
HAL Id: halshs-03672222
https://shs.hal.science/halshs-03672222

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Splitting games over finite sets
Frédéric Koessler, Marie Laclau, Jérôme Renault, Tristan Tomala

To cite this version:
Frédéric Koessler, Marie Laclau, Jérôme Renault, Tristan Tomala. Splitting games over finite sets.
Mathematical Programming, In press, �10.1007/s10107-022-01806-7�. �halshs-03672222�

https://shs.hal.science/halshs-03672222
https://hal.archives-ouvertes.fr


 

 

 

1321 

 
 

 

“Splitting games over finite sets” 
 

Frédéric Koessler, Marie Laclau, Jérôme Renault and Tristan Tomala 

 
 

March 2022 
 



Splitting games over finite sets ∗

Frédéric Koessler† Marie Laclau‡ Jérôme Renault§ Tristan Tomala¶
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Abstract

This paper studies zero-sum splitting games with finite sets of states. Players dynamically choose
a pair of martingales {pt, qt}t, in order to control a terminal payoff u(p∞, q∞). A first part introduces
the notion of “Mertens-Zamir transform” of a real-valued matrix and use it to approximate the
solution of the Mertens-Zamir system for continuous functions on the square [0, 1]2. A second part
considers the general case of finite splitting games with arbitrary correspondences containing the
Dirac mass on the current state: building on Laraki and Renault (2020), we show that the value
exists by constructing non Markovian ε-optimal strategies and we characterize it as the unique
concave-convex function satisfying two new conditions.
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1 Introduction

This paper deals with the Mertens-Zamir system of functional equations described as follows. For K,L

two non-empty finite sets, ∆(K) and ∆(L) denote the simplices of probability distributions over K and

L, respectively viewed as subsets of the Euclidean spaces R
K and R

L. Given a continuous function

u : ∆(K)×∆(L) → R, the Mertens-Zamir system of functional equations is given by:

v(p, q) = cavp min{u(p, q), v(p, q)} = vexq max{u(p, q), v(p, q)},

where cavp (resp. vexq) denotes concavification, i.e., least concave majorant on ∆(K), with respect to

the first variable (resp. convexification with respect to the second variable). This system is introduced

by Mertens and Zamir (1971, 1977) who prove existence and uniqueness of a continuous solution v =

MZ(u), called the Mertens-Zamir transform of u. Mertens and Zamir (1971) study zero-sum repeated

games with incomplete information whose payoffs depend on a pair of parameters (k, l), where k is

known by Player 1 and l by Player 2. The key difficulty in analyzing these games is to capture how

each player optimally controls the martingale of Bayesian beliefs, or posteriors, of the opponent. Mertens

and Zamir (1971) prove that the limit of the value function, as the length of the game tends to infinity,

is the unique solution of this system where u is the value of the non revealing game (see also Mertens

and Zamir, 1977, Sorin, 1984, Sorin, 2002 and Mertens, Sorin, and Zamir, 2015).

An equivalent characterization (Heuer, 1992; Laraki, 2001b; Rosenberg and Sorin, 2001) uses the

notion of splitting. A splitting of p ∈ ∆(K) is a Borel probability distribution s over ∆(K) with mean

p, i.e. such that
∫
p̃∈∆(K) p̃ ds(p̃) = p. The MZ transform v = MZ(u) is the unique continuous map

v : ∆(K) ×∆(L) → R which is concave in the first variable, convex in the second variable, and such

that for all (p, q) in ∆(K) × ∆(L), the two following conditions hold:1 (C1) if v(p, q) > u(p, q) there

exists a splitting s of p such that v(p, q) = v(s, q) = u(s, q), and (C2) if v(p, q) < u(p, q) there exists a

splitting r of q such that v(p, q) = v(p, r) = u(p, r). Still, computing v = MZ(u) in general is a very

difficult problem.

The study has been continued in Sorin (2002) and Laraki (2001a,b) who introduced in this setup

the notion of splitting game, a discrete time zero-sum stochastic game with state variable (p, q) in

∆(K) ×∆(L), which unfolds as follows. An initial state (p1, q1) is given. At every stage t ≥ 1, Player

1 chooses a splitting s of pt and Player 2 chooses a splitting r of qt, choices are simutaneous. The next

state (pt+1, qt+1) is then drawn from the product probability s⊗ r, and observed by both players before

playing stage t+1. Given a strategy profile, the state variables (pt, qt) form a martingale with values in

∆(K)×∆(L) which converges almost surely to random variables (p∞, q∞). There are several ways to

evaluate payoffs in the splitting game. A standard one is to consider, for each discount rate λ ∈ (0, 1],

the value vλ(p1, q1) of the game in which the payoff is the expectation of
∑∞

t=1 λ(1 − λ)t−1u(pt, qt).

Mertens and Zamir’s results imply that (vλ) uniformly converges to MZ(u) as λ goes to 0. Another

standard notion is the uniform value, which whenever it exists, is the real number v such that for each

ε > 0, each player guarantees v up to ε, in all games with sufficiently large number of stages, payoffs

1Any bounded measurable map v : ∆(K) ×∆(L) → R is linearly extended to Borel probabilities on ∆(K) and ∆(L)
by v(s, r) = Es⊗r(v).
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being evaluated by the arithmetic average of stage payoffs. MZ(u) is also the uniform value of the

undiscounted splitting game with stage payoffs u(pt, qt) (Oliu-Barton, 2017).

The recent literature on information design and Bayesian persuasion (Kamenica and Gentzkow, 2011;

Bergemann and Morris, 2019; Koessler, Laclau, and Tomala, 2021b) has given new interpretation and

applications to splitting games: choosing a splitting amounts to choosing an information structure, and

information design considers optimization problems or games over information structures. In Koessler,

Laclau, Renault, and Tomala (2021a), we consider a zero-sum splitting game between two information

designers who provide information to a decision maker, and where u(p, q) represents the expected payoff

induced by the action chosen by the decision maker who has belief (p, q). MZ(u) is also the value of the

splitting game with terminal payoff (long information design game) where the payoff of the splitting

game is simply the expectation of u(p∞, q∞).

Laraki and Renault (2020) generalize the model of splitting games to gambling games where a player

can choose the distribution of the next state from a set of feasible distributions. They show that, under

some assumptions including a notion of strong acyclicity of the trajectories, these games also admit a

value which is a generalized MZ transform of u for gambling games. The approach limλ→0 vλ = MZ(u)

is particularly useful to prove the existence of MZ(u) (by considering a uniform limit point of (vλ)).

This approach has been followed in Laraki and Renault (2020) and Koessler et al. (2021a) to prove the

existence of the MZ transform for general classes of games (strongly acyclic gambling games, informa-

tion design games with experiments).

In this paper, we consider splitting games with terminal payoffs2 and finite sets of states/admissible

posteriors. In Section 2, we consider a simple finite case and define a notion of MZ transform for a real

valued matrix. We show that MZ(U) is the value of a splitting game with payoffs given by a matrix

U and derive several properties. We also show how to compute the Mertens-Zamir transform and in

Section 3, we construct an algorithm approximating v = MZ(u) for a continuous u : [0, 1]2 → R (the

unidimensional case for ∆(K) and ∆(L)). In Theorem 1, we discretize u to obtain a matrix U and

prove that the piecewise biaffine extension of the matrix V = MZ(U) is a uniform approximation of

MZ(u). We also show that in both setups, the Mertens-Zamir transform may differ from the value of the

one-shot splitting game, where there is a single stage and the payoff is the expectation of u(p1, q1), as

defined in Laraki (2001a). In section 4, we introduce a general model of splitting games over finite sets,

where the splittings available at a given p always allow to stay at p but may be arbitrarily constrained

otherwise. Contrary to the existing litterature (Laraki and Renault, 2020; Koessler et al., 2021a), we

make no further assumption such as acyclicity or closedness under iteration. In Theorem 2, we prove

the existence of the value via the construction of non Markovian ε-optimal pure strategies and provide

a new characterization of the value with conditions replacing (C1) and (C2) above. We conclude with

a few open questions.

2In the games we consider, the terminal payoff E(u(p∞, q∞)) is well defined, and all other notions of long-term value
(such as limit value, uniform value,. . . ) coincide.
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2 The MZ transform of a matrix

Given non-negative integers m, n, the set of real-valued matrices with set of rows I = {0, . . . ,m} and

set of columns J = {0, . . . , n} is R
I×J . We use the product order on R

I×J : we say that U is weakly

greater than U ′ and write U � U ′ if ui,j ≥ u′i,j for all i and j. We first introduce particular notions of

concavity and convexity.

Definition 1. Let U = (ui,j) be a matrix in R
I×J .

U is column-concave if: ∀j ∈ J,∀i ∈ {1, . . . ,m− 1}, ui,j ≥ 1
2(ui−1,j + ui+1,j).

U is row-convex if: ∀i ∈ I,∀j ∈ {1, . . . , n − 1}, ui,j ≤ 1
2(ui,j−1 + ui,j+1).

To illustrate this definition, consider for each column j the map (i �→ ui,j) from I ⊂ R to R. Then

U is column-concave if for each j in J , the piecewise linear interpolation of (i �→ ui,j) is a concave map

from [0,m] to R. Similarly, U is row-convex if for each row i in I, the piecewise linear interpolation of

(j �→ ui,j) is a convex map on [0, n].

Definition 2. Let U = (ui,j) be a matrix in R
I×J . The column-concave envelope of U , denoted cavU ,

is the smallest column-concave matrix which is weakly greater than U . The row-convex envelope of U ,

denoted vex(U), is the greatest row-convex matrix which is weakly smaller than U .

We always have cav(U) � U � vex(U). To compute cav(U), one can proceed independently for

each column j: replace for each i in {1, . . . ,m − 1} the entry ui,j by max{ui,j, 12ui−1,j +
1
2ui+1,j}, and

iterate until it stabilizes. To compute vex(U), one can proceed independently for each row i: replace

for each j in {1, . . . , n− 1} the entry ui,j by min{ui,j , 12ui−1,j +
1
2ui+1,j}, and iterate until it stabilizes.

One can show that cav(vexU) and vex(cavU) are both column-concave and row-convex.

We now define the Mertens-Zamir transform of a matrix.

Proposition 1. Given a matrix U in R
I×J , there exists a unique matrix V in R

I×J that is column-

concave, row-convex and such that for all (i, j) ∈ I × J :

if vi,j > ui,j, then 1 < i < n and vi,j =
1
2(vi−1,j + vi+1,j),

and if vi,j < ui,j , then 1 < j < p and vi,j =
1
2(vi,j−1 + vi,j+1).

By analogy with the continuous case, we say that V is the Mertens-Zamir transform of U , and write

V = MZ(U).

It is easy to see that if n = 0 thenMZ(U) = cavU , and ifm = 0 thenMZ(U) = vexU . And one can

check that MZ(




0 1 0

1 0 1

0 1 0


) =




0 0 0

1 0 1

0 0 0


 and MZ(




6 4 2 1

4 2 4 3

1 4 2 5

0 3 4 7



) =




6 4 2 1

4 51
15

48
15 3

2 42
15

54
15 5

0 2 4 7



.

This proposition is generalized in Theorem 2. The following proof of Proposition 1 is derived from

Laraki and Renault (2020).

Proof. 1) Existence can be derived from Propositions 1, 2, 3 in Laraki and Renault (2020), consid-

ering the splitting game where at each i in I, Player 1 can choose any mixed action between staying
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at i or inducing the distribution 1
2δi−1 +

1
2δi+1 if 0 < i < n, and similarly at each j in J , Player 2 can

choose any mixed action between staying at j or inducing the distribution 1
2δj−1 +

1
2δj+1 if 0 < j < p

(where δx denotes the Dirac measure on x). For each discount rate λ ∈ (0, 1], we consider the value vλ

in R
I×J of the discounted splitting game induced by the matrix U . Since the assumptions of acyclicity

from Laraki and Renault (2020) are satisfied, Propositions 1, 2, 3 in Laraki and Renault (2020) show

that a limit point of (vλ)λ, as λ goes to 0, satisfies the conditions of Proposition 1 for V .

2) Now we prove uniqueness. Assume that two matrices V and W satisfy the conditions of Propo-

sition 1. Define α = max(i,j)∈I×J{vi,j − wi,j} and Z = argmax(i,j)∈I×J{vi,j − wi,j}. Let (i0, j0) be an

element of Z minimizing the sum of coordinates i+ j.

Suppose that vi0,j0 > ui0,j0 . Then, vi0,j0 = 1
2(vi0−1,j0 + vi0+1,j0), and since w is column-concave,

wi0,j0 ≥ 1
2(wi0−1,j0 + wi0+1,j0). We obtain α = vi0,j0 − wi0,j0 ≤ 1

2 ((vi0−1,j0 − wi0−1,j0) + (vi0+1,j0 −
wi0+1,j0)) ≤ 1

2((vi0−1,j0 − wi0−1,j0) + α). Hence, (i0 − 1, j0) ∈ Z, which contradicts the minimality of

(i0, j0). Thus, vi0,j0 ≤ ui0,j0 .

Suppose now that wi0,j0 < ui0,j0 . Then, wi0,j0 = 1
2(wi0,j0−1 + wi0,j0+1) and since v is row-convex,

vi0,j0 ≤ 1
2(vi0,j0−1+vi0,j0+1). We obtain α = vi0,j0−wi0,j0 ≤ 1

2((vi0,j0−1−wi0,j0−1)+(vi0,j0+1−wi0,j0+1)),

so (i0, j0 − 1) ∈ Z which contradicts the minimality of (i0, j0). Therefore, wi0,j0 ≥ ui0,j0 . We deduce

that α = vi0,j0 − wi0,j0 ≤ ui0,j0 − ui0,j0 = 0. Thus v ≤ w and by symmetry v = w.

Consider now the splitting game Γ(U) with terminal payoffs, defined as follows. Player 1 controls

states in I and Player 2 controls states in J . We start at a given initial position (i1, j1) in I×J . In each

period t ≥ 1, if Player 1’s state is it he can either stay at it or, if 0 < it < m, choose the distribution
1
2δit−1 +

1
2δit+1. If it = 0 or n, this is an absorbing state and Player 1 stays at it forever. Similarly, if

Player 2’s state is jt, he can either stay at jt or (if 0 < jt < n) choose the distribution 1
2δjt−1 +

1
2δjt+1.

States in I × J are perfectly observed by players and choices are simultaneous at every stage. Given

any pair of pure strategies, by the martingale property, the sequence of states (it, jt)t almost surely

converges to a random variable (i∞, j∞) and the payoff for Player 1 is defined as the expectation of

u(i∞, j∞). As in Koessler et al. (2021a), the value of Γ(U) is V .

Lemma 1. The game Γ(U) with initial state (i1, j1) has a value given by vi1,j1, where V = (vi,j) =

MZ(U). Players have pure optimal stationary strategies.

Proof. Consider the following strategy σ of Player 1: if the current state is (i, j), stay at i if ui,j ≥ vi,j

and induce the distribution 1
2δi−1+

1
2δi+1 if vi,j > ui,j. Considering any strategy τ of Player 2, we show

that E(ui∞,j∞) ≥ vi0,j0, where the expectation is with respect to the distribution of sequences (it, jt)t

induced by σ and τ .

By definition of V , we have for all t, E(vit+1,jt|(it, jt)) = vit,jt, whether uit,jt ≥ vit,jt or not. Moreover

E(vit+1,jt+1|(it+1, jt)) ≥ vit+1,jt since V is row-convex. Hence,

E(vit+1,jt+1) ≥ E(vit+1,jt) = E(vit,jt) ≥ vi1,j1 .

Now, (it, jt)t is a.s. eventually constant equal to (i∞, j∞), which implies by definition of σ that almost
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surely ui∞,j∞ ≥ vi∞,i∞ . We obtain:

E(ui∞,j∞) ≥ E(vi∞,j∞) = E(lim
t
(vit,jt)) = lim

t
E(vit,jt) ≥ vi1,j1 .

Therefore, σ is a pure strategy of Player 1 which guarantees vi0,j0 . By symmetry, we obtain Lemma

1.

Remark 1. It is not difficult to show that MZ(U) is also the uniform value of the game Γ(U), which

implies that we also have MZ(U) = limλ→0 vλ, where vλ is the value of the λ-discounted game. In

general the models with stage payoffs or payoffs defined on plays are of different nature, but here the

trajectories (it, jt)t converge (being martingales) and the state spaces are finite, and all the approaches

give the same result. �

Remark 2. MZ(U) is in general different from the value of the one-shot splitting game, where both

players choose splittings simultaneously and once and for all. For instance, in the game given by

U =




0 1 0

1 0 1

0 1 0


 with initial states in the center, the value of the one-shot game is 1/2 whereas the

MZ value is 0. �

What are the properties of this Mertens-Zamir transform? It is first clear that U = MZ(U) if and

only if U is row-concave and column-convex. As a consequence, MZ ◦MZ = MZ. Since increasing

the payoffs can only increase the value of a game, it follows from Lemma 1 that the MZ transform is

weakly increasing for the partial order � on matrices. Another consequence is that adding a constant

to the payoffs changes the value by the same constant, i.e. MZ(U + c1) = MZ(U) + c1 for c ∈ R,

with 1 the matrix with all entries equal to 1. This implies that the MZ transform is non expansive

with respect to the norm ‖U‖∞ = maxi,j |ui,j |, with the standard arguments: U ≤ U ′ + ‖U −U ′‖∞, so

MZ(U) ≤ MZ(U ′) + ‖U − U ′‖∞.

Lemma 2. For all U , U ′ in R
I×J we have:

1) if U ≥ U ′ then MZ(U) ≥ MZ(U ′).
2) ‖MZ(U)−MZ(U ′)‖∞ ≤ ‖U − U ′‖∞.

3) vex(cavU) � MZ(U) � cav(vexU).

4) MZ(U −MZ(U)) = 0.

Proof. We only need to prove 3) and 4). To prove 3), observe that in Γ(U), Player 1 can guarantee

vexU by not moving at all (always remain at i1). So MZ(U) � vexU . So, cav(MZ(U)) � cav vexU .

Now, cav(MZ(U)) = MZ(U) since MZ(U) is column-concave and we obtain MZ(U) � cav(vexU).

The other inequality follows by duality.

To prove 4), consider the splitting game Γ(U − V ) where V = MZ(U) and assume that Player 1

plays the strategy σ defined in the proof of Lemma 1: if the current state is (i, j), stay at i if ui,j ≥ vi,j

and induce the distribution 1
2δi−1 + 1

2δi+1 if vi,j > ui,j. Whatever is played by Player 2, we have
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u(i∞, j∞)−v(i∞, j∞) ≥ 0 almost surely, so σ guarantees 0 in Γ(U−V ). Similarly, consider the following

strategy τ of Player 2: if the current state is (i, j), stay at j if ui,j ≤ vi,j and induce the distribution
1
2δj−1 +

1
2δj+1 if vi,j < ui,j. Whatever is played by Player 1, we have u(i∞, j∞)− v(i∞, i∞) ≤ 0 almost

surely, so τ guarantees 0 to Player 2 in Γ(U−V ). We conclude that the value of the game Γ(U−MZ(U))

is 0.

Remark 3. The analogs of the properties of Lemma 2 also hold in the continuous setup for v = MZ(u).

This is clear for 1), 2), 3). One can also show 4) in the continuous case, as follows. Assume that Player

1 plays the following strategy σ, whose existence is granted by Heuer (1992): if v(p, q) > u(p, q), play a

splitting s of p such that v(p, q) = v(s, q) and v(p′, q) ≤ u(p′, q) for all p′ ∈ supp(s); if v(p, q) ≤ u(p, q),

remain at p. Whatever the strategy τ played by player 2, we have for each stage t: u(pt+1, qt) ≥
v(pt+1, qt) almost surely. Passing to the limit, u(p∞, q∞) ≥ v(p∞, q∞), hence player 1 guarantees 0 in

the game with payoff u− v. Similarly, Player 2 guarantees 0, and MZ(u−MZ(u)) = 0. �

Since MZ ◦MZ = MZ, one can view the Mertens-Zamir transform as a projection on the set of

row-concave and column-convex matrices. However, MZ is non-linear and MZ(MZ(U)− U)) can be

different from 0 (for the same reason that for a continuous function f : [0, 1] → R we always have

cav(f − cav f) = vex(f − vex f) = 0 but may have cav(cav f − f) �= 0 and vex(vex f − f) �= 0).

How can we compute theMZ transform of a matrix? This is easy in the 1-player case (corresponding

to m = 0 or n = 0). For instance:

MZ(




1

0

1


) = cav(




1

0

1


) =




1

1

1


 and MZ(

(
0 1 0

)
) = vex(

(
0 1 0

)
) =

(
0 0 0

)
.

Proposition 1 suggests the following algorithm for computing the MZ transform.

Algorithm 1. Start with a matrix U in R
I×J .

• Concavify the columns (ui0)i and (ui,n)i, and convexify the rows (u0,j)j and (umj)j .

• Choose two disjoint subsets A+, A− of I × J and solve the following linear system:

vij =
1

2
vi−1,j +

1

2
vi+1,j for (i, j) ∈ A+,

vij =
1

2
vi,j−1 +

1

2
vi,j+1 for (i, j) ∈ A−,

vij = uij for (i, j) /∈ A− ∪A+.

• If the solution of the system does not satisfy (vij > uij for all (i, j) ∈ A+ and vij < uij for all

(i, j) ∈ A−), or does not satisfy column-concavity and row-convexity, then try another pair of

subsets.

7



• Otherwise, V = MZ(U) and the algorithm ends.

Notice that the linear system above corresponds to a diagonally dominant matrix, hence has a

unique solution in every case. Since there is a unique MZ transform of U , there is a unique pair

A+, A− on which the algorithm will eventually stop. A+ will be the set of states where v > u, and A−
the set of states where v < u. We now illustrate this algorithm with an example.

Example 1.

W =




6 4 2 1

4 2 4 3

1 4 2 5

0 3 4 7




The first step is the concavification of the first and fourth columns and the convexification of the first

and fourth rows. We obtain the following:

W ′ =




6 4 2 1

4 2 4 3

2 4 2 5

0 2 4 7




Having in mind the splitting game interpretation, it is easy to see that V = MZ(W ) = MZ(W ′) and
that V coincides with W ′ on the first and fourth columns and on the first and fourth rows. Hence, V

can be written as follows:

V =




6 4 2 1

4 a b 3

2 c d 5

0 2 4 7




We have to compare a, b, c and d to the corresponding entries in W . Let us compute lower and upper

bounds for V :

vex cavW ′ =




6 4 2 1

4 11
3

10
3 3

2 9
3

12
3 5

0 2 4 7




cav vexW ′ =




6 4 2 1

4 10
3

8
3 3

2 8
3

10
3 5

0 2 4 7




We have cav vexW ′ ≤ V ≤ vex cavW ′, so a > 2, d > 2, b < 3 and c < 4. The entries corresponding to

a and d belong to the region where (V > W ), and the entries corresponding to b and c belongs to the

region (V < U). From Lemma 1, we obtain a = (4 + c)/2, b = (a + 3)/2, c = (2 + d)/2, d = (b + 4)/2.
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The system has a unique solution given by a = 51/15, b = 48/15, c = 42/15 and d = 54/15. Finally,

V =




6 4 2 1

4 51
15

48
15 3

2 42
15

54
15 5

0 2 4 7




.

Consider the previously defined optimal strategies in the game Γ(W ): σ for Player 1 (if the current

state is (i, j), stay at i if wi,j ≥ vi,j and induce the distribution 1
2δi−1 +

1
2δi+1 if vi,j > wi,j) and τ for

Player 2 (if the current state is (i, j), stay at j if wi,j ≤ vi,j and induce the distribution 1
2δj−1 +

1
2δj+1

if vi,j < wi,j). Starting from an initial point in the interior of the matrix, the induced martingale has

the “four frogs” structure (Aumann and Hart, 1986; Forges, 1984, 1990): on each of the four central

cells, the martingale hits the boundary with probability 1/2 and continues to another central cell with

probability 1/2. The number of steps in which states continue to move is thus unbounded (yet finite

almost surely).

0

2

2

42
15

4

6

51
15

4

48
15

2

3

1

4

54
15

7

5

�

An important property of Algorithm 1 is that it converges in finite time to the MZ transform. A

major drawback is the complexity of the choice of the subsets A+ and A−, even if on many examples it is

easy to determine the region where V > U and U > V . The inequality cav vexU ≤ MZ(U) ≤ vex cavU

gives useful information (as in the above Example 1 with the matrix W ), or one can guess the optimal

strategies by analyzing the splitting game Γ(U). For instance, starting from the second row and second

column of W (corresponding to the coefficient a of MZ(W )), Player 1 can split once between its 2

vertical neighbors and then never move again. Whatever does Player 2, the expected terminal payoff

of Player 1 will be at least 1
2 4 + 1

2
3
2 > 2 so a > 2.

One can also adapt to matrices the algorithm proposed by Mertens and Zamir (1977) for the

continuous setup.

Algorithm 2. (Mertens and Zamir, 1977) Define inductively two sequences of matrices {Uk}k≥0,

{Uk}k≥0 by: U0 = U0 = U , and for all k ≥ 0, Uk+1 = cav vexmax(U,Uk), Uk+1 = vex cavmin(U,Uk).

Then {Uk}k≥1 is monotonically increasing, {Uk}k≥1 is monotonically decreasing, and both sequences

converge to MZ(U).
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For the proof of the above property, one can follow closely the proofs in Mertens and Zamir (1977)

and check that they adapt to our discrete setup.

3 Approximating the continuous MZ transform

We now consider the continuous unidimensional setup where a continuous function u : [0, 1]2 → R is

given. The Mertens-Zamir transform of u, denoted v = MZ(u), is the continuous solution v : [0, 1]2 → R

of the pair of functional equations: v(p, q) = cavp min{u(p, q), v(p, q)} = vexq max{u(p, q), v(p, q)}.
Recall that for p in [0, 1], a splitting s of p is a Borel probability on [0, 1] with mean p, i.e. such

that
∫
p̃∈[0,1] p̃ ds(p̃) = p, we extend u to Borel probabilities s and r on [0, 1] by u(s, r) = Es⊗r(u). The

function v is also the unique concave (in the first variable), convex (in the second variable) function

satisfying for all (p, q) in [0, 1]2: (C1) if v(p, q) > u(p, q), there exists a splitting s of p such that

v(p, q) = v(s, q) = u(s, q), and (C2) if v(p, q) < u(p, q), there exists a splitting r of q such that

v(p, q) = v(p, r) = u(p, r). As in the discrete case, we have:

∀(p, q), cavp vexq u(p, q) ≤ MZ(u)(p, q) ≤ vexq cavp u(p, q).

The MZ transform is in general difficult to compute. The following example is an illustration where

we see that the MZ transform of u differs from the value function of the one-shot splitting game, i.e.

the one-shot game where simultaneously Player 1 chooses a splitting s of p, Player 2 chooses a splitting

r of q, and the payoff to Player 1 is u(s, r).

Example 2. From Mertens and Zamir (1981), see also Mertens et al. 2015 (Example VI.7.4, page

375). Consider the following payoff function, where p′ = 1− p and q′ = 1− q:

u(p, q) =

p

q

1
2

1
2

1

0

0 1

2p′ − 2q

2q − 2p′

2p− 2q

2q − 2p 2q′ − 2p

2p − 2q′

2p′ − 2q′

2q′ − 2p′

The MZ transform of u is given by Figure 1. The blue lines represent the set of values (p, q) for which

MZ(u)(p, q) = u(p, q) (the equations of these curves in different areas are given in blue); in the red

rectangle, we have MZ(u)(p, q) = 1
4 ; black arrows represent increasing linear functions and black lines

represent constants.

For this example, the functions cavp vexq u and vexq cavp u are given in Figures 2 and 3. This shows

that the inequalities can be strict. We now show that the MZ transform is in general different from the

10



MZ(u)(p, q) =

p

q

1
2

1
2

1

0

0 1

1
4

u = MZ(u)

p(1
− p)

=
1
2
q

p
=
q
−
1
8

Figure 1: MZ transform of u.

vexq cavp u(p, q) =

p

q

1

0

00 0

1
2

1
2

1

0

00 0

1
2

1
2

0 0

0

1
2

1
2

1
2

1

0

0 1

Figure 2: cavp vexq u

value of the one-shot splitting game. In the example, the MZ transform at (12 ,
1
2) is MZ(u)(12 ,

1
2) =

1
4 ,

whereas the value of the one-shot splitting game is 1
2 . In the one-shot game, an optimal strategy for

Player 1 is the following splitting: 0 with probability 1
4 ,

1
2 with probability 1

2 and 1 with probability 1
4 .

It is easy to check that this guarantees an expected payoff of 1
2 to Player 1 (similarly for Player 2). �
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cavp vexq u(p, q) =

p

q

1

0

00 0

1
2

1
2

1

0

00 0

1
2

1
2

0 0

0

0

0

0

0

0

0

0

1
2

1
2

1

0

0 1

Figure 3: vexq cavp u
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We now would like to approximate the MZ transform of u, using MZ transforms of matrices from

the previous section. Given n ≥ 1, consider u : [0, 1]2 → R biaffine3 on each square [ in ,
i+1
n ] × [ jn ,

j+1
n ]

for i, j = 0, . . . , n − 1. Define the matrix U in R
I×I with I = {0, . . . , n}, which coincides with u at

each point ( i
m , j

n) of the grid, and consider its transform MZ(U). Finally, define the piecewise biaffine

extension of MZ(U) as the function v on [0, 1]2 which coincides with MZ(U) at each point of the grid

and which is biaffine on each square [ in ,
i+1
n ] × [ jn ,

j+1
n ] for all i, j = 0, . . . , n − 1. One could hope that

v = MZ(u), however the following example shows it is not the case.

Example 3. Consider U =




0 1 0

1 0 1

0 1 0


, with n = 2 and MZ(U) =




0 0 0

1 0 1

0 0 0


.

Define u : [0, 1]2 → R which is biaffine on each of the squares [0, 1/2]2 , [0, 1/2]× [1/2, 1], [1/2, 1]× [0, 1/2]

and [1/2, 1]2 and such that u( i
n ,

j
n) = ui,j for all i, j = 0, 1, 2. Let v be the piecewise affine extension

of MZ(U), we have v(1/4, 1/2) = 0 since MZ(U) has only 0 in the second column. However, we

claim that MZ(u)(1/4, 1/2) ≥ 1/2, so that v �= MZ(u). To prove this claim, observe that u(1/4, q) =

1/2 = vexq u(1/4, q) for all q (we adopt the convention that p is the vertical variable whereas q is the

horizontal variable, as in Example 2). So cavp vexq u(1/4, q) ≥ 1/2 for each q and MZ(u)(1/4, q) ≥
cavp vexq u(1/4, q) ≥ 1/2. �

The next theorem shows that, despite Example 3, computing the matrix MZ transform for finite

sets gives an approximation of the MZ transform of a continuous function u : [0, 1] × [0, 1] → R. We

use d((p, q), (p′, q′)) = |p− p′|+ |q − q′| on the square [0, 1]2.

Theorem 1. Let u : [0, 1]× [0, 1] → R be a continuous function and v = MZ(u). For each n ≥ 1, write

In = {0, . . . , n}, Pn = {i/n, i ∈ In}, and let Un = (Un
i,j)i,j ∈ R

In×In be the matrix which coincides with

u at each point ( i
n ,

j
n), with i, j in In. Let V n = (V n

i,j)i,j = MZ(Un) be the MZ transform of Un and

vn : [0, 1] × [0, 1] → R be the piecewise biaffine extension of V n.

Then, (vn)n uniformly converges to MZ(u). Moreover, if u is C-Lipschitz, then for each n ≥ 1,

‖v − vn‖∞ ≤ 4C

n
.

As a consequence, an approximation of MZ(u) is obtained by considering a fine discretization of

[0, 1] and computing the MZ transform of the matrix given by the restriction of u to the grid.

Proof. Since u is uniformly continuous, there exists a modulus of continuity ω : R+ → R+ with

limx→0 ω(x) = 0 such that

∀ p, p′, q, q′ ∈ [0, 1], |u(p, q) − u(p′, q′)| ≤ ω(d((p, q), (p′, q′)).

Moreover, ω can be chosen nondecreasing and concave. Laraki and Renault (2020) in Lemma A.1 prove

3We say that a mapping u defined on a square [p, p′] × [q, q′] ⊂ [0, 1]2 is biaffine if for all λ, µ in [0, 1], u(λp + (1 −
λ)p′, µq + (1− µ)q′) = λµu(p, q) + λ(1− µ)u(p, q′) + (1− λ)µu(p′, q) + (1− λ)(1− µ)u(p′, q′).
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that if v = MZ(u), then v also has ω as a modulus of continuity, i.e.,

∀ p, p′, q, q′ ∈ [0, 1], |v(p, q) − v(p′, q′)| ≤ ω(d((p, q), (p′, q′))).

In particular, if u is C-Lipschitz, ω(x) = Cx and v is also C-Lipschitz. For n ≥ 1, one can see that the

matrices Un and V n also have ω as a modulus of continuity, in the following sense: ∀i, i′, j, j′ ∈ In,

|Un
i,j − Un

i′,j′ | ≤ ω(d((i/n, j/n), (i′/n, j′/n))) and |V n
i,j − V n

i′,j′ | ≤ ω(d((i/n, j/n), (i′/n, j′/n))).

This implies that vn also has ω as a modulus of continuity.

Fix n ≥ 1 and write Pn = {i/n, i ∈ In}. Consider the splitting game where: Player 1 controls

the state p = i/n in Pn and at each state p in Pn can either stay at p or (if 0 < p < 1) induce the

distribution 1
2δp−1/n + 1

2δp+1/n; Player 2 controls the state q in [0, 1] and can use any splitting of q at

any stage; The terminal payoff is given by the restriction of u to Pn × [0, 1]. We define a strategy σ of

Player 1 as follows. For states of stage t, (pt, qt) ∈ Pn × [0, 1], let it and jt in In be such that a pt =
it
n

and qt ∈
[ jt
n ,

1+jt
n

)
.

a) If vn
(
it
n ,

jt
n

)
> u

(
it
n ,

jt
n

)
and vn

(
it
n ,

1+jt
n

)
> u

(
it
n ,

1+jt
n

)
, then σ splits at stage t uniformly between

pt − 1
n and pt +

1
n .

b) Otherwise, σ remains at pt.

Fix any strategy τ of Player 2 and consider the induced martingale (pt, qt)t≥1. Suppose that case

a) holds at stage t. Since vn
(
it
n ,

jt
n

)
> u

(
it
n ,

jt
n

)
and V n = MZ(Un), we have:

vn

( it
n
,
jt
n

)
=

1

2
vn

( it − 1

n
,
jt
n

)
+

1

2
vn

( it + 1

n
,
jt
n

)
.

Similarly,

vn

( it
n
,
jt + 1

n

)
=

1

2
vn

( it − 1

n
,
jt + 1

n

)
+

1

2
vn

( it + 1

n
,
jt + 1

n

)
.

Since vn is piecewise biaffine,

vn

( it
n
, qt

)
=

1

2
vn

( it − 1

n
, qt

)
+

1

2
vn

( it + 1

n
, qt

)
,

and we get:

E[vn(pt+1, qt)|pt, qt] = vn(pt, qt).

This equality obviously holds in case b), so it holds almost surely for every t.

Next, for any given p in Pn, the mapping (q �→ vn(p, q)) is convex. To see this, note that the

row-convexity of V n implies that for 0 < j < n,

vn

(
p,

j

n

)
≤ 1

2

[
vn

(
p,

j − 1

n

)
+ vn

(
p,

j + 1

n

)]
.
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Therefore, (q �→ vn(p, q)) is continuous and piecewise linear with nondecreasing slope, thus it is convex.

As a consequence,

E[vn(pt+1, qt+1)] ≥ E[vn(pt+1, qt)] = E[vn(pt, qt)] ≥ vn(p1, q1).

Taking limit gives:

E[vn(p∞, q∞)] ≥ vn(p1, q1).

Now, since Pn is finite, for almost all realized sequences {pt, qt}t there exists t0 such that pt = p∞ for all

t ≥ t0. Hence, for t ≥ t0 the definition of σ gives vn
(
p∞, jtn

) ≤ u
(
p∞, jtn

)
or vn

(
p∞, jt+1

k

) ≤ u
(
p∞, jt+1

n

)
.

Introducing now ω the modulus of continuity of u, we have,

u
(
p∞, qt

) ≥ u
(
p∞,

jt
n

)
− ω

( 1

n

)
and u

(
p∞, qt

) ≥ u
(
p∞,

jt + 1

n

)
− ω

( 1

n

)
.

Similarly, vn
(
p∞, qt

) ≤ vn

(
p∞, jtn

)
+ω

(
1
n

)
and vn

(
p∞, qt

) ≤ vn

(
p∞, jt+1

n

)
+ω

(
1
n

)
. We obtain that for

all t ≥ t0, vn
(
p∞, qt

) ≤ u
(
p∞, qt

)
+ 2ω

(
1
n

)
. Taking limit, we have almost surely:

vn
(
p∞, q∞

) ≤ u
(
p∞, q∞

)
+ 2ω

( 1

n

)
.

It follows that

E[u(p∞, q∞)] ≥ vn(p1, q1)− 2ω
( 1

n

)
.

Therefore by playing σ, Player 1 guarantees the payoff vn
(
p1, q1

)− 2ω
(

1
n

)
in the splitting game where

he is constrained to stay on the grid Pn. Since the value of the unconstrained game can not be lower

for Player 1,

∀ (p1, q1) ∈ Pn × [0, 1], v
(
p1, q1

) ≥ vn
(
p1, q1

)− 2ω
( 1

n

)
.

Now consider any (p1, q1) in [0, 1]2. For p′1 in Pn such that d(p1, p
′
1) ≤ 1

n , we have:

v(p1, q1) ≥ v(p′1, q1)− ω
( 1

n

)
≥ vn(p

′
1, q1)− 3ω

( 1

n

)
≥ vn(p1, q1)− 4ω

( 1

n

)
.

Exchanging the roles of Players 1 and 2, we obtain v(p1, q1) ≤ vn(p1, q1) + 4ω( 1n), and finally

‖v − vn‖∞ ≤ 4ω
( 1

n

)
.

Remark 4. The above approach is not limited to uniform grids. Consider any grid P × Q ⊂ [0, 1]2,

with P = {p0, p1, . . . , pM−1, pM}, Q = {q0, q1, . . . , qN−1, qN}, p0 = q0 = 0 and p1 = q1 = 1. Then, given

a continuous u : [0, 1]2 → R, we first define the restriction UP×Q of u to the grid. It is then easy to

adapt the definition of MZ transform to matrices coming from a non uniform grid and obtain a MZ

transform V P×Q ∈ R
P×Q of UP×Q. One can finally define vP×Q as the piecewise biaffine extension of
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V P×Q. Minor modifications of the above proof can show that

‖MZ(u)− vP×Q‖∞ ≤ 4ω
(
m(P,Q)

)
,

where m(P,Q) = max
{
max{|pi+1 − pi| : i = 0, . . . ,M − 1}; max{|qj+1 − qj| : j = 0, . . . , N − 1}}. �

Remark 5. Theorem 1 is of course not the first one to use discretizations of the square to obtain

estimates for the difference between the value of a continuous game and the value of a close-by discrete

game. This was already used by Ville (1938) to prove existence of the value in mixed strategies for

continuous zero-sum games on the square. �

4 Splitting over finite sets with general constraints

In this section we consider splitting games with general constraints on feasible splittings. We consider

finite sets of states which are, without loss of generality, subsets of finite dimensional vector spaces.

These finite sets of states are denoted P ⊂ R
K for Player 1 and Q ⊂ R

L for Player 2, and we are given

correspondences S : P ⇒ ∆(P ), R : Q ⇒ ∆(Q) such that for all p ∈ P , S(p) is a set of probability

distributions on P with mean p, which contains the Dirac measure δp on P , and similarly for all q ∈ Q,

R(q) is a set of probability distributions on Q with mean q, containing the Dirac measure δq. That is,

players face constraints on admissible states (the sets P,Q) and on feasible splittings they can choose.

(One can think for instance that, in each state, players have access to exogenous sets of statistical

experiments to affect posterior beliefs as in Koessler et al. (2021a).) A payoff function u : P ×Q → R

is also given.

The splitting game with general constraints Γ(P,Q, S,R, u) unfolds as before:

• There is a given initial state (p1, q1) ∈ P ×Q.

• At each stage t ≥ 1, if the current state is (pt, qt) ∈ P×Q, Player 1 chooses a splitting s ∈ S(pt) and

Player 2 chooses a splitting r ∈ R(qt). The next state (pt+1, qt+1) is drawn from the independent

product s⊗ r, and observed by both players before playing stage t+ 1.

• Given a strategy profile, the payoff is the expectation of u(p∞, q∞) where (p∞, q∞) is the almost-

sure limit of the martingale (pt, qt)t.

The main result of this section is that Γ(P,Q, S,R, u) has a value which admits a Mertens-Zamir-like

characterization. In the following, any map v : P ×Q → R is linearly extended to distributions as usual

by setting v(s, r) = Es⊗r(v) for s ∈ ∆(P ) and r ∈ ∆(Q).

Definition 3. Consider a map v : P ×Q → R.

1) v is S-concave if: ∀(p, q) ∈ P ×Q,∀s ∈ S(p), v(p, q) ≥ v(s, q).

v is R-convex if: ∀(p, q) ∈ P ×Q,∀r ∈ R(q), v(p, q) ≤ v(p, r).

2) For all (p, q) in P ×Q, define:

v−(p, q) = sup
{
v(s′, q) : s′ ∈ ∆(P\{p}),∃α ∈ [0, 1) s.t. αδp + (1− α)s′ ∈ S(p)

} ∈ R ∪ {−∞},
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v+(p, q) = inf
{
v(p, r′) : r′ ∈ ∆(Q\{q}),∃α ∈ [0, 1) s.t. αδq + (1− α)r′ ∈ R(q)

} ∈ R ∪ {+∞}.
An alternative way to define v−(p, q) and v+(p, q) is as follows. For each s in S(p)\{δp}, define s �=p as

the conditional probability induced by s given that the state is not p (i.e. s �=p(p
′) = s(p′)/(1− s(p)) for

all p′ �= p). Then v−(p, q) = sup
{
v(s �=p, q), s ∈ S(p)\{δp}

}
and similarly v+(p, q) = inf

{
v(p, r �=q), r ∈

Q(q)\{δq}
}
. Notice that if v is S-concave and R-convex, then v−(p, q) ≤ v(p, q) ≤ v+(p, q). If

S(p) = {δp}, v−(p, q) = −∞; if R(q) = {δq}, v+(p, q) = +∞.

Example 4. Take P =
{
0, 1

n ,
2
n , . . . , 1

}
and S(·) such that Player 1 at state p ∈ {

1
n , . . . ,

n−1
n

}
can

either stay at p or split between the two closest neighbors p− 1
n and p+ 1

n . Then for p = 1
n , . . . ,

n−1
n ,

v−(p, q) =
1

2
[v(p − 1

n
, q) + v(p+

1

n
, q)].

�

Theorem 2. The splitting game Γ(P,Q, S,R, u) admits a value, which is the unique function v :

P ×Q → R which is S-concave, R-convex, and such that for all (p, q) in P ×Q,

(C1’) if v(p, q) > u(p, q), then v(p, q) = v−(p, q), and

(C2’) if v(p, q) < u(p, q), then v(p, q) = v+(p, q).

Moreover, the value is obtained in pure strategies: players have pure ε-optimal strategies for all ε > 0.

As shown by Example 4, this theorem generalizes both Proposition 1 and Lemma 1 (for the existence

of value). Existence results for splitting games with constraints are found in Laraki and Renault

(2020) and Koessler et al. (2021a), where further assumptions on the correspondences S,R are required

(continuity, compactness, convexity, sometimes closedness under iteration). Theorem 2 relaxes the

assumptions of compactness, convexity and the assumption that feasible splittings are closed under

iteration. In the proof, we introduce correspondences F : ∆(P ) ⇒ ∆(P ) and G : ∆(Q) ⇒ ∆(Q)

that are the “closures” of S,R defined by taking the closed convex hulls of the feasible splittings, and

extended to distributions on P and Q. The first part of the proof (Lemma 3) shows that the MZ

function associated with F and G satisfies (C1’) and (C2’). The second part (Lemma 4) shows that

each player can guarantee the value up to any ε > 0. Since feasible splittings are not closed under

iteration, achieving a desired splitting may require several stages. As a result, the ε-optimal strategies

we construct are not Markovian.

Notice also that 0-optimal strategies may fail to exist, as shown in the following simple example

where Player 2 plays no role.

Example 5. Let P =
{
0, 14 ,

1
2 ,

3
4 , 1

} ⊂ R, S(p) = {δp} for p ∈ {
0, 14 ,

3
4 , 1

}
, and

S
(1
2

)
=

{
(1− 2ε− 2ε2)δ 1

2
+ εδ 1

4
+ εδ 3

4
+ ε2δ0 + ε2δ1 : ε ∈

[
0,

1

4

]}
.

In other words, at all states but 1
2 , Player 1 cannot split the state. At 1

2 , Player 1 can split, but the

state is likely to remain at 1
2 and is much more likely to be 1

4 or 3
4 than 0 or 1. Suppose that for each

17



q in Q, u(0, q) = u(1/2, q) = u(1, q) = 0 and u(1/4, q) = u(3/4, q) = 1, so that at p = 1/2, Player 1

would like to induce the distribution 1
2δ 1

4
+ 1

2δ 3
4
. Then, the value v satisfies v(0, q) = v(1, q) = 0 and

v(14 , q) = v(12 , q) = v(34 , q) = 1. It is S-concave and we have v(12 , q) = v−(12 , q). The point is that the

splitting 1
2δ 1

4
+ 1

2δ 3
4
is infeasible at 1

2 but can be approximately achieved with many stages by choosing

a very small ε. �

Example 6. This example shows that the assumption that δp ∈ S(p) is necessary for Theorem 2. Let

P = {0, 1/2, 1}, with S(0) = δ0, S(1) = {δ1} and S(1/2) = {1/2δ0 + 1/2δ1}, that is at p = 1/2, Player

1 has to move to 0 and 1 with equal probability, but cannot stay at 1/2. Let Q = {0}, so that Player

2 has no role here, and assume that u(0, 0) = u(1, 0) = 0 and u(1/2, 0) = 1. Then the value function is

v = 0 for each initial state. We have v(1/2, 0) = 0 < u(1/2, 0) = 1, but v+(1/2, 0) = +∞ �= 1, hence

(C2’) is not satisfied. �

Proof of Theorem 2. The proof is split into two lemmas.

Lemma 3. There exists v : P ×Q → R that is S-concave, R-convex and such that (C1’) and (C2’) are

satisfied for all (p, q) in P ×Q.

Proof. We define a correspondence F from ∆(P ) to ∆(P ) which represents the mixed extension of

S. Formally, let F : ∆(P ) ⇒ ∆(P ) be as follows,

∀s ∈ ∆(P ), F (s) =



∑
p∈P

s(p)l(p) : ∀p ∈ P, l(p) ∈ coS(p)


 ,

where s(p) ∈ [0, 1] denotes the probability of p under the law s, and coS(p) is the closure of the convex

hull of S(p). The correspondence F has convex and compact values. Since P is finite, F has non

expansive transitions as defined in Laraki and Renault (2020) (use d(p, p′) = 2 for all p �= p′ in P ).

Next, define the iterates of F as follows: F 0(s) = {s}, and for all n ≥ 1, Fn+1(s) = {s′′ ∈ Fn(s′) :
s′ ∈ F (s)}. Finally, let F∞(s) be the closure of ∪∞

n=0F
n(s). Since F (δp) only contains splittings of

p, the transition defined by F is strongly acyclic: any strictly concave function ϕ : RK → R, such as

(p �→ −∑
k∈K p2k) satisfies : ∀p ∈ P , Argmaxs∈F∞(δp)ϕ(s) = {δp}. And we define similarly multivalued

transitions for Player 2, G and G∞ : ∆(Q) ⇒ ∆(Q).

Theorem 1 of Laraki and Renault (2020) applies and there exists a unique function v : P ×Q → R

that is S-concave, R-convex and such that for every (p, q) in P ×Q,

(C1”) If v(p, q) > u(p, q), there exists s in F∞(δp) such that v(p, q) = v(s, q) ≤ u(s, q), and

(C2”) If v(p, q) < u(p, q), there exists r in G∞(δq) such that v(p, q) = v(p, r) ≥ u(p, r).

We now prove that this function v satisfies (C1’). Fix (p, q), we have v−(p, q) ≤ v(p, q) since v is

S-concave. Assume that v−(p, q) < v(p, q) and choose ε > 0 such that v−(p, q) ≤ v(p, q) − ε. Each

s �= δp in S(p) can be written s = s(p)δp + (1− s(p))s′, with4 p /∈ supp(s′) and v(s′, q) ≤ v(p, q)− ε. It

follows that

v(s, q) = s(p)v(p, q) + (1− s(p))v(s′, q) ≤ v(p, q)− ε(1 − s(p)),

4supp(.) denotes the support of a probability
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and this inequality is also true for s = δp. The inequality v(s, q) ≤ v(p, q) − ε(1 − s(p)) then directly

extends to all s in coS(p) = F (δp). And for each s �= δp in F (δp) there exists s′ ∈ ∆(P ) such that

s = s(p)δp + (1− s(p))s′, p /∈ supp(s′) and v(s′, q) ≤ v(p, q)− ε.

Now, assume by induction that for some n ≥ 2, v(s, q) ≤ v(p, q) − ε(1 − s(p)) holds for each

s ∈ Fn−1(δp) and consider a given sn in Fn(δp). There exists s1 in F (δp) such that sn ∈ Fn−1(s1).

If s1 = δp then v(sn, q) ≤ v(p, q) − ε(1 − sn(p)) by induction, so we now assume that s1 �= δp. Then

s1 can be written s1 = s1(p)δp + (1 − s1(p))s
′
1, with p /∈ supp(s′1) and v(s′1, q) ≤ v(p, q) − ε. We can

write sn = s1(p)sn−1 + (1 − s1(p))s
′
n, with sn−1 ∈ Sn−1(δp) and s′n ∈ Sn−1(s′1). From the induction

hypothesis, v(sn−1, q) ≤ v(p, q)− ε+ εsn−1(p). S-concavity of v implies v(s′n, q) ≤ v(s′1, q) ≤ v(p, q)− ε.

This gives the following:

v(sn, q) ≤ v(p, q)− ε+ εs1(p)sn−1(p) ≤ v(p, q)− ε(1− sn(p)).

By induction, we obtain:

∀s ∈ F∞(δp), v(s, q) ≤ v(p, q) − ε(1 − s(p)).

Finally, assume that v(p, q) > u(p, q). By (C1”), there exists s in F∞(δp) such that v(p, q) = v(s, q) ≤
u(s, q). We deduce that s �= δp and v(p, q) = v(s, q) ≤ v(p, q) − ε(1 − s(p)), a contradiction. Hence,

v−(p, q) = v(p, q), and we have proved that (C1’) holds. By symmetry, (C2’) also holds.

Lemma 4. The splitting game Γ(P,Q, S,R, u) with initial state (p1, q1) has a value which is equal to

v(p1, q1), and both players have pure ε-optimal strategies.

Proof. We fix ε > 0 and define a strategy σ = (σt)t≥1 for Player 1 by a main phase and transitions

phases. At each stage t, the strategy depends on the past history of states ht := (p1, q1, . . . , pt, qt). The

play is initially in the main phase.

• At any stage t ≥ 1 in the main phase,

- if u(pt, qt) ≥ v(pt, qt), stay at pt (i.e. play σt = δpt) and remain in the main phase at stage t+1,

and

- if u(pt, qt) < v(pt, qt), according to (C1’) there exist st ∈ S(pt), s
′
t ∈ ∆(P\{pt}) and αt ∈ [0, 1)

such that st = αtδpt + (1 − αt)s
′
t and v(s′t, qt) ≥ v(pt, qt) − ε

2t . The strategy enters a transition

phase where st is played at each stage t and at all stages t′ > t as long as pt = pt+1 = · · · = pt′ .

After the first stage t′ > t where pt′ �= pt, σ returns to the main phase at stage t′.

Consider any strategy τ of Player 2, and let {pt, qt}t≥1 be the induced martingale and (p∞, q∞) be

its almost sure limit. Since P and Q are finite, there almost surely exists a stage t0 such that for each

t ≥ t0, (pt, qt) = (p∞, q∞). Additionally, since a transition phase starting at (pt, qt) ends up almost

surely at some state p′ �= pt, it must be the case that

u(p∞, q∞) ≥ v(p∞, q∞) almost surely.

Next, we define sequences of stopping times (li)i≥1, (mi)i≥1 with values in {1, 2, . . . ,∞} as follows:
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- Let l1 be the first stage t ≥ 1 where u(pt, qt) < v(pt, qt), i.e. where Player 1 is in the main phase

and enters the first transition phase, and let m1 ≥ l1 be the last stage of the first transition phase.

- For i ≥ 2, let li > mi−1 be the stage entering the i-th transition phase, and mi ≥ li be the last

stage of the i-th transition phase.

Fix i ≥ 1. We have u(pli , qli) < v(pli , qli) and at all stages t = li, . . . ,mi, Player 1 plays sli =

αliδpli + (1 − αli)s
′
li
, with s′li ∈ ∆(P\{pli}), αli ∈ [0, 1) and v(s′li , qli) ≥ v(pli , qli) − ε

2li
. At stages

t = mi + 1, . . . , li+1, the play is in the main phase and pli+1
= p1+mi . We have the following:

E[v(pli+1
, qli+1

) | hli ] = E[v(p1+mi , qli+1
) | hli ] ≥ E[v(p1+mi , qli) | hli ] ≥ v(pli , qli)−

ε

2li
,

where the first inequality uses the R-convexity of v. As a consequence,

E[v(pli+1
, qli+1

)] ≥ v(p1, q1)− ε

i∑
j=1

1

2lj
,

and thus E[v(p∞, q∞)] ≥ v(p1, q1)−ε. We obtain E[u(p∞, q∞)] ≥ E[v(p∞, q∞)] ≥ v(p1, q1)−ε. Therefore,

Player 1 guarantees the payoff v(p1, q1) up to any ε > 0. By symmetry, this is also true for Player 2,

and v(p1, q1) is the value of the game.

As the value is unique, there exists a unique v satisfying the properties of Lemma 3, and the proof

of Theorem 2 is complete.

Remark 6. The proof shows that if a function w is S-concave, R-convex and satisfies (C1′), then for

any ε > 0 Player 1 can guarantee w − ε with a pure strategy. �

5 Concluding Questions

1. How can we compare Algorithm 1 and Algorithm 2? Regarding Algorithm 2, can we a priori

bound the number of steps k0, defined such that for each entry (i, j) and all k ≥ k0, the sign of

Ui,j − Uki,j remains the same?

2. Theorem 1 is restricted to binary states, i.e., the unidimensional case. Extending the result

to greater dimensions is left as an open problem. The main difficulty is that there are several

directions of splitting for Player 1 when v > u so it is difficult to define a good strategy for him

(similarly for Player 2 when v < u).

3. Consider a general splitting game as in section 4, but remove the assumption that players can

always remain in every state. Theorem 2 is no longer valid as Example 6 shows, but does the

game still have a value?
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