a foaf:Person ;
foaf:name "Barry"
foaf:weblog <http://barry.example/blog> .

<http://barry.example/blog/posts/1> a sioc:Post ;
sioc:has_creator <#me> ;
dc:title "Hello world!"
sioc:content "This is my first post."

Example 8: The WebID profile document containing a blog post, expressed
using SIOC.

For instance, a WebID profile document can be extended to contain
blog posts by using an ontology called the Semantically-Interlinked Online
Communities (SIOC) [13]. From Example 8, we can easily tell that Barry has a
blog post at the URI http://barry.example/blog/posts/1, having the title Hello
world! and a specific content.

Additionally, if a user is involved in different projects, he/she can express
this through the Description of a Project (DOAP) [26] ontology. In Example 9,
Barry states that he is a developer for a project called My Project. By
expressing this fact through linked data, any service is now able to dereference
the URI for the project - i.e. http://myproject.org/ - in order to discover more
information.

As you can see, reusing existing vocabularies greatly increases interoperabil-
ity, since any Semantic Web service will be able to understand the meaning of
the data found within a WebID profile document.

2.2.5 Privacy and security analysis
Privacy

As you might have noticed, WebID in its simplest form suffers from the
same limitations that affect most persistent identity schemes. Among those

26 2. IDENTITY AND AUTHENTICATION ON THE WEB

Q@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix doap: <http://usefulinc.com/doap/> .

<> a foaf:PersonalProfileDocument ;
foaf :maker <#me> ;
foaf:primaryTopic <#me> .

<#me> a foaf:Person ;
foaf:name "Barry"

<http://myproject.org/> a doap:Project ;
doap:name "My Project" ;
doap:developer <#me> .

Example 9: The WebID profile document extended with DOAP information.

limitations, the primary concern is that user privacy can be undermined by
tracking /fingerprinting the user across different services. Even though access
to all profile information can be restricted through access control policies, by
aggregating user data from multiple services, attackers could in theory be able
to build a complete profile of the user. Of course, the same hypothesis remains
valid for services operated by the same company.

A possible solution is to use multiple identifiers (WebID URIs) linked to
the same profile document. Short-lived identifiers offer even better protection,
though managing them becomes increasingly difficult, especially for users editing
their profile documents by hand. Another solution is to investigate a mechanism
similar to Do Not Track (DNT) [50], which is a universal third-party Web
tracking opt out, but which would enforce access control on external services
too.

Security

Not using HTTPS when serving the WebID profile document opens the door
to man-in-the-middle attacks. This can be currently avoided in two ways.
The first way is to host WebID profile document on HTTPS-enabled Web
servers. However, relying on HTTPS also implies having to validate the server’s
certificates through a standard Public Key Infrastructure (PKI) trust chain,
which is fundamentally vulnerable because CAs can be compromised and used
to replace valid certificates for millions of domains.

Alternatively, the new DNS-Based Authentication of Named Entities
(DANE) [36] protocol offers the option to use the DNSSEC [4] infrastructure to
store and sign keys and certificates that are used by TLS. DANE is envisioned
as a preferable basis for binding public keys to Domain Name System (DNS)
names, because the entities that vouch for the binding of public key data to
DNS names are the same entities responsible for managing the DNS names
in question. In other words, DANE allows the site owners to publish their
certificates in DNS.

2.3. WEBID-TLS 27

In the next section we will present an authentication protocol based on
WebID and client certificates in Web browsers, which does not rely on the
classic PKI infrastructure in order to build trust.

2.3 WebID-TLS

The classic means of authentication are the use of something you know (i.e.
a password), something you have (i.e. a hardware token), or something you
are (i.e. a fingerprint). While this can encompass cryptographically generated
one-time passwords [34], sophisticated smart cards [62] or biometrics [63],
these technologies are expensive to deploy and even more expensive to manage
efficiently. Most Web sites use the now-familiar password, something that is

known only to the user and the web service.

Passwords place the smallest initial burden on both parties in order to form
a trusted relationship. They are, however, a serious weak link in the chain of
trust, as users have been shown to be bad at devising passwords that are robust
against guessing. To make things worse, passwords are reused across domains
and applications, so that if one web server has been compromised, an attacker
may potentially take advantage of an entity’s identity across multiple sites.

Passwords serve as a basis of trust, but they require an infrastructure for
delegation and transfer of trust. The most basic model of trust is simply the
user trusting the website. This classic model reflects the human model of trust,
but does not work for the complex online world, where much of the transaction
is hidden [15]. Between the user and the service provider lie a number of
technical and organizational layers: the browser, the Internet Service Provider
(ISP), and the standards and systems ensuring interoperability. These layers
have different models of trust, some stronger than others. The certificate
management system used to trust digital certificates for the secure exchange of
information via SSL/TLS uses a monolithic system of trust through association.
There exists a large set of Certification Authorities (CAs) from whom a web
site can obtain a certificate used for these secure transactions. The web browser
will automatically only engage in a secure connection with a web browser if
the Web site’s certificate is approved by the one of the established set of CAs.
There exists, however, a key flaw in this trust model. Users have no way of
differentiating between CAs, and there is increasing evidence that some are not
trustworthy at all [3].

2.3.1 Introduction

Our second contribution, the WebID-TLS authentication protocol [38], enables
secure, efficient and user friendly authentication on the Web by allowing people
to choose a client certificate proposed to them by their browser during the
authentication process. A very important aspect of WebID-TLS is that it
replaces standard username-password authentication methods, At the same
time, it is easy to implement since it takes advantage of the cryptography

28 2. IDENTITY AND AUTHENTICATION ON THE WEB

behind the Transport Layer Security (TLS) protocol [25]. Furthermore, it is
not affected by the same issues that are common to PKIs, since it does not rely
on Certification Authorities. Using self-signed certificates also means reducing
costs created from issuing certificates by trusted CAs.

The main advantage of WebID-TLS is the fact that it is a truly decentral-
ized authentication protocol, with no pre-existing trust relationships required
between the SP and the IdP, unlike the authentication protocols presented in
Section 2.1. In WebID-TLS, trust is built by using the Semantic Web to imag-
inatively reason over the contents of the profile document. For example, a user
can be granted access to a protected resource because the owner of the resource
has an access control rule stating: "give read access to all users with whom I
share a minimum of X friends". Another rule would allow access to users having
a WebID hosted on a domain that has been previously white-listed. It is up to
each service provider to decide on the granularity on which it grants access to
users.

2.3.2 WebID-TLS terminology

Building on the WebID concepts presented above, several new terms must now
be defined.

Certificate - is a cryptographic document binding a public key to a
user /agent’s distinguished name (DN), or in the case of WebID-TLS, to the
SubjectAlternativeName.

WebID Certificate - is a standard X.509 certificate [65] that is used to
identify an Agent using one or more WebIDs. The certificate does not need to
be signed by a well known CA. However, it can be signed by a trusted CA, by
the server which hosts the WebID Profile, or it can even be self signed. The
certificate must contain a SubjectAlternativeName extension with at least one
WebID URI entry identifying the user/agent. Dereferencing this URI should
return a representation containing RDF data. A typical SAN extension value
for a certificate identifying the WebID https://barry.example/profile##me can
be observed in Example 10.

X.509v3 extensions:

X509v3 Subject Alternative Name:
URI:https://barry. ecample/profile#me

Example 10: The Subject Alternative Name extension of an X.509 certificate.

TLS Service - secures the transport layer before passing messages to the
application layer service itself (in this case the HTTP server). The TLS proto-
col [25] is applied to incoming connections. It identifies the server to the client,
securing the channel and is able to request authentication credentials from the
client if needed. Server credentials and client credentials traditionally take the
form of X.509 certificates containing cryptographic keys. The TLS protocol

2.3. WEBID-TLS 29

enables the TLS service to verify that the client controls the private key corre-
sponding to the public key published in the certificate. Trust decisions on other
attributes of the user/agent published in the certificate - such as the common
name - are traditionally based on the trust in the CA that signed the certificate.

WebID Verifier - is a service or a specific function of a service that takes
a WebID claim and checks that it is currently true, as explained in Section 2.3.4.

WebID Claim - is a set of statements which have not been verified. If
the Certification Authority is not known to be trusted (as it is in the case of
self-signed certificates), then the statements in the certificate must be subjected
to scrutiny. In particular, statements about the SubjectAlternativeName of
the agent that knows the private key should not be assumed to be true
until verified. A WebID Claim then is the statement of identity between the
SubjectAlternativeName and the public key contained in the certificate.

Key Store - provides a mechanism to return certificates to authorized clients
and can sign cryptographic tokens with the corresponding key. The WebID-TLS
protocol does not specify where the Key Store is located; it may be possible for
a client to contain its own Key Store or that the Key Store is a separate process
on the Operating System, or even that it may be found in an external device
controlled by the user.

2.3.3 The WebID certificate

When creating a WebID certificate, it is very important to choose a user
friendly Common Name (CN) for the user, as it will allow the user to dis-
tinguish between different certificates he/she may have installed in his/her
browser. This name may then also be displayed by any server authenticating
the user as a human friendly label. Many tools exist to create certificates. Some
key stores allow users to create certificates through a friendly User Interface
(UI). However, using a key store on the client still requires the public key to be
published on the server, as you will be able to see soon.

It is possible to combine the creation of the key with its publication in one
step in such a way as to allow the server to make the decision of what the WebID
should be, by using the HTML5 <keygen > element. This element can be placed
in an HTML form so that when submitting the form, the browser asks the key
store to create a public and private key pair. On receiving the public part of
the key pair, the client then sends a certificate request as part of the form to
the service. The service then creates a WebID certificate and returns it to the
client to be installed into his/her key store. In that way, the server is in the
position to best make the decisions of what the certificate should contain and
what the WebID should be, without the private key ever leaving the secure key
store. From the usability point of view for this method, the user experience is
a simple one click operation.

30 2. IDENTITY AND AUTHENTICATION ON THE WEB

Cryptographic Vocabulary

In this section, we list the core cryptographic terms required for expressing pub-
lic key corresponding to a WebID certificate, and we detail some of the useful
optional relations from the FOAF vocabulary that we have used in the examples.

The following properties should be used when conveying the relation
between the user/agent and his/her key, within WebID profile documents. The
WebID profile document must expose the relation between the WebID and the
user/agent’s public keys by using the cert ontology? as well as the standard zsd
datatypes®.

cert:RSAPublicKey - refers to the class of RSA public key. The RSA-
PublicKey must specify the cert:modulus and cert:exponent properties.

cert:key - used to associate a WebID with an RSAPublicKey. A WebID
profile must contain at least one RSAPublicKey that is associated with the
corresponding WeblID.

cert:modulus - used to relate an RSAPublic key to its modulus value. An
RSA key must have one and only one modulus. The datatype of a modulus is
xsd:hexBinary.

cert:exponent - used to relate an RSAPublic key to its exponent value.
An RSA key must have one and only one exponent. The datatype of a modulus
is zsd:integer.

Publishing the certificate data in a WebID Profile Document

The set of relations to be published in the WebID profile document can be
presented in a graphical notation as displayed in Example 11. A public WebID
profile document is not required to contain the user/agent’s name or any other
information that he/she may want to keep private, as we have explained in
Section 2.2.3. However, the public key representation must always be publicly
accessible by WebID Verifiers.

2.3.4 The WebID-TLS authentication protocol

In order to provide the full context of a user/agent authentication to a service
provider we will illustrate the protocol with the following sequence diagram
(cf. Figure 2.6). At this point, only attributes that are part of the user/agent’s
public WebID profile are transmitted, since authorization decisions are taken
independently from the authentication protocol. However, WebID-TLS can be
extended to provide authorization for protected user attributes, as you will
later discover in Section 2.4.

2http://www.w3.org/ns/auth/cert
Shttp://www.w3.org/2001/XMLSchema,

2.3. WEBID-TLS 31

Q@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
Oprefix cert: <http://www.w3.org/ns/auth/cert#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<> a foaf:PersonalProfileDocument ;
foaf :maker <#me> ;
foaf:primaryTopic <#me> .

<#me> a foaf:Person;
foaf:name "Barry";
cert:key [a cert:RSAPublicKey;
rdfs:label "My work laptop.";
cert:modulus "cb24ed8....ddb521391al"""xsd:hexBinary;
cert:exponent 65537 ;

Example 11: Turtle representation of a WebID profile document containing the
public key elements corresponding to a WebID certificate.

It should be noted that from a user’s point of view, the complete process
of WebID-TLS authentication is simply a one click operation in which he/she
chooses the WebID certificate. The user is not required to remember any cre-
dentials in order to authenticate.

IdP SP

>
®

Figure 2.6: Flow of WebID-TLS authentication.

The steps involved in the WebID-TLS authentication flow are as follows.

1. While attempting to access a protected resource on the SP, the user is
asked to provide a client certificate, as part of the TLS handshake. At
this point, the SP verifies that the user owns the private key corresponding
to the certificate’s public key sent to the SP.

32 2. IDENTITY AND AUTHENTICATION ON THE WEB

2. The SP’s WebID verifier extracts the WebID from the user certificate’s
SubjectAlternativeName extension, as well as the modulus and exponent
corresponding to the certificate’s public key.

3. The WebID verifier dereferences the WebID in order to obtain the WebID
profile document from the IdP.

4. The WebID verifier asserts if the user certificate’s public key elements
(i.e. modulus and exponent) match the public key elements found in the
WebID profile document. If they match, the user is then successfully
authenticated to the SP.

To better understand the authentication process, detailed descriptions of
each step will now be provided.

Step 1 - Initiating the authentication protocol

The authentication process can be initiated in two ways. It can be triggered
by default at the moment of the request operation on the protected resource
(e.g. through an HTTP GET), or simply by clicking on a "Login" button
displayed by the service provider. Either way, TLS allows the server to request
a certificate from the client using the Certificate Request message [Section 7.4.4]
of TLS v1.2 [25]. Since WebID-TLS authentication does not rely on classic PKI
trust (CAs signing the certificate) to verify the WebID claims made therein, the
server may choose to accept self-signed client certificates. However, at least one
verification must be performed on the certificate, which checks that the user
owns the private key corresponding to the public key that is contained in the
certificate sent to the SP.

Step 2 - Extracting pertinent information from the certificate

Once the client certificate is received by the server, the WebID verifier pro-
ceeds to extract two important elements. The first one is the WebID contained
in the SubjectAlternativeName extension, and the second one is the modulus
and exponent value which compose the certificate’s public key. The WebID
holds the location where the WebID profile document can be found, typically
https://barry.example /profile##me. The SubjectAlternativeName can store mul-
tiple WebIDs.

Step 3 - Dereferencing the WebID URI

Now that the WebID Verifier has obtained the list of WebIDs, it needs to
obtain the profile documents. It does this by dereferencing the WebID URI
using the protocol indicated in its scheme, in this case https://.

If we first consider WebIDs with hash URIs, we can explain the logic of this
as follows. As is explained in the RFC defining URIs [11]:

The fragment identifier component (or hash) of a URI allows indi-
rect identification of a secondary resource by reference to a primary

2.3. WEBID-TLS 33

resource and additional identifying information. The identified sec-
ondary resource may be some portion or subset of the primary re-
source, some view on representations of the primary resource, or
some other resource defined or described by those representations.
[...] The semantics of a fragment identifier are defined by the set
of representations that might result from a retrieval action on the
primary resource.

The WebID Verifier needs to fetch the document, if it does not have a valid
one in cache. The WebID Verifier must be able to parse documents in Turtle,
and may be able to also parse them in other serializations, such as RDFa [1] or
RDF /XML [5]. The result of this process should be a graph of RDF relations
that contains one or more public keys represented as modulus and exponent
values, as seen earlier in Example 11.

Please note that in order to obtain the profile document from a WebID
containing a fragment identifier (i.e. https://barry.example/profile##me), one
needs to dereference the resource referred to without the fragment identifier,
as presented in Section 2.2. Alternatively, HTTP 303 redirects with a different
Location header can be used in order to obtain the WebID profile document. The
URI of the document will not be the same as the WebID URI. For example, the
WebID https://barry.ezample/profile/ will redirect to a Turtle document that
may typically be located at hitps://barry.ezample/profile.ttl.

Step 4 - Verifying WebID-TLS authentication

To check a WebID claim, the WebID Verifier must find if the graph returned
by the profile document contains at least a public key, and then compare it to
the client certificate’s public key. In other words, one has to check if a modulus
and exponent pair from the profile document match the modulus and exponent
pair of the client certificate.

The actual verification process may take place in two different ways, de-
pending on the WebID Verifier’s capabilities, either by using the SPARQL [52]
query language, or local application logic. Testing for patterns in graphs is
what the SPARQL query language is specifically designed to do. We will first
look at how to use SPARQL as it is also the simplest method, and then what
some other programmatic options might be.

Below is the SPARQL Query Template which should be used for an RSA
public key. It contains three variables ?webid, ?mod and ?exp that have to be
replaced by the appropriate values.

Unlike the SPARQL SELECT, the ASK query is used to return a boolean
result (i.e. true or false), given a specific set of terms. In this case, it intends to
find all occurrences of a ?modulus and Zexp pair within a given ?webid graph.
If a match is found, the query will then return ¢rue. In this example, the three
variables have the following descriptions:

?webid - should be replaced by the WebID Resource. In the SPARQL
notation, the URL string would be placed between < > in the position of the

34 2. IDENTITY AND AUTHENTICATION ON THE WEB

PREFIX : <http://www.w3.org/ns/auth/cert#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
ASK {
?webid :key [
:modulus 7mod;
rexponent 7exp;

Example 12: Representation of a typical SPARQL ASK query.

?webid variable, i.e. <https://barry.example/profile##me>, representing an
RDF resource.

?mod - should be replaced by the modulus value of the public key. All
leading double 0 bytes (written "00" in hexadecimal) should be removed/ig-
nored. The resulting hexadecimal string should then be accompanied by the
xsd:hexBinary datatype.

?exp - should be replaced by the exponent value of the public key,
written as an zsd:integer typed literal. In SPARQL as in Turtle notation this
can just be written directly as an integer, therefore the datatype can be ignored.

Assuming that the WebID verifier received Barry’s key, containing a modulus
that starts with cb24ed8 and ends with ddb521391al... and whose exponent is
65537 then the complete query can be found in Example 13.

PREFIX : <http://www.w3.org/ns/auth/cert#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
ASK {
<https://barry.example/profile#me> :key [
:modulus "cb24ed8...ddb521391a1"""xsd:hexBinary;
:exponent 65537;

Example 13: Complete SPARQL ASK query.

A SPARQL ASK query simply returns true or false. If it returns true, then
the key was found in the graph obtained from the profile document and the
claim is verified.

In order to allow the class of queries defined by the template above to re-
turn true when asked of graphs where the hexBinary or the exponent contains
whitespace characters in initial and final position, the query engine must sup-
port the D-entailment regime for zsd:hexBinary and zsd:integer as specified
in SPARQL 1.1 Entailment Regimes*. The D-entailment regime is defined for
datatyped interpretations, which give semantics to datatypes. A datatype is

4http://www.w3.org/TR/sparqglll-entailment /#DEntRegime

2.3. WEBID-TLS 35

an entity characterized by a set of character strings called lexical forms and a
mapping from that set to a set of values. Formally, a datatype d is defined by
three items:

1. a non-empty set of character strings called the lexical space of d;
2. a non-empty set called the value space of d;

3. a mapping from the lexical space of d to the value space of d, called the
lexical-to-value mapping of d.

Datatyped interpretations for an RDF graph are relativized to a datatype
map, D, which is a set of pairs consisting of a URI reference and a datatype
such that no URI reference appears twice in the set - i.e. D can be regarded
as a function from a set of URI references to a set of datatypes. While the
datatypes often have a single lexical representation for each data value (i.e.
each value in the datatype’s value space is denoted by a single representation
in its lexical space), this is not always the case. A canonical mapping is a
prescribed subset of the inverse of a lexical mapping, which is one-to-one and
whose domain (where applicable) is the entire range of the lexical mapping
(the value space). Thus, a canonical mapping selects one lexical representation
for each value in the value space. The canonical representation of a value in
the value space of a datatype is the lexical representation associated with that
value by the datatype’s canonical mapping.

For verifiers that do not have access to a SPARQL query engine but can
query the RDF data in a programmable way, it is relatively easy to emulate
the above SPARQL query. There are a number of ways of doing this, some
more efficient than others.

A common programmatic way of asserting whether a given modulus and
exponent pair can be found within a graph, is to take the WebID found in the
certificate at Step 2 and build a graph starting from it. With the WebID as
subject, the system must then iterate through all the relations of type cert:key.
Next, the WebID verifier must look within each cert:key to find an occurrence
of "cb24ed8...ddb521391a1"" "zsd:hexBinary. Finally the system would verify
that one of the keys that had satisfied those relations also had the cert:exponent
relation to the number which in the example above is 65537.

To facilitate tests, we have implemented our own WebID verifier in PHP,
which also displays all the steps taken during the authentication process in
a verbose, user-friendly way. The verifier has been released® as open source
software, with a permissive MIT license.

In the following section, we investigate possible shortcomings and attacks on
WebID-TLS.

Shttps://github.com/WebIDauth/WebIDauth

36 2. IDENTITY AND AUTHENTICATION ON THE WEB

2.3.5 Security analysis
Relying on certificates

One of the disadvantages usually present in decentralized authentication
systems, especially those based on cryptographic solutions, is that they have to
rely on PKI and Certification Authorities. Furthermore, if a client certificate
has been lost, stolen or it has expired, they must provide a clear process of
certificate revocation. In the case of WebID-TLS, this process is very simple,
the user simply having to remove the public key description corresponding to
the invalidated certificate from his/her profile. However, this means that both
the profile document and the IdP play a decisive role in the system’s security,
as next presented.

Non-repudiation for profile documents

A WebID-TLS authentication process requires that a client certificate be trans-
mitted over TLS. However, the WebID-TLS specification does not mention
anything about requiring TLS for the rest of the process, that is dereferencing
the profile document. Thus, in order for a WebID verifier to trust the source
of the profile document, it must trust that the server hosting the document
is indeed the right one, and no man-in-the-middle attack is currently taking
place. This can be achieved by forcing the WebID verifier to only derefer-
ence WeblIDs containing the HTTPS scheme while ignoring the ones with HTTP.

A somewhat related issue deals with the authenticity of a profile document’s
contents. Even though HTTPS or DANE can be used to ensure the identity
of the source server as well as end-to-end protection for data transmission,
an attacker might have compromised the server through other means, and
therefore might be able to alter the contents of the profile document in order
to insert his/her own public key. This issue can be addressed by signing the
contents of the profile document through a cryptographic mechanism as the
one provided by the GNU Privacy Guard (GPG) [44]. However, this approach
not only implies an existing Web of Trust between the parties, but also the
ability to perform cryptographic operations on the triples, which in turn
requires an abstract/canonical representation of triples, independent of existing
serialization schemes. Moreover, users would require a mechanism to remotely
and securely exchange public keys, such as the one offered by TAKES [18].

General usability

Certificate support in browsers is minimal, both from a usability factor as well
as from an aspect factor (user interface inconsistency across browser vendors).
Once a certificate has been selected and used for authentication, there is no
way to "deselect" it or to "log out", therefore remaining the default choice for
all future authentication requests from service providers unless the browser is
restarted.

2.4. WEBID-TLS DELEGATED AUTHENTICATION 37

The next section offers a decentralized authentication model based on
WebID-TLS, as an alternative to hosting the WebID verifier on the same server
as the service provider.

2.4 WebID-TLS delegated authentication

WebID-TLS delegated authentication is the process of using a third-party
authentication service in cases where Web applications and services either do
not offer TLS or DANE capabilities, or choose not to host the WebID verifier
service themselves. WebID-TLS delegated authentication adds another entity
to the authentication flow, namely the Relying Party (RP), as seen in Figure 2.7.

IdP

Figure 2.7: Flow of WebID-TLS delegated authentication.

The steps involved in the WebID-TLS delegated authentication flow are as
follows.

1. As opposed to standard WebID-TLS authentication, in this case the user
is first redirected to a third-party WeblD verifier service, the RP.

2. The RP’s WebID verifier extracts the WebID from the user certificate’s
SubjectAlternativeName extension, as well as the modulus and exponent
corresponding to the certificate’s public key.

38 2. IDENTITY AND AUTHENTICATION ON THE WEB

3. The RP deferences the WebID in order to obtain the WebID profile doc-
ument from the IdP.

4. The RP asserts if the user certificate’s public key elements (i.e. modulus
and exponent) match the public key elements found in the WebID profile
document. If they match, the user is then successfully authenticated to
the RP.

5. The RP redirects the user back to the SP, appending additional informa-
tion in order to attest the user’s claims, as well as a signature to prove the
authenticity of the message - i.e. the message comes from a real RP and
not from an attacker.

6. The SP verifies the above signature and logs the user into the application,
while at the same time fetching user data from the IdP.

The second redirection that takes place during Step 5 contains additional
information appended to the URL, namely the webid, ts, referrer and sig, where
the aforementioned arguments have the following meanings:

e webid - contains the url-encoded WebID URI that was used to verify the
claim.

e ts - is a url-encoded time stamp in XML Schema format, which protects
against replay attacks: 2013-05-22CEST16%3A54%3A04%2B02%3A00

e referrer - is either the domain name or the IP address of the RP. This
information can be used by the SP to identify which RP performed the
WebID verification, in order to select the appropriate public key to use
for signature verification.

e sig - is a signature over the previous arguments and their corresponding
data.

At the other end, the service provider receives a URL similar to the one in
Example 14, where hitp://example.com is the address of the SP.

http://example.com/?webid=https}3A%2F)2Fbarry.example},2Fprofile’23me
&ts=2013-05-22CEST16%3A547,3A04%2B02%3A00
&referrer=https)3A%2F)2Frp-example. com&sig=sfOLr6RiIDfY

Example 14: A successful WebID-TLS delegated authentication redirect URL.

With the introduction of the relying party service, additional security con-
siderations must be added to the ones provided for the standard WebID-TLS
authentication protocol. More importantly, WebID-TLS delegated authentica-
tion cannot take place unless a trust relationship exists between the SP and
the RP. Moreover, due to the decentralized model of WebID-TLS delegated
authentication, the service provider must maintain a white list of available
relying parties which it trusts, as well as public keys corresponding to the
private keys used for signing the redirection URL.

2.5. WEBID-TLS ACCESS DELEGATION 39

Having covered the standard as well as the delegated WebID-TLS authen-
tication, we are now facing an issue which results from using client certificates
while operating in a decentralized model. In other words, we would like applica-
tions and services to perform certain tasks for their users, even if the users are
not present to select and use a given certificate. The following section presents
a solution which would enable agents to work on behalf of users.

2.5 WebID-TLS access delegation

It is worth noting that the host serving WebID profiles controls the identity of
every agent whose URI is within that server’s domain. This host is known as
the origin server, and it is the origin of all resources served by it. We can easily
think of the origin server as not only able to respond to requests, but also as
an agent, able to make requests. Indeed, WebID-TLS authentication requires
the verification server to make WebID profile requests to other servers in order
to verify the identity of agents attempting to authenticate to it. The WebID
specification describes this task as being accomplished by a separate agent, the
WebID verifier - which could indeed be done by another service on the web (i.e.
WebID relying parties or proxy authentication servers). The WebID profile
furthermore could be served by the same agent as the one making the request,
in which case we have a minimal case of a peer to peer communication.

Please consider the following example of natural application of WebID:
allowing friends of one’s friends access to resources. This authorization rule
requires the Web server to fetch each of its users’ friends profiles, in order to
build up the list of authorised users. However, there is a privacy issue involved
here, since some people do not want to make all of their social network publicly
visible, and some may not want to make any of it publicly visible. Those people
may then protect their WebID profiles with access control rules such as only to
allow friends of their friends access to it. However, how can a server that needs
access to these profiles in order to apply its own access control rules get access
to the information? Would the server itself need to be listed as a friend of a
friend by each of the users friends? Should the server take on the identity of
the user for whom it is fetching resources?

We distinguish the following roles in the access delegation process:
1. The secretary acts in the name of another agent, the principal.
2. The principal is the agent who has a secretary that acts on its behalf.

The solution we propose will be based on the following general principles:

Distinguish secretary from principal Identity should as much as possible
be transparent. A secretary should have its own WebID, based on the following
motivation:

1. It allows resource guards to permit or deny requests based on this infor-
mation.

40 2. IDENTITY AND AUTHENTICATION ON THE WEB

2. Secretaries that have many principals do not need to switch their certifi-
cate between requests.

3. It allows to describe the relation between a principal and its secretary
using Linked Data.

Ease of use The one and only place to describe which secretaries are allowed
to operate on behalf of a principal should be the principal’s WebID profile. To
grant delegated access to a secretary agent, no other actions should be required
other than adding 1 triple to the WebID profile. Retracting this grant should
simply involve removing the triple from the WebID profile.

Minimal protocol footprint By using HTTP and working declaratively by
placing statements in documents, we ease the adoption of secretary delegation
and we avoid complex protocol developments. We believe that this is a crucial
feature of Linked Data in general.

Efficiency Finally, the proposed solution should scale with a growing num-
ber of users and connections. In our context this means that a Social Web
application should be able to act in the name of thousands of users.

The origin server acting as a client on behalf of a user can be considered
as a keeper of secrets for that user. It should know how to distinguish what
remote servers tell it when it is acting on behalf of one user, from what a
remote server tells it when it is acting on behalf of another user [69]. Here, the
problem lies in convincing the remote server to trust that a secretary is acting
on behalf of a particular user. Our solution is to make this relation explicit
by use of a special RDF relation provisionally called secretary (Example 15),
which is an object property with a domain and range as foaf:Agent and which
we will provisionally place in the cert: namespace.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix cert: <http://www.w3.org/ns/auth/cert#> .

<#me> a foaf:Person;
foaf:name "Barry";
cert:secretary <https://example.com/secretary/card#me> .

Example 15: The cert:secretary relation linking a secretary to Barry’s profile.

Additionally, even though the secretary will now use its own WebID to
perform authenticated requests, it would still have to indicate the user on
behalf of whom it acts. To do so, it will have to create an HTTP header called
On-Behalf-Of, which will contain the user’s WebID (Example 16). The remote
server can then verify that the identified agent is the secretary of the user on
whose behalf it wishes to act on (as specified in the On-Behalf-Of header),
by dereferencing that user’s profile and verifying that the user specifies the
:secretary relation there, as seen in Example 15.

2.6. CONCLUSION 41

Request:

GET /private HTTP/1.1

Host: example.edu

Accept: text/turtle

On-Behalf-0f: https://barry.ezample/profile#me

Example 16: Performing an HTTP GET to request a resource as a secretary
working on behalf of user Barry.

If no secretary relation is present in Barry’s profile, access to the resource
will be denied for the secretary.

2.6 Conclusion

Identity is a complex concept, reflecting issues of stability, context, privacy
and ownership, across real and virtual media. The goal of identity assurance,
together with the consequences that follow when identity cannot be assured,
has become the focus of significant research efforts.

Currently on the Web, users need to manage different usernames and
passwords corresponding to different accounts they have. Modern Web-based
single sign-on solutions help reduce the complexity for usage and management
of the user credentials. These solutions can be categorized in federated
(typically SAML) or user-centric identity management (e.g. OpenID). On
the one hand federated identity management is secure and most prevalent,
especially in corporate and scientific communities. On the other hand user-
centric approaches offer better privacy and maintainability. However, few
approaches offer both identity and authentication at the same time, while
also allowing the reuse of user data attributes on other services and applications.

In this chapter, we have introduced WebID, a decentralized and user-centric
identity scheme based on the Semantic Web. We have described the advantages
of using WebID to create decentralized identities which are under the user’s
control. We have also presented how WebID facilitates interoperability, and
also how it can be easily extended through different vocabularies.

Based on WebID, we have presented WebID-TLS, a new authentication
protocol based on client certificates in the browser. Compared to existing
decentralized authentication protocols, its major advantage is that users no
longer have to remember usernames and passwords. WebID-TLS is naturally
secure due to the fact that it operates over TLS, while at the same time
not suffering from potential trust issues which may arise when relying on
Certification Authorities.

We have also offered a solution which enables delegated authentication for
WebID-TLS. This solution is useful especially for service providers that are
not capable to deploy a WebID verification service, and thus have to rely on a

42 2. IDENTITY AND AUTHENTICATION ON THE WEB

third party service to perform authentication.

Access delegation is an important feature when applied to decentralized
applications, as it no longer requires the user’s presence when making authen-
ticated requests. We have provided a solution that protects user privacy by
allowing servers to respond to requests as if they were being made by specific
users, and thus serving content based on the access control policies that are
specific for the requesting user.

In the next chapter, we will present two types of access control mechanisms
which together with WebID, offer better privacy for users.

Chapter 3

Access control

When considering the security requirements of most distributed applications,
authorization often emerges as a central element in the design of the whole
security system [72]. Therefore, many security properties are determined by
the flexibility, trustworthiness and expressiveness of the authorization scheme.
Access control is the mechanism that allows resource owners to define, manage
and enforce access policies applicable to each resource [57]. Both concepts are
related since access control will usually consider authorizations as the basis to
produce access decisions.

The shift from centralized to decentralized systems and applications poses
new requirements in both authorization and access control systems. In the
case of centralized systems, the same entity is responsible for the assignment
of attributes or privileges to clients (Authorization) and the evaluation of the
access requests to determine whether they must be granted or not (Access
Control). All the information required to analyse and evaluate the privileges is
stored and managed locally in the same system on which the resources reside.

We are interested in applying access control to decentralized systems, where
interoperability and data portability are the decisive factors. In this chapter,
we will investigate and propose an access control model for the social Semantic
Web, which takes into account the dynamic evolution of user relations, and
which applies to Linked Data generated by users (e.g. profile data, wall posts,
conversations, etc.).

This chapter is structured as follows. Section 3.1 offers an overview of
existing access control mechanisms, focusing on those that apply to the
Semantic Web. Section 3.2 introduces the concepts of contexts and social
proximity distance, as metrics for a dynamic access control system specific to
social Web applications. Section 3.3 describes our contribution, a Social Access
Control Service, which can adapt to the dynamics of human relationships.
Finally, we compile and present a list of conclusions.

Before discussing our contributions, we first analyse existing access control
mechanisms, focusing on those that apply to decentralized systems.

43

44 3. ACCESS CONTROL

3.1 Related work

The basic concepts upon which an access control model is based determines the
flexibility of the model to adapt to different environments and systems. Several
access control models have been developed, relying on different schemes and
requirements. It is important to realize that most of the existing access control
models were developed for closed or centralized (i.e. silo) environments.

There are currently three generic models for access control, the Discretionary
Access Control (DAC), the Mandatory Access Control (MAC) and the Role-

based Access Control (RBAC). We will briefly cover them below, since they
serve as a basis for most access control schemes.

3.1.1 Generic access control models

Discretionary Access Control (DAC) was designed for multi-user databases
and systems with a few, previously known, users. Changes were rare and all
resources were under control of a single entity. Access was controlled based on
the identity of the requester and on access rules stating what requesters are (or
are not) allowed to do [45].

Mandatory Access Control (MAC) had its origins in military environ-
ments where the number of users can be quite high, but with a static, linearly
hierarchical classification of these users. The model is based on the definition
of a series of security levels and the assignment of levels to resources and users.
MAC policies control access based on mandated regulations determined by a
central authority [53].

Role-based Access Control (RBAC) gets inspiration from the business
world. The development of RBAC coincides with the advent of corporate
intranets. Corporations are usually hierarchically structured and access
permissions depend on the position of the user in the hierarchy, i.e. the role
played by the user. RBAC policies control access depending on the roles that
users play within the system and on rules stating what accesses are allowed to
users in given roles [30].

Among the previous models, RBAC is commonly considered a mature and
flexible technology. Consequently, it is the most popular mechanism in use
today. The main problem with role based access control is that the mechanisms
are built on three predefined concepts: wuser, role and group. The definition
of roles and user grouping facilitates management, especially in corporate
information systems, since roles and groups fit naturally in the organizational
structures of companies. However, when applied to some new and more general
access control scenarios (like the social Semantic Web), these concepts are
becoming difficult to follow. Furthermore, while static grouping of users of
RBAC may suffice in corporate systems, it is not flexible enough to cope with
the requirements of more dynamic environments where the structure of groups
cannot be foreseen by the administrators of the access control system.

Recent technologies such as the Semantic Web increase the complexity and

3.1. RELATED WORK 45

the dependencies of Web services with respect to access control [64]. The adap-
tation of RBAC to new technologies has been a common starting point. As
a result, access control frameworks have been evolving from OASIS XACML
(eXtensible Access Control Markup Language) [66] or X-RBAC [41] which were
based on XML to describe the access rights. Unfortunately they did not support
a machine interpretation language, which the Semantic Web offers. Further-
more, O-RBAC [73] adapts RBAC to semantic web technologies by exporting
its domain to an ontology specification.

3.1.2 Semantic access control mechanisms

The main reason we have decided to analyse access control mechanisms that
are based on the Semantic Web and Linked Data principles, is the fact that
we are interested in a solution that applies to decentralized Web applications.
Moreover, we are also looking for solutions that allow interoperability by easily
exporting access control policies along with the user’s data. Finally, we are
looking for an environment where access to resources is based on reasoning.

The ultimate success of a Semantic Web-based access control system,
however, will depend as much on the social conditions of its use, as on the
underlying technology itself. Much of the power of the Semantic Web lies
in its ability to help people share information more richly and to discover
subtle information linkages across the Web that are not visible in today’s
relatively flat online information environment. However, people will not share
information freely in an environment that is threatening or antithetical to basic
social needs such as privacy, security, the free flow of information, and ability
to exercise their intellectual property rights as they choose. Though today’s
Web falls short in many of these areas, the descriptive and logical functions
of the Semantic Web can offer the ability to help people manage their social
relationship online, in addition to just managing the traditional information
content found on the Web today.

Web Access Control

Web Access Control (WAC) is a decentralized system in which different users
and groups are given various forms of access to resources, and where users and
groups are identified by HTTP URIs [37]. The system is similar to the access
control system used within many file systems except that all etities (i.e. the
documents controlled, the users and the groups) are identified by URIs. Agents
(groups or users) are identified by the URI of a class of users which, when
dereferenced, returns a list of users in the class. This means that a user hosted
by an identity platform can be a member of a group hosted by a different Web
application or service. Access can be granted for a document on one service to
users and groups hosted by other services.

The authorization module makes use of a metadata file that contains the
access control list (ACL), expressed as Turtle. Metadata is currently stored on
a per-directory basis, though the system could easily be modified to store ACL
metadata on a per-document basis. The server directs clients to the ACL for a

46 3. ACCESS CONTROL
given file using the link rel=meta HTTP header [19].

The ACL ontology used is the Web Access Control Ontology [13]. For
a given rule, acl:accessTo defines a resource that access is being granted to.
acl:agent and acl:agentClass define an agent or agent class (i.e. any foaf:Person)
as being granted access. acl:mode defines the set of access modes that are
granted to the agent or agent class. Finally, acl:defaultForNew optionally
defines the default access rules for new (future) documents in a directory.

Example 17 displays a simple ACL metadata file. This file grants to the
WebID hitps://barry.ezample/profile##me Read, Write, and Control access to
the file foaf.rdf, and Read access to foaf.rdf to all authenticated WebID users.
It also grants barry Read, Write, and Control access by default for new files.

@prefix acl: <http://www.w3.org/ns/auth/acl#> .
[l a acl:Authorization ;
acl:defaultForNew <.> ;
acl:accessTo <foaf.rdf> ;
acl:agent <https://barry.example/profile#me> ;
acl:mode acl:Control, acl:Read, acl:Write .

[l a acl:Authorization ;
acl:accessTo <foaf.rdf> ;
acl:agentClass <http://xmlns.com/foaf/0.1/Agent> ;
acl:mode acl:Read .

Example 17: A simple ACL metadata file.

The three types of access that can be granted are Read, Write, and Control.
The Read and Write modes control access to normal files stored on the server.
Control is essentially a special form of Write access. Providing Control access
to a file allows a user to edit the ACL metadata for that file. Authorization is
determined by running a set of SPARQL queries to decide if the user is granted
access either as an agent or as a member of an agent class.

If a user attempts to use an HTTP method that they are not permitted
to use, they receive an HTTP 403 response from the server. For instance,
based on the ACL file presented in Example 17, if a user authenticated with
the URI http://www.example.com/foaf#me tries to delete foaf.rdf with an
HTTP DELETE request, the server would see that only barry has Write access
(which also includes the delete operation) and will then respond with HTTP
403 Forbidden.

However, WAC can only restrict access to files as a whole, not to the specific
resources (i.e. triples) located within RDF files (e.g. a user’s profile).

3.1. RELATED WORK 47

Accountability in RDF

Accountability in RDF (AIR) [42] is a Semantic Web-based rule language
that provides access control while focusing on generating explanations for its
inferences and actions as well as conforming to Linked Data principles.

ATR is an extension to N3Logic [9], which is a minimal extension to the
RDF data model such that the same language can be used for logic and
data. AIR has been structured to meet the justification and rule reusability
requirements of Web information systems. Along with including the N3Logic
features of scoped negation (i.e. the ability for a specific given document or an
abstract formula to objectively determine whether or not it holds, or allows one
to derive a given fact), scoped contextualized reasoning (i.e. to reason using
a first order logic but without classical negation), nested graphs, and built-in
functions, AIR is focused on generating useful justifications for all actions made
by the reasoner. Like N3Logic, AIR is written in N3 [8], which provides a
human-readable syntax for a superset of RDF. N3Logic extends the RDF data
model by supporting the quantification of variables as URIs with the @forAll
and @forSome directives. It also permits the inclusion of nested graphs by
using curly braces to quote sub-graphs.

AIR consists of a set of built-in functions and two independent ontologies
— the first one (Figure 3.1) is for specifying AIR rules, while the other one is
for describing justifications of the inferences made by AIR rules (Figure 3.2),
which help to verify the accuracy and validity of access control policies during
audit processes. The built-in functions allow rules to access Web resources,
query SPARQL endpoints, and perform scoped contextualized reasoning, as
well as basic math, string and cryptographic operations.

L Y
if !1' action (1..n
@ AbstractContainer
Gescription (0.) SN
sbcass Sibciass N
List of variables and / b 8
literals ¥

;
é

Figure 3.1: AIR rule ontology, as presented in Gasping for AIR Why we need
Linked Rules and Justifications on the Semantic Web [42].

48 3. ACCESS CONTROL

AIR also supports Linked Rules, which like most rules (e.g. whether laws,
security policies, business rules, or workflow plans), are rarely defined by a
single entity or exist in a single document. They usually comprise of several
interdependent rules that are defined and maintained by different entities.
Additionally, rules may reference external rules, including those of other
organizations.

uiltinAssertions

ClosingTheWorld
ClosureComputation |— subClass u-o JataDependecy

Dereference

BuiltinExtraction
RAuleApplication

~waiiy
]
Duilin-uri | *0CEss

Girthen or >
[__branch] |)
= air.else

ngList

[InputVariableMappingList |
| outputVariableMappingList [

Figure 3.2: The AIR justification ontology, as presented in Gasping for AIR
Why we need Linked Rules and Justifications on the Semantic Web [42].

AIR rules are defined using the following properties: air:if , air:then,
air:else, air:description, air:rule and air:assert. Every rule is named with
a URI, and rules are grouped into air:RuleSets or nested under other rules
(Figure 3.1). This nesting can happen either under the air:then property or
the air:else property. The rules nested directly under the RuleSet are referred
to as the top rules of the ruleset. A chain of rules is defined as a sequence of
rules, such that every rule, barring the first in the chain, is nested under either
the then or the else of the preceding rule.

There are three kinds of rules in AIR — air:BeliefRule, air:HiddenRule and
air:ElidedRule. All rules are, by default, Belief rules. The descriptions and con-
ditions of Belief-rules contribute to the overall justification. :ViewImageRulel
in Example 18 is an typical rule example of a Belief rule. In contrast, Hidden
rules and Elided rules are used to modify the default justification.

Example 18 contains an AIR RuleSet, in which Ann has created policy to
determine whether access to one of her pictures should be granted. AIR uses
N3Logic syntax to declare variables. In this example, @forAll is used to declare
two universal (i.e. global) variables, :REQUESTER containing the requester
and :PIC, which contains the URI of the resource in question (i.e. the picture).

3.1. RELATED WORK 49

Q@prefix air: <http://dig.csail.mit.edu/TAMI/2007/amord/air#> .
@forAll :REQUESTER, :PIC .

:ViewImageRulel a air:BeliefRule;
air:if { :REQUESTER a req:Requester ;
req:requestedImg :PIC.
:PIC sioc:topic
<http://ann.example/profile#me>.
I
air:then [air:description (
"If the picture requested contains "
"Ann, then execute Ann’s policy "
"about image access");
air:rule ann:MyImgPolicy

ann:MyImgPolicy
air:then [air:description(
"Ann’s policy was executed");
air:assert {
:REQUESTER req:compliant-with :BarryRuleSet }
13
air:else [air:assert {
:REQUESTER req:non-compliant-with :BarryRuleSet }

Example 18: A typical ATR RuleSet.

Next, we define a rule called :ViewImageRulel, of type air:BeliefRule,
which contains the logic we want to apply for our policy. In this case we have
a typical if — else logic, stating that if a :REQUESTER is trying to request
access to :PIC and the picture contains Ann’s WebID, then the rule should
apply the policy ann:MylImgPolicy, which is defined below.

ann:MyImgPolicy extends the logic flow by supplying additional actions.
Here, it uses the air:assert verb to verify that the :REQUESTER is compliant
with the rule set she created for this picture, and which is called :BarryRuleSet.
The resource :BarryRuleSet contains a list of rules which involve Barry. AIR
semantics will cause them to be included during the reasoning of their parent
rule, :ViewImageRulel. An air:else fall-back case can be created, in order to
apply a different action if the :REQUESTER is non-compliant with the current
policy.

Social Semantic Web Access Control

Social Semantic Web Access Control [71] is based on the Social Semantic
SPARQL Security for Access Control vocabulary — S4AC (cf. Figure 3.3), a
lightweight ontology that allows users to specify fine-grained access control
policies for their RDF data e.g. restrict the access to resources within RDF

50 3. ACCESS CONTROL

documents.

S4AC allows the data provider to specify the access privilege he wants to
grant — i.e. Read, Update, Create, and Delete. The main component of the
vocabulary is the Access Condition which is a SPARQL 1.1. ASK clause that
specifies the condition to be satisfied in order to grant the access, which can
be evaluated either conjunctively (conditions composed of one or more atomic
value constraints linked by logical-and operators) or disjunctively (where
conditions consist of one or more conjunctive constraints linked by logical-or
operators). Data providers can define Access Policies, where the set of Access
Conditions is applied only to the data concerning a specific subject (using the
property dcterms:subject), and the Access Conditions can be bound to specific
values to provide an Access FEvaluation Context. A graphical representation of
the S4AC vocabulary can be found in Figure 3.3.

{ sinctiem)
rafts:subClassOf dfs subClassOf
P 4 sdaciAccessPrivilege N rotssunciassor
1 sioc:Container / rdis subClassOf
rdfs:subClassOf dmerm;';'crealed rdls:subClassOl
/
/

sdac:Update

(

s4acthasAccessPriviege

! rdfsiliteral)

sdachasQueryAsk

sdac:Value

rdfs:subClassOf

dact
sdacthasValue
sdac:AccessConditionSet
s4ac:Variable
rdis:subClassOf rdfs:subGlassOf

sdac:Disjunctive sdac:Conjunctive ; 7 Y
AccessConditionSet AccessConditionSet subject sdac ntext ‘; prissma:Context
s 2 o
N owlisEquivalentTo

P o
sdac:AccessEvaluationContext

Figure 3.3: The S4AC ontology. Dashed lines and contours are used to represent
external classes, properties and relations.

==~ skosprefLabel == ~~

sdachasName sdacappliesTa sdacihasDescription

sdac:hasVarName

sdachasVariable

The Access Condition (AC) grants or restricts the access to the data. If
the ASK query returns true, access is granted to the user. In order to return
to the user a more informative answer if the access is denied, the authors have
introduced the property :hasCategoryLabel. This property allows to associate
to each AC one or more natural language labels that "identify" the access
condition. The label can be included in the response that is returned to the
user to provide him/her the reasons of the denial.

The Access Evaluation Context (AEC) is represented in the ontology as
the class AccessFvaluationContext which has two properties, -hasVariable
and :hasValue, which are respectively the variable, and the value to which
the variable is bound. AEC is used to provide a standard evaluation con-
text to the access conditions (e.g. the requesting user and the resource provider).

3.1. RELATED WORK 51

A very interesting feature is the Access Tagging Rule (ATR), which is used
to declare that the access conditions in the AC set applies to any RDF graph
tagged with one or more tags from a set of tags. In other words, users can
simply "tag" certain resources with a specific tag name, for which an AC has
been previously specified.

SHI3LD

Shi3ld [20] is an access control framework for querying Web of Data servers. It
protects RDF stores from incoming SPARQL queries, whose scope is restricted
to triples included in accessible named graphs only [17]. In particular, Shi3ld
determines the list of accessible graphs by evaluating pre-defined access policies
against client attributes sent with the query.

The Shi3ld policy manager allows the definition of context-aware access
conditions featuring user, environment (time and location above all), and
device attributes. Moreover, such application allows a simpler definition of new
named graphs over a set of existing triples.

Shi3ld adopts exclusively Semantic Web languages, reuses existing pro-
posals, and protects data up to triple level. The model is grounded on two
ontologies: S4AC! (cf. Figure 3.3) deals with core access control concepts and
PRISSMA? focuses on the mobile context.

The main component of the S4AC model is the Access Policy which defines
the constraints that must be satisfied to access a given named graph or a set
of named graphs. If the Access Policy is satisfied, the data consumer is allowed
to access the data. Otherwise, access is denied. The constraints specified by
the Access Policies concern the data consumer, the device, the environment, or
any given combination of these dimensions. Access Conditions are expressed
as SPARQL ASK queries. Each Access Policy is associated to an Access
Evaluation Context, an explicit link between the policy and the actual context
data used to evaluate the Access Policy.

The Shi3ld framework also adopts PRISSMA, a vocabulary providing
classes and properties that serve to model core mobile context concepts, but is
not meant to deliver yet another mobile contextual model. Instead, well-known
Web of Data vocabularies and recent W3C recommendations are reused. The
mobile context is seen as an encompassing term, an information space defined
as the sum of three different dimensions: the mobile User model, the Device
features and the Environment in which the action is performed.

3.1.3 Synthesis

In this section, we have presented recent work that applies to access control
for Semantic Web resources. We have selected several solutions that deal with

Thttp://ns.inria.fr/sdac/v2/sdac v2.html
2http://ns.inria.fr/prissma/v1/prissma_ v1.html

52 3. ACCESS CONTROL

access control in a decentralized environment.

The first solution is called Web Access Control (WAC), and it resembles to
the typical access control of a file system, in which users and groups (identified
by URIs) are given read and write access to documents. To describe access
control policies, WAC uses it’s own ontology, called the Web Access Control
Ontology. An important drawback of WAC is that it only restricts access to
files as a whole, not to the specific resources (i.e. triples) in an RDF document
(e.g. a user’s profile). Web Access Control ontology was published by the
W3C, and the its application process will soon begin standardization within
the W3C.

The second one is called Accountability in RDF (AIR), which is a Semantic
Web-based rule language that provides access control while focusing on gener-
ating explanations for its inferences and actions, so that rules can be verified
during a policy audit. AIR consists of a set of built-in functions and two inde-
pendent ontologies, one for specifying AIR rules and the other one for describing
justifications of the reasoning performed using AIR rules. As opposed to WAC,
AIR can be applied to documents as well as to resources within RDF documents.

The third solution, the Social Semantic Web Access Control (SSWAC)
allows users to specify fine-grained access control policies for their RDF data, in
order to restrict or allow access to resources within RDF documents. SSWAC
uses the Social Semantic SPARQL Security for Access Control vocabulary
to define its access control policies. Compared to the previous access control
solutions, SSWAC uses the concept of tags, to assign specific labels to resources.
This feature is particularly relevant to us, as you will be able to see in the
following section.

Finally, Shi3ld offers a context-aware access control framework for consum-
ing the Web of Data from mobile devices. The drawback of such framework is
that it relies on the assumption that dataset administrators have a proficient
knowledge of RDF and SPARQL, and that they are able to manage vocabularies
and define new named graphs.

Unfortunately, defining a set of static policies may not equally apply in
every situation. Additionally, static policies do not take into consideration
the dynamics of human relationships and the pace with which they evolve.
Furthermore, most semantic access control systems apply to resources in the
form of documents, often not being able to apply to the triples level.

In the following section, we propose a context-aware access control service,
which provides static access control systems with means to manage the constant
and dynamic evolution of user relationships.

3.2 Proposed social metrics for access control

A major drawback of existing Access Control mechanisms is that in most cases
they are difficult to maintain and they apply to documents. In the case of

3.2. PROPOSED SOCIAL METRICS FOR ACCESS CONTROL 53

social Web applications, creating access control policies that accurately reflect
the user’s privacy expectations is often difficult if not outright impossible [47].
In general, privacy is difficult to measure, especially since it’s hard even for
the users themselves to quantify. For example, photos alone are likely to have
wildly varying privacy requirements, depending on who is in the photo, where
it was taken, what the audience is, etc. More worryingly, even for photos
for which the privacy settings have been modified by the user, the modified
settings usually match users expectations less than 40% of the time [46].

We believe that current access control mechanisms suffer from a lack of
context, specific to relationships between people. We borrow the use of the
terms contert and situation in order to redefine what context is, based on a
definition first provided by Dey [24]:

“Context is any information that can be used to characterize the
situation of an entity, with respect to the relationship towards one
or multiple other entities.”

We consider that depending on different contexts and situations, access to
resources can be handled differently [58]. Additionally, we would like to propose
a social distance metric called prozimity, which also plays a very important
role in our model. We shall now take a detailed look at both context and
proximity, as metrics for a dynamic access control system tailored for social
Web applications.

3.2.1 Contexts expressed as labels

The computer representation of groups usually describes an organization of
users of a specific software product or feature, considered together because of
the similarities they share. However, once we try to directly apply this notion
to the social Web, we have to face the fact that people are unique individuals.
We can always try to divide groups into sub-groups, but we must keep in mind
that our social relations can be very dynamic and therefore difficult to manage
in an electronic environment.

On the other hand, we are capable of differentiating between a large number
of social contexts, often with very subtle differences. To help us do this, we
label people and objects, and as our relation towards them evolves over the
time, we either preserve or modify the labels. As opposed to grouping people,
one or more labels can be dynamically assigned to people and data, and can
also be instantly created when the need arises, similar to how tags or keywords
are created on blogging platforms (e.g. #beachparty2013, #soccerteam,
#family, etc.). We have therefore decided to apply the concept of contexts
expressed through labels in our proposed model.

3.2.2 Social proximity distance

Current social Web applications are usually limited in the types of relations they
express (friends on Facebook, circles on Google+ or aspects on Diaspora), and
they often do it in a very minimal way, without the means to express strength

54 3. ACCESS CONTROL

for relations. For example, we are familiar with relations between people (e.g.
"Ann knows Barry" or "Ann just became friends with Barry") and relations be-
tween people and objects (e.g. "Ann owns this image" or "Ann shared this file").

A typical social web application will describe the relation between Ann
and Barry as a statement that Barry is included among Ann’s known people.
Finding the right terminology is very important in this case, since for some
people it implies the fact that Ann is friends with Barry, while in fact it
only describes a unidirectional relationship between Ann and Barry. Current
popular social networks consider that Ann "is friends" with Barry if and only if
the reciprocal is also true, meaning Barry "is friends" with Ann. Additionally,
they do not offer the possibility to convey what kind of relationship it is, since
they lack a semantic description of said relationship. At the same time, it is
important to preserve the privacy aspects of disclosing relation types (e.g. Ann
may not want Barry to know that he was labelled as a "bad co-worker").

C“.\\dhood friends

¢ 9
2)
‘{/@anV %; \ %\
e T ° \
SPuayL4

Figure 3.4: Our representation of contextualized proximity levels, based on
Hall’s concept of personal spaces.

In The Hidden Dimension [31], Hall examines the various cultural concepts
of space between people and how differences among them affect modern society.
Hall talks about four spaces: intimate, personal (which we have renamed to
close), social and public. Applying these concepts to a social platform helps
define the weight of relationships. From now on, we will refer to this metric as

3.3. PROPOSED SOCIAL ACCESS CONTROL SERVICE 55

proximity (not related to physical or geographical proximity).

In the scope of the service we will propose in the following section, access
control applies to relations between users and resources. Resources can either
be RDF triples generated by the user (e.g. personal profile information,
comments, etc.) or non-RDF files (e.g. images, videos, documents, etc.). We
will only focus on the RDF type, since numerous access control mechanisms
already exist for ordinary files.

To describe relationships between users, we start with the root class called
Relationship, which corresponds to the public space and by itself implying an
unspecified relationship. Next we have four subclasses, Public, Social, Close
(corresponding to the Personal level), and Intimate, all corresponding to a
proximity level described by Hall [31]. However, these relationship types do
not provide context. To convey context, labels (i.e. #siblings, #sportsteam)
can be assigned to each subclass (Figure 3.4).

3.3 Proposed Social Access Control Service

Our proposed solution, the Social Access Control Service (SACS) is orthogonal
to existing access control systems, as it is based on social proximity levels
and labels together with our online interactions (e.g. sharing a resource with
someone, tagging a user within a specific context, etc.), in order to apply access
control policies to a user’s online social resources (e.g. a user’s profile, wall
posts, conversations).

SACS is comprised of two distinct sub-services, a Relationship Monitor
(RM) engine and a Static Access Control (SAC) engine, as seen in Figure 3.5.

The RM engine handles the dynamic evolution of user relationships and it
applies to user generated content (e.g. profile information, wall posts, conversa-
tions, etc.). Tt relies on a Relationship History database when suggesting access
control policies or taking decisions (Section 3.3.3). This database contains a
list of interactions between the user and his/her friends. History entries are
independently created whenever the user interacts with other people, such as
sharing a resource with someone, tagging a person within a specific context,
etc.. As this system is designed to run on a device controlled by the user,
the privacy implications resulting from such a collection of social interactions
should be reduced.

A different component, the SAC engine, is used to define static access
control policies that apply to most types of resources (either RDF or binary
documents). For policy enforcing, the SAC may rely on either WAC or AIR (cf.
Figure 3.5), which would then store access control rules in the policy database,
to facilitate access control management. Rules are represented using RDF,
which means that they can be easily exported to be used on other platforms.
The SAC engine can operate independently from the RM engine, as you will
see in Section 3.3.2.

56 3. ACCESS CONTROL

Request$ T Response

Relationship Monitor Engine

v !

Static Access Control

Relationship
Contexts WAC / AIR History DB

Rules/Policies
Database

Figure 3.5: Architecture of our social access control service.

Next, before going into detail for each component of the architecture, we
propose a short motivating example to put into perspective the advantages of a
dynamic social access control service.

3.3.1 Motivating example

After having met Ann, Barry decides to add her as a "known person". The
system defines the initial weight of the link between Barry and Ann to be
half, since this relationship can be mutual (full). Based on the current weight,
the default corresponding proximity level for Ann is Public (Fig. 3.4). If Ann
also decides to include Barry as a known person, then the weight of the link
becomes full, corresponding to the Social proximity level. At this point, if
Barry does not provide any context information for the relation between him
and Ann, the system assigns the label #acquaintances based on the default
value corresponding to the Social proximity level for Friends (Fig. 3.4).

Next, depending on how often Barry communicates with Ann, either directly
or by including Ann in specific contexts (i.e. #beachparty), the proximity
level may change. For example, after attaining a certain threshold triggered
by the transition from Social to Close proximity levels, content labelled with
#closefriends may become available for Ann (Figure 3.4). On the other
hand, the lack of interaction during a long period of time may decrease the
proximity level, resulting in creating distance between them. In other words,
the RM considers that Ann no longer belongs to the same proximity level, and
can even modify one or more of Ann’s labels if so configured. In this case,
special alerts can be displayed if Barry decides to share content (specific to
the Personal level) with Ann after her proximity level has decreased, going
from Personal to Social, or it can automatically remove Ann from the list of

3.3. PROPOSED SOCIAL ACCESS CONTROL SERVICE 57

recipients.

Let us now investigate the components of our Social Access Control Service
and the way they influence access control decisions, beginning with the Static
Access Control engine.

3.3.2 The Static Access Control engine

As the name suggests, the Static Access Control engine handles predefined
privacy rules. Even though it is an important component of SACS, it does not
require the RM engine to be present and functioning. However, in this case,
users will have to manually define access control policies for their data. The
SAC engine has been implemented as a feature of MyProfile (see Section 4.3 of
Chapter 4).

Please note from Figure 3.5 that the SAC engine contains two modules,
the Contexts module which is our contribution and will be presented next, and
the generic module which can be based on a static semantic access control
mechanism like WAC or AIR. The generic module will not be presented as it is
out of scope for this thesis. However, the purpose of the generic module is to
provide an additional layer of access control for documents, and depending on
the user’s preferences it may or may not be enabled on the system.

Contexts module

Building on the examples provided above and also considering the fact that
users do not enjoy spending time managing privacy rules, we can imagine a
set of default rules, specific to each proximity level. Defining a policy in our
proposed solution involves first creating a context (label). Resources as well as
users are matched to specific contexts. If a match is found between the context
that is bound to the resource and the context assigned to the user, then the
user will be granted access to the resource.

The relationship between a context and a resource or a user is defined in a
graph in form of triples, following the basic principles of Linked Data. Contexts
can be assigned to all resources at the triple level. For each particular user of
the system, the system assigns a graph called contexts, which is a collection
of contexts created by the user (Figure 3.7), and also assigns graphs for each
context (Figure 3.6). All context graphs are be stored in the Policies Database.

https://barry.example/policies/contexts

context <https://barry.example/policies/contexts/friends>
context <https://barry.example/policies/contexts/work>
context <https://barry.example/policies/contexts/beachparty>

Figure 3.6: Graph containing all contexts defined by Barry.

Each context is defined as a resource graph with its own unique URI.

58 3. ACCESS CONTROL

To give a context a clear meaning, each defined context has a name and an
optional description field (Figure 3.7). Since the context’s primary function is
to define the relationship between a user and a resource, one context can be
bound to several resources and users (Figure 3.7). For instance, a context graph
may contain profile data (e.g. phone numbers, full name, homepages, etc.),
wall posts, or even conversations between users (in the form of SIOC? resources).

However, since there is no such concept as "pointers" (like the ones found
in C/C++), this operation implies that each time a context is assigned to a
resource, the resource URI (or literal value) will be copied into the context
graph. Another significant drawback resulting from the lack of pointers is that
updating a resource in the user’s profile must be reflected in all context graphs
containing that particular resource.

https://barry.example/policies/contexts/friends

Context
_> name "Friends"

description "General friends of mine"

users <https://example.edu/p/Ann#MSc>,
<https://john.name/profile#me>
L» resources <#profile>, <#wall>, <#posts>
\—> <#profile>

L» phone +1 222 333 444

Figure 3.7: Example of a graph for the context #friends

For example, let’s consider that Barry assigns the #friends context
to his phone number, thus limiting access to this resource. In case this
particular context does not exist, the system creates a new context graph,
with the URI hitps://barry.example/policies/contexts/friends (Figure 3.7).
Since the phone number is part of the user profile, the system creates a
pointed graph called <#profile> in which it copies the phone number entry.
Next, Barry wants to allow Ann to view his phone number. To do this,
he has to assign the same context label (i.e. #friends) to the user Ann,
which is identified by her WebID. The system will now add Ann’s WebID to
the list of users to which the context #friends has been assigned to (Figure 3.7).

Several contexts can be assigned to a resource or to a user. Users in the
same proximity level can have different contexts, corresponding to different
resources, and each user can only see the resources assigned to them. It should
be noted that if the user has no defined access control policies, then all the
resources they own are publicly available by default.

Let us now take a look at the algorithm that is applied in order to match
users and resources to contexts, each time a request is received by the system.

Shttp://rdfs.org/sioc/spec/

3.3. PROPOSED SOCIAL ACCESS CONTROL SERVICE 59

Context matching algorithm

Figure 3.8 presents a simple algorithm, describing the process of context
matching. The goal of this process is to finally return a wunique view of
requested resources (e.g. a user’s profile, a wall, a conversation, etc.), based on
their corresponding level of access.

T = Get(type of requested resource)
Request for U = Get(WeblID of requesting user)
resource graph|S = Get(serialization format)

'

Does U exist in ™\
\

| YES
the Users graph?

‘TL := Get (contexts bound to U)

‘ G := Create(In-memory graph) |

NO
G <= Copy (resources of type T ‘ G:= Create(In-memory graph) |
from contexts matching those in
TL) i

‘ G <= Copy (public resources) |

'

‘ Serialize G using format S |

‘ Return G to requestor U |

Figure 3.8: Context matching algorithm.

The information contained in the Request includes the type of the requested
resource (T), the WebID of the requester (U) and the data serialization format
(S) for the response (e.g. Turtle, RDF/XML, N3, etc.). At this point, we
assume that the requesting user has already been authenticated at the moment
of the request. If the user has not been authenticated, only the public view of
the requested resource is returned.

The following step of the algorithm is to lookup the requester in the graph
of users belonging to the resource owner. If there is no match, the requester
receives only the public view of the requested resource. Otherwise, all contexts
assigned to the requester’s WebID are extracted, and a list of all contexts URIs
(TL) is created.

The next step is to create a temporary, in-memory graph (G), to store only
the resources matching the requester’s access policies. This graph will only
be used during the processing of the algorithm, to hold the contents of the reply.

Once the graph has been created, it is time to copy all resources belonging
to the list of contexts (TL), and which correspond to the type of the request

60 3. ACCESS CONTROL

(e.g. a profile, a wall, a conversation, etc.).

Finally, the graph (G) is serialized in the requested format (S) before being
returned to the requesting user (U). As soon as the contents of (G) have been
sent through HTTP(S), the graph is destroyed and memory is freed.

3.3.3 The Relationship Monitor engine

The Relationship Monitor engine (RM) is tasked to analyse the dynamicity of
relationships between two given users, in order to either provide notifications
for potential privacy issues that may arise when disclosing information, or it
may even modify existing access control policies for incoming requests (if so
configured).

The RM applies to two distinct types of actions. First, for assigning context
labels when disclosing information, and second for handling a request for a
resource.

Assigning context labels

When a user intends to limit the audience for some of his/her private informa-
tion (e.g. religious views, sexual orientation, etc.), he/she can assign one or
more context labels to the information that is to be protected, as well as to the
audience in order to indicate who can access the information.

During this labelling process, the RM analyses user interaction data from
the Relationship History database (Figure 3.5), corresponding to the selected
audience. Typical examples of user interactions include sharing a picture within
a specific context (i.e. #closefriends), explicitly changing a user’s proximity
level, excluding a user from a given context (without permanently removing
him /her) when sharing a resource, the number of times users exchange messages
(as a function of time), etc.

We can imagine that during a user’s online activity, several interactions are
considered pertinent by the RM. The user should always be allowed to select
which types of interactions he/she considers pertinent, or potentially be allowed
to create new interaction types. However, since we have not yet implemented
the RM in a real application, we will restrict ourselves to proposing several types
as follows:

1. Explicitly sharing a resource (i.e. photo, video, file) with a user.

2. Explicitly sharing profile information (i.e. phone number, email address,
etc.) with a user.

3. Assigning a context label to a user, and implicitly a proximity level, since
contexts are bound to one or more proximity levels.

4. Removing a context label from a user.

5. Assigning a proximity level to a user.

3.3. PROPOSED SOCIAL ACCESS CONTROL SERVICE 61

6. Modifying the proximity level for a user, either manually or by assign-
ing /removing context labels.

Based on the interactions in Relationship History database, the RM may
alert the user (i.e. provide visual indications) to a possible change in their
relationship. For instance, a warning message may appear if the resource owner
is in the process of assigning a context label (which corresponds to a specific
proximity level) to a user which is in a more distant proximity level.

Handling requests

When requests are received, they are first processed by the RM in order to
be classified into two major categories, based on the relationship between the
requesting user and the owner of the requested resource (Figure 3.9).

In the first category, no predefined privacy policy exists for the requesting
user, and the requesting user is not related to the resource owner or any of
the resource owner’s known people. This is typically the case of an unknown
user or a user that is not authenticated. At this point, the RM forwards the
request directly to the SAC, where predefined privacy policies are applied for
the resource in question.

In the second category, the requesting user already has a relationship
with the resource owner or with one of his/her known people, based on the
authentication credentials it provides alongside the request. In this case, two
additional sub-categories exist, and the request is handled by the RM according
to the type of the proximity distance and contexts between the requesting user
and the resource owner.

The first sub-category applies to the cases where a less dynamic relationship
exists between the requesting user and the owner of the resource. Please note
that through configuration options which are out of scope for the algorithm
presented in Figure 3.9, resource owners have the possibility to deliberately
disable the RM for relationships they consider less likely to be susceptible to
dynamic changes. For example, people labelled as #family or #girlfriend.
By default, the RM is disabled for users belonging to the intimate proximity
level.

The second sub-category applies to all requesting users that have a dynamic
relationship with the resource owner. A history of all interactions between
the requesting user and the resource owner is kept in the Relationship History
database (Fig. 3.5).

The RM decides whether or not to allow access to resources, based on
existing privacy policies defined by the SAC engine, as well as based on data
from the Relationship History database corresponding to the relationship
between the requesting user and the resource owner. If so configured, the
RM can potentially add, update or remove existing rules within the SAC
or theoretically, on local and/or remote access control systems like the ones
presented in Section 3.1.2. The RM may also support an wunsupervised

62 3. ACCESS CONTROL

operation mode, though this is considered as future work. The unsupervised
operation mode would normally involve taking access control decisions based
on decision factors resulted from machine learning or the user’s decision
history, without awaiting user input. However, unless properly configured,
the unsupervised operation mode may provide unwanted results and should
be activated upon explicit request from the user. Additionally, the RM may
be disabled at any time, leaving the SAC in charge of handling all access control.

Currently, two metrics are utilized during RM’s decision making process.
They are the prozimity distance and the contexts. Next, we will go through a
typical decision making process for our protagonists, Ann and Barry.

RM’s decision making process

Before beginning, we would like to mention that the user’s social interactions
can only be monitored if the RM is part of the social Web application.

The algorithm behind the RM’s decision making process can be seen in
Figure 3.9.

Request for R = Get(requested resource)
resource U = Get(WeblID of requesting user)

Relationship
with me or people
| know?

YES NO

RH := Get (relationship history
for U)

v ‘ Forward request to SAC
SR := Get (SAC rules for R &U) |

Analyze and
take decision

Optional: >
modify existin

SAC rule_~

Allow access?

‘Allow access and return R| \ Deny access |

Figure 3.9: RM’s decision making process.

The information contained in the Request includes the requested resource

3.4. CONCLUSION 63

(R) and the WebID of the requester (U). At this point, we also assume that the
requesting user has already been authenticated at the moment of the request.
If the user has not been authenticated, the process will consider the user to be
undetermined (i.e. anyone with public access).

The following step is to decide if the user in question has any relationships
with the resource owner or people known by the resource owner. This step is
achieved by querying the Relationship History database to find occurrences of
interactions between the requester and the resource owner, or by searching if
the requesting user is a friend of the resource owner or if he/she is known by
one of the owner’s friends (i.e. friend of a friend).

If the two users have previously interacted with each other, a graph (RH)
containing the list of interactions will be created. Additionally, all static access
control rules corresponding to the user (U) and resource (R) will be imported
from the policies database and stored in a new graph (SR).

Based on the the contents of (RH) and (SR), the system will analyse
and decide how to proceed next. If the data from (RH) is found to be
heavily conflicting with the rules in (SR) and if the RM engine is operating
in unsupervised mode, the system may optionally modify existing SAC rules.
For example, if the requester was deemed to have changed proximity distance
either through an evolution of his/her relationship towards the resource owner,
or because the resource owner explicitly modified the user’s proximity distance,
the system may be able to reflect this change in the SAC rules.

Once the final decision is made, the RM engine will either grant access or
deny access to the requested resource.

3.3.4 Relationship History database

The Relationship History database stores information based on the user’s
interactions. The interactions are expressed as triples using the Activity Base
Schema [40], a base set of object types and verbs for use with Activity Streams.

Figure 3.10 illustrates a typical case of saved interaction, triggered by the
action that Barry has "made friends" with Ann. In this case, the actor is Barry,
since it was him who initiated the action. We can imagine a similar situation
but with the roles reversed, if Ann performed an action with respect to Barry.

It should be noted that if a user should feel at any time that collecting this
information may potentially result in too much exposure of his/her private data,
he/she should have the option to disable the Relationship History.

3.4 Conclusion
We believe that based on different contexts and situations, access to resources

can be handled differently, especially when coupled with dynamic user relation-
ships. In this chapter we have introduced our third contribution, a social access

64 3. ACCESS CONTROL

https://barry.example/history/relations
alert
|_> actor <https://barry.example/profile#me>

verb <make-friend>
object
|—> type <Person>
webid <https://example.edu/p/Ann#MSc>
|—> date "2013-06-15T14:18:46.295-02:00"

Figure 3.10: Example of an interaction between Barry and Ann.

control service for Web applications, comprised of two distinct sub-services: a
Static Access Control (SAC) engine and a Relationship Monitor engine (RM).
Due to existing access control alternatives which handle access control for static
documents (Section 3.1.2), our solution is focused on protecting the privacy
of Linked Data resources generated by users (e.g. profile data, wall posts,
conversations, etc.).

The Static Access Control engine handles access to user-generated resources,
based on predefined privacy policies. The process of permitting/denying access
to a resource is quite straightforward, and it involves matching the user
performing the request to a list of resources matching the same context label.
The goal of this process is to finally return a unique view of requested resources
(e.g. a user’s profile), matching to the level of access corresponding to the
requesting user.

The Relationship Monitor engine (RM) relies on metrics such as context and
prozimity distance together with a relationship history between the involved
actors, in order to either provide notifications for potential privacy issues
that may arise when disclosing information, or even to modify existing access
control policies for incoming requests (if so configured). The RM applies to two
distinct types of actions. First, it is used when assigning context labels when
disclosing information, and second for handling a request for a resource.

The static access control engine was implemented as a module for MyProfile
(Chapter 4). Unfortunately, we were not able to implement the RM engine for
a real application, and therefore we consider this as future work.

Chapter 4

Building a decentralized
social semantic Web

The Semantic Web is envisioned as a decentralised world-wide information
space for sharing machine-readable data with a minimum of integration costs.
Tts two core challenges are the distributed modelling of the world with a
shared data model, and the infrastructure where data and schemas can be
published, found and used. Users benefit from getting information "raw and
now" and in portable data formats, usually based on RDF, which can then
be published on the Web. Others can read the data and publish their own
information, linking to existing resources. This forms a distributed model of
the world. It allows the user to pick any application to view and work with
the same data, for example to see Ann’s published address in your address book.

At the same time, documents on the Web have always been addressed with
URIs (often referred to as Uniform Resource Locators, URLs). This is useful
because it means that we can easily make RDF statements about Web pages,
but it is also dangerous because we can easily mix up Web pages and the
things, or resources, that are described on the page (cf. Section 2.2.1).

A truly decentralized social Web application, based on Semantic Web
technologies, requires several key components. It must be able to offer decen-
tralized user identity, secure authentication, semantic data storage, to apply
Create-Read-Update-Delete (CRUD) operations to resources, to offer increased
privacy through access control, and most importantly, to be interoperable with
other applications in terms of data exchange (e.g. content sharing, messaging,
activity notifications, etc.).

This chapter intends to be a guide on how to proceed with building a
decentralized social Web application. It also reflects our implementation efforts
in the form of MyProfile, a decentralized identity platform, which serves as a
demo for the theoretical solutions we have proposed in the previous chapters.
We will explain our conceptual decisions as well as any technical limitations we
ran into during the development of MyProfile.

65

66 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

4.1 MyProfile

The project MyProfile [59] is a reflection of all efforts we have made over the
course of this thesis. It intends to provide to users the privacy they deserve
for the data they produce and own. It offers a unified user account, which
centralizes the user’s data and puts it under the user’s control, and also on
a device the user controls. It is a radical change from the walled gardens of
today’s Web, where data are trapped in silos.

The project was launched in April 2011, and it was funded entirely by TELE-
COM SudParis, member of group Institut Mines-TELECOM. It offers a unique
identity platform, which takes advantage of Semantic Web technologies, so that
users no longer need to invest time and effort into building complex profiles on
the numerous websites/services they currently use. The profile is stored on a
Web accessible device where only the user has access — the user’s computer, a
dedicated server, or ideally a plug computer like the FreedomBox!. This way,
the user controls both the physical data and who can access it.

MyProfile also offers services that do not require a local profile. Any user
is able to view his/her profile data in a friendlier and attractive way. While
viewing the profile data, the platform displays the user’s list of known people
(i.e. friends), some basic information for each friend (e.g. full name, nickname,
email, blog), as well as a text mention in case the relationship is bidirectional
(i.e. "Has you as friend.").

Once authenticated, additional functionalities become available. For
example, users can post messages to a public wall, which is a common place
for all users to write about news, events, social updates, etc. Users can also
subscribe to local services in order to have their own private wall, which is only
available to their list of known people. Subscribing also allows users to send
and receive private messages, as well as notifications when other users have
posted something on their private wall.

The source code for MyProfile has been released under an MIT license
(less restrictive compared to other open source licenses), and it is publicly
available on GitHub under MyProfile?. For portability and deployment
reasons, the platform was mainly written in PHP and JavaScript. It relies
on Virtuoso® to facilitate RDF-triple storage and SPARQL queries for cached
profiles. A running demo of MyProfile can be accessed at https://my-profile.eu/.

Let us now take a detailed look at each platform component, starting with
the user profiles.

4.1.1 Creating a user profile

MyProfile uses WebID as the main mechanism for user profiles, allowing for an
increased interoperability. Depending on the user’s social interactions on the
Web, the profile could also extended to contain resources like blog and forum

Lhttp://www.freedomboxfoundation.org/
Zhttps://github.com/MyProfile/myprofile
3http://virtuoso.openlinksw.com/

4.1. MYPROFILE 67

posts, or even mailing list messages, all described using dedicated ontologies.
We can safely say that the user’s profile can contain an unlimited number
of resources, as long as they can be expressed using standard Semantic Web
vocabularies.

The WebID URIs follow common Representational State Transfer (REST)
structures. Each user is assigned a unique URI, composed of three main parts:

1. The server’s IP address or fully qualified domain name (FQDN), i.e.
https://my-profile.eu/

2. The directory structure under which the profile is located, i.e
people/barry/

3. The profile document with a fragment identifier denoting the user, i.e.
card#me

Finally, the complete WebID URI becomes the following:
https://my-profile.eu/people/barry/card#me

The minimum information required for a new profile is comprised of the
local username (i.e. barry) and the user’s full name, may it be real or not.
Optionally, the user can provide an email address that will only be used for
account recovery purposes, and is never disclosed to anyone else.

Issuing client certificates

During the account creation process, a client certificate will be issued and
automatically installed in the browser, as well as have its public key added
to the user profile. The system relies on HTML5 <keygen> element, to
guarantee that the private key is never disclosed, not even to the server. The
keygen element exists to facilitate generation of key material, and submission
of the public key in the Signed Public Key and Challenge (SPKAC) [28]
format. The process is similar to generating Certification Signing Requests
(CSRs), where an encoded public key can then be manipulated using OpenSSL4.

The process of issuing the X.509 [65] client certificate has proven to be
quite challenging. The main reason is due to how PKI works when it comes
to signing CSRs, more specifically the dependence on a Certification Authority
(CA). Basically, once the public key and the user’s full name have been sent by
the browser, the server must transform them into a valid CSR and sign them
with the CA’s key. The problem we ran into, while using PHP, was that there
is no support for this kind of cryptographic operations. Therefore, we ended
up using OpenSSL through a system call.

Another issue related to X.509 certificates concerns the way they are sent
back to the client. Once the user submits the form containing the HTML5
keygen element, the server must return the certificate by responding with the
proper content type, set to application/z-x509-user-cert. The problem lies in the

Yhttp://www.openssl.org/

68 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

fact that by setting a specific content type for sending the certificate, no other
data can be sent along the certificate, meaning that the server cannot send a
page to indicate the success of the operation. Unaware users may believe that
no action was performed and they might click the submit button again.

Publishing the profile

MyProfile user profiles are expressed as Turtle [6] documents by default, in
order to align with the WebID specification. However, users have the option to
export their profiles using different serialization formats, like RDF/XML [5],
N3 [8] or JSON |[21].

When a request for the profile document arrives, the Web server must
decide which content type to serve. Currently, MyProfile uses .htaccess files to
intercept requests and perform content negotiation based on two content types,
text/turtle and text/html.

Options -MultiViews -Indexes

AddType "text/turtle" .ttl

RewriteEngine On

RewriteBase /people/barry/

RewriteCond Y%{HTTP_ACCEPT} !text/turtle

RewriteRule ~card$ https://my-profile.eu/view?webid=<WebID> [R=303]
RewriteCond %{HTTP_ACCEPT} text/turtle

RewriteRule ~card$ card.ttl [L]

Example 19: Contents of a .htaccess file for user profiles.

Example 19 displays the contents of a .htaccess file, for user barry. Here we
have two conditions, expressed using the RewriteCond directive. The first con-
dition states that if the Accept header of the request is different from text/turtle,
then it will serve HTML by triggering the RewriteRule that redirects the user
to the special view page. On the other hand, if the Accept header is explicitly
set to text/turtle, it will serve the RDF document instead (i.e. card.ttl).

4.1.2 Viewing profiles

MyProfile provides a visually appealing rendering of WebID profiles, regardless
if the user is local or not (Figure 4.1). To read and process RDF data, we have
decided to use EasyRdf, a PHP library designed to make it easy to consume
and produce RDF as graph of PHP objects that can then be walked around to
get the data to be placed on the page.

The view page provides additional information for the user’s known people,
in the form of full name, nickname, email, phone number and blog. If the
user is authenticated and viewing his/her own profile, a text mention "Has
you as friend." will appear next to the known person if that person also has
a foaf:knows relation pointing back (Figure 4.1). Additionally, the view page
offers a series of buttons that allow to quickly remove known people from the

4.1. MYPROFILE 69

Y MyProfil@’ viewprofile i B woevsssm of

Full name:
Andrei Vlad Sambra

ﬁ Nickname:
deiu

Email:
andrei@fcns.eu

Q andrei.sambra@gmail.com

Homepage:

heepetimy-profile.ewwall php?user=11e9c6fb
“omue Blog:
=8 hetpiffens.eu/
Activit Current projects:

httpu/myprofile-project.org/

W Web apps:
n httpi/test.com
. heepuitaskify.org/starchemi

Knows:
Olivier Berger

Email: olivier berger@it-sudparis.eu
| = Phone: +33-1-60-76-45-32
- Blog:http:/Awww-public.it-sudparis.eu/~berger_ofweblog/

‘WebID: hrtpe/www-public.it-sudparis.eu/~berger_ofoaf rdfeme
m]wlw .

Figure 4.1: Rendering of a profile.

user’s profile, to view their wall and even to explore their social graph, as seen
in Figure 4.1.

The same page allows users to lookup other people by searching for names,
nicknames and WeblID URIs within the cached public profiles of people that
have used the platform at one point or the other. If the user performing the
lookup is authenticated and has a local profile, he/she can then simply press a
button to add one or more search results to his/her list of known people.

4.1.3 Social walls and activity streams

The social wall is a familiar concept in social networks. It allows users to
post updates about their life, to talk about their interests, to share links and
content, or to openly communicate with other people (Figure 4.2).

MyProfile offers two types of social walls. The first type is a platform-wide,
shared public wall. TIts purpose is to allow users to quickly post public
information, that may also be of use to people outside their friends list. To
be able to post on the public wall, users need to be authenticated through
WebID-TLS (see Section 2.3). The second type is a private, restricted access
wall, which is only available to the user’s known people (i.e. described through
foaf:knows relations). Other people can express their level of appreciation
towards wall posts by either liking or disliking them.

70 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

> (8
L 0 Notifications Andrei Viad Sambra -DE'
¢ MyProfile Home %

' Sl Collins Mtita wrote year ago Link to this post.
ﬁ - " Hello everyone!
.

ho|®0
E Andrel Viad Sambra wrote & year ago Link to this post.
Hello Timbl and Angelo!
Edit | Delete 0|0
Angelo Veltens wrote a year ago Link to this post.
Welcome Tim, nice to see you here :-)
W e i ' .
n Timothy Berners-Lee wrote = year 250 Link to this post.
5 Happy to log in te my-profile.eu using my webid - very easy
s h2|®0
":: Angelo Veltens wrote a year ago Link to this post.
= Demonstrating WeblD at #webmbs06, Braunschweig, Germany
Y aho|®o
\Q
X b Andrel Viad Sambra wrote & year ag Link te this post.
Arthur: yeah, I just noticed that, I'm not exactly sure what the problem is. I'll keep looking into it

and let you know.

Figure 4.2: MyProfile public wall.

The activity stream is a derivative of the social wall. It is a collection of
all posts written by people the user knows, and presented in a chronological
order. Its purpose is to allow users to keep track of updates from their friends,
without having to visit the private walls of their friends.

Based on the content type of the Accept, clients can request either an HTML
view of the social wall, or more importantly, an RDF view. Currently, only Tur-
tle and RDF /XML serialisation are available for the RDF view. Wall posts are
represented using the SIOC [13] ontology. Example 20 displays how pagination
is supported through URI requests, though it does not reflect in the RDF data.

GET /wall.php?offset=20 HTTP/1.1
Host: my-profile.eu
Accept: text/turtle

Example 20: RDF social wall pagination.

4.1. MYPROFILE 71

4.1.4 Account recovery and pairing
Account recovery

Since MyProfile uses WebID-TLS for authentication, if a user cannot use
his/her certificate any longer and regardless of the reason, there must exist the
possibility to recover access to his/her account. Account recovery will work
only if the user has already provided an email address for this purpose, either
at the moment of creating the WebID, or through the preferences page.

The first step of the procedure to recover access to a MyProfile account
involves providing the user’s WebID. Once this information is submitted, the
system will generate a one-time password (OTP) [33] in the form of a hash (i.e.
a string of alphanumeric characters) and bind it to the WebID submitted by the
user. Finally, an email is sent to the address initially specified by the user when
he/she created the account. The email contains a pre-formatted link containing
the OTP, which enables the user to authenticate as if he/she was authenticating
through WebID-TLS. Once authenticated, the user has the possibility to issue
new certificates, which will be automatically added to his/her WebID profile. If
the authentication was successful, the OTP is removed so it can never be used
again to gain access to this particular account.

Pairing

The pairing process was created to address the difficulty of having to manage
client certificates across different browsers and devices. Until now, users had
to manually export certificates from one browser and then import them into
a different browser or device. The pairing process is different from account
recovery, though it can be used to provide a similar end result.

In this case, users must first authenticate (either through WebID-TLS or by
using the account recovery feature) in order to access their preferences page.
This page allows them to generate a 6 digit one-time numeric password, which
we call PIN (Figure 4.3). To avoid brute-force attacks on the PIN, we have
decide to limit its validity period to one minute, starting from the moment it
was issued. A new PIN must be generated if the user is not able to type it
within the given time frame on the other device.

4.1.5 Statistics

MyProfile is currently the de facto service provider when it comes to issuing
WebIDs, hosting close to 500 WebIDs, and being visited daily by more than 30
different users. It is also the main reference when it comes to implementing a
decentralized social Web application.

MyProfile has been the subject in different workshops and conferences
around the world, as well as in different talks and presentations in the past
two years:

72 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

Pairing with a different browser

This feature allows you to reuse your current WeblD in order to login using a different browser!

Generate a new PIN

MNote! This pin number will only be valid for 1 minute!

Figure 4.3: Generating a pairing PIN.

e 2013: Mentioned in "Let’s tear down these walls" talk at SIGINT13® in
Cologne (Germany), an annual hacker conference covering both technical
and social aspects of our digital society.

e 2013: Mentioned at OuiShare Fest® in Paris, a conference about the col-
laborative economy in Europe.

e 2012: Included by the Free Software Foundation Europe? in their list of
different approaches for Cloud Computing. The development of MyProfile
is also followed by the FreedomBox Foundation®.

e 2011: Presented by me in a panel called "Alternatives to Facebook" during
the Social Media Week Berlin? event.

e 2011: Mentioned in Heise!?, a respectable German online news magazine.

4.2 WebID authentication

WebID-TLS authentication plays a crucial role in MyProfile. On one hand
it allows any authenticated user to post messages on walls or contact other
people, regardless if they have a local account or not. On the other hand, local
users that have been authenticated can also easily update their profiles, issue
new certificates or manage their friends.

There exists two different WebID-TLS authentication approaches, either per-
form the WebID-TLS verification locally, or use a third party WebID-TLS au-
thentication service. We have developed two libraries, written in PHP, which
cover both approaches. The libraries have been released under the MIT license,

Shttps:/ /sigint.ccc.de/

Shttp://ouisharefest.com/

Thttp://fsfe.org/

Shttp:/ /www.freedomboxfoundation.org/

%http://socialmediaweek.org/berlin/
10http://www.heise.de/

4.2. WEBID AUTHENTICATION 73

and are publicly available on GitHub under WebIDauth''. In the following sub-
sections we will describe both libraries, as well as how the Web server must be
configured to offer WebID-TLS authentication.

4.2.1 Configuring the Web server

WebID-TLS authentication requires the Web server to be configured in a
special way. For portability and deployment reasons, we have decided to use
the Apache 2 Web server!2.

To request client certificates from users, the Web server configuration file
must include the following directives:

e SSLVerifyClient optional_no_ca — skip verifying the CA, since WebID
does not operate based on standard PKI trust

e SSLVerifyDepth 1 — stop after the initial certificate, to avoid recursively
traversing the trust chain

e SSLOptions +ExportCertData — export certificate contents to the envi-
ronment, so that it can be used by other programs (e.g. PHP, Python,
Java, etc.)

The above directives must be part of the VirtualHost configuration, as it is
no longer possible to place them in .htaccess files due to security issues. A full
example of the Apache configuration file is provided in the Appendix, under
Example 26.

Please note that in order to allow old browser versions that do not support
SSL renegotiation, the following configuration directive must be present:

SSLInsecureRenegotiation on
However, if this directive is enabled, SSL connections will be vulnerable to
the Man-in-the-Middle prefix attack!s.

4.2.2 WebIDauth

Local authentication can be achieved by relying on WebIDauth, a PHP
library implementing WebID-TLS. Its particularity resides in the fact that it
allows users to request a werbose authentication process, which is useful when
debugging a faulty certificate or a user profile.

WebIDauth can operate in two modes. In the first mode, its task is to
perform WebID-TLS authentication and simply return either true or false,
depending whether the user was successfully authenticated or not. This mode
is intended to be used as an authentication method for a local application,
usually coupled with a user session. However, operating in this mode also
implies configuring the Web server to run over HT'TPS, adding to the expenses

Hhttps://github.com/organizations/WebIDauth
2https://httpd.apache.org/
L3http://cve.mitre.org/cgi-bin/cvename.cgi?name—CAN-2009-3555

74 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

of hosting the local application by having to buy a server certificate.

In the second operation mode, WebIDauth can be used as a Relying Party,
a third-party service that provides a WebID-TLS authentication endpoint
for Web applications that cannot perform the authentication process them-
selves. There are several advantages to using a Relying Party service. For
instance, it drastically reduces the complexity of having to set up the Web
server to allow WebID-TLS authentication. Additionally, the service provider
(local application) may not require HTTPS, therefore the owners do not
need to pay for a server certificate. We will present in detail how this process
is accomplished in the next subsection that deals with delegated authentication.

Currently, WebIDauth supports the following functionalities:

e [t initiates the WebID-TLS protocol, by requesting a client certificate from
connecting users

e It checks if the SubjectAltName field contains something else other than
the WebID URI, and only processes HTTP URIs

e It checks if the WebID profile document contains any public keys of type
RSApublickey and cycles through them looking for a possible match

e It checks the HTTP request for a variable called verbose and if it is set, it
displays the contents of the certificate used to connect to the IdP, as well
as each step of the WebID-TLS protocol

WeblIDauth is actively being used for over two years to offer a WebID-TLS
authentication service, located at https://auth.my-profile.eu/. Several people
have contributed to the source code of this library, improving it in multiple ways.
Lately, the service offered by https://auth.my-profile.eu/ handles an average of
2000 authentication requests per month, while in the past year alone it has been
accessed by more than 4500 users around the world.

4.2.3 WeblDDelegatedAuth

Delegated WebID-TLS authentication is the process of relying on a third-party
service to perform the authentication, and then redirect the user back to the
Service Provider, as seen Section 2.4. This is currently the default operation
mode for MyProfile. The WebIDDelegatedAuth library was created so that
Service Providers can offer WebID-TLS authentication in case they are not
capable of offering local authentication, or they do not operate over HTTPS.
Let us now explore each step of the process.

First, the user clicks a login button on the Service Provider (i.e. https://my-
profile.eu) and is redirected to the Relying Party (i.e. https://auth.my-
profile.eu), thus triggering the authentication process. The Service Provider
also appends a variable to the redirection URI, containing the Service Provider’s
URI:

https://auth.my-profile.eu/?authreqissuer=https: / /my-profile.eu.

4.3. STATIC ACCESS CONTROL 75

Next, the Relying Party uses WebIDauth to perform WebID-TLS au-
thentication. If the user has been successfully authenticated, the Relying
Party prepares the redirection request, appending additional arguments to the
redirection URI, namely the webid, ts, referrer and sig.

The aforementioned arguments have the following meanings, as we have seen
in Section 2.4:

e webid - https://my-profile.eu/people/barry /card# me.
e ts - 2013-05-22CEST16%3A54%3A04%2B02%3A00
e referrer - https://auth.my-profile.eu

e sig - hR5cv9gPn..... MxBbSdq7f.

Back on the Service Provider, WebIDDelegatedAuth is used to verify the
incoming request, by attempting to find the referrer’s public key among a local
list of trusted Relying Party URIs. Once the signature and the timestamp have
been validated, the Service Provider proceeds to login the WebID hitps://my-
profile.eu/people/barry/card#me belonging to the user. To avoid repeating the
process, a session is created and a cookie with a validity period of 24 hours is
issued to the user.

If you would like to find out how to quickly deploy WebIDDelegatedAuth
to enable a Service Provider to offer WebID-TLS authentication for its users,
please see Example 27 of the Appendix.

4.3 Static Access Control

The SAC library is used to offer a unique view of a user’s profile, based on
the level of access specific for the agent requesting the information. Tt uses
context labels to match users to the resources to which they are granted
access. The same label must be assigned to the resource that is part of
the user’s profile (e.g. email address, phone number, etc.). As you can
notice in Figure 4.4, users that are displayed as foaf:knows relations can be
considered both as normal resources to be protected (the icon with the eye),
as well as users we want to match against the resources (the person shaped icon).

Person: http//melvincarvalho.com/#me = 2
Person: http//bblifish.net/pecple/henry/card#me L
Person: Nttps//www bergnet.org/people/bergi/card#me 2 4
Person: Nttpsy/my-profile.eu/people/rironcy/card#me LL

Person: httpy/presbrey.mit.edu/foaf#presbrey

Figure 4.4: Static Access Control icons displayed when viewing a profile.

76 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

The library depends on Virtuoso to store graphs containing access control
policies. The SPARQL language is used to insert data as well as to query the
graphs. The source code is part of MyProfile Project, as the library is intended
to be a core component of the platform.

4.4 Personal data stores using RWW.I/0O

Offering individual data stores is an important aspect of any decentralized
social application, as users must be allowed to choose where they want to host
their data, as well as to have complete control over the privacy settings that
apply to these data. If possible, data stores should be hosted by devices to
which the user has physical access. However, for performance reasons, data
stores may be located on third party servers, if users are not concerned by
privacy issues.

Being invited to work with Sir Tim Berners-Lee on access control for the
Semantic Web at the Massachusetts Institute of Technology, has allowed me
to develop a Linked Data personal data store platform that implements the
Web Access Control [37] (WAC) ontology. The code is written in PHP, Python
and JavaScript, and is publicly available under an MIT license on Github at
RWW.io'*.

RWW.1/0O stands for Read- Write-Web Input/Output and it operates under
the assumption that users require a personal data store, where different
applications can store data about and for the user, and where data are equally
available between applications (Figure 4.5). The advantage is that different
applications can reuse the same data, to offer different functionalities. For
example, a contact management application can pull data from the user’s
profile and modify it at the user’s request. The modifications are instantly
reflected in the user’s profile the next time someone accesses the profile.

4.4.1 Creating data stores

To create their personal data store, users must first choose a desired location
for their data. Location is determined based on a unique string of characters
defined by the user, similar to an account name, which is then transformed
into a subdomain. In other words, the account name deiu is used to create the
subdomain https://deiu.rww.io/, which in turn becomes the user’s personal
data store. Users can have an unlimited number of data stores, regardless of
where they are located.

Creating the data store implies only setting up the subdomain. To own the
data store, users must first authenticate using WebID-TLS and then claim the
subdomain by creating an access control rule for the root directory (i.e. the
subdomain itself). This step can be done either through the access control U,
or directly by performing an HTTP POST of a Turtle document containing
the ACL triples. If users do not have a WebID, they can create a minimal

Mhttps://github.com/deiu/rww.io

4.4. PERSONAL DATA STORES USING RWW.I/O 77

§ RWW.lI/O b

J Logowt

: a @ Eg Do | Show hidden files?
Name Size Type Last Modified Actions

Root 2013-08-03 18:55:03 GMT [__B'a x

apps/ - Directory 2013-08-30 12:38:41 GMT a x
private! - Directory 2013-09-04 09:57:25 GMT B x
public/ - Directory 2013-08-28 12:38:15 GMT @ x
public-upload’ = Directory 2013-08-07 20:29:32 GMT [} x
GitHub | Help? Pe 8

Figure 4.5: The RWW.I/O service.

one locally, and then use it to authenticate and claim ownership of the data store.

The platform supports full Create-Read-Update-Delete (CRUD) operations,
following the REST standards. Documents and directories can be created
by performing HTTP requests such as POST, PUT and MKCOL (i.e. new
directories), following the requirements we presented at the beginning of the
chapter. The Content-Type HTTP header plays a central role to interpreting
the requests and deciding whether to store data as triples or as binary files. As
RWW.I/O is not intended to be a fully-fledged cloud service, only a handful of
content types are supported.

In order to detect a conflict when overwriting a resource through HTTP
PUT, we are using HTTP/1.1 features including entity tags (ETags) [51], the
various If-* preconditions header field (e.g. If-Match, If-None-Match, etc.)
and HEAD requests.

4.4.2 Managing access control for resources

Access control rules for the data store resources are specified using the Web
Access Control ontology. The data store was designed to use one ACL
file for each document, thus separating the metadata containing the access
control rules from the document they protect. The naming convention for the
metadata files involves using a .meta prefix before the filename. For example,
if a given file is named photo.jpg, the corresponding metadata file will be named
.meta.photo.jpg, and it will be situated at the same directory level. Assigning
an ACL metadata file for each document offers the advantage of flexible access
control management, especially for resources for which control is handled by
third party users or even applications (i.e. a data store within a data store).

78 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

Managing access control rules can be achieved either through an ACL user
interface (UI), or by manipulating the metadata files through HTTP verbs
(i.e. POST, PUT, DELETE). The UI offers minimal functionalities, as seen in
Figure 4.6. If the Default checkbox is enabled and the resource is a directory,
the rules will apply by default for all resources in that specific directory. The
default rules can be superseded later on by creating metadata files for those
resources.

Resource name: protected.ttl

Read E Write . Append

Allow for
{oomm arsted WeblD addresses OR leave blank for everyons)

https://my-profile.eu/people/deiuscard#me

Bl Save

Figure 4.6: ACL user interface.

To conform to the best practices of using the Web, the UI also uses HTTP
verbs to create and modify metadata files. This way, users are able to create
workspaces (i.e. dedicated data stores) for third-party applications, which
enable the applications to handle their own ACL management, regardless of
who owns the data store. Example 21 describes the process of creating a
metafile for a WebID protected document.

Creating a metafile for /private/protected.ttl implies creating two ac-
cess control rules. The first rule, <>, applies to the document itself (i.e.
https://deiu.rww.io/private/.meta.protected.ttl), and it states that only the
agent identified by the WebID https://my-profile.eu/people/deiu/card#me is
allowed to perform Read and Write operations on the document in ques-
tion. The second rule is for the document the metafile protects (i.e.
/private/protected.ttl). The rule states that the Read and Write opera-
tions are allowed for the agent identified by the WebID URI.

4.4.3 Application workspaces - a complete example

This section will provide a complete example, explaining how users can create
dedicated workspaces for third-party applications, in this case a photo viewing
application. We assume that Barry uses RWW.I/O as a personal data store,
located at https://barry.rww.io/.

4.4. PERSONAL DATA STORES USING RWW.I/O 79

PUT /private/protected.ttl HTTP/1.1
Host: deiu.rww.io

Content-Type: text/turtle
Content-Length:407

Payload:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix WAC: <http://www.w3.org/ns/auth/acl#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/#> .
<>
WAC:accessTo <> ;
WAC:agent <https://my-profile.eu/people/deiu/card#me> ;
WAC:mode <WAC:Read>, <WAC:Write> .

<#tprotected.ttl>
WAC:accessTo <protected.ttl> ;
WAC:agent <https://my-profile.eu/people/deiu/card#me> ;
WAC:mode <WAC:Read>, <WAC:Write> .

Example 21: Creating a metafile for the document /private/protected.ttl.

Step 1

At some point, Barry decides that he wants to use a photo viewing service,
namely "myPhotos". To begin using this service, Barry must first login
into https://myphotos.com with his WebID. Once authenticated, myPhotos
creates a unique resource, containing a list of required data store permissions
corresponding to several functionalities it can offer, which then binds to
Barry’s WebID. The permissions resource is available for Barry to inspect at
http://myphotos.com/permissions/<shal> (Example 22).

Step 2

After the registration process (and perhaps payment), myPho-
tos redirects the wuser to his/her personal data store service, while
also passing the permission resource as an HTTP request parame-
ter: https://barry.rww.io/permissions?permissions—<url encoding of
http://myphotos.com /permissions/<shal> >.

Barry’s data store service fetches the permission resource from myPhotos,
and then generates a form so that each permission can be accepted or rejected
by the user. If all mandatory permissions are accepted, the data store service
can process and update the permissions resource with the user approvals and
rejections. Since in this case Barry has decided that he does not want to
add the third permission (i.e. <#c> — which would add and advertisement
comment to his profile), so it will be removed from the list of permissions.

Additionally, based on the wapp:usage specified in the permissions list, the

80 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

O@prefix wapp: <http://ns.rww.io/wapp#> .

<>
wapp:redirects <https://myphotos.com> ;
wapp:permission <#a> ;
wapp:permission <#b> ;
wapp:permission <#c> ;
wapp:permission <#d> .

<#a>
wapp:kind wapp:mandatory ;
wapp:requires wapp:workspace ;
wapp:requires wapp:read ;
wapp:requires wapp:write ;
wapp:usage <http://dbpedia.org/Photo> ;
wapp: suggestedName "photos"

<#b>
wapp:kind wapp:mandatory ;
wapp:requires wapp:workspace ;
wapp:requires wapp:exclusive ;
wapp:suggestedName "myphotos"
wapp:description "Photo viewing application."

<#c>
wapp:kind ws:optional ;
wapp:advertiseInProfile [

wapp:comment "myPhoto is cool!"

]

<#d>
wapp:kind ws:functional ;
wapp:requires wapp:workspace ;
wapp:requires wapp:read ;
wapp:requires wapp:write ;
wapp:usage <http://dbpedia.org/Tag> ;
wapp:suggestedName "tags"

Example 22: List of permissions required by the application myPhoto.

data store service will assign specific workspace URIs for each accepted per-
mission (Example 23). Once the permissions list has been updated, the data
store service will POST the updated permissions list containing the triples in
Example 23, to myPhoto:

Step 3

After having accepted the permissions, a trust relation must be created between
myPhoto’s Web agent (i.e. http://myphotos.com/profile#agent) and Barry.
The trust relationship is very important, as it allows the application to act on
his behalf (Section 2.5) while manipulating resources on Barry’s data store.

Example 24 contains the triples that have been added by the data store
service to Barry’s profile, to indicate that Barry uses the Web application

4.5. CONCLUSIONS 81

Command :

curl -X POST \textbackslash
-H "Content-Type: text/turtle" \textbackslash
-E rww.io-cert.pem \textbackslash
-d @updated-permissions.ttl \textbackslash
https://myphotos.com/permissions/<shal>

Contents of updated-permissions.ttl:

@prefix wapp: <http://ns.rww.io/wapp#> .
<#a> wapp:status ws:Accepted ;
wapp :workspace <https://barry.rww.io/photos/> .

<#b> ws:status ws:Accepted ;
wapp:workspace <https://barry.rww.io/apps/myphotos/> .

<#c> ws:status ws:Rejected .

<#d> ws:status ws:Accepted ;
wapp:workspace <https://barry.rww.io/tags/> .

Example 23: Returning the list of updated permissions.

myPhotos. For each application Barry installs on his personal data store,
several metadata entries will be added to his profile. This method enables
other users to discover interesting applications, by looking at what applications
people are using.

We believe this is a suitable example that helps to showcase the viability of a
decentralized system in which identity, authentication, data storage and service
providers are never located on the same system. Web Applications (wapp) is
a work in progress ontology that aims to provide a starting point for describ-
ing Web applications and how they operate. The wapp document is publicly
available!® and can be improved by anyone simply by adding more relations.

4.5 Conclusions

One of the requirements imposed by W3C with regard to WebID and WebID-
TLS, was to create working implementations that would allow people to test
the protocols in a real world scenario. For this matter, implementing MyProfile
has been a challenge both at a conceptual and at a technical level, as it involved
working with several new concepts, like decentralized identity and authentica-
tion, generating and consuming linked data, and even user interface ergonomics.

Regarding our choice of technologies, we decided to use PHP and Python
as the preferred programming languages, as they are widely supported and not

Bhttp:/ /ns.rww.io/wapp#

82 4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
O@prefix wapp: <http://ns.rww.io/wapp#> .

<>
a foaf:PersonalProfileDocument ;
foaf:primaryTopic <#me> .

<#me>
a foaf:Person ;
foaf :name "Barry"
wapp:uses <#myphotos> .

<#tmyphotos>
a wapp:app ;
wapp:service <https://myphotos.com/> ;
wapp:endpoint <https://barry.rww.io/apps/myphotos/> ;
wapp:description "Photo viewing application."
foaf:agent <https://myphotos.com/profilettagent> .

Example 24: Updated profile for Barry.

demanding in terms of computational resources. MySQL was only used for
MyProfile, to store information specific to the platform’s inner functionalities
(e.g. account recovery and pairing, private wall identifiers corresponding to
specific users, etc.), and for the same reasons as the ones mentioned earlier for
PHP. Generating and consuming linked data was handled by a dedicated third
party library called EasyRdf'®, which is also written in PHP. Storing semantic
data was done through OpenVirtuoso'”, a database that is optimized for the
storage and retrieval of RDF triples using the SPARQL protocol. As opposed
to MyProfile and WebID authentication libraries, RWW.I/O uses librdf'® for
linked data manipulation, as it is reputed to be very fast, scalable and with
a low impact on computational resources; characteristics that are vital for a
"cloud"-like service.

Most problems we encountered were related to using older browser versions
(especially Internet Explorer) when issuing WebID client certificates or when
performing WebID-TLS authentication, due to the Web server having to be
specially configured. In the end, we have opted against supporting Internet
Explorer versions older than TES.

Overall, our implementations were well received by the community, and are
currently used as the main references for WebID and WebID-TLS, as well as
for personal user storage. They are also mentioned by other people in their

16https://github.com/njh/easyrdf
IThttp://virtuoso.openlinksw.com/
18http://librdf.org/

4.5. CONCLUSIONS 83

videos and talks: SIGINT13'9, WebID home page?®, Crypto Stick?', WebID in
Drupal®2.

Alternative implementations are offered by OpenLink Software??, though
they do not respect the same principles we defined at the beginning of this
thesis, with respect to creating and using a single account.

Yhttp:/ /youtu.be/kAQsCoaOXAA
20http://webid.info/

2Ihttp://bblfish.net /blog/2011,/05/25 /cryptostick.mp4
22http://vimeo.com /56960183
23http://web.ods.openlinksw.com/

84

4. BUILDING A DECENTRALIZED SOCIAL SEMANTIC WEB

Chapter 5

Conclusions and perspectives

In this chapter, we summarize how each of the research topics presented in the
first chapter has been pursued, and the contributions which have resulted. Next,
we reflect on how we can improve our contributions and provide new research
directions.

5.1 Conclusions

At the beginning of this thesis we set out to identify which are the key com-
ponents that would help us achieve true data ownership and interoperability
for the next-gen social Web. While decentralisation is the most important
factor of the equation, our model would not work unless true interoperability
is achieved. For this reason, we decided to use Semantic Web technologies,
as they help represent data in a way that cannot be confusing or misleading.
Additionally, we participated in the World Wide Web Consortium, where we
translated our research results into standards, allowing us to obtain immediate
feedback from experts all around the world. Both WebID and WebID-TLS
standards are currently under final review within the WebID group before
being submitted for review to the W3C committee.

We have identified and pursued three important research topics, each deal-
ing with an important aspect of a true decentralized social Web. In the order
in which they were approached and researched, these topics are: identity, au-
thentication and access control.

5.1.1 Identity and authentication

The first aspect relates to decentralized online identity, both in terms of
identification as well as authentication. To this regard, we have contributed
to WebID (Chapter 2), a simple and universal identification mechanism that
is distributed and openly extensible. It improves privacy, security and control
over how each person can identify themselves on the Web. Additionally, when
coupled with client certificates, WebID can be used for authentication purposes,
as it is the case of WebID-TLS.

85

86 5. CONCLUSIONS AND PERSPECTIVES

We have investigated existing protocols that claim to offer decentralized
identity, such as OpenID Connect [56], Mozilla Persona [68] (formally known
as BrowserID), Web Authentication [23] and the SAML [32] standard. Un-
fortunately, none of the aforementioned protocols offer true decentralization,
since service providers offer a limited number of choices for identity providers,
based on a priori trust relationships between them. Additionally, even though
some user attributes are transmitted once authentication has been performed,
the user is usually forced to create a local account on the new service provider,
thus moving from one silo to another. Moreover, username and passwords were
still the preferred choice when it comes to authentication credentials, effectively
decreasing the security of the system.

WebID

The general idea behind WebID is that Agents (e.g. a person, an organization,
a group, etc.) create their own identities by linking a wnique identifier (i.e.
an HTTP URI) to a profile document, using a standardized RDF serialization
format in order to provide interoperability. From the WebID owner’s point
of view, hosting the profile document on a device directly controlled by the
user increases privacy and data ownership. However, several issues now arise,
dealing primarily with privacy and trust.

By aggregating user data from multiple services, attackers could in theory
be able to fingerprint and build a complete profile of the user. Additionally,
relying on HTTPS to trust the data origin also implies having to validate the
server’s certificates through a standard PKI trust chain, which is fundamentally
vulnerable because CAs can be compromised and used to replace valid cer-
tificates for millions of domains. We have presented several solutions to these
problems in Section 2.2.5 of Chapter 2, which rely mainly on using HTTPS.

WebID-TLS

The WebID-TLS authentication protocol enables secure, efficient and user
friendly authentication on the Web. Instead of using passwords, it allows
people to choose a client certificate proposed to them by their browser during
the authentication process. Even thought it is based on TLS, it does not rely
on Certification Authorities. To build trust, it uses the Semantic Web to reason
over the contents of the profile document, where a web of trust can be created
from the relations a user has with different people. Basically, to trust someone,
it may be sufficient that one or more of my friends trust the same person, by
expressing this relation in the form of a FOAF:knows relation. It is up to each
service provider to decide on the granularity on which it grants access to users.

WebID-TLS relies on client certificates to prove that an agent possesses the
private key that matches a public key stored in the WebID profile document.
This also implies that only the owner of the private key has write access to
the profile document and thus it is capable of adding an RDF description of
his/her public key.

5.1. CONCLUSIONS 87

As was the case for WebID, a WebID-TLS verifier must trust the source
of the profile document and also that no man-in-the-middle attack is currently
taking place. Furthermore, the verifier must also trust the authenticity of a
profile document’s contents. Even though HTTPS can be used to ensure end-
to-end data security, an attacker might have compromised the origin server
through other means, and therefore was able to alter the contents of the profile
document in order to insert his/her own public key. A solution would be to sign
the contents of the profile document through a cryptographic mechanism as the
one provided by the GNU Privacy Guard (GPG) [44]. However, this approach
not only implies an existing Web of Trust between the parties, but also the
ability to perform cryptographic operations on the triples. Unfortunately, up
to now we are unable to provide an abstract/canonical representation of triples,
independent of existing serialization schemes. Therefore, signing the contents
of a profile document may provide unpredictable results and is not advisable.

5.1.2 Access control

The basic concepts upon which an access control model is based determines
the flexibility of the model to adapt to different environments and systems.
We are interested in applying access control to decentralized systems, where
interoperability and data portability are the decisive factors. To this regard,
we have proposed an access control model for the social Semantic Web, which
takes into account the dynamic evolution of user relations, and which applies
to Linked Data generated by users (e.g. profile data, wall posts, conversations,
etc.).

While compiling a list of related work, we realised that most of the standard
access control models were developed for closed or centralized (i.e. silo)
environments, where the same entity is responsible for the assignment of
attributes or privileges to clients and the evaluation of the access requests to
determine whether they must be granted or not. Furthermore, they did not
offer an easy way for exporting access control policies along with the user’s
data. We were only able to find four existing solutions that would match our
criteria. The first one is Web Access Control (WAC) [37], a decentralized
system in which different users and groups are given various forms of access to
resources, and where users and groups are identified by HTTP URIs. Next,
Accountability in RDF (AIR) [42] is a Semantic Web-based rule language
that provides access control while focusing on generating explanations for its
inferences and actions as well as conforming to Linked Data principles. Social
Semantic Web Access Control [71] is based on the Social Semantic SPARQL
Security for Access Control vocabulary, allowing users to specify fine-grained
access control policies for their RDF data. Finally, Shi3ld offers a context-aware
access control framework for consuming the Web of Data from mobile devices.

We believe that current access control mechanisms suffer from a lack of
context, specific to relationships between people, since defining a set of static
policies may not equally apply in every situation. Additionally, static policies
do not take into consideration the dynamics of human relationships and the
speed at which they evolve. Furthermore, most semantic access control systems

88 5. CONCLUSIONS AND PERSPECTIVES

only apply to resources in the form of documents.

We consider that depending on different contexts and situations, access
to resources can be handled differently. For this reason, we have proposed
a social distance metric called prozimity, which also plays a very important
role in our model. We have used both context and proximity as metrics to
propose a dynamic access control system tailored for social Web applications.
In order to describe relationships between users, we were inspired by T. Hall’s
book, The Hidden Dimension[31], to define four social proximity levels, namely
Public, Social, Close (corresponding to the Personal level), and Intimate.
Since these proximity levels do not provide context by themselves, we decided
to utilize the concept of labels (e.g. #family, #sportsteam) that can be then
assigned to each proximity level.

Our proposed solution, the Social Access Control Service (SACS) is orthog-
onal to existing access control systems, as it uses proximity levels and contexts
together with our online interactions (e.g. sharing a resource with someone,
tagging a user within a specific context, etc.), in order to apply access con-
trol policies to a user’s online social resources (e.g. a user’s profile, wall posts,
conversations).

Social Access Control Service

The Social Access Control Service is comprised of two distinct sub-services, a
Relationship Monitor (RM) engine and a Static Access Control (SAC) engine,
each with a particular set of tasks (Section 3.3 of Chapter 3).

The RM engine relies on metrics such as context and proximity distance
together with a relationship history between the involved actors, in order to
either provide notifications for potential privacy issues that may arise when
disclosing information, or even to modify existing access control policies for
incoming requests (if so configured). The RM applies to two distinct types
of actions. First, it is used when assigning context labels when disclosing
information, and second for handling a request for a resource.

The SAC engine handles access to user-generated resources, based on
predefined privacy policies. The process of permitting/denying access to a
resource is quite straightforward, and it involves matching the user performing
the request to a list of resources matching the same context label. The goal
of this process is to finally return a unique view of requested resources (e.g. a
user’s profile), matching to the level of access corresponding to the requesting
user.

We regret not having sufficient time to propose additional metrics, as they
would improve the granularity of access control rules. Furthermore, as we were
unable to implement the RM engine in a real application environment, we have
no estimate of how well it scales, nor how user friendly it would be in terms of
policy management.

5.1. CONCLUSIONS 89

5.1.3 Validating the proposed solutions

As part of our efforts to validate solutions and standards to which we have
contributed, we have attempted to implement several Web services that would
incorporate decentralized user identity, secure authentication, semantic data
storage. To respect the initial requirements, they must be able to apply
Create-Read-Update-Delete (CRUD) operations to resources, to offer increased
privacy through access control, and most importantly, to be interoperable with
other applications in terms of data exchange (e.g. content sharing, messaging,
activity notifications, etc.).

Following the order in which the research was conducted, we began with
MyProfile!, a service that offers a unified user account, centralizes the user’s
data and puts it under the user’s control, and more importantly on a device the
user controls. MyProfile offers not only the possibility to create and manage
WebIDs, but also to authenticate users through WebID-TLS in order to gain
access to personalized services like personal walls, as well as messages and
notifications between users.

According to the two different WebID-TLS authentication approaches, either
performing the WebID-TLS verification locally, or using a third party WebID-
TLS authentication service, we have developed two libraries, written in PHP,
which cover both approaches and can be used together.

Next, we have implemented a Static Access Control engine, which was
released as a public library together with a caching module. The SAC engine
is used to offer a unique view of a user’s profile, based on the level of access
specific for the agent requesting the information. It uses context labels to
match users to the resources to which they are allowed access.

Finally, we have implemented a Linked Data personal data store platform
called RWW.I/O?, which operates under the assumption that users require
a personal data store, where different applications can store data about and
for the user, and where data are equally available between applications.
The platform supports full Create-Read-Update-Delete (CRUD) operations,
complying to REST standards. Documents and directories can be created
by performing HTTP requests such as POST, PUT and MKCOL (i.e. new
directories), following the requirements we presented at the beginning of this
thesis. This work was conducted at the Massachusetts Institute of Technology
and it was supervised by Sir Tim Berners-Lee.

The source code for all the services and libraries we have implemented is
publicly available on GitHub?, under an MIT license.

Thttp://myprofile-project.org/
2https://rww.io/
3http://github.com/

90 5. CONCLUSIONS AND PERSPECTIVES

5.2 Perspective work

During the research and implementation stages of this thesis, we were able
to identify several research directions that we were unable to pursue at that
moment. Among them, the most important ones concern how applications can
notify users when events occur as well as allowing users to safely communicate
with one another while maintaining an adequate level of privacy. Furthermore,
by using persistent identifiers, we became worried that applications and services
will be able to track users, and therefore we began to envision the possibility
of creating an identity proxy service. Next, we would like to shortly present a
preliminary description of these perspective research directions.

5.2.1 Semantic Messaging and Notifications Protocol

As the name suggests, the Semantic Messaging and Notifications Protocol
(SMNP) intends to offer two distinct types of messages. The first type is similar
to email, in that it provides end-to-end communication between the involved
parties. The second type consists of activity streams (e.g. updates about other
users).

In both cases, a special resource is created, offering a semantic representation
of the message. The resource would normally contain a sender, one or more
recipients, and a message body.

Semantic messaging

Semantic messaging provides the means to enable written communication
between two parties. It intends to offer an alternative to email, operating in
two modes, pull and push, depending on the user’s preferences.

Users may also choose which kind of mode they allow when receiving
messages. For instance, users may allow their friends to send messages using
the push method, while disallowing incoming messages from people they know.
On the other hand, messages sent using the pull mode may always be accepted.

The pull mode involves creating messages, storing them locally and then
notifying the other endpoints with the URI of the resource that contains the
message. This mode requires a dedicated service, capable of centralizing the
messages in one point, on a device controlled by the sender.

The main advantage offered by this mode concerns the privacy of message
data, since messages are centralized on the sender’s server, and only a link to
the message is sent to the recipients, therefore the sender remaining in control
of his/her data. Compared to classic email, users will still be able to "save"
(create a local copy of the resource) when they access the message, though
they would have to successfully authenticate before being allowed to access the
message contents. The drawback here is that if the server on which the mes-
sages are stored is no longer accessible, no one will be able to read the messages.

5.2. PERSPECTIVE WORK 91

Another advantage of self-hosted messages is that it eliminates the extra
network traffic generated by spam, since senders will have to take care of the
scalability issues involved when hosting the message contents. Not sending the
message contents also reduces the risks of getting infected with viruses when
opening the message, as users would now have to explicitly click on the link in
order to fetch and read the message.

The push mode implies sending messages to remote endpoints. This
decentralized operation mode is very similar to email, as it transmits messages
to one or more remote recipients, and is suitable for users who do not possess
a server that is always available online. However, recipients must be able
to receive messages, meaning that they must permit access to a messaging
endpoint, typically a resource with "Write" or "Append".

The advantage of this mode is that once the messages have been delivered,
the sender no longer needs to worry whether his/her server will be available or
not. Since this mode involves duplicating data when transmitting the message
to each recipient (copying the same message for each recipient), the user must
wait for the sending process to complete, which may take a long period of time
due as it requires more bandwidth (especially when sending large documents).

To offer the same functionality as the one provided by email when sending
attachments, SMNP would involve performing one ore more POST requests
containing the resource to the recipients’ servers, where a service capable of
interpreting and managing these requests must be present.

Notifications

Notifications are short messages, sometimes as short as a several triples, stating
that a resource is available at a given location (URIT), or that there is an event
concerning a specific user (e.g. "Barry is now friends with Ann"). Notifications
can also be split based on two operation modes, pull and push.

In pull mode, the notification sender is only required to POST a single
triple of type event with a URI pointing to the remote event resource, indicating
that more information about the event can be found at a given location. If the
recipient of the notification message would like to know more about this event,
he/she can fetch more information from that location.

In push mode, the notification sender may also provide more information
about the event at the time of transmission, in the form of a description, a date,
the WebIDs of the concerned parties, etc..

5.2.2 Transparent WebID proxy

Avoiding traceability and fingerprinting are important factors, directly impact-
ing the level of privacy offered by a WebID provider (Privacy and security
analysis in Chapter 2). Even though access control can be successfully utilized
to restrict access to parts of a profile document (Chapter 3), given a reasonable
amount, of time, a service provider will be able to build a complete profile of

92 5. CONCLUSIONS AND PERSPECTIVES

a user. To avoid being traced and fingerprinted across different applications
and services, a common solution would be to use multiple identities. However,
this solution increases the difficulty of identity management for most users,
while others may even feel inclined to trade their privacy for spending less time
having to manage their alias identities.

We believe we can offer an alternative, in the form of a transparent WebID
proxy, a proxy which intercepts normal communication without requiring any
special client configuration, and where clients need not be aware of its existence.
Please consider the following example.

Barry has his own WebID https://barry.example/profile#me, which is
hosted at https://barry.example. Instead of using his own WebID, he could
use a transparent WebID proxy service located at https://webid.proxy. The
proxy service would then allow Barry to create a new identity, a so called
pseudo-WebID (i.e. https://webid.proxy/my-alias/card#me), which would
only contain the profile elements Barry has selected from his real WebID. When
a client dereferences the pseudo-WebID, the proxy would fetch the elements
from Barry’s real profile and serve the profile document on the fly. If at any
point Barry decides to stop using the service, he can then create an ACL rule
to block https://webid.proxy from accessing his WebID.

Please note that using such a service implies trusting the service provider
to not disclose the link between the pseudo-WebID and the real WebID. As a
security measure, users could allow access to their real WebID profiles only to
a selected number of agents by default, among which we can find the proxy
service. This way, even if an attacker discovers the user’s real WebID, he will
not be able to gain access to the user’s real profile document, as long as the user
has removed the proxy service from the list of authorized agents.

List of publications

1. Andrei Vlad Sambra, Henry Story, Tim Berners-Lee. ~WebID Spec-
ification. Working draft, 2013. https://dvcs.w3.org/hg/WebID /raw-
file/tip /spec/identity-respec.html

2. Toby Inkster, Henry Story, B. Harbulot, Andrei Vlad Sam-
bra. WebID-TLS Specification. Working draft, 2013.
https://dves.w3.org/hg/WebID /raw-file/tip /spec/tls-respec.html

3. Sebastian Tramp, Henry Story, Andrei Vlad Sambra, Philipp Frischmuth,
et al. Extending the WebID Protocol with Access Delegation. Proceed-
ings of the Third International Workshop on Consuming Linked Data
(COLD2012), 2012.

4. Andrei Vlad Sambra, Maryline Laurent. Context-Aware Decentralized
Approach for Web Services. In Services (SERVICES), 2012 IEEE FEighth
World Congress, pages 73 79. IEEE 2012.

5. Andrei Vlad Sambra, Henry Story, Henry et al. Friending On The Social
Web. W38C'’s Federated Social Web, 2011.

6. Andrei Vlad Sambra, Maryline Laurent. MyProfile-Decentralized User
Profile and Identity on the Web. W3C’s Federated Social Web (FSW2011),
2011.

7. Andrei Vlad Sambra, Maryline Laurent. MyProfile-Privacy Aware De-
centralized Identity on the Web. 1st International Conference on Secure
networking and Applications (ICSNA). 2011

8. Tony Cheneau, Andrei Vlad Sambra, Maryline Laurent. A Trustful Au-
thentication and Key Exchange Scheme (TAKES) for ad hoc networks. In
Network and System Security (NSS), 2011 5th International Conference,
pages 249-253. IEEE, 2011.

93

94

LIST OF PUBLICATIONS

Appendix - Résumé en
francais

Introduction

Au cours de la derniére décennie, nous avons assisté 4 une augmentation
spectaculaire du nombre d’applications Web sociales. Ces applications sont
disponibles en différentes formes et offrent différents services comme les réseaux
sociaux, les systémes de gestion de contenu (CMS), les forges logicielles, les
blogs ou les services de collaboration en général.

Depuis le lancement du premier grand site de réseau social en 1997 [29], le
Web social a vu une augmentation significative de sa taille et de son utilisation.
Plutot que de simplement consommer des sites Web, les utilisateurs ont
commencé a produire leurs propres contenus grace a des outils de blogging et
des réseaux sociaux, marquant le début du Web 2.0 et du Web sémantique [12].
Les sites sociaux ont réagi & cette nouvelle tendance en offrant aux utilisateurs
la possibilité de créer leur propre profil personnel, ou ils peuvent publier des
photos, mettre & jour leur statut ou bien plus. Plus tard, certains de ces sites
ont également fourni des plug-ins qui ont été utilisés pour intégrer certaines
de leurs fonctionnalités sociales sur des sites tiers. Mais qu’est-ce exactement
un site de réseau social et quelles fonctionnalités ont ces sites a offrir aux
utilisateurs? Est-ce que la capacité a former une connexion entre les utilisateurs
est suffisante pour dire qu’un site fait partie du Web social? Que pouvons-nous
attendre du Web social dans ’avenir?

Dans cette thése, nous allons analyser et proposer des moyens d’assurer la
propriété des données et 'interopérabilité des applications Web sociales de la
prochaine génération, en ce qui concerne la vie privée et le controle d’accés. Nos
contributions portent sur différents sujets, de I'identité et de ’authentification
décentralisée au controle d’acceés et le stockage des données personnelles.

Motivation

Une pratique courante spécifique a la plupart des services Web est de centraliser
les ressources utilisateurs, devenant des «silos de donnéesy. Souvent, lors de
son adhésion & des services particuliers, nous finissons généralement par
créer des comptes locaux dédiés qui nous limite & un service particulier. De
plus, les utilisateurs n’ont aucun controle sur la facon dont leurs données

95

96 APPENDIX - RESUME EN FRANCAIS

personnelles sont utilisées par les applications, comme c’est le cas pour les
données privées qui sont souvent envoyés a des sociétés tiers afin de réaliser des
gains publicitaires.

L’identité est I'un des domaines de recherche les plus difficiles sur le Web, car
il nécessite & la fois des solutions pratiques et de la recherche multidisciplinaire.
Nous croyons que l'identité implique de pouvoir se référer & quoi que ce soit de
maniére fiable, abstraite ou plus concréte, sans contraintes de temps et d’espace,
et dans des contextes différents. Une facon de traiter le sujet de l'identité est
d’établir une convention commune qui identifie des choses particuliéres d’une
maniére uniforme, et qui est facilement réutilisée dans différents contextes.
Lorsqu’on l'applique sur le Web, il devient évident que l'utilisation des URI
(Uniform Resource Identifiers) HTTP comme identificateurs globaux est le
choix préféré. Le principal avantage des URI HTTP sur n’importe quel autre
systéme d’identification (e.g. les adresses électroniques, ou bien les noms
d’utilisateur uniques) est que les principes de données liées disent que ces URI
doit retourner une description utile de ce que 'URI identifie lors de l'acces
aux données dans un navigateur Web ou dans une application informatique en
utilisant le protocole HTTP.

Une application Web décentralisé doit étre capable de fonctionner & travers
différents domaines d’application, ce qui permet aux différentes applications
d’interagir les unes avec les autres grace a l'utilisation des données sémantique.
Il est important que les utilisateurs ont la possibilité de choisir ot stocker
leurs données, que ce soit sur des serveurs personnels qu’ils détiennent dans
leurs maisons, ou en confiant leurs données & leurs amis ou des personnes de
confiance. Les utilisateurs peuvent méme profiter d’'une myriade de services de
stockage de type «cloud» disponibles sur le Web, méme si des mesures doivent
étre prises pour assurer la confidentialité de leurs données en ce qui concerne
les prestataires de services. Pour atteindre une véritable interopérabilité, nous
avons décidé d’utiliser le Web sémantique en tant que moyen pour fournir des
données structurées qui peut aussi étre comprise par les machines.

Le Web sémantique doit étre considérée en quelque sorte comme une base
de données globale, ou mieux encore un espace d’information global. Puisque
la plupart des informations sur le Web sont congues pour les humains, dans des
interactions homme-a-homme, le Web sémantique a l'intention de permettre
aux machines de participer a cette interaction en fournissant des langages
pour exprimer les informations sous des formes traitable par les machines.
Autrement dit, le Web sémantique offre les outils nécessaires pour exprimer
aussi ce que signifie les données afin qu’elles soient comprises et interprétées
par des ordinateurs.

Les moyens les plus couramment utilisées par le Web sémantique pour décrire
I'information sont le RDF [43] (Resource Description Framework) et la syntaxe
Turtle [6]. Ils sont basés sur le concept de faire des déclarations au sujet des
ressources (en particulier les ressources Web) sous la forme d’expressions sujet-
prédicat-objet, qui sont appelés triples. Le Web sémantique facilite les applica-
tions et les services inter-domaines, grace aux données qui sont structurées en
ontologies et vocabulaires. Une ontologie représente officiellement la connais-

97

sance comme un ensemble de concepts dans un domaine, et les relations entre
ces concepts. Les vocabulaires sont une maniére moins formelle d’exprimer des
concepts ou des entités et les relations entre eux.

Identité et authentification sur le Web

L’identité est un concept complexe, réfléchissant aux questions de contexte,
de vie privée et de propriété, a travers les médias réels et virtuels. Le but de
l'assurance de l'identité, ainsi que les conséquences qui en découlent lorsque
I'identité ne peut étre assurée, est devenu un centre important des efforts de
recherche.

La gestion de l'identité décentralisée mais centrée sur 1'utilisateur offre une
meilleure protection des donnees personnels et de contréle sur l'utilisation des
informations d’identité, car elle permet aux utilisateurs de choisir de maniére
flexible les informations d’identité qui sont transmises & d’autres participants
dans chaque transaction.

Identité décentralisée avec WebIlD

Un Web social distribué mondiale exige que chaque personne soit en mesure
de controler leur identité et que cette identité est linkable a travers les sites,
placant donc chaque personne dans un réseau de relations.

WebID, notre premiére contribution, est un mécanisme d’identification
simple et universel qui est distribué, ouvertement extensible, améliore la
confidentialité, la sécurité et le controle sur la facon dont chaque personne peut
s’identifier, afin de permettre le controle d’accés a leur information sur le Web.
Cela se fait en appliquant les meilleures pratiques de D'architecture du Web,
tout en s’appuyant sur des protocoles et des normes largement déployées et
bien établis, y compris HTML [7], les URI [11], HTTP [10], et RDF. WebID
est un standard ouvert au sein du World Wide Web Consortium, auquel nous
contribuons activement.

L’idée générale derriere WebID est que les agents (par exemple, une
personne, une organisation, un groupe, etc) créent leurs propres identités en
associant un identifiant uniqgue (un URI HTTP) & un document de profil, un
type de page Web que tout Web utilisateur est familiarisé avec, et qui utilise un
format de sérialisation RDF standardisé. Le document de profil contient toutes
les informations nécessaires pour créer un Web de confiance qui permet aux
gens de faire le lien entre leurs profils de maniére publique ou protégée. Un tel
réseau de confiance peut alors étre utilisé par les services Web pour prendre des
décisions d’autorisation, en permettant ’accés aux ressources en fonction des
propriétés d’un agent, tel qu’il est connue par certaines personnes concernées,
travaille dans une entreprise donnée, est une membre de la famille, fait partie
d’un groupe, etc.

98 APPENDIX - RESUME EN FRANCAIS

Pour illustrer ces termes, la Figure 5.1 décrit les relations entre le WebID de
Tim Berners-Lee ('URI) et le document de profil auquel il se référe.

WEBID

| http://www.w3 .org/People/Berners—Lee/cardl#i

denotes denotes
SO (sense) (reference)

/People/Berners-Lee/card

o

R

foaf:homePage

.
\

Figure 5.1: La relation entre la personne (Tim Berners-Lee), le WebID
(http://www.w3.org/People/Berners-Lee/card#i) et le document de profil
(http://www.w3.org/People/Berners-Lee/card).

URI WebID

Dans le Web sémantique, les URI servent & identifier non seulement des
documents Web, mais aussi des objets du monde réel comme des personnes, des
voitures, et méme des idées abstraites et des choses qui n’existent pas (comme
des héros mythiques). Nous pouvons nous référer & eux comme & des objets
ou des choses du monde réel. Par exemple, la personne Ann est décrite sur sa
page d’accueil. Barry peut ne pas vouloir mettre un lien vers la page d’accueil
d’Ann, mais peut vouloir lier & la personne Ann. Par conséquence, deux URI
sont nécessaires, un pour Ann et un pour la page d’accueil ou un document
RDF décrivant Ann.

La raison principale pour laquelle les identifiants de fragments, communé-
ment appelés hashes (i.e. #me), ont été introduites, c’est que 'URI du WebID
et P'URI du document de profil ne devraient pas étre les mémes. Si elles étaient
les mémes, il n’y aurait aucun moyen de différencier entre 'URI du document
de profil - https://barry.example/profile - et 'URI pointant vers le graphe du
profil qui décrit I'utilisateur dans le document (i.e. #me). Autrement dit, pour
les WebIDs avec des hashes, 'URI sans le hash indique le document de profil.

Toutefois, si des URIs hash ne peut pas étre utilisé, alors une requéte HTTP
GET sur le WebID doit renvoyer une réponse HTTP 303 avec un URI dans
I’emplacement en-téte se référant au document de profil. Les URI hash sont

99

encouragés lors du choix d’un WeblID, car les redirections HTTP 303 générer
des demandes supplémentaires et ont un impact sur les performances pour les
clients.

Le document de profil WebID

Les données personnelles sont ’exigence la plus courante lors de ’enregistrement
d’'un compte sur un site Web. Certains de ces éléments d’information con-
tenant une adresse e-mail, un nom et peut-étre une image représentant
I'utilisateur. Pour ce qui concerne les profils WebID, ils sont construits
en utilisant des vocabulaires identifiés par des URI (tels que FOAF [14],
SIOC [13], DOAP [26], etc), qui peut étre placé dans la position du sujet,
prédicat ou objet des relations constituant un graphe RDF. La définition de
chaque URI est obtenue par déréférencement de 'espace de noms de 'URI.
Par exemple, un relation de type foaf:name implique que le préfixe foaf: a été
précédemment définie comme un espace de noms de la fagon suivante: @ prefix
foaf: <http://zmins.com/foaf/0.1/>.

Un avantage notable de WebID sur les autres systémes d’identité est que
WebID peut étre facilement étendu. Dans les documents de profil WebID, des
vocabulaires supplémentaires peuvent étre utilisés pour étendre le profil person-
nel de l'utilisateur, par des moyens de fournir les coordonnées GPS, une liste des
intéréts personnels, ainsi que décrire des différentes activités liées a I'utilisateur
- par exemple son blog, les projets auxquels 'utilisateur contribue, etc.

Authentification décentralisée avec WebID-TLS

Notre deuxiéme contribution, le protocole d’authentification WebID-TLS [38],
permet une authentification efficace et facile a utiliser sur le Web en permettant
aux utilisateurs de choisir un certificat client proposé par leur navigateur au
cours du processus d’authentification. Un aspect trés important de WebID-TLS,
c’est qu’il remplace les méthodes d’authentification standard basés sur les noms
d’utilisateur et mots de passe. En méme temps, il est facile & mettre en ceuvre
car il tire parti de la cryptographie derriére le protocole de sécurité de la couche
transport (TLS) [25]. En outre, il n’est pas affecté par les mémes problémes
qui sont communs a IPK, car il ne repose pas sur les autorités de certification.
Utiliser des certificats auto-signés c’est aussi réduire les cotits créés a partir de
la délivrance des certificats signés par des autorités de certification.

Le principal avantage de WebID-TLS est le fait qu'’il s’agit d’un protocole
d’authentification véritablement décentralisé, sans relations de confiance
préexistantes nécessaires entre le fournisseur de services (SP) et le fournisseur
d’identité (IdP). Dans WebID-TLS, la confiance se construit en utilisant le
Web sémantique pour raisonner sur le contenu du document de profil.

Afin de fournir le contexte global d’une authentification de I'utilisateur ou
d’un agent & un prestataire de services, nous allons illustrer le protocole avec le
diagramme de séquence suivante (cf. Figure 5.2). Il faut noter que du point de
vue de l'utilisateur, le processus complet d’authentification WebID-TLS est tout
simplement un clic qui permet de choisir le certificat WebID. L’utilisateur n’est

100 APPENDIX - RESUME EN FRANCAIS

pas obligé de se rappeler les informations d’identification pour s’authentifier.

IdP SP

>
@

Figure 5.2: Le flux d’authentification WebID-TLS.

Les étapes impliquées dans le flux d’authentification WebID-TLS sont les
suivantes:

1. Tout en essayant d’accéder a une ressource protégée sur le SP, l'utilisateur
est invité & fournir un certificat client, dans le cadre de la négociation
TLS. A ce stade, le SP vérifie que I'utilisateur posséde la clé privée corre-
spondant & la clé publique du certificat envoyé au SP.

2. Le vérificateur WebID de SP extrait le URI du WebID de I’extension
SubjectAlternativeName situé dans le certificat d’utilisateur, ainsi que le
module et I’exposant correspondant a la clé publique du certificat.

3. Le vérificateur WebID récupére le document de profil WebID de I'IldP
pour obtenir les clés publiques de I'utilisateur contenant les modules et les
exposants.

4. Le vérificateur WebID vérifie si les éléments de la clé publique (i.e. mod-
ule et exposant) du certificat de l'utilisateur correspondent aux éléments
de la clé publique figurent dans le document de profil WebID. Si elles
correspondent, l'utilisateur est alors authentifié avec succés sur le SP.

L’authentification déléguée pour WebID-TLS

L’authentification déléguée WebID-TLS est le processus d’utilisation d’'un ser-
vice d’authentification tiers dans les cas ot des applications Web ou les services
ne peuvent pas fonctionner sur TLS, ou choisissent de ne pas héberger le service
vérificateur WebID eux-mémes. L’authentification déléguée WebID-TLS ajoute
une autre entité au flux d’authentification, qui est la partie de confiance (RP),

101

IdP

Figure 5.3: Le flux d’authentification déléguée WebID-TLS.

comme on le voit dans la Figure 5.3.

Les étapes impliquées dans le flux d’authentification déléguée WebID-TLS
sont les suivantes:

1. Contrairement a D’authentification WebID-TLS standard, dans ce cas,
I'utilisateur est d’abord redirigé vers un service vérificateur de WebID
tiers, le RP.

2. Le vérificateur WebID de SP extrait le URI du WebID de D’extension
SubjectAlternativeName situé dans le certificat d’utilisateur, ainsi que le
module et I’exposant correspondant & la clé publique du certificat.

3. Le vérificateur WebID récupére le document de profil WebID de 1'IdP
pour obtenir les clés publiques de I'utilisateur contenant les modules et les
exposants.

4. Le vérificateur WebID vérifie si les éléments de la clé publique (i.e. mod-
ule et exposant) du certificat de l'utilisateur correspondent aux éléments
de la clé publique figurent dans le document de profil WebID. Si elles
correspondent, 1'utilisateur est alors authentifié avec succés sur le RP.

102 APPENDIX - RESUME EN FRANCAIS

5. Le RP redirige 'utilisateur vers le SP, ajoutant des informations supplé-
mentaires afin d’attester 'identité de l'utilisateur, ainsi que d’une sig-
nature pour prouver ’authenticité du message - c’est a dire le message
provient d’un vrai RP et non d’un attaquant.

6. Le SP vérifie la signature ci-dessus et connecte l'utilisateur dans
I'application, tandis que dans le méme temps il récupére les données sur
I'utilisateur & partir de son IdP.

Délégation d’accés pour WebID-TLS

Il faut noter que le serveur hébergeant les profils WebID controle l'identité
de chaque agent dont I'URI est dans le domaine de ce serveur. Cet hote est
connu comme le serveur d’origine, et il est & ’origine de toutes les ressources
qu’il dessert. Nous pouvons facilement imaginer le serveur d’origine, non
seulement en mesure de répondre aux demandes, mais aussi comme un agent,
capable de faire des demandes. Un vérificateur WebID-TLS nécessite que
son propre serveur fait des demandes pour les profils WebID vers d’autres
serveurs pour chercher le document de profil de Tlutilisateur demandeur.
La spécification WebID décrit cette tache comme étant accompli par un
agent indépendant le vérificateur WebID qui pourrait bien étre fait par
un autre service sur le web (i.e. un RP ou des serveurs d’authentification proxy).

Le serveur d’origine agissant comme un client pour le compte d’un utilisateur
peut étre considéré comme un gardien de secrets pour cet utilisateur. Il doit
étre capable de distinguer ce qu’est un IdP dit que lorsque le vérificateur agit
pour le compte d’un utilisateur, appart de ce que I'ldP dit quand il agit pour le
compte d’un autre utilisateur. Ici, le probléme consiste & convaincre le serveur
IdP de croire que le secrétaire agit pour le compte d’un utilisateur particulier.
Notre solution est d’utiliser RDF pour rendre cette relation explicite par
I'utilisation d’une relation spéciale appelé provisoirement secretary, dans le
domaine de foaf:Agent.

Ensuite, méme si le secrétaire va maintenant utiliser son propre WebID pour
effectuer des demandes authentifiées, il aurait encore d’indiquer l'utilisateur
pour lequel il effectue la demande. Pour ce faire, il devra créer un en-téte HTTP
appelé On-Behalf-Of, qui contiendra le WebID de 'utilisateur. Le serveur IdP
peut alors vérifier que I’agent identifié est le secrétaire de 1’utilisateur pour lequel
il souhaite agir (comme spécifié¢ dans 'en-téte On-Behalf-Of), par déréférence-
ment du document de profil et la vérification de la présence d’une relation
cert:secretary qui pointe vers le WebID du secrétaire.

Service de controle d’accés Social

Dans cette section, nous présentons notre troisiéme contribution, un service
social de controle d’accés pour les applications Web, composé de deux sous-
services distincts: un moteur pour controle d’accés statique (Static Access
Control - SAC) et un moteur pour la surveillance des relations (Relationship
Monitor - RM). Par rapport aux solutions de controle d’accés existants qui

103

traitent du controle d’accés pour les documents statiques (comme WAC [37],
ATR [42] et S4AC [71]), notre solution est axée sur la protection de la vie
privée des ressources et de données générés par les utilisateurs (par exemple, les
données de profil, messages, conversations, etc), en appliquant deux mesures
sociales: la distance de proximité sociale et contextes sociaux.

Pour décrire les relations entre les utilisateurs, nous commencons avec la
classe de base appelée Relationship, ce qui correspond a ’espace public et par
lui-méme ce qui implique une relation indéterminée. Ensuite, nous avons quatre
sous-classes, Public, Social, Close (correspondant au niveau personnel), et
Intimate, le tout correspondant & un niveau de proximité décrite par Hall
dans [31]. Cependant, ces types de relations ne fournissent pas de contexte.
Pour transmettre le contexte, nous étiquetons habituellement les personnes et
les objets, et si notre relation envers eux évolue au fil du temps, soit nous
conservons ou nous modifions les étiquettes. Plutot que créer des groupes de
personnes, une ou plusieurs étiquettes peuvent étre attribuées dynamiquement
aux personnes et aux données, et peuvent également étre instantanément créées
lorsque le besoin s’en fait sentir, un peu comme des étiquettes ou mots-clés sont
créés sur les plateformes de blogs (e.g. #beachparty2013, #équipefootball,
#famille, etc.). Nous avons donc décidé d’appliquer le concept de contextes
exprimés a travers des étiquettes dans notre modéle proposé.

Le moteur de contréle d’accés statique

Comme son nom lindique, le moteur de controle d’accés statique (Static
Access Control - SAC) gére le régles de confidentialité prédéfinis. Meéme si
c’est un élément important de systeme, il ne nécessite pas que le moteur
RM soit présent et fonctionnel. Toutefois, dans ce cas, les utilisateurs de-
vront définir manuellement des politiques de controle d’accés pour leurs données.

1l faut noter dans la Figure 5.4 que le moteur SAC contient deux modules,
le module Contexts qui est notre contribution et sera présenté bientot, et le
module générique qui peut étre basée sur un mécanisme de controle d’accés
sémantique et statique comme WAC ou AIR. Le module générique ne sera pas
présenté car il est hors sujet pour cette thése. Cependant, le but du module
générique consiste & fournir une couche supplémentaire de controle d’acces
pour les documents, et en fonction des préférences de l'utilisateur, il peut ou
non étre activé dans le systéme.

Définir une politique dans notre solution proposée consiste a créer d’abord
un contexte (une étiquette). Chaque contexte est défini comme un graphe de
ressources avec son propre URI unique. Pour donner un contexte, un sens clair,
chaque contexte défini a un nom et un champ de description facultative.

Les ressources ainsi que les utilisateurs correspondent & des contextes
spécifiques. Si une correspondance est trouvée entre le contexte qui est lié a la
ressource et le contexte assignée a l'utilisateur, alors I'utilisateur est autorisé
a accéder a la ressource. Plusieurs contextes peuvent étre attribuées a une
ressource ou & un utilisateur. Les utilisateurs du méme niveau de proximité
peuvent avoir des contextes différents, correspondant a différentes ressources, et

104 APPENDIX - RESUME EN FRANCAIS

Request$ T Response

Relationship Monitor Engine

v !

Static Access Control

Relationship
Contexts WAC / AIR History DB

Rules/Policies
Database

Figure 5.4: L’architecture de notre service de controle d’accés sociale.

chaque utilisateur peuvent seulement voir les ressources qui leur sont confiées.
Tl faut noter que si I'utilisateur n’a pas de politique de controle d’accés défini,
alors toutes les ressources qu’ils possédent sont publique par défaut.

La Figure 5.5 présente un algorithme simple, décrivant le processus
d’appariement contexte. Le but de ce processus est de renvoyer enfin une vue
unique des ressources demandées (par exemple, le profil d’un utilisateur, un
mur, une conversation, etc), en fonction du niveau d’accés correspondant a
I'utilisateur demandeur.

Les informations contenues dans la demande inclut le type de la ressource
demandée (T), le WebID du demandeur (U) et le format de sérialisation de
données (S) pour la réponse (par exemple, Turtle, RDF / XML, N3, etc). A
ce stade, nous supposons que l'utilisateur demandeur a déja été authentifié au
moment de la demande. Si l'utilisateur n’a pas été authentifié, seule la vue
publique de la ressource demandée est renvoyée.

L’étape suivante de l'algorithme est de rechercher le demandeur dans le
graphique des utilisateurs appartenant au propriétaire de la ressource. Si
aucune correspondance n’est trouvée, le demandeur ne recoit que la vue
publique de la ressource demandée. Sinon, tous les contextes affectés au WebID
du demandeur sont extraites, et une liste de tous les contextes URI (TL) est crée.

L’étape suivante consiste a créer un graphe temporaire en mémoire (G),
afin de conserver uniquement les ressources correspondant & la politique
d’accés du demandeur. Ce graphe ne sera utilisé que pendant le traitement de
I’algorithme, afin de maintenir le contenu de la réponse.

Une fois que le graphe a été créé, il est temps de copier toutes les ressources

105

T = Get(type of requested resource)
Request for U = Get(WeblID of requesting user)
resource graph|S = Get(serialization format)

'

Does U exist in™\
the Users graph? >

‘TL := Get (contexts bound to U) | YES

‘ G := Create(In-memory graph) |

NO
G <= Copy (resources of type T ‘ G:= Create(In-memory graph) |
from contexts matching those in
TL)

‘ G <= Copy (public resources) |

'

‘ Serialize G using format S |

‘ Return G to requestor U |

Figure 5.5: Algorithme d’appariement contextuel.

appartenant a la liste des contextes (TL), et qui correspondent au type de la

demande (par exemple, un profil, un mur, une conversation, etc).

Enfin, le graphe (G) est mis en forme sur la base de la sérialisation demandée
(S) avant d’étre renvoyé a I'utilisateur demandeur (U). Dés que le contenu de
(G) a été envoyé via HTTP(S), le graphe est détruit et la mémoire est libérée.

Le moteur de la surveillance des relations

Le moteur de surveillance des relations (Relationship Monitor - RM) est chargé
d’analyser le caractére dynamique des relations entre les deux utilisateurs
donnés, afin de fournir soit des notifications pour les éventuels problémes de
la vie privée qui peuvent surgir lors de la divulgation d’information, ou il peut
méme modifier les politiques de controle d’accés existants pour les requétes
entrantes (s’il est configuré pour). Le RM s’applique & deux types distincts
d’actions. Tout d’abord, pour attribuer des étiquettes de contexte lors de la
divulgation d’informations, et la seconde pour le traitement d’une demande de
ressource.

Quand un utilisateur a l'intention de limiter l'audience de certaines de
ses informations personnelles (par exemple, opinions religieuses, l'orientation
sexuelle, etc), il peut assigner une ou plusieurs étiquettes de contexte a
Iinformation qui doit étre protégée, ainsi que pour le public afin d’indiquer
qui peut accéder a l'information. Au cours de ce processus d’étiquetage, la
RM analyse les données d’interaction de l'utilisateur & partir d’un historique
des relations (Relationship History database - Figure 5.4), correspondant a

3

106 APPENDIX - RESUME EN FRANCAIS

I’auditoire sélectionné. Des exemples typiques d’interactions entre les utilisa-
teurs comprennent le partage d’une image dans un contexte spécifique (par
exemple #closefriends), changer explicitement le niveau de proximité d’un
utilisateur, exclure un utilisateur & partir d’'un contexte donné (sans l’enlever
définitivement) lors du partage d’une ressource, combien de fois les utilisateurs
échangent des messages (en fonction du temps), etc.

Basé sur les interactions dans le historique des relations, le RM peut
alerter I'utilisateur (par exemple fournir des indications visuelles) & un éventuel
changement dans leur relation. Par exemple, un message d’avertissement peut
apparaitre si le propriétaire de la ressource est en cours d’attribution d’une
étiquette de contexte (ce qui correspond a un niveau de proximité spécifique) a
un utilisateur qui se trouve dans un niveau de proximité plus lointain.

L’algorithme derriere le processus de prise de décision de la RM peut étre
vu dans la Figure 5.6.

Request for R = Get(requested resource)
resource U = Get(WeblID of requesting user)

Relationship
with me or people
| know?

YES NO

RH := Get (relationship history
for U)

Y ‘ Forward request to SAC
SR := Get (SAC rules for R & U) |

Analyze an

5>

Optional: ™
take decisio modify existin

SAC rule_~

Allow access?

‘Allow access and return R| \ Deny access |

Figure 5.6: Le processus de la prise de décision du RM.

Les informations contenues dans la demande comprend la ressource de-
mandée (R) et le WebID du demandeur (U). A ce stade, nous supposons
également que l'utilisateur demandeur a déja été authentifié au moment de la
demande. Si l'utilisateur n’a pas été authentifié, le processus considérent que

107

l'utilisateur soit indéterminée (i.e. & toute personne ayant accés public).

L’étape suivante consiste & décider si l'utilisateur en question a des relations
avec le propriétaire de la ressource ou des personnes connues par le propriétaire
de la ressource. Cette étape est effectuée en interrogeant la base de données
contenant ’historique des relations pour trouver les occurrences d’interactions
entre le demandeur et le propriétaire de la ressource, ou en recherchant si le
demandeur est ami avec le propriétaire de la ressource ou 'un des amis du
propriétaire de la ressource.

Si les deux utilisateurs partagent un historique des relations, un graphe
(RH) contenant la liste des interactions sera créé. De plus, toutes les régles
statiques de controle d’acceés correspondant & 'utilisateur (U) et ressources (R)
seront importées a partir de la base de données des politiques et stockés dans
un nouveau graphe (SR).

Ensuite, basé sur le contenu de (RH) et (SR), le systéme va analyser et
décider d’un plan d’action. Si les données de (RH) se trouve étre fortement
contradictoires avec les régles (SR) et si le moteur RM fonctionne en mode sans
surveillance, le systéme peut éventuellement modifier les régles SAC existants.
Par exemple, si le demandeur est réputé avoir changé sa distance de proximité,
soit par une évolution de sa relation envers le propriétaire des ressources, soit
parce que le propriétaire de la ressource a explicitement modifié la distance
de proximité de l'utilisateur, le systéme peut étre en mesure de refléter ce
changement dans le régles SAC.

Une fois que la décision finale est prise, le moteur RM va accorder ou refuser
l'accés a la ressource demandée.

Validation de nos travaux de recherche

Une application Web véritablement décentralisée, basée sur les technologies du
Web sémantique, nécessite plusieurs éléments clés. Elle doit étre en mesure
d’offrir une identité décentralisée pour I'utilisateur, d’offrir une authentification
sécurisée, du stockage de données sémantique, appliquer des opérations Create-
Read-Update-Delete (CRUD) aux ressources, d’offrir plus d’intimité grace au
controle d’accés, et surtout, d’étre interopérable avec d’autres applications en
termes d’échange de données (par exemple, le partage de contenu, la messagerie,
les notifications d’activité, etc).

MyProfile

Le projet de MyProfile est le reflet de tous les efforts que nous avons faits au
cours de cette thése. Il vise & fournir aux utilisateurs la la vie privée qu’ils
méritent pour les données qu’ils produisent et détiennent. Tl dispose d’un
compte d’utilisateur unifiée, qui centralise les données de I'utilisateur et le met
sous le controle de l'utilisateur, et également sur un dispositif appartenant &
I'utilisateur. C’est un changement radical par rapport aux jardins clos du Web

108 APPENDIX - RESUME EN FRANCAIS

d’aujourd’hui, ou les données sont piégées dans des silos.

La plate-forme propose également d’autres services qui ne nécessitent pas
un profil local. N’importe quel utilisateur peut visualiser ses données de profil
d’une maniére conviviale et attrayante. TLors de l’affichage des données de
profil, la plate-forme affiche la liste des utilisateurs de gens connus (i.e. amis),
quelques informations de base pour chaque ami (par exemple nom, prénom,
pseudo, email, blog), ainsi qu'une mention de texte au cas ou la relation est
bidirectionnelle (i.e. "vous a comme ami.»).

Une fois authentifié, des fonctionnalités supplémentaires sont disponibles.
Par exemple, les utilisateurs peuvent envoyer des messages sur un mur public,
qui est un lieu commun pour tous les utilisateurs & écrire a propos de nouvelles,
des événements sociaux, des mises a jour, etc. Les utilisateurs peuvent
également s’abonner a des services locaux afin d’avoir leur propre mur prive,
ce qui est disponible uniquement & leur liste de personnes connues. S’abonner
permet également aux utilisateurs d’envoyer et de recevoir des messages privés,
ainsi que des notifications lorsque d’autres utilisateurs ont posté quelque chose
sur leur mur privé.

Le code source pour MyProfile a été publié sous une licence MIT (moins
restrictive par rapport a d’autres licences open source), et il est accessible au
public sur GitHub sous MyProfile*. Pour des raisons de portabilité et de dé-
ploiement, la plate-forme a été principalement écrit en PHP et JavaScript. Elle
s’appuie sur un systéme de stockage de triplets RDF basé¢ sur Virtuoso®, qui of-
fre des requétes SPARQL pour les profils mis en cache. Une démo fonctionnelle
de MyProfile peut étre consultée a https://my-profile.eu/.

Authentification WebID

Authentification WebID-TLS joue un role crucial dans MyProfile. D’une part,
il permet & tout utilisateur authentifié d’envoyer des messages sur les murs
ou contacter d’autres personnes, peu importe si elles ont un compte local ou
non. D’autre part, les utilisateurs locaux qui ont été authentifiés peuvent aussi
facilement mettre a jour leurs profils, émettre de nouveaux certificats ou de
gérer leurs amis.

Il existe deux approches d’authentification WebID-TLS différentes. 1ls
peuvent soit effectuer la vérification WebID-TLS localement (WebIDauth)
ou utiliser un autre service tiers d’authentification WebID-TLS (WebIDDele-
gatedAuth). Nous avons développé deux bibliothéques, écrites en PHP, qui
couvrent les deux approches. Les bibliothéques ont été publiées sous la licence
MIT, et sont accessibles au public sur GitHub sous WebIDauth®. Dans les
paragraphes qui suivent, nous allons décrire les deux bibliothéques.

4https://github.com/MyProfile/myprofile
Shttp://virtuoso.openlinksw.com/
Shttps://github.com/organizations/ WebIDauth

109

WebIDauth

L’authentification locale peut étre réalisée en s’appuyant sur WebIDauth, une
bibliotheque PHP qui implémente WebID-TLS. Sa particularité réside dans le
fait qu’il permet aux utilisateurs de demander un processus d’authentification
verbeux, ce qui est utile lors du débogage d’un certificat défectueux ou un profil
d’utilisateur.

WebIDauth peut fonctionner dans deux modes. Dans le premier mode,
sa tache consiste & effectuer une authentification WebID-TLS et il suffit de
retourner Vrai ou Faux, selon si I'utilisateur a été authentifié avec succés ou
non. Ce mode est prévu pour étre utilisé comme un procédé d’authentification
pour une application locale, généralement associée & une session d’utilisateur.
Cependant, fonctionnant dans ce mode implique également la configura-
tion du serveur Web pour exécuter via HTTPS, en ajoutant aux dépenses de
I’hébergement de I’application locale la nécessité acheter un certificat de serveur.

Dans le deuxiéme mode de fonctionnement, WebIDauth peut étre utilisé
comme un service tiers qui fournit un point d’accés authentification WebID-
TLS pour les applications Web qui ne peuvent pas effectuer le processus
d’authentification eux-mémes (essentiellement un RP). Dans le deuxiéme mode
de fonctionnement, WebIDauth peut étre utilisé comme un service tiers qui
fournit un point d’accés authentification WebID-TLS pour les applications Web
qui ne peuvent pas effectuer le processus d’authentification eux-mémes (essen-
tiellement un RP). Il ya plusieurs avantages & utiliser un service tiers. Par
exemple, il réduit considérablement la complexité d’avoir & configurer le serveur
Web pour permettre 'authentification WebID-TLS. En outre, le prestataire de
service (application locale) n’a pas a exiger HT'TPS, donc les propriétaires n’ont
pas besoin de payer pour un certificat de serveur.

WebIDDelegated Auth

L’authentification WebID-TLS délégué est le processus de s’appuyer sur un
service tiers pour effectuer 'authentification, puis rediriger 1'utilisateur vers le
fournisseur de services. Ce n’est pas le mode de fonctionnement par défaut
pour MyProfile. La bibliotheque WebIDDelegatedAuth a été crée afin que
les fournisseurs de services puissent offrir une authentification WebID-TLS
dans le cas ou ils ne sont pas capables d’offrir une authentification locale, ou
ils ne fonctionnent pas via HTTPS. Examinons maintenant chaque étape du
processus.

Tout d’abord, l'utilisateur clique sur un bouton de connexion sur le
fournisseur de services (i.e. https://my-profile.eu) et est redirigé vers
le RP (i.e. https://auth.my-profile.eu), déclenchant ainsi le processus
d’authentification. Le fournisseur de service ajoute également une vari-
able & I'URI de redirection, contenant IURI du fournisseur de services:
https://auth.my-profile.eu/?authreqissuer=https: //my-profile.eu.

Ensuite, le RP utilise la bibliothéque WebIDauth pour effectuer une authen-
tification WebID-TLS locale. Si l'utilisateur a été authentifié avec succés, le RP

110 APPENDIX - RESUME EN FRANCAIS

prépare la demande de redirection, en ajoutant des arguments supplémentaires a
I’URI de redirection, comme le webid, ts, referrer et sig, qui ont les significations
suivantes:

e webid - WebID: https://my-profile.eu/people/barry /card#me.
e ts - horodatage: 2013-05-22CEST16%3A54%3A04%2B02%3A00
e referrer - https://auth.my-profile.eu

e sig - signature: hR5cv9gPn.... MxBbSdqT7f.

Espaces de données personnelles basés sur RWW.I/O

Offrant des espaces individuels de données est un aspect important de toute
application sociale décentralisée. TLes utilisateurs doivent étre autorisés a
choisir ou ils veulent héberger leurs données, ainsi que d’avoir un controéle
complet sur les paramétres de confidentialité qui s’appliquent & ces données.
Si possible, les espaces données doivent étre hébergés sur des dispositifs
auxquels l'utilisateur a un accés physique. Cependant, pour des raisons
de performances, les espaces de données peuvent étre situés sur des serveurs
tiers, si les utilisateurs ne sont pas concernés par les questions de confidentialité.

RWW.I/O signifie Read-Write-Web Input/Output et fonctionne sous
I’hypothése que les utilisateurs ont besoin d’un espace de données & caractére
personnel, ou les différentes applications peuvent stocker des données sur et
pour l'utilisateur, et pour lesquels des données sont également disponibles
entre les applications. L’avantage est que les différentes applications peuvent
réutiliser les mémes données, afin d’offrir des fonctionnalités différentes. Par
exemple, une application de gestion de contacts peut extraire des données a
partir du profil de 'utilisateur et de le modifier & la demande de 'utilisateur.
Les modifications sont immédiatement reflétées dans le profil de 'utilisateur la
prochaine fois que quelqu’un accéde au profil.

Etre invité & travailler avec Sir Tim Berners-Lee sur le controle d’accés
pour le Web Sémantique au Massachusetts Institute of Technology, m’a permis
de commencer le développement de RWW.I/O tandis que la mise en oceuvre
de T'ontologie WAC. La plate-forme prend en charge les opérations complétes
Create-Read-Update-Delete (CRUD), suivant le standard REST. Documents
et répertoires peuvent étre créés en effectuant des requétes HTTP tels que
POST, PUT et MKCOL (nouveaux répertoires), suivant les besoins, nous
avons présenté au début de ce document. L’en-téte HTTP Content-Type joue
un role central pour interpréter les demandes et décider de stocker des données
comme des triplets ou sous forme de fichiers binaires. Comme RWW.I/O n’est
pas destiné a étre un service de cloud & part entiére, seule une poignée de types
de contenu sont pris en charge (e.g. text/turtle, text/n3, application /rdf+xml,
application/json, text/html, image/jpg, image/png).

Le code est écrit en PHP, Python et JavaScript, et est accessible au public

sous une licence MIT sur Github & rww.io”.

Thttps://github.com/deiu/rww.io

111

Conclusions

Au début de cette thése, nous avons commencé & identifier quels sont les
éléments clés qui pourraient nous aider & parvenir a une véritable propriété des
données et 'interopérabilité pour le Web social de prochaine génération. Si la
décentralisation est le facteur le plus important de I’équation, notre modéle ne
fonctionne que si une véritable interopérabilité est obtenue. Pour cette raison,
nous avons décidé d’utiliser les technologies du Web sémantique, car elles
offrent une véritable interopérabilité ainsi que d’aider représenter des données
d’une maniére qui ne peut pas préter a confusion ou induire en erreur.

Au cours de cette thése, nous avons contribué & trois thémes de recherche
différents, allant de l’identité décentralisée & authentification et au controle
d’acceés. Pour valider nos contributions dans le monde de la recherche, nous
avons participé au processus de standardisation du WebID et WebID-TLS au
sein du World Wide Web Consortium (W3C), qui nous a permis d’obtenir des
commentaires immédiats de la part des experts du monde entier.

Enfin, nous avons réussi & matérialiser nos résultats de recherche en services
et applications qui sont actuellement utilisés comme références de base pour les
travaux dans ce domaine. Tous nos efforts de mise en ceuvre consistent en des
logiciels open source, disponibles au public sur GitHub avec une licence MIT.

112

APPENDIX - RESUME EN FRANCAIS

Appendix - Examples

<VirtualHost my-profile.eu:443>
ServerName my-profile.eu
ServerAdmin admin@my-profile.eu

DocumentRoot /var/www/myprofile
<Directory />
Options FollowSymLinks
AllowOverride All
</Directory>

<Directory /var/www/myprofile/>
Options -Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
allow from all
</Directory>

Enable/Disable SSL for this wvirtual host.
SSLEngine on

Log

LogLevel info

ErrorLog ${APACHE_LOG_DIR}/error-ssl.log

CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined

SECURITY - only accept TLS
SSLProtocol All -SSLv2

SSLCertificateFile /etc/ssl/certs/my-profile.eu.crt
SSLCertificateKeyFile /etc/ssl/private/my-profile.key
SSLCertificateChainFile /etc/apache2/cert/gandiCA.pem
MSIE 7 and newer should be able to use keepalive

BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown
</VirtualHost>

Example 25: Web server configuration file for MyProfile.

113

114 APPENDIX - EXAMPLES

<VirtualHost auth.my-profile.eu:443>
ServerName auth.my-profile.eu
ServerAdmin admin@my-profile.eu

DocumentRoot /var/www/auth
<Directory />
Options FollowSymLinks
AllowQOverride All
</Directory>
<Directory /var/www/auth/>
Options Indexes FollowSymLinks MultiViews
AllowQOverride All
Order allow,deny
allow from all
</Directory>

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel debug

ErrorLog ${APACHE_LOG_DIR}/error-auth.log
CustomLog ${APACHE_LOG_DIR}/ssl_access-auth.log combined

SSL Engine Switch
SSLEngine on

SECURITY

only accept TLS
SSLProtocol All -SSLv2
SSLInsecureRenegotiation on

SSLCertificateFile /etc/ssl/certs/auth.my-profile.eu.crt
SSLCertificateKeyFile /etc/ssl/private/auth.my-profile.eu.key
SSLCertificateChainFile /etc/ssl/certs/gandi-intermediate.pem

SSLVerifyClient optional_no_ca
SSLVerifyDepth 9
SSLOptions +StdEnvVars +ExportCertData +OptRenegotiate

MSIE 7 and newer should be able to use keepalive

BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown
</VirtualHost>

Example 26: Web server configuration file for the Relying Party.

<?php

115

require_once(’WebIDDelegatedAuth/lib/Authentication.php’);
$auth = new Authentication_Delegated();

if (!$auth->isAuthenticated()) {

echo
echo
echo
echo
} else {
echo

$auth->authnDiagnostic;

’<a href="https://auth.my-profile.eu/auth?authreqissuer=<SP URI>">’;
’Click here to Login’;

;

’Your have succesfully logged in!’;

print_r($auth);

Example 27: Authenticating with WebIDDelegated Auth.

116

APPENDIX - EXAMPLES

Bibliography

[1]

2]
3]

[4]

[5]

[6]

7]

18]

[9]

[10]

[11]

[12]

B Adida, M Birbeck, S McCarron, and I Herman. RDFa Core 1.1: Syntax
and processing rules for embedding RDF through attributes. W3C Rec-
ommendation, June, 2012. http://www.w3.org/TR/2012/REC-rdfa-core-
20120607/ .

Christopher Allen and Tim Dierks. The TLS protocol version 1.0. 1999.

Axel Arnbak and Nico Van Eijk. Certificate Authority Collapse: Regulating
the Weakest Link in the HTTPS Value Chain. Awailable at SSRN 2031409,
2012.

Giuseppe Ateniese and Stefan Mangard. A new approach to DNS security
(DNSSEC). In Proceedings of the 8th ACM conference on Computer and
Communications Security, pages 86—-95. ACM, 2001.

Dave Beckett and Brian McDBride. RDF/XML syntax
specification (revised). W3C recommendation, 10, 2004.
http://www.w3.org/ TR /2004 /REC-rdf-syntax-grammar-20040210//.

David Beckett and Tim Berners-Lee. Turtle-terse RDF triple language.
W3C Team Submission, 14, 2008.

Tim Berners-Lee and Dan Connolly. Hypertext markup language-2.0. Tech-
nical report, RFC 1866, November, 1995.

Tim Berners-Lee, Dan Connolly, and Sandro Hawke. Primer: Getting into
RDF & Semantic Web using N3. World Wide Web Consortium, page 16,
2000.

Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim
Hendler. N3logic: A logical framework for the world wide web. Theory
and Practice of Logic Programming, 8(3):249-269, 2008.

Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Hypertext transfer
protocol-HTTP /1.0, 1996.

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource iden-
tifiers (URI): generic syntax, 1998. http://www.ietf.org/rfc/rfc3986.txt.

Tim Berners-Lee, Mark Fischetti, and TM Dertouzos. Weaving The Web:
The Original Design and Ulitmate Destiny of The World Wide Web By Its
Inventor. Harper Collins Publishers Inc, 1999.

117

118

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

BIBLIOGRAPHY

J.G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards semantically-
interlinked online communities. The Semantic Web: Research and Appli-
cations, pages 500 514, 2005.

D. Brickley and L. Miller. FOAF vocabulary specification. Technical report,
2009. http://xmlns.com /foaf/spec/.

L Jean Camp. Reliable, usable signaling to defeat masquerade attacks.
ISJLP, 3:211, 2007.

Scott Cantor. SAML 2.0 Single Sign-On with Constrained Delegation.
Working Draft, 1(1), 2005.

Jeremy J Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named
graphs, provenance and trust. In Proceedings of the 1jth international
conference on World Wide Web, pages 613-622. ACM, 2005.

Tony Cheneau, Andrei Vlad Sambra, and Maryline Laurent. A Trustful
Authentication and Key Exchange Scheme (TAKES) for ad hoc networks.
In Network and System Security (NSS), 2011 5th International Conference,
pages 249-253. TEEE, 2011.

D Connolly and I Hickson. An entity header for linked re-
sources. Ezpired IETF document draft-connolly-link-header-01., 1999.
http://www.w3.org/Protocols/9707-link-header.html.

Luca Costabello, Serena Villata, Nicolas Delaforge, and Fabien Gandon.
Shi3ld: an access control framework for the mobile web of data. In Pro-
ceedings of the 23rd ACM conference on Hypertext and social media, pages
311-312. ACM, 2012.

Douglas Crockford. The application/json media type for javascript object
notation (json). 2006. http://tools.ietf.org/html/rfcd627.

Ed. D. Hardt. The OAuth 2.0 Authorization Framework. Technical report,
IETF, 2012. http://tools.ietf.org/html/draft-ietf-oauth-v2-31.

David Dahl and Ryan Sleevi. Web Cryptography API. World Wide Web
Consortium, Working Draft WD-WebCryptoAPI-20130108, 2013.

A K. Dey. Understanding and using context. Personal and ubiquitous
computing, 5(1):4-7, 2001.

Tim Dierks. The transport layer security (TLS) protocol version 1.2. Tech-
nical report, 2008. http://tools.ietf.org/html/rfc5246.

E Dumbill. DOAP: Description of a Project. Technical report, 2012.
http://trac.usefulinc.com /doap.

K. Eaton. If You’re Applying for a Job, Censor Your Facebook Page.
Technical report, 2009. http://www.fastcompany.com /1334113 /if-youre-
applying-job-censor-your-facebook-page.

Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and
Tatu Ylonen. SPKI certificate theory. Technical report, IETF RFC 2693,
September, 1999.

BIBLIOGRAPHY 119

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Nicole B Ellison et al. Social network sites: Definition, history, and scholar-
ship. Journal of Computer-Mediated Communication, 13(1):210-230, 2007.

David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed NIST standard for role-based access
control. ACM Transactions on Information and System Security (TIS-
SEC), 4(3):224-274, 2001.

Edward T. Hall. The Hidden Dimension. NewYork: Anchor Books/Dou-
bleday, 1982:117-124, 1966.

Phillip Hallam-Baker. Security Assertions Markup Language. May, 14:1
24, 2001.

Neil Haller. The S/KEY one-time password system. 1995.
http://tools.ietf.org/html /rfc1760.

Neil Haller, Craig Metz, Phil Nesser, and Mike Straw. A one-time password
system. Technical report, RFC 1938, May, 1996.

E Hammer-Lahav, D Recordon, and D Hardt. The OAuth 2.0 authorization
protocol. Network Working Group Internet-Draft, 2011.

P Hoffman and J Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Protocol for Transport Layer Security (TLS). draft-ietf-
dane-protocol-19 (work in progress), 2012.

James Hollenbach, Joe Presbrey, and Tim Berners-Lee. Using RDF meta-
data to enable access control on the social semantic web. In Proceedings of
the Workshop on Collaborative Construction, Management and Linking of
Structured Knowledge (CK2009), volume 514, 2009.

T. Inkster, H. Story, B. Harbulot, and Andrei Vlad Sambra. WebID-TLS
Specification. Technical report, 2013. https://dvcs.w3.org/hg/WebID /raw-
file/tip /spec/tls-respec.html.

Ian Jacobs and Norman Walsh. Architecture of the world wide web. 2004.
http://www.w3.org/ TR /webarch/.

M Snell James, Martin Atkins, David Recordon, Chris Messina, Mon-
ica Keller, Ari Steinberg, and Rob Dolin. Activity Base Schema. Tech-
nical report, 2012. http://activitystrea.ms/specs/json/schema/activity-
schema.html.

James BD Joshi. Access-control language for multidomain environments.
Internet Computing, IEEE, 8(6):40-50, 2004.

Lalana Kagal, Ian Jacobi, and Ankesh Khandelwal. Gasping for AIR, Why
we need Linked Rules and Justifications on the Semantic Web. 2011.

Graham Klyne, Jeremy J Carroll, and Brian McBride. Resource description
framework (RDF): Concepts and abstract syntax. W3C recommendation,
10, 2004.

120

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

52|

[53]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

Werner Koch et al. The GNU privacy guard. Computer software., 2003.
http://www.gnupg.org.

Butler W Lampson. Protection. ACM SIGOPS Operating Systems Review,
8(1):18 24, 1974.

Yabing Liu, Krishna P Gummadi, Balachander Krishnamurthy, and Alan
Mislove. Analyzing Facebook privacy settings: User expectations vs. re-
ality. In Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, pages 61-70. ACM, 2011.

Mary Madden. Privacy management on social media sites. Pew Internet
Report, 2012.

Eve Maler, Conor P Cahill, AOL John Hughes, Atos Origin, Michael Beach,
Boeing Rebekah Metz, Booz Allen Hamilton, Rick Randall, Thomas Wis-
niewski, Entrust Irving Reid, et al. Security and Privacy Considerations for
the OASIS Security Assertion Markup Language (SAML) V2. 0. Language
(SAML), 2:0, 2005.

Mohammad Mannan and Paul C van Oorschot. Privacy-enhanced sharing
of personal content on the web. In Proceedings of the 17th international
conference on World Wide Web, pages 487-496. ACM, 2008.

J Mayer, A Narayanan, and S Stamm. Do not track: A universal third-
party web tracking opt out. IETF Request for Comments, pages 1-12,
2011.

H Nielsen and Daniel LaLiberte. Editing the web: Detecting the lost update
problem using unreserved checkout. World Wide Web Consortium NOTE
NOTE-detect-lost-update, 1999. http://www.w3.org/1999/04/Editing/.

Eric Prud’Hommeaux, Andy Seaborne, et al. SPARQL
query language for RDF. W3C recommendation, 15, 2008.
http://www.w3.org/ TR /2008 / REC-rdf-sparql-query-20080115/.

Xiaolei Qian and Teresa F. Lunt. A MAC policy framework for multilevel
relational databases. Knowledge and Data Engineering, IEEE Transac-
tions, 8(1):3-15, 1996.

D. Recordon and D. Reed. OpenlID 2.0: a platform for user-centric iden-
tity management. In Proceedings of the second ACM workshop on Digital
identity management, pages 11-16. ACM, 2006.

D. Rosenblum. What Anyone Can Know: The Privacy Risks of Social
Networking Sites. Security Privacy, IEEFE, 5(3):40-49, 2007.

N Sakimura et al. OpenID connect standard 1.0, 2011.

Pierangela Samarati and Sabrina de Vimercati. Access control: Policies,
models, and mechanisms. Foundations of Security Analysis and Design,
pages 137 196, 2001.

BIBLIOGRAPHY 121

[58]

[59]

[60]

[61]

[62]

[63]

164

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Andrei Vlad Sambra and Maryline Laurent. Context-Aware Decentralized
Approach for Web Services. In Services (SERVICES), 2012 IEEE FEighth
World Congress, pages 73 79. IEEE, 2012.

Andrei Vlad Sambra, Maryline Laurent, et al. MyProfile-Decentralized
User Profile and Identity on the Web. W38C’s Federated Social Web
(FSW2011), 2011.

Andrei Vlad Sambra, Henry Story, and T. Berners-Lee. WebID Spec-
ification. Technical report, 2013. https://dvcs.w3.org/hg/WebID /raw-
file/tip /spec/identity-respec.html.

Andrei Vlad Sambra, Henry Story, et al. Friending On The Social Web. In
W3C’s Federated Social Web, 2011.

Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Advances in Cryptology—Crypto’89 Proceedings, pages 239-252.
Springer, 1990.

Robert Snelick, Umut Uludag, Alan Mink, Mike Indovina, and Anil Jain.
Large-scale evaluation of multimodal biometric authentication using state-
of-the-art systems. Pattern Analysis and Machine Intelligence, IEEE
Transactions, 27(3):450-455, 2005.

Karsten Sohr, Michael Drouineaud, G-J Ahn, and Martin Gogolla. Analyz-
ing and managing role-based access control policies. Knowledge and Data
Engineering, IEEE Transactions, 20(7):924 939, 2008.

David Solo, Russell Housley, and Warwick Ford. Internet X. 509 pub-
lic key infrastructure certificate and CRL profile. Technical report, 1999.
http://tools.ietf.org/html /rfc2459.

OASIS Standard. eXtensible Access Control Markup Language Core
Specification Version 2.0. Awailable from Web: http://docs. oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-cs-01-en. pdf, 2010.

Speicher Steve, Arwe John, and Malhotra Ashok. Linked Data Platform
1.0. Technical report, 2013. http://www.w3.org/TR/ldp/.

Mozilla Team. Verified Email Protocol. Technical report, 2012.
https://wiki.mozilla.org/Identity /Verified _Email Protocol.

Sebastian Tramp, Henry Story, Andrei Vlad Sambra, Philipp Frischmuth,
Michael Martin, S6ren Auer, et al. Extending the WebID Protocol with
Access Delegation. Proceedings of the Third International Workshop on
Consuming Linked Data (COLD2012), 2012.

Fernanda B Viégas. Bloggers’ expectations of privacy and accountabil-
ity: An initial survey. Journal of Computer-Mediated Communication,
10(3):00-00, 2005.

Serena Villata, Nicolas Delaforge, Fabien Gandon, and Amelie Gyrard.
Social Semantic Web Access Control. In Procs of the 4th International
Workshop Social Data on the Web, SDoW2011, 2011.

122

72

73]

BIBLIOGRAPHY

Thomas YC Woo and Simon S Lam. Designing a distributed authoriza-
tion service. In INFOCOM’98. Seventeenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 419-429. IEEE, 1998.

Di Wu, Xiyuan Chen, Jian Lin, and Miaoliang Zhu. Ontology-based RBAC
specification for interoperation in distributed environment. In The Seman-
tic Web—ASWC 2006, pages 179-190. Springer, 2006.

