
HAL Id: halshs-03726175
https://shs.hal.science/halshs-03726175

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ShellOnYou : Learning by Doing Unix Command Line
Vincent Berry, Arnaud Castelltort, Chrysta Pélissier, Marion Rousseau,

Chouki Tibermacine

To cite this version:
Vincent Berry, Arnaud Castelltort, Chrysta Pélissier, Marion Rousseau, Chouki Tibermacine. Shel-
lOnYou : Learning by Doing Unix Command Line. ITiCSE 2022 - 27th ACM Conference on on
Innovation and Technology in Computer Science Education, Jul 2022, Dublin, Ireland. pp.379-385,
�10.1145/3502718.3524753�. �halshs-03726175�

https://shs.hal.science/halshs-03726175
https://hal.archives-ouvertes.fr

ShellOnYou: Learning by Doing Unix Command Line
Vincent Berry∗

LIRMM - Univ Montpellier, CNRS
Montpellier, France

vincent.berry@umontpellier.fr

Arnaud Castelltort
LIRMM - Univ Montpellier, CNRS

Montpellier, France
Arnaud.Castelltort@umontpellier.fr

Chrysta Pelissier
LHUMAIN - Univ Paul Valéry

Montpellier 3
Montpellier, France

chrysta.pelissier@umontpellier.fr

Marion Rousseau
Fondation Polytech
Nantes, France

marion.rousseau@polytech-
reseau.org

Chouki Tibermacine
LIRMM - Univ Montpellier, CNRS

Montpellier, France
Chouki.Tibermacine@umontpellier.fr

ABSTRACT

We present ShellOnYou, a new Computer Science education tool,
and analyze its use with four successive student cohorts.

Developed to help instructors manage numerous students, this
web application offers auto-graded exercises to acquire practical
knowledge of Unix-like operating systems from the command line.
For each answer, and almost instantly, students receive a score
and detailed feedback. This reactive and iterative process encour-
ages students to resubmit answers and progressively expand their
procedural knowledge. The tool can also deliver individualized
statements, thereby allowing students to improve their skills by
combining personal research and peer learning. As an online tool,
ShellOnYou affords students access flexibility, and also easily fits
in distance learning programs. We found it particularly useful when
teaching students with heterogeneous Unix backgrounds. The tool
is available on request.

We placed four successive student cohorts in a learning situation
involving this tool, and asked them to fill a survey at the end of the
learning period. We combine qualitative and quantitative methods
to analyze their answers to the survey. We attempt to characterize
their acquisition of procedural knowledge and the building of group
dynamics. Several dimensions emerge: the benefits of using the
tool in a learning situation, the learning process iteration as a
catalyst for renewed commitment, the tool’s entertaining format
and its scoring system as a motivation for regular studying, and
the inherent customization of the learning pace.

CCS CONCEPTS

• Software and its engineering→Operating systems;Operat-
ing systems; • Social and professional topics → Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524753

education; Computer science education; Computing educa-

tion; Computer science education; • Applied computing →

Distance learning; Distance learning.

KEYWORDS

learning by doing, practical knowledge, Unix command line inter-
face, autograder, automated feedback, students’ perception.
ACM Reference Format:

Vincent Berry, Arnaud Castelltort, Chrysta Pelissier, Marion Rousseau,
and Chouki Tibermacine. 2022. ShellOnYou: Learning by Doing Unix
Command Line. In Proceedings of the 27th ACM Conference on Innova-
tion and Technology in Computer Science Education Vol 1 (ITiCSE 2022),
July 8–13, 2022, Dublin, Ireland. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3502718.3524753

1 INTRODUCTION

Unix introduction courses aim at providing students with con-
ceptual and practical knowledge to efficiently interact with this
ubiquitous system, and in particular to do it from the command
line interface (CLI) [23]. These courses feature in the first year of
many Computer Science (CS) programs. Due to the predominance
of the Unix system in computing facilities, students in many other
fields (mathematics, physics, natural and social sciences, e.g., see
[17]) may also be interested in Unix introduction courses. As a
result, many universities end up having to tutor large cohorts of
students who need to acquire basic Unix practical knowledge, and
more particularly to learn how to manage Unix from the CLI.

In our case, we prepare students for CS careers within a 3-year
program leading to an engineering degree. We teach an Operating
System (OS) course at the very beginning of the students’ first term
in our curriculum. This course introduces them to the basics of a
Unix system, and specifically the CLI. Indeed, as in other CS curric-
ula, knowing one’s way around Unix is a prerequisite to many other
courses; students with a deficit on this topic might find it difficult to
graduate. Generally, the students who enroll in our curriculum have
various backgrounds: some have never heard of Unix systems; most
have used Unix in strictly minimal ways within a programming
course in a multidisciplinary curriculum; others have used it on a
regular basis in a pure CS undergraduate curriculum. This echoes
the observations of Moy [20] in a similar context. Moreover, upon
starting their first semester, very few students know each other:
indeed, they originate from various geographical locations and

https://orcid.org/0000-0001-7271-4027
https://doi.org/10.1145/3502718.3524753
https://doi.org/10.1145/3502718.3524753
https://doi.org/10.1145/3502718.3524753

qualify for our CS program via a national examination procedure.
For various institutional reasons, we have a relatively small number
of instruction hours to dedicate to this topic. On the other hand,
we manage cohorts of only 40 to 50 students, while other programs
commonly require that introductory OS courses be delivered to
several hundred students simultaneously. In the latter case, one of
the difficulties is to find enough qualified instructors. This becomes
an acute issue in computer literacy courses [13] where survival
skills in Unix are required from all first-year students entering a
program.

To actively promote the acquisition of practical knowledge of
the Unix CLI, we needed to create a dedicated learning situation.
Among others, the hands-on learning approach most often yields
actionable feedback from students and is advocated as an efficient
and engaging approach for students. [19, 21, 25]. Accordingly, we
wanted practical activities to be at the core of the learning situa-
tion we would design. However, this approach tends to generate a
considerable volume of student work to be examined and graded
by instructors (e.g., [14]). Since we were constrained by the number
of class hours (i.e. face time with students), we wanted to design a
tool which would automate the examination process. Though the
Unix CLI can be considered from a programming perspective (shell
scripts), we believe it can only be effectively grasped by using it
interactively within a Unix environment. Following Doane et al. [9],
we wanted to measure the students’ performance in tasks requiring
them to comprehend and produce Unix commands. For this reason,
we ruled out assessment websites or learning management system
(LMS) plugins centered on programming skills. [11, 16]. Addition-
ally, with only a relatively small number of teaching hours being
funded, we could not commit to online paid plans: we thus ruled
out e-recruitment platforms [1–3] and publisher tools [4, 5].

We therefore decided to develop a custom web-based tool; specif-
ically, we wanted it to provide automated feedback to students.
This tool, called ShellOnYou, is free and can be easily installed
as an autonomous web application thanks to Docker technology.
An instance is currently running at https://www.shellonyou.fr. The
exercises proposed in the tool can also be integrated as activities
within an LMS to provide a seamless experience. Due to article
length constraints, below we provide only a survey of the tool’s
functionalities (Section 2). A subsequent paper will present the
tool’s in-depth features and guidelines for setting up exercise ses-
sions.

Applying this tool to a learning situation allowed us to meet a
two-fold objective: i) to increase our students’ skillset i.e., proce-
dural [18] knowledge (hard skills) of the Unix CLI, but also ii) to
foster team dynamics that would benefit the entire cohort in the
subsequent learning phases of the curriculum (in our case, students
share 80% of their courses during the 3-year program). The learning
situation is described below in Section 3.1.

We set up this learning situation for four successive student
cohorts in the Fall term, from 2018 to 2021. We assessed it by asking
students to fill surveys and participate to interviews. Our main
focus question was: “How do this tool and this learning situation
favor the acquisition of practical knowledge in computer science?”.
Section 4 reports our findings when analyzing students’ answers.

2 THE SHELLONYOU TOOL

2.1 Principles of the exercise platform

Instructors propose exercises, composed of a template (i.e., generic)
statement (plain text or html format), a template archive (i.e., a tar-
ball), and two Python scripts; these two artifacts effectively provide
code to randomly individualize student statements, as well as code
to analyze their answers. This template approach allows instructors
to give slightly different versions of the same exercise to differ-
ent students, so as to prevent basic plagiarism. Indeed, within this
framework, students find that an expedient copy/paste approach
is unrewarding, and therefore unproductive. Our goal, however, is
not to impede communication between students; instead, we want
to ensure that student interactions lead to the full comprehension
of instructions and the active sharing of useful tips to solve the ex-
ercises; mainly, we just intend to provide ways to limit the sharing
of complete solutions. In our experiments, we encouraged students
to share their thoughts and work collaboratively; we went to the
extent of booking a lab room for them so they could work in close
teams, and referring them to social network platforms for further
communications. This helped promote knowledge transfer between
peers and the development of group dynamics.

Students access exercises on the ShellOnYou web platform by
enrolling into an exercise session set up by an instructor. Sessions
are available for a specific time period and can be set up to require an
access password. Each session consists in an ordered list of available
exercises: students can select and go through the exercises at their
discretion, or they can be constrained to access an exercise only
after achieving a minimum score on the previous one.

For a typical exercise, students must first download a tar archive
consisting of a small file structure, and explore this files using the
instructions given on the exercise page. The instructions require
students to perform several tasks within the file structure, or to com-
plete the answer file it contains. Students then submit their work
by creating an archive of the modified file structure and upload-
ing it onto the ShellOnYou platform. The platform then provides
them with detailed feedback on the various items mentionned in
the exercise statement, and outputs an overall performance score.
This feedback offers a list of wrong answers and misunderstood
items. Thus, students can learn from their mistakes, return to their
work and submit another, improved answer. This iterative learn-
ing process can continue until the exercise becomes unavailable
(i.e. when the deadline for the exercise or for the session has been
met). Personalized feedback allows students to improve their per-
formance gradually, and to ultimately master the desired skillset.
Obviously, this objective is fully achieved when the exercise level
is aligned with the tutoring experience delivered outside the plat-
form [6]. Based on our observations, receiving a score upon each
attempt and being allowed further attempts combine to generate
an engagement factor for students, who seem to get caught into
a game-like spiral. This factor is positively reinforced when they
exchange scores with classmates in the room or via social networks.

The feedback given to students is obtained by running the code
proposed by the creator of the exercise; this code behaves like a
series of unit tests, such as those commonly used in the software
development industry (as in the Codeboard tool [11]). Generally,
for each specific exercise, instructors know the answer pitfalls they

https://www.shellonyou.fr

have to design against, so their students learn to avoid them. Build-
ing this knowledge into the very code which analyses the answers
allows instructors to provide their expertise to hundreds of stu-
dents simultaneously and ubiquitously, i.e. anytime and anywhere
students find it convenient to access the platform. Indeed, our exper-
iments show that students work from various places and at greatly
varying times, including evenings and nights.

For each session they organize, instructors know which student
submitted their answer and when it was submitted; they can also
access the resulting feedback and scores for each student. More
details on how to use the tool - as a student or as an instructor -
are provided in the help pages.

2.2 Advantages and drawbacks of the

ShellOnYou tool

ShellOnYou offers an iterative learning process in which students
learns at their own pace (auto-regulated learning). When used
in a classroom, it allows students to independently validate their
understanding, thereby decreasing the need for assistance from
the instructor. When used in distance learning, students enjoy the
flexibility of choosing the time, place, and conditions most suited
for studying. Indeed, our experiments showed that students worked
(i.e. accessed the tool) from various places and at greatly varying
times, including evenings and nights.

Similar to certain program assessment environments or plugins,
the tool adopts a hands-on approach. Yet, it allows students to sub-
mit incomplete answers and still obtain feedback, thereby gradually
building upon, and improving, their answers. For each proposal,
students obtain an overall score (a success rate, rather than a grade)
and are granted additional attempts to improve it. This imparts
a game-like quality to their training, as reported by a significant
number of students. Even Advanced students are indirectly driven
to this friendly competition of finish exercises before others do.

Although we believe ShellOnYou has many advantages, it also
suffers from two main limitations. Firstly, students need to be mini-
mally familiar with tarball archives: each exercise comes with an
accompanying tree structure directory of files to manipulate, and
each solution has to be submitted in the form of an archive. We rem-
edy this by proposing a 10-minute lecture session and a 30-minute
tutored lab to less advanced students. The second limitation results
from our ambition to provide students with a actionable feedback.
This requires a careful analysis of the archive they submit in their
an answer. In particular, when expecting answers to be written
in a given text file, care must be taken when analyzing its lines,
as students can incorporate the correct answer in the midst of a
sentence or a paragraph, or with unexpected spelling. Neverthe-
less, the number of cases to consider can be drastically reduced
by giving them a formatted answer file to be completed, along
with precise instructions. This, in turn, allows to greatly reduce the
size of the Python script required to analyze student answers. Yet,
such scripts often comprise between 200 and 300 lines due to the
need to examine several elements: indeed, active exercises usually
contain three to ten questions, each one leading to one or several
tests. Though these scripts contain boilerplate code, generating and
proposing a new exercise (including making it cheat-proof) can
take up to two working days. As long and costly as this initial

investment may seem, thusly automating the process streamlines
the chores of performing manual inspection, producing written
feedback and composing an email for each solution submitted by
students for every year the exercise is accessed. In our case, this
proved a cost-effective approach from the very first year. Moreover,
a Python library was made available to handle repetitive parts, and
instructors could access the scripts of existing exercises to re-use
code and learn from examples.

3 METHODS

3.1 The learning situation

Over the past four years, we set up the same learning situation for
cohorts of 40 to 50 students at the beginning of our OS course. In
the first week of their curriculum, students typically take 4.5 hours
of introductory lectures on Unix systems – including approximately
1 hour on shell commands, combined with 4.5 hours of lab sessions
during which students with little prior Unix knowledge are tutored
in a classroom, while other students work autonomously. Links
to external resources (textbooks, websites, command dictionaries,
etc) are also provided to students during the lectures and collected
on an LMS course page, so that students can refer to them when
looking for complementary information or help on the CLI. On the
last day of that initial week, students are instructed to register and
log into the ShellOnYou tool, and are given a basic exercise to fa-
miliarize themselves with the tool’s environment. In the following
week, ShellOnYou generates a new daily exercise: students have
24 hours to submit their answers - as many as they wish within that
period. Each student submits answers separately ; indeed, student
statements are sometimes individualized, and one of our educa-
tional goals is to ensure that each one of them improves upon, or
re-activates, targeted practical knowledge items. However, we also
explicitly invite them to work in teams: we induce them orally to
do so, book lab rooms so they gather physically and collaborate
outside of class hours, and we also make sure their schedule allows
for shared free time during the study week. Furthermore, we also
encourage students to continue their collaboration via social net-
works. Indeed, the 24-hour period they are given to submit answers
allows them to work at the time of their choice, or to adapt to the
availability of other students. The OS course then continues for the
rest of the term and covers other topics than the CLI, but students
are able to easily build upon the foundational practical knowledge
they have acquired over this initial two-week period.

3.2 Assumptions at the end of the learning

situation

We tried to measure whether the ShellOnYou tool and the learning
situation allowed us to meet our primary objectives (see end of Sec-
tion 1). Our students had already completed a 2-year undergraduate
program. We made four assumptions on our student after their
initial 2-week training period, as detailed in the previous section:

(1) Students expanded their procedural knowledge of the Unix
CLI (hard skills);

(2) Solution-driven group dynamics emerged;
(3) Students perceive their procedural knowledge has expanded
(4) Students can identify factors that facilitate their learning.

Table 1: Profiles of students in the cohorts studied.

Cat. 2018 2019 2020 2021

A 16 10 15 15
B 21 25 23 23
C 1 3 4 1
D 8 4 4 2

Tot. 46 42 46 41
The categories include students, who, depending on their

prior curriculum, (A) were familiar with Unix systems, (B)

had had medium to limited exposure to Unix, (C) had had

limited exposure to Unix, and (D) had no prior Unix knowl-

edge.

3.3 Feedback collection and analysis

methodology

We based our work on the Design-Based Research (DBR) paradigm
[24, 27]. This approach makes it possible to instantiate theoreti-
cal models in the form of digital/computer applications in which
identified users carry out contextualized uses. The results that we
present here reflect the training system as assessed for four cohorts
over successive academic years.

Table 1 shows the background heterogeneity of students enter-
ing the program. Students in the B category followed a supposedly
similar undergraduate curriculum with courses in various scientific
fields, but with a large variance in practice: depending on their uni-
versity, they took one to four CS courses (mainly computer literacy
and programming courses). Finally, some students (D category) had
never studied Unix before.

We followed a classic didactic engineering methodological ap-
proach based on the Theory of Didactic Situations (TSD) [8]. During
the evaluation, we asked the students to fill a survey, which they
accessed via their LMS course page. We clearly stated that this
was an anonymous survey, and that the LMS activity was set up
accordingly. The goal of this survey was to collect our students’
impressions and comments on their experience in the learning
situation organized for their initial 2-week training. The survey
comprises 11 closed questions and 2 open questions. The answer
rates were 52%, 48%, 57% resp. 59% for the 2018 to 2021 years. Lastly,
we performed an analysis of the ShellOnYou database, which
yielded learning analytics for the last two cohorts. Before using the
tool and answering surveys and interviews, the students were in-
formed that the data collected would be used for research purposes;
they gave their consent for this use.

We carried out a quantitative analysis (closed questions), as well
as a qualitative analysis (open questions). Combining the two al-
lowed us to highlight the learning situation components as well
as the strategies implemented (learner behavior). We analyzed the
open questions in two phases. First, we analyzed the statements
made in the students’ answers to the survey thanks to QDA Miner
Lite software (v2.09) [15]. Its text segment encoding system allows
each corpus element to be labeled independently and according

to categories that emerge during the encoding. Categories first ap-
peared individually; they were then grouped; finally; subcategories
were identified and defined.

4 RESULTS

In addition to data from Table 1, a closed question in our survey was
designed to collect information on how students evaluated their
Unix knowledge at the time of answering: ≈ 11% had never heard of
Unix before; ≈ 14% were very nervous about studying this system;
≈ 34% were a bit apprehensive about studying this system; ≈ 33%
were familiar with this system, and ≈ 12% were quite confident
with using it. Though only half of the students submitted their
answers to this question (recall return rates), this data nevertheless
confirms the profile heterogeneity of our students.

4.1 Students expanded their procedural

knowledge

As previously mentioned, ShellOnYou exercises are designed so
they can readily be solved by students: each exercise provides both
initial and feedback clues to its solution. Additionally, instructors’
encouragements to share the learning experience also fosters stu-
dent performance. As a result, almost all the students in our four co-
horts regularly achieved maximum scores. Specifically, the learning
analytics indicate that, on average, 99.4% (2020), resp. 99.8% (2021),
of all the students obtained the maximum score for all the exercises
they solved. Interestingly, these high final success rates contrast
with the fact that, on average, only 14.3% (2020), resp. 20.54% (2021)
of the students obtained a maximum score on their first trial for
each exercise. This seems to indicate that students improved their
procedural knowledge in the process of solving the exercises.

Another indirect hint that they improved their skills is that
64% (in 2018), 70% (2019), 42% (2020), 72% (2021) of them reported
that they had benefited from the help of other students to solve
exercises. These score improvements are therefore partly explained
with student interactions, which confirms that peer-learning took
place, helping both less capable students increase their knowledge,
and more knowledgeable ones consolidate theirs.

Furthermore, the learning analytics show that, on average, 20.93%
(in 2020) to 25.58% (in 2021) of the students went on proposing solu-
tions to exercises for which they had already obtained themaximum
score. Besides evidencing genuine motivation, this seems to indi-
cate that these students spent extra time exploring other ways to
perform the tasks required by exercises, maybe in part as a result
of peer interactions. The Unix playground has the potential for
creating this type of scenario, since shell commands and mecha-
nisms such as redirections and pipes often provide different paths
to reaching a similar goal. This kind of practice can only foster the
acquisition of procedural knowledge of such systems.

Lastly, in 2021, when presented with a set of 10 procedural knowl-
edge, on average, 38.8% of the answering students stated that they
had prior knowledge, and 78.2% that they had acquired it as a result
of the learning situation.

4.2 Emerging Group Dynamics

In our experiments, all students - including those already famil-
iar with Unix - were asked to solve several exercises. One of our

Table 2: Types of assistance interactions between students.

Cat. 2018 2019 2020 2021

Does not apply 39% 30% 62% 24%
Question explanation 11% 15% 4% 8%

Error explanation 18% 15% 12% 48%
Answer explanation 29% 30% 23% 4%

What to type as an answer 4% 10% 0% 12%
Answers to the survey question:When another student
helped you, what sort of interaction assistance did you usu-
ally get? The “Does not apply” option stands for students in-

dicating they usually solved exercises without help.

goals was to generate student interactions, and, more specifically,
support dynamics between our resource students and the less ca-
pable students in our cohorts. We therefore designed the exercise
statements and the feedback so they would provide unusual flags
or additional commands for students to further explore the ques-
tions or even arrive at answers in creative and convoluted (i.e.
mysterious) ways. This built-in trick effectively helped us keep the
resource students in the lab rooms with the less capable students,
who struggled with their own attempts at solving the exercises.
This indirect commitment obligation promoted mutual support in-
teractions: experienced students reported staying in the room after
having solved their own exercises to help other students with theirs.
More than 50% of the students received help from other students.
Table 2 shows the various types of assistance received. The data
indicates that student support interactions most often involved
explanations. This constitutes traces of group dynamics emerging
from the learning situation where very few students initially knew
each other. In video interviews (data not shown), 2021 students re-
ported that most students started working on their own, but sought
help through various communication channels when faced with
unresolved challenges. These group dynamics are critical : indeed,
Booth states that “The experience of learning in a group and the stage
of maturity as a knower appear to be closely related” [7].

4.3 Students’ self-evaluation of their progress

The results reported here were obtained by analyzing the students’
answers to the two open questions of the anonymous survey: “What
are the positive aspects” (resp. “negative aspects”) “of this 2-week
learning situation experience?”. Overall, 224 student items were iden-
tified and categorized with QDA Miner Lite software. A student
item is defined by any word or group of words students used to an-
swer the above questions. Table 3 shows the distribution of student
items across three categories. The last two rows directly relate to
assumptions (3) and (4).

Student items included in the General aspects of Table 3 indicate,
for instance, that students liked the learning situation, finding it e.g.,
“globally positive” (5/25 items), “fully playing its role” (3/25) and that
“positive aspects outweigh negative ones” (2/25). Negative comments
indicate, e.g., that the exercise week required a consistent study
effort, unlike the following labs of the OS course (2/25).

Table 3: Learning situation aspects raised by students items.

Type # Student items

General aspects 25 (11.16%)
Knowledge acquisition 79 (35.26%)

Facilitating factors 120 (53.57%)
Answers to the survey question:What are the positive and
negative aspects of this 2-week learning situation experience?

Further analyzing the items falling in the Knowledge acquisition
category of Table 3, we found that the perception the students
formed of the learning situation could be detailed more precisely
(Table 4). For instance, students identified the following strategic
individual benefits: “review the basics” (7/30 items), “remember com-
mands” (6/30), “get back on track” (5/30), “learn and get familiar
with Unix commands” (7/30), “train” (1/30), or “assess oneself ” (1/30).
The first three of these items stem from the knowledge reinforce-
ment concept; thus, they mostly originated from students with
prior knowledge of the Unix CLI. Though this represents only 18
out of the 224 items reported by the students, they identify knowl-
edge reinforcement over other individual strategic benefits in their
reflection on the learning process. Indeed, reflective thinking con-
stitutes a critical learning factor: “reflection is linked to elements that
are fundamental to meaningful learning and cognitive development”
[22].

As for strategic collective benefits (5 items), students listed “catch-
ing up”, or “leveling” (4/5) and “teaching the basics to all students”
(1/5). Clearly, several students were aware of their cohort’s hetero-
geneity; some even perceived the usefulness of building a learning
community. Unfortunately, our survey questions did not collect the
data which would have allowed us to further analyze this aspect.

The Confidence entries in Table 4 show that the learning situation
reassured students on four levels: self-confidence (“I could gain
self-confidence ”, “I feel more independent/autonomous”);“skills” or
procedural knowledge acquired; acquired conceptual knowledge
(“Now I know basic Unix commands” / “new commands”, “I know how
to use Unix now”); usefulness of this practical knowledge.

Students also identified the Assessment method as a knowledge
acquisition factor, pointing to the playful aspects of the tool (4/10
items), i.e., getting hints in the feedback, being able to improve their
scores (“it is challenging”, “I learned without having the impression to
work at it, which is the most important”). The fact that we used scores
(from 0 to 100%) as in games rather than grades also seemed to
motivate them (3/10); they also liked being given several attempts
at solving exercises to improve their performance. This highly
correlates with the learning analytics showing than 85% (2020),
resp. 79% (2021), of them improved upon their first-attempt scores.

Some students stressed the efficiency of the learning pace (3/9
items) (“allows to quickly learn basic commands” with a “a rather
efficient learning pace for me as beginner”). They highlighted the
scheduling freedom afforded by the tool (3/9) (“we can work when
we want”). The duration (one week) of the exercise part seemed
adequate to some students (3/9) (“Doing exercises over one week to
hone our skills is a very good thing”).

Table 4: Knowledge acquisition perceived by students.

Category # Student items Inner distrib.

Strategic benefit 35 (44.30%)

individual 85.71%
collective 14.28%

Confidence 25 (31.65%)

self-confidence 32%
owning skills (“I can”) 32%

owning knowledge (“I know”) 28%
learning usefulness 8%

Assessment method 10 (12.66%)

playful aspects 70%
scores 30%

Learning pace 9 (11.39%)

efficiency 33.33%
time freedom 33.33%

1-week exercise period 33.33%
Knowledge acquisition perception from student answers to

the survey. For each category, the number (and percentage

over 79) of student items is indicated, together with the rel-

ative percentage of each related subcategory.

4.4 Facilitating factors identified by students

We identified 14 factors in the student items relating to assump-
tion (4): the identification by students of factors influencing their
learning. We grouped these factors into four categories (Table 5).
A significantly recurring factor (18/79) is the difficulty level of the
exercises: the students reported that they were too easily solved. On
the other hand, the students praised their progression (11/79), high-
lighting oncemore the heterogeneity of our cohorts; but it also hints
that our exercises were more aimed at novices than knowledgeable
students. Indeed, at this point in the OS course, our main goal was to
ensure that all students would acquire minimal procedural knowl-
edge. Concerning the assessment modalities, students praised being
given several attempts to solve exercises and receiving feedback on
the solutions they submitted (9/79). They appreciated the assistance
received from both student support interactions (11/19) and clues
provided in the exercise statements and feedback (8/19). Finally,
with regard to technical aspects, students hesitated when selecting
devices to connect to the tool (3/14), or, in contrast, found it easy
to access (4/14).

5 CONCLUSION

We introduced a new web-based exercise tool to promote the acqui-
sition of practical knowledge of the Unix system; we presented an
in-depth analysis of the tool’s use in a learning situation with four
student cohorts. The tool offers a short list of auto-grading exer-
cises, each centered on specific procedural skills. After submitting
their work, students get detailed feedback on their answers, includ-
ing explanations of some of their errors, clues to improve their
performance, and a score. Instructors can set up sessions for their

Table 5: Facilitating factors identified by students.

Category # Student items Inner dist.

Exercise components 79 (65.83%)

difficulty level 22.78%
exercise type 22.78%

exercise timing 20.25%
assessment modality 18.99%

statement formulation 15.19%
Assistance 19 (15.84%)

support interactions 57.89%
hints contribution 42.11%

Technical aspects 14 (11.66%)

tool usefulness 28.59%
access device 21.42%
availability 21.42%

remote access 21.42%
special characters 7.15%

Availability of lab rooms 8 (6.66%)

Categories of facilitating factors reported by students. For

each category, the number (and percentage over 120) of stu-

dent items is indicated, togetherwith the relative percentage

of each related subcategory.

students on our tool’s deployed instance, and propose new exer-
cises there. However, this instance has limited computing resources
and should be used mainly for testing the tool’s functionalities;
institutions are encouraged to deploy their own instance – the
tool is distributed freely. Moreover, the tool can be integrated with
a Learning Management System to create seamless activities for
students.

The analysis of our learning situation shows that the tool actu-
ally allows students to improve their procedural knowledge. Our
results also showed that the two-week learning situation and the
tool combined to promote the emergence of educationally-rich
group dynamics. Moreover, the learning situation and the survey
that we invited students to fill helped them develop metacognitive
capabilities [10, 26], i.e., their ability to reflect upon their thinking
process and to self-evaluate [22].

As a whole, these analyses lead us to consider this learning
situation as an enabling environment, i.e., a technical and social
environment providing students with the opportunity to develop
new procedural knowledge and skills, to increase their action pos-
sibilities and degree of control over their tasks, and to widen their
operating methods, i.e. their autonomy [12].

ACKNOWLEDGMENTS

This work was funded by Fondation Polytech, the Polytech Network
through the IDEFI AVOSTTI ANR project and the Opening project
(call Hybridation des formations d’enseignement supérieur of the
French Ministry of Higher Education, Research and Innovation). It
was also supported by the CNUMF of Université Montpellier and by
the Polytech IT Department. In particular, we thank Luca Cimini.

REFERENCES

[1] [n. d.]. https://www.codingame.com/. Online; accessed September 2018.
[2] [n. d.]. https://tech.io/. Online; accessed September 2019.
[3] [n. d.]. https://www.hackerrank.com/. Online; accessed November 2021.
[4] [n. d.]. https://www.pluralsight.com/codeschool. Online; accessed November

2021.
[5] [n. d.]. https://www.katacoda.com/. Online; accessed January 2021.
[6] John Biggs. 1996. Enhancing Teaching Through Constructive Alignment. Higher

Education 32 (10 1996), 347–364. https://doi.org/10.1007/BF00138871
[7] Shirley Booth. 2001. Learning Computer Science and Engineering in Context.

Computer Science Education 11, 3 (Sept. 2001), 169–188. https://doi.org/10.1076/
csed.11.3.169.3832

[8] Guy Brousseau. 1988. Théorie des situations didactiques. La Pensée Sauvage,
Grenoble.

[9] Stephanie M. Doane, James W. Pellegrino, and Roberta L. Klatzky. 1990. Ex-
pertise in a Computer Operating System: Conceptualization and Performance.
Human–Computer Interaction 5, 2-3 (June 1990), 267–304. https://doi.org/10.
1080/07370024.1990.9667156

[10] Anastasia Efklides. 2001. Metacognitive Experiences in Problem Solving.
Springer Netherlands, Dordrecht, 297–323. https://doi.org/10.1007/0-306-47676-
2_16

[11] Christian Estler and Martin Nordio. [n. d.]. https://codeboard.io/. Online;
accessed January 2018.

[12] Pierre Falzon. 2005. Ergonomics, knowledge development and the design of en-
abling environments. In HWWE 2005 : humanizing work and work environment
: proceedings of the International Ergonomics Conference. New Delhi : Allied
Publishers, Guwahati, India, 1–8.

[13] Ricardo Hoar. 2014. Generally Educated In The 21st Century: The Importance
Of Computer Literacy In An Undergraduate Curriculum. In Proceedings of
the Western Canadian Conference on Computing Education (WCCCE ’14). As-
sociation for Computing Machinery, New York, NY, USA, Article 6, 5 pages.
https://doi.org/10.1145/2597959.2597964

[14] Tyson Kendon and Ben Stephenson. 2016. Unix Literacy for First-Year Computer
Science Students. In Proceedings of the 21st Western Canadian Conference on
Computing Education (WCCCE ’16). Association for ComputingMachinery, New
York, NY, USA, Article 14, 4 pages. https://doi.org/10.1145/2910925.2910930

[15] R. Barry Lewis and Steven M. Maas. 2007. QDA Miner 2.0: Mixed-Model
Qualitative Data Analysis Software. Field Methods 19, 1 (Feb. 2007), 87–108.
https://doi.org/10.1177/1525822x06296589

[16] Richard Lobb and Jenny Harlow. 2016. Coderunner. ACM Inroads 7 (02 2016),
47–51. https://doi.org/10.1145/2810041

[17] Serghei Mangul, Lana S. Martin, Alexander Hoffmann, Matteo Pellegrini, and
Eleazar Eskin. 2017. Addressing the Digital Divide in Contemporary Biology:
Lessons from Teaching UNIX. Trends Biotechnol 35, 10 (10 2017), 901–903.

[18] Robert McCormick. 1997. Conceptual and Procedural Knowledge. International
Journal of Technology and Design Education 7, 1-2 (Jan. 1997), 141–159. https:
//doi.org/10.1023/a:1008819912213

[19] Gaëlle Molinari, Bruno Poellhuber, Jean Heutte, Elise Lavoué, Denise Sutter Wid-
mer, and Pierre-André Caron. 2016. L’engagement et la persistance dans les
dispositifs de formation en ligne : regards croisés. Distances et médiations des
savoirs (online) 13 (2016), Online. https://doi.org/10.4000/dms.1332

[20] MatthieuMoy. 2011. Efficient and Playful Tools to Teach Unix to New Students. In
Proceedings of the 16th Annual Joint Conference on Innovation and Technology
in Computer Science Education (ITiCSE '11). Association for ComputingMachin-
ery, New York, NY, USA, 93–97. https://doi.org/10.1145/1999747.1999776

[21] Bruno Poellhuber, Normand Roy, and Ibtihel Bouchoucha. 2019. Understanding
Participant’s Behaviour in Massively Open Online Courses. The International
Review of Research in Open and Distributed Learning 20, 1 (Feb. 2019), 221–242.
https://doi.org/10.19173/irrodl.v20i1.3709

[22] Carol Rolheiser, Barbara Bower, and Laurie Stevahn. 2000. The portfolio
organizer: Succeeding with portfolios in your classroom. ASCD, Alexandria,
Virginia USA.

[23] Marek Suppa, Ondrej Jariabka, Adrián Matejov, and Marek Nagy. 2021. TermAd-
venture: Interactively Teaching UNIX Command Line, Text Adventure Style. In
ITiCSE 2021: 26th ACMConference on Innovation and Technology in Computer
Science Education, Virtual Event, Germany, June 26 - July 1, 2021, C. Schulte, B.A.
Becker, M. Divitini, and E. Barendsen (Eds.). ACM, Virtual event, Germany, 108–
114. https://doi.org/10.1145/3430665.3456387

[24] The Design-Based Research Collective. 2003. Design-Based Research: An Emerg-
ing Paradigm for Educational Inquiry. Educational Researcher 32, 1 (Jan. 2003),
5–8. https://doi.org/10.3102/0013189x032001005

[25] Kristina von Hausswolff. 2017. Hands-on in Computer Programming Educa-
tion. In Proceedings of the 2017 ACM Conference on International Computing
Education Research (ICER ’17). Association for ComputingMachinery, New York,
NY, USA, 279–280. https://doi.org/10.1145/3105726.3105735

[26] Lev S. Vygotsky. 1978. Mind and society: The Development of Higher Mental
Processes. Harvard University Press, Cambridge, MA. http://www.learning-
theories.com/vygotskys-social-learning-theory.html

[27] Feng Wang and Michael J. Hannafin. 2005. Design-based research and
technology-enhanced learning environments. Educational Technology Research
and Development 53, 4 (Dec. 2005), 5–23. https://doi.org/10.1007/bf02504682

https://www.codingame.com/
https://tech.io/
https://www.hackerrank.com/
https://www.pluralsight.com/codeschool
https://www.katacoda.com/
https://doi.org/10.1007/BF00138871
https://doi.org/10.1076/csed.11.3.169.3832
https://doi.org/10.1076/csed.11.3.169.3832
https://doi.org/10.1080/07370024.1990.9667156
https://doi.org/10.1080/07370024.1990.9667156
https://doi.org/10.1007/0-306-47676-2_16
https://doi.org/10.1007/0-306-47676-2_16
https://codeboard.io/
https://doi.org/10.1145/2597959.2597964
https://doi.org/10.1145/2910925.2910930
https://doi.org/10.1177/1525822x06296589
https://doi.org/10.1145/2810041
https://doi.org/10.1023/a:1008819912213
https://doi.org/10.1023/a:1008819912213
https://doi.org/10.4000/dms.1332
https://doi.org/10.1145/1999747.1999776
https://doi.org/10.19173/irrodl.v20i1.3709
https://doi.org/10.1145/3430665.3456387
https://doi.org/10.3102/0013189x032001005
https://doi.org/10.1145/3105726.3105735
http://www.learning-theories.com/vygotskys-social-learning-theory.html
http://www.learning-theories.com/vygotskys-social-learning-theory.html
https://doi.org/10.1007/bf02504682

	Abstract
	1 Introduction
	2 The ShellOnYou tool
	2.1 Principles of the exercise platform
	2.2 Advantages and drawbacks of the ShellOnYou tool

	3 Methods
	3.1 The learning situation
	3.2 Assumptions at the end of the learning situation
	3.3 Feedback collection and analysis methodology

	4 Results
	4.1 Students expanded their procedural knowledge
	4.2 Emerging Group Dynamics
	4.3 Students' self-evaluation of their progress
	4.4 Facilitating factors identified by students

	5 Conclusion
	Acknowledgments
	References

