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Abstract

We take a novel approach based on di¤erential games to the study of criminal networks.

We extend the static crime network game (Ballester et al., 2006, 2010) to a dynamic setting

where criminal activities negatively impact the accumulation of total wealth in the economy.

We derive a Markov Perfect Equilibrium (MPE), which is unique within the class of strategies

considered, and show that, unlike in the static crime network game, the vector of equilibrium

crime e¤orts is not necessarily proportional to the vector of Bonacich centralities. Next, we

conduct a comparative dynamic analysis with respect to the network size, the network density,

and the marginal expected punishment, �nding results in contrast with those arising in the static

crime network game. We also shed light on a novel issue in the network theory literature, i.e.,

the existence of a voracity e¤ect. Finally, we study the problem of identifying the optimal target

in the population of criminals when the planner�s objective is to minimize aggregate crime at

each point in time. Our analysis shows that the key player in the dynamic and the static setting

may di¤er, and that the key player in the dynamic setting may change over time.

JEL Classi�cation: C73, D85, K42.

Keywords: di¤erential games; Markov Perfect Equilibrium; criminal networks; Bonacich

centrality; key player.
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1 Introduction

It is natural to think about criminal and delinquent activities in terms of networks, and more

speci�cally, social networks. Indeed, as argued in Lindquist and Zenou (2019), social network

analysis can be quite useful for understanding more about the root causes of crime and delinquency,

and for designing crime prevention policies. Not surprisingly, there exists a vast literature devoted

to crime and networks (see, e.g., Lindquist and Zenou, 2019, for an overview). However, dynamic

considerations in the context of criminal networks have not received enough attention so far. The

present paper contributes to the networks and crime literature, by proposing a novel (dynamic)

approach to the study of criminal networks, i.e., a di¤erential game approach.

The natural �t between crime and social networks comes particularly from the fact that crime

is primarily considered as a group activity and that social interactions heavily a¤ect criminal

behavior.1 Indeed, the importance of social networks and peer in�uences in criminal activities has

been acknowledged for a long time in the criminology and sociology literature (e.g., Sutherland,

1947; Haynie, 2001; Sarnecki, 2001; Warr, 2002). Also the economic literature is very active in

the study of peer and network e¤ects in crime. Sah (1991) and Glaeser et al. (1996) were the

�rst to develop economic models of social interactions and crime, and were followed by others that

proposed various theoretical foundations on peer and network e¤ects in criminal activities (e.g.,

Calvó-Armengol and Zenou, 2004; Ballester et al., 2006, 2010; Cortés et al., 2019). In parallel

to theoretical investigations, there is also strong empirical evidence of peer e¤ects in crime (e.g.,

Ludwig et al., 2001; Kling et al., 2005; Patacchini and Zenou, 2012; Bayer et al., 2009; Damm and

Dustmann, 2014).

There exists a sizeable literature on applications of di¤erential games in the �eld of crime and

crime control (e.g., Feichtinger, 1983; Dawid and Feichtinger, 1996; Dubovik and Parakhonyak,

2014; Faria et al., 2019), government corruption (e.g., Kemp and Long, 2009; Ngendakuriyo and

Zaccour, 2013, 2017), counterfeiting (e.g., Crettez et al., 2020) and terrorism (e.g., Nova et al.,

2010; Wrzaczek et al., 2017). This literature has been able to shed light on a number of important

issues related to the dynamics of illegal activities carried out by individuals, �rms, and governments.

However, it has abstracted from the widely recognized fact that criminals are embedded in social

networks (see Ballester et al., 2010). In this paper, we aim to �ll this gap in the literature by

merging two so far disjoint strands of research, namely, the research on the dynamics of crime

without social networks, and the research on social networks without dynamics. Indeed, to the

1A classical example of crime as a group/family activity is that of Italian Ma�as (e.g., Calderoni, 2012; Allum et

al., 2019).
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best of our knowledge, ours is the �rst analysis of criminal networks in a full-�edged dynamic

game.

Identifying the optimal targets and key players in social networks is a fundamental problem in

various social, economic and political situations. In parallel to information di¤usion, technology

adoption, marketing or political campaigning, this problem is of particular importance in crime,

delinquency and terrorism; for overviews on targeting and pricing, and key players in di¤erent

contexts, see Bloch (2016) and Zenou (2016), respectively. Numerous studies in the economics

literature characterize optimal targets by well established or new centrality measures (e.g., Ballester

et al., 2006; Galeotti and Goyal, 2009; Candogan et al., 2012; Bloch and Querou, 2013; Banerjee

et al., 2013, 2019; Bimpikis et al., 2016; Demange, 2017; Grabisch et al., 2018; Galeotti et al.,

2020). Some works consider network formation in the setting of Ballester et al. (2006). Liu et

al. (2012) develop a network formation model to determine key criminals, i.e., those who once

removed generate the highest possible reduction in aggregate crime level in a network. At each

period of time, a criminal is chosen at random and decides with whom she/he wants to form a

link, anticipating the criminal e¤ort game played by all criminals after a new link has been added.

König et al. (2014) develop a two-stage game, where agents play the game of Ballester et al. (2006)

in the �rst stage, which is followed by a linking-formation process in the second stage. Network

formation is also considered by Lee et al. (2021), who empirically identify the key player de�ned

in Ballester et al. (2006).

Our analysis takes a di¤erent (dynamic) road and is conducted in terms of a di¤erential game

(see Başar and Olsder, 1995, Dockner et al., 2000, Haurie et al., 2012, and Long, 2010 for concepts

and applications). As is well known, di¤erential games are particularly useful for modeling economic

problems which involve both dynamics and strategic behavior. We propose and analyze an in�nite-

horizon linear quadratic di¤erential game based on the seminal papers by Ballester et al. (2006,

2010).2 In our di¤erential game, the state variable is the stock of total wealth legally produced

in the economy. At each point in time, criminals embedded in a social network decide how much

e¤ort to make, taking as given the e¤orts of the other criminals. The sum of e¤orts by all criminals

negatively a¤ects the evolution of the state variable. As such, part of total wealth in the economy is

transferred from the legal to the illegal sector.3 We assume that players use Markovian strategies,

2On the class of linear-quadratic di¤erential games see Dockner et al. (2000, Chapter 7). Some prominent examples

of applications of linear-quadratic di¤erential games in economics include Fershtman and Kamien (1987), Tsutsui

and Mino (1990), Dockner and Long (1993), Benchekroun (2003, 2008), and Jun and Vives (2004).
3 In a similar vein, there exists a (static) literature studying situations where power and coercion govern the

exchange of resources, and stronger agents are able to take resources from weaker agents (see, e.g., Piccione and
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i.e., they condition their crime e¤orts on the current state variable, and derive a Markov Perfect

Equilibrium (MPE), which is unique within the class of (stationary) linear feedback strategies

considered. Next, we perturb the equilibrium by changing the network size, the network density,

the marginal expected punishment, and the implicit growth rate. Finally, we study the problem of

identifying the key player, i.e., the player who, if removed, leads to the largest drop in aggregate

crime.

Our main results can be summarized as follows. First, in the static game by Ballester et al.

(2006), the Nash equilibrium is proportional to the Bonacich centrality (Bonacich, 1987). In our

dynamic setting, instead, this proportionality does not hold in general. However, we do recover

the result by Ballester et al. (2006) as a particular case, when the shadow price of total wealth

in the economy is the same for all players (e.g., in a regular network). Moreover, while in the

static setup aggregate crime is always strictly positive, in our dynamic setting corner solutions

may prevail (although the focus of our analysis is on interior solutions). Second, we show that a

social multiplier e¤ect, which occurs when an increase in the number of criminals, or links, or both,

leads to an increase in aggregate crime, does not necessarily arise. In general, the results of our

comparative dynamic analysis with respect to the network size and density and with respect to the

expected marginal punishment suggest that some of the conclusions reached in the static literature

on criminal networks do not necessarily carry over to a Markovian environment. Conditions exist

such that more criminals or more connected criminals induce lower crime in the economy, and

conditions exist such that the impact on aggregate crime of an increase in the marginal expected

punishment in the static and the dynamic setting di¤er. This holds true both in the short run and

at the steady-state equilibrium. Third, we show that a faster growing economy (in the absence

of crime) may cause an increase in aggregate crime, which, in the end, may dampen economic

growth. This is related to the so called voracity e¤ect (see Tornell and Lane, 1999), which, to the

best of our knowledge, has not been studied in the network literature so far. Forth, we extend the

analysis of the key player in Ballester et al. (2006, 2010), and show that the identi�cation of the

key player is more nuanced than in the static setting. In our dynamic game, the key player does

not necessarily correspond to the player with the highest intercentrality measure. Moreover, in our

dynamic game, it is possible that the key player changes over time. Beyond theoretical interest, this

�nding has clear policy implications: under certain circumstances, it is optimal (from an aggregate

crime minimization perspective) to imprison a speci�c criminal only for a �nite time, after which

the same criminal should be reintegrated into society, and "substituted in jail" with a di¤erent

Rubinstein, 2004; Jordan, 2006; Piccione and Rubinstein, 2007).
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criminal, either temporarily or ad in�nitum.

The rest of the paper is organized as follows. In Section 2, we present the model, �rst by

recalling the static setting of Ballester et al. (2010) in Section 2.1 and then by introducing our

dynamic framework in Section 2.2. Section 3 is devoted to the MPE and Bonacich centrality. In

Section 4, we conduct a comparative dynamic analysis with respect to the network size, the network

density, the marginal expected punishment, and the implicit growth rate. In Section 5, we address

the issue of identifying the key player in the network. Section 6 concludes. All the proofs are

presented in the Appendices A till D.

2 Model

2.1 Static Setting

The static crime network game Our point of departure is the framework of Ballester et al.

(2010) as recalled below. We consider a criminal network game with a set N = f1; : : : ; ng of
players (criminals4) embedded in a network g of social connections. Let G = [gij ] denote the

n-square adjacency matrix of network g, keeping track of the (direct) connections in the network.

Criminals i and j are connected in g if and only if gij = 1, and gij = 0 otherwise. By convention,

gii = 0. The criminals decide how much crime e¤ort to exert. Let x = (x1; : : : ; xn) denote the

population crime pro�le, with xi � 0 being crime e¤ort exerted by criminal i 2 N .
Following Becker (1968), Ballester et al. (2010) assume that criminals trade o¤ the costs and

bene�ts of crime activities when deciding about their crime e¤orts. The expected gains to criminal

i are given by

ui(x; g) = zi(x)| {z }
proceeds

� pi(x; g)| {z }
apprehension

f|{z}
�ne

: (1)

The proceeds zi(x) correspond to the gross crime payo¤s of criminal i. Ballester et al. (2010)

assume that the higher the criminal connections to a criminal and/or the higher the involvement in

criminal activities of these connections, the lower i�s probability to be caught pi(x; g). Furthermore,

for the sake of tractability, they restrict attention to the following expressions:

zi(x) = ximax

8<:1� �
nX
j=1

xj ; 0

9=; ; (2)

4Ballester et al. (2010) focus on petty crimes and therefore consider delinquents rather than criminals. In the

present paper, we consider criminal networks.
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pi(x; g) = p0ximax

8<:1� �
nX
j=1

gijxj ; 0

9=; ; (3)

where � > 0 is the global substitutability parameter, � > 0 is the local complementarity parameter,

and p0 is the marginal probability of being caught for an isolated criminal. It is assumed that, at

an equilibrium x�,

1� �
nX
j=1

x�j � 0 and 1� �
nX
j=1

gijx
�
j � 0: (4)

Then, by substituting zi(x) and pi(x; g) given in (2) and (3) into ui(x; g) given in (1), we get the

following utility function5 of criminal i:

ui (x; g) = (1� �)xi � �
nX
j=1

xixj + ��
nX
j=1

gijxixj ; (5)

where � = p0f is the marginal expected punishment cost for an isolated criminal. We assume that

� < 1.

The Bonacich centrality and Nash equilibrium Let Gk = [g
[k]
ij ] denote the kth power of

G, where k 2 N , keeping track of the indirect connections in the network. In particular, G0 = I.

Every coe¢ cient g[k]ij � 0 measures the number of walks of length k � 1 in g between i and j, where
a walk of length k � 1 between i and j is a sequence (i0; : : : ; ik) of players such that i0 = i, ik = j,

ip 6= ip+1 and gipip+1 = 1 for all 0 � p � k � 1.

De�nition 1 Consider a network g with adjacency n-square matrix G and a scalar a � 0 such

that the matrix

M(g; a) = [mij(g; a)] = [I� aG]�1 =
+1X
k=0

akGk

is well de�ned and nonnegative. Hence, the coe¢ cients mij(g; a) =
+1X
k=0

akg
[k]
ij count the number of

walks in g that start at i and end in j, where walks of length k are weighted by ak.

(i) The vector of Bonacich centralities of parameter a in g is

b(g; a) = [I� aG]�1 � 1;
5The crime network game of Ballester et al. (2010) is developed by using the network model of Ballester et

al. (2006) to the case of criminal networks. Ballester et al. (2006) consider the utility function ui(x1; :::; xn) =

�xi � 1
2
(� � )x2i � 

nP
j=1

xixj + �
nP
j=1

gijxixj . Hence, we have the following parameterization: � = 1 � �, � = ��,

 = � = �.
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where 1 is the n-dimensional vector of ones6. Hence, the Bonacich centrality of node i given by

bi(g; a) =

nX
j=1

mij(g; a)

counts the total number of walks in g that start at i, where walks of length k are weighted by ak.

Note that bi(g; a) � 1, with equality when a = 0.
(ii) The vector of weighted Bonacich centralities of parameter a in g is

bw(g; a) = [I� aG]�1 �w

with w = (w1; :::;wn)T .

Let b (g; a) denote the sum of the Bonacich centralities of all criminals, i.e.,

b (g; a) =

nX
i=1

bi (g; a) :

Denote � = ��=� and let �(g) be the spectral radius of the adjacency matrix G.

Ballester et al. (2006) show that if ��(g) < 1, then there exists a unique Nash equilibrium

x�S = (x
�
S;1; : : : ; x

�
S;n)

T , which is interior, and given by

x�S =
(1� �)b (g; �)
� [1 + b (g; �)]

.

Hence, the aggregate crime level x�S =
Pn
i=1 x

�
S;i is equal to

x�S =
(1� �) b (g; �)
� [1 + b (g; �)]

.

2.2 Dynamic Setting

We extend the static game previously described to a dynamic setting. Time is continuous and

denoted by t 2 [0;1). Let y(t) � 0 denote the aggregate stock of wealth which is legally produced
and x(t) =

Pn
i=1 xi(t) the aggregate crime rate in the economy at t. The intertemporal relationship

between y(t) and x(t) is captured by the following di¤erential equation:

_y(t) = �y(t)� x(t); y(0) = y0 � 0, (6)

with � > 0 denoting the implicit growth rate of total wealth and y0 the initial level of total wealth

in the economy. Crime is assumed to be wealth-reducing. The idea behind (6) is that criminal

6More precisely, b(g; a) is obtained from Bonacich centrality (Bonacich, 1987) by an a¢ ne transformation and

b(g; a) = 1+ k(g; a) with k(g; a) being Katz prestige measure (Katz, 1953). In the literature, Bonacich centrality is

also called Katz-Bonacich centrality, as the measure is due to both authors.
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activities such as robberies and tax evasion have a negative impact on the accumulation of total

wealth in the economy. Clearly, in the absence of crime, the growth rate of total wealth in the

economy is strictly positive; otherwise, it can be negative (or nil).

Criminal i�s objective functional is given by

Ji =

1Z
0

e�rtui(x1; :::; xn; g)dt,

with ui(x1; :::; xn; g) de�ned in (5) and r > 0 being the discount rate. Criminal i seeks to maximize

Ji w.r.t. xi subject to (6).

At each t, criminals, after observing y(t), decide how much e¤ort to make, taking as given

the e¤orts of the other criminals. Our equilibrium concept is Markov Perfect Equilibrium (MPE).

Speci�cally, we adopt the closed-loop (feedback) Nash equilibrium: criminals condition their crime

e¤ort only on the current state variable, which summarizes the entire history of the game. This

restriction captures the notion that bygones are bygones (see Başar and Olsder, 1995; Dockner et

al., 2000; Maskin and Tirole, 2001).7 Note that, a priori, equilibrium crime e¤orts can be either

increasing or decreasing in y. Formally, strategies are of the form xi (t) =  i(t; y(t)), where  i is a

decision rule specifying a level of crime e¤ort for criminal i for any t and observed y.

The restrictions imposed on closed-loop strategies are given in the following de�nition.8

De�nition 2 A n-tuple of closed-loop strategies ( 1; :::;  n) is said to be admissible if (i = 1; :::; n)

(i) xi (t) =  i (t; y (t)) is well de�ned for all t � 0
(ii) the function t! xi (t) =  i (t; y (t)) is measurable

(iii)  i (t; 0) = 0

(iv) the initial value problem
�
y(t) = �y(t) �

nP
i=1

 i (t; y (t)) ; y (0) = y0 > 0; has a unique

solution.

Property (iii), in particular, requires that criminal i makes zero e¤ort if total wealth in the

economy is nil. Indeed, a necessary condition for crime to exist is that total wealth in the economy

is strictly positive.

Let  � be a n-tuple of admissible closed-loop strategies, and  ��i be the (n � 1)-tuple of
admissible closed-loop strategies  �j , with j = 1; :::; n, j 6= i.

7By de�nition, history dependent strategies, such as trigger strategies, are ruled out.
8Similar restrictions are common in the di¤erential game literature (e.g., Dockner and Sorger, 1996; Benchekroun,

2003, 2008; Colombo and Labrecciosa, 2015).
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De�nition 3 The n-tuple  � constitutes a Markov Perfect Equilibrium (MPE) if, for every possible

initial condition (y0; t0):

Ji( 
�) � Ji( i; 

�
�i) for all i = 1; :::; n

for any closed-loop strategy  i such that ( i; 
�
�i) is an admissible n-tuple of closed-loop strategies.

Within the set of closed-loop strategies, in line with the bulk of the literature, we restrict

attention to strategies of the symmetric and stationary type. The game is symmetric as the discount

rate and the time horizon are common to all criminals, their ability to a¤ect the evolution of the state

is identical, and criminals�instantaneous payo¤s and feasible sets take the same form. Strategies

are of the stationary type due to the structure of the game: the equation of motion is autonomous,

and the instantaneous payo¤s as well as the feasible sets do not explicitly depend on time.9

3 MPE and Bonacich Centrality

In this section, we derive the MPE (unique in the class of strategies considered) and, in the same

spirit as Ballester et al. (2006), study the relationship between the MPE and the vector of Bonacich

centralities for general networks. In order to derive MPE strategies, we adopt the value function

approach. Let Vi(y) denote criminal i�s value function, representing the discounted value of the

stream of utilities (5) for a game that starts at y. By standard arguments (see Starr and Ho, 1969),

MPE strategies must satisfy the following Hamilton-Jacobi-Bellman (HJB) equations (i = 1; :::n):

rVi(y) = max
xi�0

(
ui(xi; 

�
�i; g) + V

0
i (y)

"
�y � xi �

nP
j=1;j 6=i

 �j (y)

#)
, (7)

where V 0i (y) = @Vi(y)=@y denotes the nonnegative shadow price of total wealth for criminal i.

Maximization of the RHS of (7) yields the following necessary and su¢ cient (given the concavity

of ui) condition:
@ui(xi; 

�
�i; g)

@xi
� V 0i (y) = 0.

Let y
;i
be the value of y such that  i(y) = 0, and yi the value of y such that V

0
i (y) = 0. The

nonnegativity constraint on  i(y(t)) implies that  i(y) = 0 for all y � y
;i
, and the nonnegativity

constraint on V
0
i (y) implies that V

0
i (y) = 0 for all y � yi, with i = 1; :::; n. We label all players

i = 1; ::; n according to their values y
;i
such that y

(k)
of player (k) does not exceed y

(k+1)
of player

9Note that stationarity alone is not su¢ cient to rule out equilibria involving non stationary strategies. However,

as pointed out in Dockner et al. (2000), non stationary equilibria are of less interest and therefore they are generally

not considered in economic applications.
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(k + 1) for all k = 1; ::; n � 1, i.e., we have y
(1)
� y

(2)
� � � � � y

(n)
. In order for strategies to be

admissible (as de�ned in De�nition 2) and induce a trajectory of aggregate crime that converges

to a (locally) stable steady state, we make the following assumptions, which we will maintain

throughout.

Assumption 1 y
;i
> 0 for all i = 1; :::; n.

Assumption 2 The solution to the initial value problem
�
y(t) = �y(t)�

nP
i=1

 i (y (t)), y(0) = y0 2

(y
(n)
; yimin), is bounded from below by y

(n)
and from above by yimin , where imin = argmini2N yi.

Assumptions 1 and 2 are required for conditions (iii) and (i) in De�nition 2, respectively, to be

satis�ed. Moreover, Assumption 1 is required for the existence of a (locally) stable steady state,

while Assumption 2 is required for that steady state to belong to the interval (y
(n)
; yimin).

We focus on the interval y
(n)

< y < yimin where all criminals are active and play nondegenerate

Markovian strategies (i.e., strategies that depend on the current state variable). Given the linear-

quadratic structure of the game, we guess a value function of the form

Vi(y) = Ai
y2

2
+Biy + Ci )

@Vi(y)

@y
= Aiy +Bi � 0,

and consider (stationary) linear feedback strategies

 i(y(t)) = �iy(t) + �i � 0,

where �i and �i are constants the depend on the parameters of the model. The linearity of  i(y(t))

ensures that the initial value problem
�
y(t) = �y(t) �

nP
i=1

 i (y (t)) = (� �
Pn
i=1 �i)y(t) �

Pn
i=1 �i;

y(0) = y0 > 0 has a unique solution, thus satisfying condition (iv) in De�nition 2.

Theorem 1 The matrixM(g; �) = [I��G]�1 is well-de�ned and nonnegative if and only if ��(g) <
1. Assume that this condition holds. Within the class of (stationary) linear feedback strategies, there

exists a unique MPE given by the n-tuple  �, with

 � = x�S �
bV0 (g; �)

� [1 + b (g; �)]
for y

(n)
< y < yimin

where

x�S =
(1� �)b (g; �)
� [1 + b (g; �)]

,

and b (g; �) and bV0 (g; �) are the vector of Bonacich centralities of parameter � in g and the

vector of weighted Bonacich centralities of parameter � in g, with weights V0 = (V
0
1 ; :::; V

0
n)
T =

(A1y +B1; :::; Any +Bn)
T , respectively.

10
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Theorem 1 establishes that for y
(n)

< y < yiminthere exists a MPE characterized by crime

e¤orts which are strictly positive and lower than their static counterparts for all criminals. This

implies that the assumptions speci�ed in (4), which have to hold in the static game, also hold in

our dynamic game.

The reason why Theorem 1 focusses on the interval (y
(n)
; yimin) is twofold. Firstly, for y � y

(n)
,

the nonnegativity constraint on the control variable of all criminals i such that y � y
i
becomes

binding and, therefore, these criminals abstain from committing crime (for these criminals, the

shadow price of total wealth in the economy turns out to be higher than the marginal bene�t

from committing crime, 1� �). This is in contrast with the static game studied in Ballester et al.

(2006, 2010), in which aggregate e¤ort is always strictly positive. An equilibrium involving active

and inactive criminals would need to be constructed sequentially by solving a series of di¤erential

equations with constants of integration such that the value function of each criminal is continuously

di¤erentiable. In general, in the presence of inactive players, the equilibrium strategies of active

players are complicated nonlinear functions. In order to keep the analysis analytically tractable, we

then restrict our attention to levels of y in excess of y
(n)
. Secondly, for y � yimin , the nonnegativity

constraint on the shadow price of total wealth in the economy for all criminals i such that y � yi

becomes binding (for these criminals, total wealth in the economy is so high that the dynamic

constraint plays no role). Constructing a MPE for y � yimin would require checking that no

criminal has an incentive to deviate from their linear strategy (recall that in the interval (y
(n)
; yimin)

criminals play linear strategies). Consider, for instance, a network structure in which there are only

two types of criminals, Type 1 and Type 2, with y
;1
> y

;2
. In the interval (y

;2
; y
;1
), by de�nition,

V
0
2 (y) = 0 < V

0
1 (y). If y belongs to this interval, it has to be checked that Type 1 criminal has

no incentive to move away from the linear strategy  �1 and plays instead an impulse control that

instantaneously brings y back to y
;2
. If Type 1 criminal does have an incentive to move away from

the linear strategy  �1, levels of y in excess of y;2 are not sustainable.
10 In order to avoid possible

discontinuities in the value functions, we then restrict our attention to levels of y below yimin .

The next two remarks are about the relationship between MPE and Bonacich centrality.

Remark 1 Unlike in the static game studied in Ballester et al. (2006, 2010), the vector of equi-

librium crime e¤orts,  �, is not necessarily proportional to the the vector of Bonacich centralities,

b (g; �).

10A similar result can be found in Benchekroun et al. (2014) in the context of a linear quadratic di¤erential game

of oligopoly exploitation of a common-pool renewable resource assumed to grow according to a linearized logistic

function with �rms having di¤erent marginal costs of extraction.
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Remark 2 When V 0i = V 0 for all i = 1; :::; n, since bV0 (g; �) = V 0b (g; �),  � given in Theorem 1

becomes

 � =
(1� � � V 0)b (g; �)

� [1 + b (g; �)]
.

In this case, as in the static game studied in Ballester et al. (2006, 2010), the vector of equilibrium

crime e¤orts is proportional to the vector of Bonacich centralities; if V 0i = V 0 = 0 for all i = 1; :::; n

then  � corresponds to x�S given in Theorem 1.

Corollary 1 below characterizes aggregate crime as a function of total wealth in the economy.

Corollary 1 The MPE aggregate crime level is given by

x� = x�S

�
1� 1

1� �
bV0 (g; �)

b (g; �)

�
for y

(n)
< y < yimin

where

x�S =
(1� �) b (g; �)
� [1 + b (g; �)]

, (8)

and bV0 (g; �) and b (g; �) are the sum of the coordinates of the vector of weighted Bonacich central-

ities of parameter � in g, with weights V0 = (V
0
1 ; :::; V

0
n)
T = (A1y+B1; :::; Any+Bn)

T , and the sum

of the coordinates of the vector of Bonacich centralities of parameter � in g, respectively.

Corollary 2 below characterizes aggregate crime as a function of time.

Corollary 2 Take y0 2 (y(n); yimin). The MPE trajectory of aggregate crime is given by

x� (t) = x�S

�
1� bA (g; �) y

� (t) + bB (g; �)

(1� �) b (g; �)

�
,

where

y� (t) = by + (y0 � by) exp �t��+ bA (g; �)

� [1 + b (g; �)]

��
,

and by = (1� �) b (g; �)� bB (g; �)
�� [1 + b (g; �)] + bA (g; �)

2 (y
(n)
; yimin),

and bA (g; �) and bB (g; �) are the sum of the coordinates of the vector of weighted Bonacich central-

ities of parameter � in g with weights A =(A1; :::; An)
T and the sum of the coordinates of the vector

of weighted Bonacich centralities of parameter � in g with weights B =(B1; :::; Bn)T , respectively.

The MPE trajectory of aggregate crime converges to bx = �by as t!1 provided that

�+
bA (g; �)

� [1 + b (g; �)]
< 0.

12
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A necessary condition for the steady-state equilibrium to be stable is that bA (g; �) < 0, which

implies that bV0 (g; �) = bA (g; �) y + bB (g; �) is decreasing in y. Hence, recalling from Corollary 1

that x� is decreasing in bV0 (g; �), stability of the steady-state equilibrium implies that aggregate

crime is increasing in y. Our theory then predicts that, ceteris paribus, higher (resp. lower) levels

of aggregate crime should be observed in richer (resp. poorer) economies.

Aggregate crime as a function of time is depicted in Figure 1.

Figure 1: MPE trajectory of aggregate crime

6

-
t

x�(t)

bx

y0 > by

y0 < by

x�(0)

x�(0)

0

In the remainder of this section, we provide two illustrative examples of Corollaries 1 and 2.

Example 1. Consider a regular network11 with n � 2 criminals, each having the same degree d.12

Routine calculations lead to

bi (g; �) =
1

1� d� ,

which implies that

b (g; �) =
n

1� d� .

From (8) and given � = ��=�, it follows that

x�S =
n (1� �)

� (1 + n)� d�� .

11A network is regular if each of its nodes has the same degree, i.e., the same number of connections.
12 It can be easily checked that, for regular networks, the condition ��(g) < 1 is satis�ed when � < 1=d.
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Next, we verify that, for regular networks, bV0 (g; �) = V 0b (g; �) and therefore (from Corollary 1)

x� = x�S

�
1� V 0

1� �

�
.

By de�nition, bV0;i (g; �) =
Pn
j=1mij(g; a)V

0
j , where [mij(g; a)] = [I � aG]�1. Regular networks

imply that V
0
j = V 0 for all j = 1; :::; n. Hence, bV0;i (g; �) = V 0

Pn
j=1mij(g; a). Given that

bi (g; �) =
Pn
j=1mij(g; a), it follows that bV0;i (g; �) = V 0bi (g; �) and that bV0 (g; �) = V 0b (g; �).

Maximization of the RHS of (7) yields

 � =
1� � � V 0

� (1 + n)� d�� . (9)

For each criminal, we guess a value function of the form V = Ay2=2 +By + C. Using (7) and (9),

the coe¢ cients of V (for interior solutions) can be obtained by identi�cation:

A =
(r � 2�) [� (1 + n)� d��]2

2 [�n2 � (n� 1) d��] , (10)

B =
(� � 1) (r � 2�)

�
�
�
n2 + 1

�
� (n� 1) d��

�
2� [�n2 � (n� 1) d��] , (11)

and

C =
(B + � � 1)

�
�
�
Bn2 + � � 1

�
�B (n� 1) d��

�
r [� (1 + n)� d��]2

.

We have A < 0 since r�2� < 0 and �n2� (n� 1) d�� > 0 by Assumptions 1 and 2, and B > 0,

since � � 1 < 0. Note that A < 0 implies that  �i is increasing in y.

The MPE aggregate crime can be written as

x� = x�S

�
1� Ay +B

1� �

�
for y

(n)
< y < yimin ,

with A and B given in (10) and (11), respectively. By using the de�nitions of y
i
and yi, it can be

easily checked that y
i
= y = (1� � �B)=A > 0 and yi = y = �B=A > 0 for all i = 1; :::; n. It can

also be easily checked that y � y = (� � 1) =A > 0.

The MPE trajectory of aggregate crime is given by (for y0 2 (y; y))

x�(t) = x�S

�
1� Ay�(t) +B

1� �

�
,

where

y�(t) = by + (y0 � by) exp �t��+ An

� (1 + n)� d��

��
, (12)

with by being the value of y that solves
�y = x�S

�
1� Ay +B

1� �

�
,
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that is by = n (1� � �B)
An+ � [� (1 + n)� d��] ,

with A and B previously de�ned. Aggregate crime increases (resp. decreases) over time if y0 <(resp.

>)by. (12) corresponds to y�(t) given in Corollary 2. Indeed,
bA (g; �)

� [1 + b (g; �)]
=

An

� (1 + n)� d�� ,

since bA (g; �) = An=(1� d�), with � = ��=�. Moreover, we have

bx = x�S

�
1� Aby +B

1� �

�
,

which corresponds to bx given in Corollary 2 since, for regular networks, bA (g; �) = Ab (g; �) and

bB (g; �) = Bb (g; �).

Example 2. As a second illustrative example, consider the star network g in Figure 2.

Figure 2: Star network

Let � = � = 1 and � = 0:05, implying that � = 0:05.13 Moreover, let � = 1 and r = 0:001.

Routine calculations lead to b1 (g; �) = 1:4834 and bi (g; �) = 1:0742 with i = 2; :::; 10. It follows

that b (g; �) = 11:1509 and that x�S = 0:8718.

In order to compute x� we need bV0 (g; �). Performing the maximization indicated in (7) leads

to the following value functions (for interior solutions):

V1 = A1y
2=2 +B1y + C1,

and

Vi = Aiy
2=2 +Biy + Ci,

with i = 2; :::; 10, where A1 = �1:1603, B1 = 0:9580, C1 = 7:8871, Ai = �1:2037, Bi = 0:9593,

and Ci = 7:1271. Hence, V 01 = �1:1603y + 0:9580, V 0i = �1:2037y + 0:9593, and bV0 (g; �) =

10:6947� 13:3582y. From Corollary 1, we then get x� = �0:0083 + 1:0994y.
13 It can be easily checked that �(g) = 1:15, therefore the condition ��(g) < 1 is satis�ed.
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The MPE trajectory of aggregate crime is given by

x�(t) = �0:0083 + 1:0994y�(t),

where

y�(t) = 0:084 + (y0 � 0:084) exp[�0:0994t], (13)

for y0 2 (0:0083; 0:7969), which is the interval of y where all criminals are active and play non-
degenerate Markovian strategies. It can be easily checked that (13) corresponds to y�(t) given

in Corollary 2. If y0 <(resp. >)0:084, aggregate crime increases (resp. decreases) over time; as

t!1, aggregate crime converges to 0:084.

4 Comparative Dynamics

In this section, we conduct a comparative dynamic analysis with respect to the network size, the

network density,14 and the marginal expected punishment. First, we evaluate how aggregate crime

responds in the neighborhood of a given initial stock of total wealth (short-run impact). Second,

we evaluate how aggregate crime responds at the steady-state equilibrium (long-run impact). We

also study the impact of an increase in the implicit growth rate of total wealth in the economy on

the rate of growth.

4.1 Network Size and Density

In the static game studied in Ballester et al. (2010), aggregate crime is increasing in either network

size or density or both, a feature often referred to as social multiplier e¤ect. In the absence of

dynamic considerations, policies aimed at reducing aggregate crime should be designed so as to

reduce the number of criminals or the number of links or both. In our dynamic game, instead,

things are more involved, and a social multiplier e¤ect does not necessarily exist.

Consider two networks, g with associated adjacency matrix G and g0 with associated adjacency

matrix G0, with g � g0 (meaning that g0 contains either more criminals n or more links or both).

Formally: for all i; j; g0ij = 1 if gij = 1. Recall that b (g; �) counts the total number of weighted

walks in g. Hence, b (g; �) is an increasing function in g (for the inclusion ordering), as more links

14The density of a network is a relative fraction of possible links that are present in the network. In other words,

it is the average degree of all n nodes in the network divided by n� 1.
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imply more such walks. Call15 �x�S = x�S(g
0)� x�S(g). We have

�x�S =
(1� �) b (g0; �)
� [1 + b (g0; �)]

� (1� �) b (g; �)
� [1 + b (g; �)]

=
(1� �)

�

�
[1 + b (g)] b (g0; �)� [1 + b (g0; �)] b (g; �)

[1 + b (g0; �)] [1 + b (g; �)]

�
,

implying that

�x�S
s
= [1 + b (g)] b

�
g0
�
�
�
1 + b

�
g0
��
b (g) = b

�
g0
�
� b (g) > 0,

where s
= means same sign as.

4.1.1 Short-run impact

Call �x� = x�(g0)� x�(g) and de�ne

! (g; �) =
bV0 (g; �)

b (g; �)
� 0.

For y0 2 (maxfy(n)(g); y(n)(g
0)g;minfyimin(g); yimin(g

0)g), we have16

x�(g) = x�S(g)

�
1� ! (g; �)

1� �

�
.

It follows that the total e¤ect of an increase in the number of criminals, or the number of links,

or both, can be decomposed into the sum of two e¤ects, a static e¤ect, which is positive, and a

dynamic e¤ect, the sign of which is a priori ambiguous:

�x� = �x�S|{z}
static e¤ect

+
! (g; �)x�S(g)�! (g0; �)x�S(g0)

1� �| {z }
dynamic e¤ect

.

�x� can be rewritten as

�x� = x�S(g
0)

�
1� ! (g0; �)

1� �

�
� x�S(g)

�
1� ! (g; �)

1� �

�
.

Clearly, when ! is decreasing in g, �x� s
= �x�S > 0 since x

�
S(g

0) >x�S(g) and 1�! (g0; �) =(1��) >
1 � ! (g; �) =(1 � �). When instead ! is increasing in g, it is possible that �x� < 0. Take, for

instance, ! (g0; �)! 1� � and ! (g0; �) > ! (g; �). It follows that lim!(g0;�)!1���x� = �x�S(g)[1�
! (g; �) =(1� �)] < 0.

The above discussion leads to the following proposition.

15 In this subsection and Section 5, we add explicitly g and g0 to the notation of aggregate crime, as we compare

the aggregate crime in di¤erent networks.
16A priori, the order relationships between y

(n)
(g) and y

(n)
(g0) and between yimin(g) and yimin(g

0) are ambiguous.
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Proposition 1 Take y0 2 (maxfy(n)(g); y(n)(g
0)g;minfyimin(g); yimin(g

0)g). If ! (g0; �) < ! (g; �)

then �x� > 0. However, if ! (g0; �) > ! (g; �) then it is possible that �x� < 0.

A necessary condition for ! (g0; �) > ! (g; �) is bV0 (g0; �) > bV0 (g; �), since b (g0; �) > b (g; �). Then,

a social multiplier e¤ect does not necessarily exist when the sum of shadow prices of total wealth

in the economy is higher in network g0 than in network g. In the next two examples, we show that,

counterintuitively, an increase in the number of criminals, or the number of links, can lead to a

decrease in aggregate crime (in the neighborhood of a given y0).

Example 1 (continued). For regular networks, the function ! (g; �) reduces to V 0 = Ay + B,

with A and B given in (10) and (11), respectively. Let n = � = 5, d = 2, � = 1, and � = 0:3.

Moreover, let � = 1 and r = 0:001. It follows that V 0 = �7:0467y0 + 0:7282 and that x�(g) =
�0:0048+1:1984y0. Consider now a network g0 resulting from an increase in d from 2 to 4, leading

to V 0 = �6:8971y0 + 0:7288 and x�(g0) = �0:005 + 1:1974y0. Setting y0 = by(g) = 0:0241, at t = 0,
we get

x�(g00) =

8<: 0:0241 for g00 = g with d = 2

0:0239 for g00 = g0 with d = 4

In the static game, instead,

x�S(g
00) =

8<: 0:1191 for g00 = g with d = 2

0:1215 for g00 = g0 with d = 4

This example shows that, unlike in the static game, more connected criminals can be associated

with lower aggregate crime.17

Example 2 (continued). Consider the network g0 resulting from adding one periphery criminal

to the network g depicted in Figure 2. The total number of periphery criminals increases from 9 to

10. Criminal 1 remains the centre of the star. The total number of criminals then increases from

10 to 11. Routine calculations lead to b1 (g0; �) = 1:5385 and bi (g0; �) = 1:0769 with i = 2; :::; 11.

It follows that b (g0; �) = 12:3077 and x�S(g
0) = 0:8786. Performing the maximization indicated in

(7) leads to the following value functions (for interior solutions):

V1 = A1y
2=2 +B1y + C1,

and

Vi = Aiy
2=2 +Biy + Ci,

17Note that V 0jd=4;y0=0:05 = 0:383 90 > V 0jd=2;y0=0:05 = 0:375 84.
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with i = 2; :::; 11, where A1 = �1:1402, B1 = 0:9565, C1 = 6:5605, Ai = �1:1844, Bi = 0:9576,

and Ci = 5:9203. Hence, V 01 = �1:1402y0 + 0:9565, V 0i = �1:1844y0 + 0:9576, and bV0 (g0; �) =

11:7837 � 14:5093y0. From Corollary 1, we then get x�(g0) = �0:0069 + 1:0903y0.18 Recall that
x�(g) = �0:0083 + 1:0994y0. Let y0 = 0:4. It follows that aggregate crime at t = 0 is given by

x�(g00) =

8<: 0:4315 for g00 = g with n = 10

0:4292 for g00 = g0 with n = 11

and

x�S(g
00) =

8<: 0:8718 for g00 = g with n = 10

0:8786 for g00 = g0 with n = 11

This example shows that, unlike in the static game, more criminals can be associated with lower

aggregate crime.19

4.1.2 Long-run impact

Denote �by = by(g0)� by(g), where by(g) is implicitly given by
�by(g) = x�S(g)

�
1� ! (g; �)

1� �

�
. (14)

The RHS of (14) is increasing in y (since ! (g; �) is decreasing in y) and intersects the LHS of (14)

from below (for stability of the steady state). Take y0 = by(g). Hence, �x� >(resp. <) 0 implies
that �by <(resp. >) 0. Clearly, if �x� > 0, which occurs, for instance, when ! (g0; �) < ! (g; �),

then x�(g0) > �y. Consequently, x�(g0) intersects �y at a point to the left of by(g).
From Corollary 2, we know that by and bx are positively correlated. Hence, we can write the

following proposition.

Proposition 2 Take y0 = by(g). If �x� >(resp. <) 0 then �bx <(resp. >) 0.
18The interval of y where all criminals are active and play nondegenerate Markovian strategies is (0:0069; 0:80847).
19Note that bV0 (g0; �)jn=11;y0=0:4 = 5: 980 > bV0 (g; �)jn=10;y0=0:4 = 5:351. bV0 (g0; �) > bV0 (g; �) is a necessary

condition for ! (g0; �) > ! (g; �).
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The case �bx < 0 in Proposition 2 is illustrated in Figure 3.

Figure 3: Comparative steady-state analysis with y0 = by(g)

6

-������
yy0 = by(g)by(g0)

bx(g)
x�(g0)jy0

bx(g0)

x�; �y

x�(g)

�y

0

�C

�A

�B

x�(g0)

As can be seen in Figure 3, there exists a trade-o¤ between short and long run: aggregate crime

increases in the short run and decreases in the long run. Starting from point A, aggregate crime

moves up to point B, then down to point C (moving along x�(g0)). Indeed, when �bx < 0 a social
multiplier e¤ect exists only in the short run.

A numerical example of the case �bx > 0 is provided below.
Example 1 (continued). For a regular network with n = � = 5, � = 1, � = 0:3, � = 1 and

r = 0:001, the trajectories of aggregate crime are given by

x�(g00; t) =

8<: 0:0241 + (1:1984y0 � 0:0289) exp[�0:1984t] for g00 = g with d = 2

0:0253 + (1:1974y0 � 0:0303) exp[�0:1974t] for g00 = g0 with d = 4

Clearly, as t ! 1, aggregate crime converges to 0:0241 with d = 2 and to 0:0253 with d = 4.

Therefore, in line with the static game, long-run aggregate crime is lower with d = 2 than with

d = 4. However, as previously shown in Example 1, for t = 0 and y0 = 0:0241, in contrast with the

static game, aggregate crime is higher with d = 2 than with d = 4. This implies that, for the given

parameter values, the trajectories of aggregate crime with d = 2 and d = 4 intersect.

A �nal remark is in order. Proposition 2 establishes that if y0 = by(g) then the long-run response
of an increase in the number of criminals, or the number of links, or both, is the opposite in sign
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to the short-run response. Nevertheless, if y0 6= by(g) we can have either an increase or a decrease
in aggregate crime, not only in the short run but also at the steady state. The case of a decrease

in aggregate crime is illustrated in Figure 4 as well as in the numerical example below.

Figure 4: Comparative steady-state analysis with y0 6= by(g)
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-������ ��
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Starting from point A, aggregate crime moves down �rst to point B, then to point C (moving along

x�(g0)).

Example 2 (continued). For a star network with � = � = 1, � = 0:05, � = 1 and r = 0:001, the

trajectories of aggregate crime are given by

x�(g00; t) =

8<: 0:084 + (1:0994y0 � 0:0923) exp[�0:0994t] for g00 = g with n = 10

0:0761 + (1:0903y0 � 0:0829) exp[�0:0903t] for g00 = g0 with n = 11

Clearly, as t ! 1, aggregate crime converges to 0:084 with n = 10 and to 0:0761 with n = 11.

Therefore, in contrast with the static game, long-run aggregate crime is higher with n = 10 than

with n = 11. Moreover, in contrast with the static game, as previously shown in Example 2 for

t = 0 and y0 = 0:4, aggregate crime is higher with n = 10 than with n = 11. This implies that

more criminals are associated with a lower aggregate crime both in the short and the long run.
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4.2 Marginal Expected Punishment

In the static game studied in Ballester et al. (2010), the impact of � on x�S can be decomposed into

the sum of a direct and an indirect e¤ect as follows:

@x�S
@�

=

�
� x�S
1� �

�
| {z }
direct e¤ect

+

�
@x�S
@�

�

�

�
| {z }

(static) indirect e¤ect

where
@x�S
@�

=
(1� �)

� [1 + b (g; �)]2
@b (g; �)

@�
> 0.

The direct e¤ect is negative, whereas the (static) indirect e¤ect is positive, implying that the impact

of � on x�S is ambiguous.

4.2.1 Short-run impact

The short-run impact of � on x� is given by (for interior solutions)

@x�

@�
=

�
� x�S
1� �

�
| {z }
direct e¤ect

+

�
@x�S
@�

�

�

�
| {z }+

static indirect e¤ect

�
@x�S
@�

�

�

!

� � 1 +
x�S
� � 1

@!

@�

�
| {z }

dynamic indirect e¤ect

=

�
� x�S
1� �

�
| {z }
direct e¤ect

+
@x�S
@�

�

�

�
1� !

1� �

�
+

x�S
� � 1

@!

@�| {z }
total indirect e¤ect

While the static indirect e¤ect is always positive, the total indirect e¤ect can be negative. Indeed,

it is easy to verify that the total indirect e¤ect is negative if

@x�S
@�

�

�
(1� � � !) < x�S

@!

@�
. (15)

Letting Ekf(z; k) = [k=f(z; k)]@f(z; k)=@k denote the elasticity of f(z; k) with respect to k, (15)

can be rewritten as
E�!

E�x
�
S

>
1� � � !

!
. (16)

Clearly, a necessary condition for (16) to hold is that ! be increasing in � (since the RHS of (16)

and E�x�S are both positive). When ! is decreasing in �, the total indirect e¤ect has the same

sign as the static indirect e¤ect, i.e., it is positive. In this case, as in the static game analyzed

in Ballester et al. (2010), the impact of � on aggregate crime is ambiguous. When instead ! is

increasing in �, the total indirect e¤ect is negative. In this case, an increase in � unambiguously

leads to a decrease in aggregate crime.

The above discussion leads to the following proposition.
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Proposition 3 If E�!=E�x�S > (1� � � !)=! then @x�=@� < 0.

When the dynamic indirect e¤ect is positive (resp. negative), we have @x�=@� >(resp. <)@x�S=@�.

Assume that @x�=@� > @x�S=@�. There are two cases in which the sign of one derivative implies

the sign of the other. If @x�=@� < 0 then @x�S=@� < 0; if @x
�
S=@� > 0 then @x

�=@� > 0. Assume

now that @x�=@� < @x�S=@�. There are two cases in which the sign of one derivative implies the

sign of the other. If @x�S=@� < 0 then @x
�=@� < 0; if @x�=@� > 0 then @x�S=@� > 0. Interestingly,

the qualitative impact of � on aggregate crime in the static and the dynamic model may di¤er:

when @x�=@� > @x�S=@� we can have @x
�=@� > 0 together with @x�S=@� < 0; when, instead,

@x�=@� < @x�S=@� we can have @x
�=@� < 0 together with @x�S=@� > 0.

In what follows, we provide two numerical examples illustrating the possible divergence between

the static and the dynamic model in terms of impact of � on aggregate crime.

Example 1 (continued). Consider an increase in parameter � from 0:01 to 0:02 within a regular

network. Let n = 5, d = 4, � = 0:1, � = 0:8, � = 1, r = 0:001, and y0 = 1:8447. At t = 0, aggregate

crime is given by

x� =

8<: 1:8447 for � = 0:01

1:7994 for � = 0:02

In the static game, instead,

x�S =

8<: 8:7148 for � = 0:01

9:1418 for � = 0:02

In this example, an increase in the expected marginal punishment leads to a decrease in aggregate

crime in the dynamic game and to an increase in aggregate crime in the static game.

Example 2 (continued). Consider an increase in parameter � from 0:01 to 0:02 within a star

network. Let n = 10, � = � = 0:1, � = 1, r = 0:001, and y0 = 0:8623. At t = 0, aggregate crime is

given by

x� =

8<: 0:8623 for � = 0:01

0:8629 for � = 0:02

In the static game, instead,

x�S =

8<: 9:0152 for � = 0:01

8:9402 for � = 0:02

In this example, an increase in the expected marginal punishment leads to an increase in aggregate

crime in the dynamic game and to a decrease in aggregate crime in the static game.
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4.2.2 Long-run impact

Denote

F = �y � x�S
�
1� ! (g; �)

1� �

�
.

By implicit di¤erentiation, we have

dby
d�

= �@F=@�
@F=@y

=

� x�S
1� �

�
1 +

@!

@�

�
+
@x�S
@�

�

�

�
1� !

1� �

�
�+

x�S
1� �

@!

@y

.

Since

�+
x�S
1� �

@!

@y
< 0

is required for the stability of the steady state, it follows that

dby
d�

s
= �@x

�

@�
.

From Corollary 2, we know that by and bx are positively correlated. Hence, we can write the following
proposition.

Proposition 4 Take y0 = by(g). If @x�=@� >(resp. <) 0 then dbx=d� <(resp. >) 0.
Proposition 4 is illustrated in the two examples below.

Example 1 (continued). For a regular network with n = 5, d = 4, � = 0:1, � = 0:8, � = 1, and

r = 0:001, the trajectories of aggregate crime are given by

x�(t) =

8<: 1:8447 + (1:1967y0 � 2:2076) exp[�0:1967t] for � = 0:01
2:0786 + (1:1937y0 � 2:4812) exp[�0:1937t] for � = 0:02

Clearly, as t!1, aggregate crime converges to 1:8447 with � = 0:01 and to 2:0786 with � = 0:02.
Therefore, in line with the static game, long-run aggregate crime is higher with � = 0:02 than with

� = 0:01. However, as previously shown in Example 1, for t = 0 and y0 = 1:8447, in contrast with

the static game, aggregate crime is lower with � = 0:02 than with � = 0:01. This implies that,

for the given parameter values, the trajectories of aggregate crime with � = 0:01 and � = 0:02

intersect.

Example 2 (continued). For a star network with n = 10, � = � = 0:1, � = 1, and r = 0:001, the

trajectories of aggregate crime with � = 0:01 and � = 0:02 are given by

x�(t) =

8<: 0:8623 + (1:0994y0 � 0:9481) exp[�0:0994t] for � = 0:01
0:8567 + (1:0994y0 � 0:9419) exp[�0:0994t] for � = 0:02
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Clearly, as t!1, aggregate crime converges to 0:8623 with � = 0:01 and to 0:8567 with � = 0:02.
It is immediate to check that, for y0 = 0:8623, which was previously considered in Example 2, short

run aggregate crime is lower with � = 0:01 than with � = 0:02. This implies that, for the given

parameter values, the trajectories of aggregate crime intersect.

4.3 Implicit Growth Rate and Voracity E¤ect

In this subsection, we investigate the possibility that an increase in the implicit growth rate of

total wealth in the economy (e.g. a productivity gain) lowers economic growth, i.e., whether

a voracity e¤ect (see Tornell and Lane, 1999) arises. Formally, a voracity e¤ect exists when

@( _y� (t) =y� (t))=@� < 0. Note that, in the absence of crime, _y� (t) =y� (t) = �, therefore a vo-

racity e¤ect never arises. The question addressed in this subsection is new in the network theory

literature. In this respect, the focus of this subsection is di¤erent from that of the previous sub-

sections, which was on the comparison between the static and the dynamic impact of an increase

in the number of criminals or links (or both), or an increase in the marginal expected punishment.

Let ��(t) = _y� (t) =y� (t). Take y0 2 (y(n); yimin). From Corollary 2, we obtain:

_y�(t) = (y0 � by)��+ bA (g; �)

� [1 + b (g; �)]

�
exp

�
t

�
�+

bA (g; �)

� [1 + b (g; �)]

��
.

It follows that the rate of growth of y�(t) can be written as

��(t) =

(y0 � by)��+ bA (g; �)

� [1 + b (g; �)]

�
exp

�
t

�
�+

bA (g; �)

� [1 + b (g; �)]

��
by + (y0 � by) exp �t��+ bA (g; �)

� [1 + b (g; �)]

�� .

Di¤erentiating ��(t) with respect to � and evaluating the derivative at t = 0 gives

@��(t)

@�

����
t=0

= �y0 [1 + b (g; �)] (y0 � by)�� [1 + b (g; �)] + @bA (g; �)

@�

�
�f�� [1 + b (g; �)] + bA (g; �)g

@by
@�
,

which can be simpli�ed to

@��(t)

@�

����
t=0;y0=by = �f�� [1 + b (g; �)] + bA (g; �)g

@by
@�
, (17)

after setting y0 = by. Since the expression in curly brackets in (17) is negative (for stability of the
steady state) we have

@��(t)

@�

����
t=0;y0=by

s
=
@by
@�
.

We can then state the following proposition.
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Proposition 5 Take y0 2 (y(n); yimin). If t is su¢ ciently close to zero and y0 is su¢ ciently close
to by, @��(t)=@� < 0, i.e., there exists a voracity e¤ect.

The intuitive explanation for the occurrence of a voracity e¤ect is that the indirect e¤ect of an

increase in total crime, which, given the wealth-reducing nature of crime, is negative, outweighs

the direct positive e¤ect of an increase in �. Consequently, an increase in the implicit growth rate

of total wealth in the economy depresses economic growth.20 In the remainder of this subsection,

we provide two numerical examples.

Example 1 (continued).We reconsider the same parameter values as those previously considered

in Example 1: n = � = 5, d = 2, � = 1, � = 0:3, � = 1 and r = 0:001. For these parameter values,

the steady state of total wealth in the economy is given by by = 0:024. We now increase parameter
� from 1 to 1:1. The steady state of total wealth in the economy becomes by = 0:022. Clearly,

the rate of growth of total wealth in the economy with y0 = 0:024 and t = 0 drops from zero to a

negative value.

Example 2 (continued). We reconsider the same parameter values as those previously considered

in Example 2: n = 10, � = � = 1, � = 0:05, � = 1 and r = 0:001. For these parameter values,

the steady state of total wealth in the economy is given by by = 0:084. We now increase parameter
� from 1 to 1:1. The steady state of total wealth in the economy becomes by = 0:0767. Clearly,

the rate of growth of total wealth in the economy with y0 = 0:084 and t = 0 drops from zero to a

negative value.

5 Key Player

In this section, building on Ballester et al. (2006, 2010), we study the problem of identifying the

optimal target in the population of criminals when the planner�s objective is to minimize aggregate

crime at each point in time. Let g�i denote the network resulting from removing criminal i from

network g, and let x�(g�i; t) denote the level of aggregate crime associated with network g�i at

time t 2 [0;1). Take y0 such that all criminals in g and g�i are active and play nondegenerate
Markovian strategies for all i = 1; ::; n and all t 2 [0;1).

From Corollary 2, the trajectory of aggregate crime in g�i for t 2 [0;1) is given by

x�(g�i; t) = x�S (g�i)

�
1� bA (g�i; �) y

� (g�i; t) + bB (g�i; �)

(1� �) b (g�i; �)

�
,

20A similar result can be found in a number of related papers (e.g., Tornell and Lane, 1999; Long and Sorger, 2006;

Van der Ploeg, 2011). However, to our knowledge, it has never been derived in the context of criminal networks.
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where

x�S (g�i) =
(1� �) b (g�i; �)
� [1 + b (g�i; �)]

,

and

y� (g�i; t) = by (g�i) + [y0 � by (g�i)] exp �t��+ bA (g�i; �)

� [1 + b (g�i; �)]

��
,

with by (g�i) = (1� �) b (g�i; �)� bB (g�i; �)
�� [1 + b (g�i; �)] + bA (g�i; �)

being the corresponding (locally stable) steady-state level of y.

The planner�s problem is to remove the criminal who is associated with the largest drop in

aggregate crime at each t. Formally:

max fx�(g; t)� x�(g�i; t)j i = 1; :::; ng = min fx�(g�i; t)j i = 1; :::; ng

= min

�
x�S (g�i)

�
1� 1

1� �
b�V0 (g�i; �)

b (g�i; �)

����� i = 1; :::; n� , 8t 2 [0;1),
with b�V0 (g�i; �) = bA (g�i; �) y

� (g�i; t) + bB (g�i; �). We denote with i� the solution to the above

problem.

In the static game, where A = B = 0, the planner�s problem becomes

min fx�S (g�i)j i = 1; :::; ng ,

which is equivalent to

min fb (g�i; �)j i = 1; :::; ng ,

since x�S (g�i) is increasing in b (g�i; �). We denote with i
�
S the solution to the static problem. From

Ballester et al. (2006, 2010), we know that i�S is the criminal with the highest intercentrality of

parameter � in g, de�ned as

ci (g; �) = b (g; �)� b (g�i; �) =
bi (g; �)

2

mii (g; �)
,

where mij (g; �) are the coe¢ cients of M(g; �) = [I� �G]�1 =
P1
p=0 �

pGp counting the number of

walks from i to j with walks of length p being discounted by �p. As pointed out in Ballester et

al. (2006, 2010), the intercentrality measure ci (g; �) is equal to the sum of i�s Bonacich centrality

and i�s contribution to every other player�s Bonacich centrality. Keeping bi (g; �) �xed, ci (g; �)

decreases with the proportion of i�s Bonacich centrality due to self-loops, mii (g; �) =bi (g; �).

In our dynamic game, things are more involved, and maximizing ci (g; �) (or, equivalently,

minimizing b (g�i; �)) does not necessarily lead to the largest drop in aggregate crime. Keeping

b�V0 (g�i; �) �xed, x�(g�i; t) is still increasing in b (g�i; �). However, the removal of player i from g

is not only captured by b (g�i; �), but also by b�V0 (g�i; �), which negatively impacts x�(g�i; t).
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Theorem 2 (i) A necessary (but not su¢ cient) condition for i� 6= i�S is

b�V0

�
g�i�S ; �

�
b
�
g�i�S ; �

� <
b�V0 (g�i; �)

b (g�i; �)
,

for some i 6= i�S. (ii) A su¢ cient (but not necessary) condition for i
� = i�S is

b�V0

�
g�i�S ; �

�
> b�V0 (g�i; �) ,

for all i 6= i�S.

Theorem 2 establishes that the key player in the static and the dynamic game may di¤er, either

temporarily or ad in�nitum (since b�V0 changes over time). Moreover, in the dynamic game, the

key player in the short run and the long run are not necessarily the same. In the remainder of this

section, we provide an illustrative example of the possible divergence between the key player in the

static and the dynamic game and between the key player in the short and the long run.

Example 3. Consider the network g in Figure 5 (see Ballester et al., 2006, 2010).

Figure 5: Bridge network with eleven criminals

As can be seen in Figure 5, there are three types of players, Type 1 (Player 1), Type 2 (Players

2,6,7,11) and Type 3 (Players 3,4,5,8,9,10). Let � = � = 1 and � = 0:2, implying that � = 0:2.21

Moreover, let � = 1 and r = 0:001. Table (T1) below gives the Bonacich and the intercentrality

measures together with the sum of the coordinates of the vector of weighted Bonacich centralities

of parameter � in g�i, with weights V0 = (A1y� (g�i; t)+B1; :::; Any� (g�i; t)+Bn)T (i.e., evaluated

along the equilibrium trajectories of y resulting from permanently removing criminal i from g) for

21� = 0:2 is consistent with Ballester et al. (2006, Table I) and Ballester et al. (2010, Table I).
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the three types of players.

Player Type bi ci b�V0 (g�i; �)

1 8:3333 41:6670 40:4108� 56:0280y� (g�1; t)
2 9:1667 40:3337 41:4853� 57:4950y� (g�2; t)
3 7:7778 32:6670 47:6837� 65:9152y� (g�3; t)

(T1)

where

y� (g�1; t) = 0:0817 + (y0 � 0:0817) exp [�0:0986t] ,

y� (g�2; t) = 0:0811 + (y0 � 0:0811) exp [�0:0986t] ,

and

y� (g�3; t) = 0:0818 + (y0 � 0:0818) exp [�0:0986t] .

The trajectories of aggregate crime associated with g�1, g�2, and g�3 are given by

x� (g�1; t) = 0:0817 + (1:0986y0 � 0:0898) exp [�0:0986t] ,

x� (g�2; t) = 0:0811 + (1:0986y0 � 0:0891) exp [�0:0986t] ,

and

x� (g�3; t) = 0:0818 + (1:0986y0 � 0:0898) exp [�0:0986t] ,

respectively. Using the de�nitions of y
i
and yi, we can compute the admissible interval of y where

all criminals in g, g�1, g�2, and g�3 are active and play nondegenerate Markovian strategies. This

interval is given by (0:01096; 0:70771). For any y0 2 (0:01096; 0:70771), aggregate crime converges
to 0:0817 in g�1, to 0:0811 in g�2, and to 0:0818 in g�3 as t ! 1. Clearly, in the long run,
the key player is Type 2. This is in contrast with Ballester et al. (2006, 2010), in which the key

player is Type 1, the one with the highest intercentrality. It can be checked that for some y0 the

trajectories of aggregate crime intersect. Take, for instance, y0 = 0:0815. Aggregate crime in g�1

and g�3 is increasing, whereas aggregate crime in g�2 is decreasing over time. For t 2 [0; 0:95),
we have x� (g�3; t) < x� (g�1; t) < x� (g�2; t). This implies that, initially, the key player is Type

3. At t = 0:95, we have x� (g�3; t) = x� (g�1; t) = x� (g�2; t). For t 2 (0:95;1), instead, we have
x� (g�2; t) < x� (g�1; t) < x� (g�3; t). Hence, after the initial phase where the key player is Type 3,

the key player becomes Type 2. Interestingly, Type 1, who is the key player in the static game, is

never the key player in the dynamic game (see Figure 6 below, where x� (g�1; t), x� (g�2; t), and
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x� (g�3; t) are indicated with xwithout1, xwithout2, and xwithout 3, respectively).

Figure 6: Key player over time

It can be checked that the necessary condition for i� 6= i�S given in Theorem 2 is satis�ed. Indeed,

for t 2 [0;1), we have
b�V0 (g�1; �)

b (g�1; �)
<
b�V0 (g�3; �)

b (g�3; �)
,

where b�V0 (g�i; �) is given in Table (T1) and b (g�i; �) = b (g; �)� ci (g; �), with i = 1; 3.

6 Concluding Remarks

In this paper, we have taken a novel approach, namely, a di¤erential game approach, to the study

of criminal networks, with the aim to reconsider some results derived in the static literature, and

to answer a new set of questions related to the network structure and its impact on the evolution

of crime.

The existing literature on criminal networks abstracts from dynamic intertemporal considera-

tions. Both the bene�ts and the costs of crime for criminals are assumed to be static, thus precluding

the analysis of important topics such as the impact of network structure on the evolution of crime

and the relationship between productivity shocks, crime and growth. Besides theoretical interest,

these topics have real-world relevance and their understanding is of paramount importance for

designing e¤ective policies.
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An established result in the static literature is that the vector of Nash equilibrium crime e¤orts

is proportional to the vector of Bonacich centralities. We have challenged this result by showing

that such an established proportionality between the Nash equilibrium and the Bonacich centrality

does not hold in general in a dynamic setting.

One of the key lessons that can be drawn from the static literature on criminal networks is

the existence of a social multiplier e¤ect: networks with a higher number of criminals or links or

both are associated with higher levels of aggregate crime. This lesson is valid as long as time does

not play any role. Indeed, our dynamic analysis, which, to our knowledge, is novel in the network

theory literature, has shown that more criminals or more connected criminals or both may lead to

the counterintuitive opposite result, i.e., a decrease in aggregate crime. This holds true not only

in the short run, but also at the steady state. Intuitively, the intertemporal cost of committing

crime, which our dynamic framework is able to capture, may increase as a result of an increase in

either network size or network density or both to such an extent that aggregate crime is reduced.

Conditions exist under which forward looking criminals anticipate that an increase in network size

or density or both will lead to an increase in crime by all the other criminals, and, therefore, to a

decrease in total wealth in the economy. Consequently, given symmetry, each criminal will �nd it

optimal to decrease their own crime e¤orts (since equilibrium crime e¤orts are increasing in total

wealth), leading to an equilibrium in which aggregate crime is lower.

Another lesson that can be drawn from the static literature on criminal networks is that the

impact of an increase in the marginal expected punishment on aggregate crime can be either positive

or negative (or nil) depending on the interplay between two e¤ects, namely, a direct and an indirect

e¤ect. Our dynamic analysis has shown that, together with these (static) e¤ects, there exists also a

dynamic e¤ect, which, in some cases, outweighs the static e¤ects, thus profoundly changing policy

recommendations aimed at reducing aggregate crime.

In this paper, we have also highlighted the presence of a voracity e¤ect, occurring when the

implicit growth rate of total wealth in the economy is increased and, as a consequence of that,

economic growth is reduced. This �nding points to the counterintuitive conclusion that, in the

presence of crime, positive productivity shocks may have a detrimental e¤ect on economic growth.

Finally, we have reconsidered the problem of identifying the key player in the network, i.e., the

player who, if removed, leads to the largest drop in aggregate crime. A well-known result in the

static literature is that the key player is the player with the highest intercentrality measure, de�ned

as the di¤erence between the sum of Bonacich centralities in the original network and the sum of

Bonacich centralities in the network without the removed player. We have shown that conditions
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exist under which the key player in the static and the dynamic setting di¤er: the key player in the

dynamic setting is not necessarily the player with the highest intercentrality measure. We have also

shown that the key player in the dynamic setting may change over time. The policy implication of

this �nding is that it might be optimal for a planner seeking to minimize aggregate crime at each

point in time to remove (through imprisonment) some criminals up to a certain point, at which they

should be reintegrated into society. From this point onwards, other criminals should be removed,

either temporarily or ad in�nitum, depending on the speci�c network structure and the parameter

values.
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Appendix A. Proof of Theorem 1

For the proof of the necessary and su¢ cient condition for [I � �G]�1 to be well-de�ned and non-

negative, see the proof of Theorem 1 in Ballester et al. (2006).

By standard arguments (see Starr and Ho, 1969), MPE strategies must satisfy the following

HJB equations (i = 1; :::n):

rVi(y) = max
xi�0

(
ui(xi; 

�
�i; g) + V

0
i (y)

"
�y � xi �

nP
j=1;j 6=i

 �j (y)

#)
,

where V 0i (y) = @Vi(y)=@y denotes the shadow price of total wealth for criminal i. Assuming that

��(g) < 1, maximization of the RHS of the above HJB implies that22

[�I+ �U� ��G] � = (1� �)1�V0,

where U is the n-square matrix of ones, or equivalently,

 � = [�I+ �U� ��G]�1
�
1� � �V0� ,

where V0 = (V 01 ; :::; V
0
n)
T .

Recall that � = ��=�. Since U � =  �1, where  � =
Pn
i=1  

�
i , then

�[I� �G] � = [1� � � � �]1�V0,

and

� � = [1� � � � �] [I� �G]�11�[I� �G]�1V0.

Using the de�nitions of b (g; �) and bV0 (g; �), we obtain

� � = [1� � � � �]b (g; �)�bV0 (g; �) ,

and since  � = 1T � it follows that, at an interior solution,

 � =
(1� �)b (g; �)�bV0 (g; �)

� [1 + b (g; �)]
.

Hence, we have

 �i =
(1� �) bi (g; �)� bV0;i (g; �)

� [1 + b (g; �)]
,

which, using x�S;i given in Theorem 1, can be rewritten as

 �i = x�S;i

�
1� 1

1� �
bV0;i (g; �)

bi (g; �)

�
,

where bV0;i (g; �) is the i� th coordinate of the vector bV0 (g; �), with V0 = (V
0
1 ; :::; V

0
n)
T = (A1y +

B1; :::; Any +Bn)
T .

22This solution represents a maximum since the expression in curly brackets in (7) is concave in xi.
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Appendix B. Proof of Corollary 1

From  � in Theorem 1, for interior solutions, we get

1T � =
(1� �)1Tb (g; �)� 1TbV0 (g; �)

� [1 + b (g; �)]
,

implying that

x� =
(1� �) b (g; �)�bV0 (g; �)

� [1 + b (g; �)]
= x�S

�
1� 1

1� �
bV0 (g; �)

b (g; �)

�
,

where

x�S =
(1� �) b (g; �)
� [1 + b (g; �)]

.

Appendix C. Proof of Corollary 2

The trajectory of y is the solution to the following �rst-order linear di¤erential equation

_y(t) = �y(t)� x�S
�
1� bA (g; �) y (t) + bB (g; �)

(1� �) b (g; �)

�
,

with initial condition y(0) = y0 2 (y(n); yimin). Routine calculations lead to y
� (t) given in Corollary

2. We have limt!1 y� (t) = by provided that �+ bA (g; �) =f�[1+ b (g; �)]g < 0. The trajectory of x,
x� (t), can be computed from x� given in Corollary 1 by evaluating bV0 (g; �) = bA (g; �) y+bB (g; �)

at y = y� (t).

Appendix D. Proof of Theorem 2

By de�nition, i�S is such that x
�
S

�
g�i�S

�
< x�S (g�i) and b

�
g�i�S ; �

�
< b (g�i; �), for all i 6= i�S .

Moreover, we have

x�
�
g�i�S

�
= x�S

�
g�i�S

�241� 1

1� �
b�V0

�
g�i�S ; �

�
b
�
g�i�S ; �

�
35 .

(i) A necessary (but not su¢ cient) condition for x�
�
g�i�S

�
> x� (g�i) is

1� 1

1� �
b�V0

�
g�i�S ; �

�
b
�
g�i�S ; �

� > 1� 1

1� �
b�V0 (g�i; �)

b (g�i; �)

which simpli�es to

b�V0

�
g�i�S ; �

�
b
�
g�i�S ; �

� <
b�V0 (g�i; �)

b (g�i; �)
.
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(ii) x�
�
g�i�S

�
< x� (g�i) if

b�V0

�
g�i�S ; �

�
b
�
g�i�S ; �

� >
b�V0 (g�i; �)

b (g�i; �)
.

A su¢ cient (but not necessary) condition for the above inequality to hold is

b�V0

�
g�i�S ; �

�
> b�V0 (g�i; �) .
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