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Abstract

Spatial regression models rely on simultaneous autoregressive processes that
model spatial or cross-sectional dependence between cross-sectional obser-
vations using a weight matrix. A criticism of applied spatial regression
methods is that reliance on geographic proximity of observations to form
the weight matrix that specifies the structure of cross-sectional dependence
might be unrealistic in some applied modeling situations. In cases where the
structure of dependence or connectivity between (cross-sectional) observa-
tions arises from non-spatial relationships, spatial weights are theoretically
unjustifiable. Some literature addresses the structure of dependence between
observations by introducing geographic proximity as well as other types of
non-spatial proximity, resulting in a model that utilizes multiple weight ma-
trices. Each set of weights reflect a different type of dependence specified
using linear combinations of observations defined by alternative characteris-
tics. The multiple weight matrix approach results in a simultaneous autore-
gressive process that poses a number of challenges for parameter estimation
and model interpretation.

We focus on literature that relies on a single connectivity matrix con-
structed from a convex combination of multiple matrices, each of which re-
flects a different type of dependence or interaction structure. The advantage
of this approach is that the resulting simultaneous autoregressive process is
amenable to conventional spatial regression estimation algorithms as well as
methods developed for interpretation of estimates from these models. Esti-
mates of the scalar parameters used to form the convex combination of the
weight matrices can be used to produce an inference regarding the relative
importance of each type of dependence.

KEYWORDS: Markov Chain Monte Carlo estimation, Taylor series
approximation, log-marginal likelihood, multiple weight matrices.

1 Introduction

Spatial regression models typically rely on spatial proximity or Euclidean
distance between observations to specify the structure of simultaneous de-
pendence between observations. For example, neighboring regions that have
common borders with each region are defined as those on which each obser-
vation is dependent. Alternatively, dependent observations for each region
can be defined as a function of inverse distance to other observations, per-
haps up to some cut-off distance. However, this is often viewed as restrictive



and inappropriate in applications where spatial proximity or distance is the-
oretically unjustifiable as a basis for the underlying dependence structure of
the simultaneous autoregressive process (Corrado and Fingleton, 2012). This
criticism is most relevant when spatial regression models are used in broader
contexts to model spatial phenomena involving interregional flows of goods
or population, knowledge transmission between regions, or non-spatial phe-
nomena such as student peer groups or social networks. In these scenarios,
the spatial location of observations may not be theoretically appealing as a
basis for the underlying structure of dependence between observations.

A simultaneous autoregressive process models variation in an N x 1 vari-
able vector y using other observations in the vector y. An N x N matrix W is
used to define specific observations on which each observation is dependent.
The matrix W has zeros on the diagonal to prevent an observation from be-
ing dependent on itself, and is typically row-normalized to have row-sums of
one. This type of normalization aids with interpretation of the model, allow-
ing us to compare the magnitude of scalar dependence parameter estimates
arising from models specified with alternative definitions of the matrix W.
A simultaneous autoregressive process specifies a relationship between the
vector of observations in y and the N x 1 vector Wy, resulting from the
product of the N x N matrix with the N x 1 vector y. The relationship
takes the form: y = pWy + &, where the scalar parameter p defines the
strength of dependence between the N x 1 vector y and N x 1 vector Wy.
In the case of row-normalized W, the relationship is between observations
in the vector y and a linear combination of observations on which each ob-
servation is dependent. The N x 1 vector € is a stochastic disturbance term,
typically assumed to be normally distributed with zero mean and a scalar
variance, 02. We focus on maximum likelihood-based estimation procedures
where normality is important, but alternative estimation methods, such as
the generalized method of moments do not require normally distributed dis-
turbances. In situations where the dependence structure in the matrix W
is defined based on spatial aspects of a sample of observations located in
space, we can label this a spatial autoregressive process.

One can also define a simultaneous autoregressive process involving the
model disturbances, for example, y = uty +u, u = AWwu+¢ where the scalar
uw= E(y), tny is an N x 1 vector of ones, and u is a N x 1 set of disturbances.
Here, the disturbances exhibit dependence on disturbances from other obser-
vations identified by the matrix W, with the strength of dependence defined
by the scalar parameter A. Generally, simultaneous autoregressive processes
model outcomes (y) or disturbances (u) as related to a linear combination of
other observations defined by the dependence structure. This could involve



a scenario where each observation is possibly dependent on a different num-
ber of observations in the dependence set, with possibly different weights
assigned to each of these sets of dependent observations.

Simultaneous autoregressive processes can be used to extend ordinary
regression models, producing specifications such as: y = pWy + X5 + ¢,
which has been labeled a spatial autoregressive model (SAR), where X is an
N x K matrix of explanatory variables and € an N x 1 vector of normally
distributed zero mean, constant variance disturbances. Of course, this type
of model specification can be viewed more generally as a simultaneous au-
toregressive model when the application involves non-spatial observations.
Another spatial regression specification is the spatial error model (SEM),
y=XB+u,u=AWu+ e, where the N x 1 vector of disturbances u follow
a spatial autoregressive process. Matrix-vector products such as Wy, Wu
are referred to as spatial lags, and we can also use a matrix-matrix prod-
uct WX to create spatial lags of the K explanatory variables of the model.
In the case of non-spatial W matrices, we label these simultaneous lags,
where Wy, Wu, WX simply reflect linear combinations of observations from
the dependence set of observations. These reflect a linear combination of
explanatory variables from dependent observations specified by the matrix
W. These additional explanatory variables can enter the spatial regression
model: y = pWy+ X5+ W X6+ ¢, which has been labeled a spatial Durbin
model (SDM). In a spatial setting where the dependence structure reflects
nearby or neighboring regions, this model indicates that explanatory vari-
able values of neighboring regions may help explain variation in own-region
outcomes reflected in the y—vector. More generally, in situations where the
matrix W reflects non-spatial dependence relations, the set of explanatory
variables defined by W X have been labeled contextual variables, reflecting
the notion that a linear combination of explanatory variables from observa-
tions in the dependence set describe a context that may impact outcomes in
the vector y.

One important issue in the spatial regression literature concerns the
appropriateness of the connectivity matrices W to define the underlying si-
multaneous autoregressive process. An intuitive motivation for reliance on
non-spatial weight matrices arises naturally when one considers that spatial
dependence relies on the notion of Euclidean distance or spatial proximity
to define observations in the dependence set. Euclidean distance can be gen-
eralized to define a dependence set of observations based on other metrics.
For example, Pace et al. (2000) propose a model for prices of homes sold
that occur at irregular points in space and time, generalizing distance to
include relative locations in time. Related work by Pace et al. (2002) relied



on generalized distances that considered the number of bedrooms and bath-
rooms (of nearby homes) to specify the structure of dependence between
the selling prices of homes, with the motivation that appraisers determine
selling price estimates based on homes comparable in these two metrics.

Once we open the door to non-spatial metrics as a way to specify de-
pendence between cross-sectional observations, a host of issues arise, which
are discussed in LeSage and Pace (2011), and Debarsy and LeSage (2018a).
Blankmeyer et al (2011, p.94) point out that “a single weight matriz, based
on a multivariate similarity criterion (generalized distance) requires a norm
to prevent scale differences from influencing the weight placed on the various
measures of similarity. (This is unlike the case of spatial proximity where
Euclidian distance provides a natural scaling)”.

1.1 Multiple connectivity matrices

An approach that avoids relative scaling issues involves extensions of the
SAR specification to include more than one spatial lag (see, among others
Badinger and Egger, 2011; Lacombe, 2004; Lee and Liu, 2010; Elhorst et al.,
2011).

These models extend our SAR specification to include multiple spatial
or simultaneous lags, each one based on a different connectivity matrix, in
an effort to capture different types of dependence between cross-sectional
observations using the simultaneous autoregressive specification. The addi-
tional simultaneous lags of the dependent variable vector y have been labeled
‘higher-order’ terms, with this type of extended SAR model shown in Eq.
(1), where L simultaneous lag terms are introduced.

L
y = (ZpeWe>y+XB+6 (1)
=1

In Eq. (1), y is an NV x 1 vector of dependent variable outcomes, X is an
exogenous N x K explanatory variables matrix, with 8 the associated K x 1
parameters, pp,f = 1,---, L are scalar dependence parameters measuring
the strength of each type of dependence modeled by the N x N dependence
matrices Wy, =1,--- , L.

1.2 Convex combinations of multiple weight matrices

LeSage and Pace (2011) point notably to a number of estimation issues
that arise for higher-order models of the type in Eq. (1). In addition,
Elhorst et al. (2011) point to estimation complications that arise relating to



the parameter space for the dependence parameters ps,£ = 1,---, L. The
parameter space for p; depends on values taken by the other parameters
pj,J =2,---,L, and similarly, the parameter space for p» depends on values
taken by p1,p;,7 = 3,...,L, and so on. They provide a solution based on
a trigonometric approach to this problem for the case of two W —matrices,
that would allow maximum likelihood estimation to be carried out. However,
they note that extension of their approach to models containing more than
two weight matrices becomes increasingly difficult in situations where the
number of weight matrices increases.

An alternative approach that relies on convex combinations of different
dependence matrices to form a single weight matrix, was first explored by
Pace and LeSage (2002). They proposed use of a model shown in Eq. (2),
where a convex combination of multiple NV x N primitive spatial basis matri-
ces B i =1...p, each based on a differing sequence of individual doubly
stochastic nearest neighbor weight matrices is used to form a single weight
matrix, W, = >-%_, ;B (©) The model parameters are subject to restrictions
set forth in (3) and (4). (A doubly stochastic matrix is one whose rows and
columns sum to unity.) This leads to a spatial autoregressive model in Eq.

(2).

y = pWey+XB+e (2)
P

W = 3 ant
i=1
0<a;<lyi=1...p (3)
P
d ai=1 (4)
i=1

The model specification in Eq. (2) overcomes the interpretation prob-
lem noted for the higher-order spatial autoregressive model because the
estimates for the parameters > _; a; = 1 can be used to draw inferences re-
garding the relative importance of the different spatial basis matrices B in
the model. It also remedies the problem regarding the parameter space for p
because W, is a row-normalized weight matrix when individual weight matri-
ces B@ are row-normalized, which is of course true of the doubly stochastic
weights B(Y). We note that a convex combination of row-normalized weight
matrices is also row-normalized. This means the parameter space for p would
obey the standard lower and upper bounds of 1/umin, and 1, where gy, is
the smallest eigenvalue of the matrix W,. In typical estimation algorithms



for spatial autoregressive models the value of 1/, is set to —1, since this
ensures that the matrix inverse: (I — pW.)~! exists, and avoids the need
to calculate the minimum eigenvalue of the N x N weight matrix W..

Hazir et al. (2018) extend this approach to the more general case of
a convex combination of L row-normalized N x N weight matrices based
on alternative underlying dependence sets for the N observations reflected
by underlying matrices Wy, so that W (T') = Zle ~eWy, with 0 < 44 <
1,0 =1...L, ZEL:1 7 =1land I' = (71, ...,7). The resulting convex
combination of underlying weight structures, W,(I'), can be used to specify
dependence between N observations based on a convex combination of L
different types of dependence between observations. The scalar parameters
~¢ indicate the relative importance assigned to each type of dependence in
the cross-sectional dependence scheme. The two sets of constraints imposed
reflect the fact that this approach relies on a convex combination. When
each Wy, £ =1, --- | L, is row-normalized, then W,(I") obeys the conventional
row-normalization, avoiding the need to re-normalize the matrix for new
values of I'. We note that the approach based on a convex combination
of weight matrices also avoids the issue of scaling for different metrics that
arises for generalized measures of distance by casting the problem as one
of relative distance/proximity, inherent in conventional spatial regression
weight matrices.

To estimate the model parameters p, 3,T', 02, Hazir et al. (2018) pro-
pose evaluating the likelihood numerous times over a grid of values for the
parameters vy, ¢ = 1... L, and using the vector of parameters (that we de-
note f) associated with the highest likelihood function value as point esti-
mates for these parameters. For example, in the case of two weight matrices
where we have values of 71 and v2 = (1 — 71), they would define a grid of
values for 74 = 0,0.1,0.2,...,1, and perhaps refine the grid based on an
initial estimate from the course grid of (say) 0.2 to be a grid defined over
0.19,0.20,0.21,...,0.29. The value of 4; from this grid of values would be
used in the second step of the estimation procedure. The second step would
produce estimates for the other parameters p, 3 , 62 along with measures of
dispersion for these parameters by simply fixing the parameters I and gen-
erating Wo(I) = 3.W1 + %2Wa + ... + 4.Wr. Treating W.(I') as fixed,
conventional maximum likelihood algorithms are used to estimate p, 3, o>
and associated measures of dispersion. This approach has the virtue of sim-
plicity, since it allows use of conventional maximum likelihood estimation
software to estimate the parameters I' in the first step, and the parameters
p, 3,02 in the second step. An undesirable aspect of this approach is the



lack of dispersion estimates for the point estimates of the parameters I on
which to draw inferences regarding whether individual +, parameters are
significantly different from zero.

1.3 Bayesian estimation of convex combinations of weight
matrix models

To overcome the problem of inference regarding individual parameters -y,
Debarsy and LeSage (2018a) propose Markov Chain Monte Carlo (MCMC)
estimation of the SAR model with convex combination of connectivity ma-
trices. MCMC estimation involves sampling for the complete sequence of
conditional distributions of the model parameters. A large sample of draws
from the conditional distribution of each parameter is used to construct the
joint posterior distribution for the model parameters. In the case of only
two weight matrices, I' = (v, (1 —71))’, this involves sampling from the
following sequence of conditional distributions: (p|3,02,71), (B8|p,o2,71),
(c2|p, B,71), and (71|p, B,02). A virtue of MCMC sampling is that the con-
ditional distributions for each parameter given values of all other model
parameters typically takes a simple form that is computationally easy to
sample from. As an example, the conditional distribution for the K x 1 pa-
rameter vector (3|p, o2, vy, takes the form of a K —variate normal distribution
with a mean vector and variance-covariance matrix shown in Egs. (5) and (6)
(when no prior distributions are assigned to the model parameters). When
we assign no prior distributions to the model parameters, MCMC sampling
serves as simply an estimation method for producing parameter estimates
that will be equivalent to those from maximum likelihood estimation. The
motivation for use of MCMC estimation in the case of no Bayesian prior
information is simply to exploit the computationally simple forms taken by
the conditional distributions to make estimation a simpler task than that of
optimizing a likelihood function with respect to a large number of param-
eters. This approach is sometimes labeled simulated maximum likelihood
estimation.

Blp,o*m ~ N(B,Zp)
B = (X'X)'X'lIy — pWe(m)ly (5)
Y = oA(X'X)7! (6)
For the case of only two weight matrices involving the parameter 41 (and

72 = 1 — 1), the conditional posterior for 1 (given 3, p,0%) can be written
as in Eq. (7), where |A| denote the determinant of the matrix A.



p(mlp, B.0%) o |Alexp(—1/207)(Ay — X ) (Ay — X 3) (7)
A = [IN = pWe(m)]

A Metropolis-Hastings (M-H) approach can be used to draw samples
of the parameter ; (see LeSage and Pace, 2009, chap. 5). This involves
comparing the conditional distribution in Eq. (7) based on the current value
of v1 to a proposed value, and accepting or rejecting the proposal according
to the M-H rules. The restriction that 0 < ~«; < 1 is imposed by rejecting
values proposed for «; that do not obey the restriction.

A similar conditional distribution arises for the parameter p, shown in
Eq. (8), which is also amenable to M-H sampling. Here again, the restriction
—1 < p < 1 can be imposed by rejecting proposal values that do not obey
the restriction.

oc | Alexp(—1/20%)(Ay — XB)'(Ay — XB) (8)

p(p|71,ﬁ,02)
A = [In—pWe(mn)]

LeSage and Pace (2009) set forth a random-walk procedure for produc-
ing M-H proposal values for the parameter p, which can also be used for
the parameter ;. Debarsy and LeSage (2018a) actually take a different ap-
proach to sampling the parameters p, 1, labeled a griddy Gibbs sampler by
LeSage and Pace (2009, chap. 5), which should produce equivalent MCMC
draws from which the joint posterior estimates for the parameters ~1, p can
be constructed.

Simple extension of the approach set forth above to cases involving more
than two weight matrices encounters some difficulties. One is that each
parameter ; must be sampled conditional on all other parameters v;, j # ¢.
Another is that the adding up constraint 25:1 v¢ = 1 cannot be imposed
when we treat v;,j # ¢ as known and fixed. Quite simply a proposal value
for +; requires that we would need to adjust vy;, 7 # ¢ to be consistent with
the summing up constraint, which rules out treating these as fixed. Of
course, this issue of the adding up constraint does not arise in the case of
two weight matrices where 72 = (1 — =), since the constraint holds for
all values 0 < ;3 < 1. Further, the Jacobian of the transformation to be
assessed at each pass through the sampler cannot be pre-computed for a
grid of values for p and T

Debarsy and LeSage (2018b) propose an approach that generalizes to
specifications involving more than two matrices. Their approach involves



rewriting the convex combination SAR model presented in Eq. (2) as in
Eq. (9), which they argue has a number of computational advantages. One
advantage is that the parameter vector w isolates the parameters p, v, £ =
1,...,L from sample data matrices. Separating model parameters from vec-
tors and matrices that contain N sample data observations allows calculation
of matrices such as the N x (L + 1) matrix ¢ once, prior to beginning the
MCMC sampling loop. More regarding this later.

gw = XPB+e¢ 9)
g = (y, Wiy, Way, ..., Wry)
1
- 1 ;Y;
v _ (L) Pl oswste-tin
—PVL L

2 Computational issues in estimating convex com-
bination of weights models

Debarsy and LeSage (2018b) point to three computational challenges that
arise for the convex combination of weight matrices model. One is the need
to impose the adding up constraint and the non-negativity requirement for
the parameters Zé::l v¢ = 1, which would require use of a constrained op-
timization algorithm. In the case of MCMC sampling, there is the issue of
sampling a single parameter -; conditional on other parameters v;,j # 1,
while maintaining the adding up constraint and the non-negativity require-
ment. A second is the need to evaluate a log-determinant term that arises in
the likelihood and the conditional distributions for the spatial dependence
parameters (p,I") of the model. The log-determinant depends on both p as
well as the vector of parameters I', so changes in the values of these require
calculation of new values for the log-determinant |A| = [Iy — pW,(I')| on
each parameter draw from the conditional distributions of p,I". A third
problem they note, involves calculating simulated (empirical) measures of
dispersion for the partial derivatives dy/0z used to interpret estimates from
the model. We discuss the nature of these problems in more detail along
with solutions proposed by Debarsy and LeSage (2018b) in the next three
sections.



2.1 MCMC sampling of the parameters I

Debarsy and LeSage (2018b) propose block sampling the entire vector of
parameters I', using a Metropolis-Hastings (M-H) approach. This means
that a vector of all vy parameters, labeled I'? is proposed and either accepted
or rejected using the M-H rule. If rejected, the current vector of all ~,
parameters, labeled I'¢, is retained for the next pass through the MCMC
sampler. The virtue of this block sampling approach is that the proposed
vector I'P can be constructed to ensure the adding up constraint and non-
negativity requirements are met.

M-H sampling requires that we evaluate the conditional distribution for
the parameters I' at the current and proposed values for the vectors I'P, I'°.
Debarsy and LeSage (2018b) show that by integrating out 3 and o2, we can
write the conditional distribution of I' conditioning only on p. As such, the
M-H procedure to accept a new block I'? uses the conditional distribution
of v, assuming p is given or known. An acceptance probability is calculated
based on evaluating the expression shown in Eq. (10) and used to decide if
the proposed vector I'P is accepted as the new set of parameters.

Yy—p(T6TP) = min (1,exp[(log p(I’?|p) — log p(I°|p)]) (10)
log p(T'p) o loglLy — pWe(D)] — 3 logle P (11)

F = (§—XB2)(y— XBa)
Ba = (X'X)"'(X'p)
(12)

We note that F' consists of only sample data, so this expression can be
calculated prior to MCMC sampling, leading to a computationally efficient
expression reflecting a quadratic form: log(w'Fw), that can be easily eval-
uated for any vector of dependence parameters w. Since w involves both p
and I'; we can also sample the conditional distribution for p assuming the
current vector of values I'® is known using the same computationally efficient
expression involving the quadratic form.

Of course, the conditional distribution also involves the log-determinant
log|In — pW,(T")| which depends on both p and the vector I', and needs to
be calculated for any given values of these parameters in order to evaluate
the M-H acceptance probability in Eq. (10), which is the subject of the next
section.
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2.2 An approximation to the log-determinant

Pace and LeSage (2002) set forth a Taylor series approximation for the log-
determinant log|Iy — pW,(I")|, which appears in the conditional distribution
needed to sample both p and the parameters in the vector I'. They show that
for a nonnegative weight matrix We,(I") with eigenvalues fimin > —1, tmax <
1, and 1/pmin < p < 1

gty — (D)) = =30 ) (13)
j=1

~ _ Z pjtr(‘/?c(r)J) (14)
j=1

where tr represents the trace operator. Golub and van Loan (1996, p.566)
provide the expression in Eq. (13), while Pace and LeSage (2002) note that
due to the linearity of the trace operator we have the qth order approxi-
mate expression in Eq. (14). We note that the lst-order trace, tr(W.(I')),
is zero for any convex combination of weight matrices that have zero diag-
onal elements. Since the underlying weight matrices W, have zero diagonal
elements, a convex combination of these will also have this property. The
second-order trace can be computed as in Eq. (15), and there are similar
expressions for higher-order traces shown in Eqgs. (16) and (17). Debarsy
and LeSage (2018b) carry out Monte Carlo experiments to show that esti-
mates based on ¢ = 4th order trace approximation have desirable properties,
including low bias and good coverage of the true parameter values.

L L

r(We(T)?) = D> yiytr(WiW) (15)
i=1 j=1
L L L

w(We(D)?) = D > > vvmwtr(WiW;Wi) (16)
1=1 1=1 k=1

L L L L
tr(W. (D)) = ZZZZ%%%WU(WinWkWH (17)

The computationally desirable aspect of these expressions is that the
parameters -, are separated from the trace calculations involving the N x N
dimensional matrices. This allows the trace calculations to be carried out

11



prior to MCMC sampling draws. During MCMC sampling, new values for
the parameters I' and p are used in conjunction with the pre-calculated
traces to rapidly evaluate the log-determinant term.

2.3 Efficient calculation of partial derivatives for the model

In addition to producing estimates for the underlying model parameters
p,B,T, 02, we need to compute the reduced form of the model to compute
the partial derivatives of y with the relevant exogenous determinant to inter-
pret its effect. For the standard simultaneous autoregressive model, LeSage
and Pace (2009) have derived these partial derivatives and further develop
scalar summary measures to interpret them. For the simultaneous autore-
gressive model with a convex combination of connectivity matrices, the par-
tial derivative of the outcome variable with respect to the 7" determinant
is shown in Eq. (18) while the scalar summary measures, which represent
own- and cross-partial derivatives that they label Eq. direct and Eq. indirect
effects, are shown in Eqgs. (19) and (21).

oy/dz, = =S (W(T)) (18)
Sr(We(D) = (In—pW(I) '8,
= INBr + pWe(D)Br + p*We(T)?B, + ...
M) dgirece = N'r(S,(We(I))) (19)
Mot = 1 S (We(T))en (20)
M (r)indirect = M (P)totat — M () direct (21)

L
WC(F) = Z ’)/gWg
(=1

While expressions in Egs. (19), (20) and (21) produce point estimates
for the scalar summary measures of effects (own- and cross-partial deriva-
tives) used to interpret the impact of changes in explanatory variables on
dependent variable outcomes, we also require measures of dispersion for the
purpose of statistical tests regarding the significance of these effects. Use of
an empirical distribution constructed by simulating the non-linear expres-
sions in Eq. (18) using (say 1,000) draws from the posterior distribution of
the underlying parameters p, B,,v¢,f = 1,...,L is suggested by LeSage and
Pace (2009).

A naive approach to such a simulation-based empirical distribution would
require calculation of the N x N matrix inverse S,(W,.(I")) a large number

12



(say 1,000) times, for varying values of the parameters p, 5,,v,¢ = 1,...,L,
which would be very compute intensive. For the SAR model with only
one connectivity matrix, W, LeSage and Pace (2009) show that the re-
quired quantity for constructing the empirical distribution of the effects is
tr(S,(W)), which can be estimated without a great deal of computational
effort. Debarsy and LeSage (2018b) extend this approach using estimated
traces in conjunction with the four first orders traces evaluated at each pass
through the sampler to approximate the log-determinant term. This allows
the simulation-based empirical distribution of the direct, indirect and to-
tal effects estimates to account for uncertainty in I', the parameters of the
convex combination. It is important to take into account the stochastic
uncertainty that arises as a result of these parameters and the additional
variation /uncertainty they contribute to the effects estimates because ignor-
ing it leads to under-coverage of the other parameters (too narrow standard
errors).

3 Bayesian model averaging for multiple models

The convex combination of weights model specification raises questions re-
garding which weight matrices should be used in these models. For a mod-
eling situation where L weight matrices are considered as candidates for the
model specification, there are M = 2% — L — 1 possible ways to employ two
or more of the L weight matrices in alternative model specifications. When
L =5, we have M = 26 possible models involving two or more weight matri-
ces, and for L = 10, M = 1,013. This makes a method for comparing model
estimates based on alternative combinations of weight matrices an important
issue. Debarsy and LeSage (2018b) take a Bayesian approach to deriving
the log-marginal likelihood for these models. Given the log-marginal likeli-
hood for a model M;, that we denote LogM;, we can calculate its associated
posterior probability, namely prob(M;) = exp(LogM;/ 2?:1 LogM;) (in the
case of @) different models). The highest prob(M;) answers the question —
which model is most consistent with the sample data (y,X, W1, Wa, ..., W)?
— wunconditional on any parameter value/estimates. The answer is uncon-
ditional with respect to the parameter values because the parameters have
been integrated out of the joint likelihood to produce the log-marginal like-
lihood and associated model probabilities.

Debarsy and LeSage (2018b) combine analytical and numerical strategy
to produce estimates of the log-marginal likelihood. This involves analytically
integrating out the parameters 3, o2 from the joint likelihood to produce a

13



joint posterior distribution for the dependence parameters p,I". They then
rely on Metropolis-Hastings guided Monte Carlo integration during MCMC
estimation of the models to produce estimates of log-marginal likelihoods
for each model.

The Bayesian solution to the problem of uncertainty regarding which
model specification is correct involves model averaging, where estimates from
all candidate models are weighted by the posterior model probability. This
means that model averaged estimates incorporate uncertainty regarding the
model parameters as well as uncertainty regarding the model specification.

To illustrate this approach, we use a sample of 856 nursing homes located
in Texas taken from Blankmeyer et al. (2011). They argue that CEO
compensation depends on that of Chief Executive Officers (CEQO’s) from peer
nursing homes, where peers can be defined using alternative weight matrices.
Specifically, we consider a spatial weight matrix based on 3—nearest spatial
neighbors (Wpace), @ size similarity matrix based on three nursing homes
with the most similar square foot area (Ws;..), and a payroll similarity
matrix constructed from the three nursing homes with the most similar
payroll magnitudes (Wpqy). We note that peer nursing homes defined using
the size and payroll measures could be located anywhere in the state of
Texas, which comprises the sample of 856 nursing homes.

The explanatory variables are the share of medicaid and private pay pa-
tients, the occupancy rate, and dummy variables indicating for-profit nursing
homes and nursing homes that are part of a chain operation. Blankmeyer et
al (2011) indicate these are criterion on which the executive board evaluates
the CEOs managerial performance.

Given L = 3 different candidate weight matrices, we have M = 4 possible
models involving two or more weight matrices. The log-marginal likelihoods,
model probabilities and estimates for the parameters p, y1, y2,v3 are shown
in Table 1 for the M = 4 possible models, along with Bayesian model aver-
aged estimates (BMA).

The highest model probability of 0.659 points to Model 3 that includes
Wpayron (three most similar payroll peers) and Wy;.. (square foot area size-
based peers), placing no weight on the model that includes Wypqee (the
3—nearest spatial neighboring nursing homes). The second highest log-
marginal likelihood value is associated with Model 1 that has a model
probability of 0.196 and includes Wipeee and Wigyron only, excluding the
area-based size peers Wy;,.. The BMA estimates will be based on MCMC
draws from Model 1, Model 3, and Model 4 which have non-zero poste-
rior probabilities (0.196, 0.659, 0.145), respectively. These are reported in
Table 2.
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Table 1: Model probabilities for models involving two or more weight ma-
trices

Models LOgM Prob P 71, Wspace 2, Wpayroll 73, Wsize
Model 1 —455.822 0.196 0.506 0.102 0.898 —
Model 2 —560.499 0.000 0.144 0.363 — 0.637
Model 3 —454.611 0.659 0.518 — 0.871 0.129
Model 4 —456.126 0.145 0.567 0.090 0.792 0.117
BMA —455.068 1.000 0.523 0.033 0.865 0.102

From the table, we see evidence of significant dependence on peer institu-
tions in explaining variation in CEO compensation, the dependent variable,
as evidenced by the estimate for p = 0.5225, which is significant. The most
important peer nursing homes for determining CEO compensation are other
nursing homes with similar payroll magnitudes indicated by the estimate for
~v2 = 0.8644. This indicates that management of staff and nursing personnel
is viewed as the most important basis for determining a peer institution by
the executive board that evaluates and determines the CEQO’s compensa-
tion. Larger payrolls point to a larger CEO role in managing personnel at
the nursing home.

The estimate of v3 = 0.1031 for the weight matrix associated with the
matrix Wy;.. based on the physical size of the nursing home is the next most
important basis for determining a peer institution, with a very small the role
played by spatial proximity, since 71 = 0.0329, with a lower 0.01 credible
interval of 0.0074, very close to zero.

Turning to the effects estimates, we see that a larger number of Med-
icaid and private pay patients in the nursing home (which are considered
less desirable than Medicare patients) has a negative direct impact on CEO
compensation. By direct impact, we mean that the own-institution charac-
teristic impacts the own-institution CEO compensation, in a negative way
for this variable. Higher occupancy rates have a positive impact on CEO
compensation, and Blankmeyer et al (2011) point to low occupancy rates
as a problem for Texas nursing homes. The dummy variable selecting For
profit institutions has a positive and significant impact on CEO compensa-
tion, indicating that these institutions have higher compensation levels than
non-profit institutions, many of which are affiliated with religious institu-
tions. Finally, the dummy variable selecting nursing homes that are part of
a chain of homes administered by a single company, has a positive direct
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Table 2: Model averaged estimates

Variables Lower 0.01 Lower 0.05 Median Upper 0.95 Upper 0.99
Constant 3.8810 4.0613  4.6649 5.2588 5.4205
Medicaid+Private -0.2191 -0.1978  -0.1178 -0.0417 -0.0180
Occupancy rate 0.7193 0.7494 0.8234 0.9009 0.9224
For profit 0.0342 0.0452  0.0807 0.1185 0.1296
Chain 0.0044 0.0130  0.0460 0.0813 0.0933
1) 0.4544 0.4696  0.5225 0.5797 0.5973
Y1, Wpace 0.0074 0.0110  0.0329 0.0557 0.0629
Y2, Wpayroil 0.7773 0.7965  0.8644 0.9366 0.9496
¥3, Waize 0.0215 0.0355  0.1031 0.1658 0.1847
Direct Lower 0.01 Lower 0.05 Median Upper 0.95 Upper 0.99
Medicaid+Private -0.2366 -0.2131  -0.1276 -0.0454 -0.0196
Occupancy rate 0.7839 0.8117  0.8904 09711 1.0014
For profit 0.0373 0.0489  0.0871 0.1283 0.1401
Chain 0.0047 0.0138  0.0499 0.0878 0.1016
Indirect Lower 0.01 Lower 0.05 Median Upper 0.95 Upper 0.99
Medicaid+Private -0.2344 -0.2039 -0.1192 -0.0434 -0.0150
Occupancy rate 0.6346 0.6804  0.8416 1.0602 1.1607
For profit 0.0362 0.0462  0.0825 0.1297 0.1466
Chain 0.0057 0.0135  0.0477 0.0880 0.1006
Total Lower 0.01 Lower 0.05 Median Upper 0.95 Upper 0.99
Medicaid+Private -0.4571 -0.4141 -0.2471 -0.0907 -0.0337
Occupancy rate 1.4662 1.5341  1.7364 1.9897 2.1080
For profit 0.0764 0.0960  0.1709 0.2569 0.2808
Chain 0.0113 0.0272  0.0982 0.1735 0.1973

impact on CEO compensation.

The indirect effects in this model reflect peer effects, such that com-
pensation of CEQO’s at nursing home ¢ is influenced by compensation levels
for CEOs at peer nursing homes j # i. The median estimates for indirect
effects are similar in magnitude to the direct effects, indicating that compen-
sation of other nursing home CEOs plays an equally important role as the
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own-institution characteristics in determining compensation for the typical
CEO in our sample. The total effects are of course the sum of direct plus
peer /indirect effects.

4 Conclusion

The simultaneous autoregressive model specified using a convex combination
of dependence matrices represents one solution to the important problem of
selecting an appropriate dependence set of observations for use in modeling
cross-sectional dependence. Using a specification based on a convex combi-
nation of dependence matrices allows formal Bayesian tests for the relative
importance of alternative definitions of the dependence set of observations.
The specification also allows a combination of several weight matrices that
avoids scaling issues that arise in specifications based on multivariate simi-
larity criterion such as those set forth in Blankmeyer et al (2011). Another
advantage is avoidance of complex parameter space constraints inherent in
higher order simultaneous autoregressive models.

Debarsy and LeSage (2018b) propose a solution to the computational
challenges inherent in simultaneous autoregressive model specifications based
on convex combinations of weight matrices and further develop a Bayesian
model averaging approach that allows for model uncertainty regarding al-
ternative definitions of the dependence set. For example, one can draw in-
ferences regarding which matrices should enter the specification and which
should be excluded.

This approach should be useful in applied research where there is little
theoretical guidance regarding an appropriate dependence set and associated
weight matrix. An important caveat is that practitioners should attempt to
consider definitions of dependence sets that convey differing types of po-
tential cross-sectional dependence relationships. Use of alternative weight
matrices that convey similar cross-sectional dependence relationships can
encounter difficulties when simultaneous lags of the dependent variable vec-
tor (Wyy, Way, ..., Wry), disturbances (Wiu, Wau, ... Wru), or explanatory
variables (W1 X, Wy X, ... W X) exhibit high levels of correlation.

LeSage and Pace (2014) discuss the issue of highly correlated spatial lags
that can arise in spatial autoregressive model specifications, and difficulties
that arise in distinguishing between models based on similar definitions of
dependence sets of observations. They label the mistaken belief that small
changes in the definition of dependence sets can lead to large changes in
model estimates and inferences as the the biggest myth in spatial econo-
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metrics. The same caveat applies to simultaneous autoregressive model
specifications described here. Practitioners should strive for inclusion of al-
ternative weight matrices in the convex combination of weights that reflect
distinctly different types of dependence. Use of specifications where multiple
weight matrices result in similar dependence sets of observations will lead
to poor estimates and inferences regarding the relative importance of each
set of weights.
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