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Abstract

The search for a compromise between marginalism and egalitarianism has given rise to many
discussions. In the context of cooperative games, this compromise can be understood as a trade-
off between the Shapley value and the Equal division value. We investigate this compromise in
the context of multi-choice games in which players have several activity levels. To do so, we
propose new extensions of the Shapley value and of the Weighted Division values to multi-choice
games. Contrary to the existing solution concepts for multi-choice games, each one of these values
satisfies a core condition introduced by Grabisch and Xie (2007), namely Multi-Efficiency. We
compromise between marginalism and egalitarianism by introducing the multi-choice Egalitarian
Shapley values, computed as the convex combination of our extensions. To conduct this study, we
introduce new axioms for multi-choice games. This allows us to provide an axiomatic foundation
for each of these values.

Keywords: Multi-choice games, Multi-choice Shapley value, Multi-choice Equal division value,
Multi-choice Egalitarian Shapley values
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1. Introduction

A situation in which players can obtain payoffs by cooperation can be described by a cooperative
game with transferable utility (TU-games henceforth). A payoff vector for a TU-game assigns a
payoff to each player. A single-valued solution on a class of TU-games assigns a unique payoff
vector to each game in this class. A set-valued solution on a class of TU-games assigns a set of
payoff vectors to each game in this class. The Shapley value (see Shapley (1953)) is probably
the most prominent single-valued solution for TU-games. It is computed as the average marginal
contribution of the players over all possible orders over the player set. The Equal division value is
another well-known single-valued solution which divides the worth of the grand coalition equally
among the players. Two of the best-known set-valued solutions are the core and the Weber set.
The core of a TU-game is defined as the set of payoff vectors satisfying Efficiency and Coalition
rationality. A payoff vector is efficient if the sum of all payoffs is equal to the worth of the grand
coalition. A payoff vector is coalitionally rational if no coalition of players can achieve, by itself,
a better outcome than the one prescribed by the payoff vectors. Additionally, the Weber set of a
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TU-game is defined as the convex hull of all marginal vectors, where a marginal vector collects the
marginal contribution of each player with respect to an order over the player set. It is known that
the core of a super-modular TU-game is non-empty and coincides with the Weber set. Moreover,
because the Shapley value is the centroid of the Weber set, it belongs to the core of super-modular
games.

One of the main issues in economic allocation problems is the trade-off between marginalism
and egalitarianism. Marginalism supports allocations based on a player’s individual performances,
while egalitarianism is in favor of an equal allocation at the expense of the differences between the
players’ performances. In the context of TU-games, this trade-off can be seen as a compromise
between the Shapley value and the Equal division value since the two values are often seen as the
embodiment of marginalism and egalitarianism, respectively. This compromise can be made by
considering convex combinations of the Shapley value and the Equal division value (see Joosten
(1996)). These convex combinations of the Shapley value and the Equal division value have been
recently studied by van den Brink et al. (2013), Casajus and Huettner (2013), Abe and Nakada
(2019) and Béal et al. (2021). In this paper, we investigate the trade-off between marginalism and
egalitarianism in the context of multi-choice (cooperative) games.

Multi-choice games, introduced by Hsiao and Raghavan (1992) and van den Nouweland et al.
(1993), are a natural extension of TU-games. In TU-games, each player has two choices. It can
either cooperate by joining a coalition or not cooperate. In multi-choice games, each player has
several activity levels to cooperate within a coalition. Multi-choice games have been successfully
applied to economic theory. For instance, Branzei et al. (2009) study multi-choice games that arise
from market situations with two corners. One corner consists of a group of powerful players with
yes-or-no choices and clan behavior. The other corner consists of non-powerful players with several
choices regarding the extent at which cooperation with the clan can be achieved ; Grabisch and
Rusinowska (2010) generalize a yes-no influence model to a multi-choice framework. The authors
consider a situation in which some agents are part of a social network. Each agent has an ordered
set of possible actions and is influenced by its neighbors in the network when choosing its action;
and Techer (2021) addresses the social cost problem, originally introduced by Coase (1960), using
multi-choice games. The author studies situations in which one polluter interacts with several
potential victims, and aims at negotiating a stable agreement regarding the level of pollution. The
polluter has several levels at which it wishes to pollute, whereas the victims can either participate
or not in the negotiations. In multi-choice games, a coalition is a vector describing each player’s
activity level within this coalition. A characteristic function for multi-choice games measures the
worth of each coalition. Additionally, a (multi-choice) payoff vector describes how much each
player’s payoff varies according to its activity level. In other words, it associates a payoff to each
activity level of each player. A single-valued solution (value for short) on a class of multi-choice
games assigns a unique payoff vector to each game in this class. A set-valued solution on a class
of multi-choice games assigns a set of payoff vectors to each game in this class.

In multi-choice games, several solution concepts were defined inspired by the Shapley value,
the Equal division value, the core and the Weber set. As pointed out by van den Nouweland
et al. (1993), there are more than one reasonable extension of the Shapley value from TU-games to
multi-choice games. The first extension is introduced by Hsiao and Raghavan (1992). The authors
consider multi-choice games in which players all share the same maximal activity level. They use
weights on activity levels and extend the idea of the weighted Shapley values (see Kalai and Samet
(1987)). Axiomatic characterizations of this extension can be found in Hsiao and Raghavan (1992)
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and Hwang and Liao (2009). van den Nouweland et al. (1995) consider the full class of multi-choice
games and provide a second extension of the Shapley value. Axiomatic characterizations of this
extension can be found in Calvo and Santos (2000). Another extension on the full class of multi-
choice games is provided by Derks and Peters (1993). Axiomatic characterizations of this value
can be found in Klijn et al. (1999). Other extensions can be found in Peters and Zank (2005) and
Grabisch and Lange (2007) (see section 2.2 for details). The Equal division value did not receive
the same attention as the Shapley value in the multi-choice games framework. To our knowledge,
the only single-valued solution extending the Equal division value from TU-games to multi-choice
games is the multi-choice constrained egalitarian solution introduced by Branzei et al. (2014).

Regarding set-valued solutions, the core and the Weber set have been extended to multi-choice
games in van den Nouweland et al. (1995), Grabisch and Xie (2007) and Hwang and Liao (2011).
It should be pointed out that Hwang and Liao (2011) do not provide an extension of the Weber set,
and limit themselves to the study of an extension of the core to multi-choice games. Grabisch and
Xie (2007) show that their extension of the core and of the Weber set both coincide on the class
of super-modular multi-choice games. It should be observed that this property does not hold for
the extensions of the core and the Weber set provided by van den Nouweland et al. (1995), since,
for each multi-choice game, their extension of the Weber set is strictly included in their extension
of the core. For this reason, we consider the core and the Weber set introduced by Grabisch and
Xie (2007) (or simply the core and the Weber set afterwards). Precisely, we focus on a necessary
condition for a payoff vector to be in the core. This condition, called Multi-Efficiency, extends
Efficiency from TU-game to multi-choice games. To introduce this condition, assume that all
players agree on forming a coalition in which everyone plays the same activity level, let us say j.
If a player is unable to play the level j, then it plays its maximal activity level. Such a coalition is
referred to a j-synchronized coalition. A payoff vector is Multi-efficient if, for each level j, the sum
of the payoffs of all players for their activity levels up to j is equal to the worth of the j-synchronized
coalition. We say that a solution on multi-choice games satisfies Multi-Efficiency if it assigns a
multi-efficient payoff vector to each game in this class. For instance, assume that the activity levels
represent workdays. Multi-Efficiency ensures that the worth generated after a certain number of
workdays is fully redistributed among the workers who worked during those days.

In this paper, we introduce two axioms for multi-choice games related to Multi-Efficiency:
Efficiency and Independence of Level Reductions. On the one hand, Efficiency is a classical axiom,
which indicates that the worth of the grand coalition is distributed among the activity levels of
its members. This axiom is weaker than Multi-Efficiency. On the other hand, Independence of
Level Reductions ensures that the payoff distributed to a player’s activity level is independent
from higher activity levels. In particular, Independence of Level Reductions protects players with
lower activity levels from being influenced by players with higher activity levels. Axioms similar
to Independence of Level Reductions exist in the economic literature. The serial cost sharing
method for discrete cost sharing problems introduced by Moulin and Shenker (1992) satisfies a
similar axiom if we interpret activity levels as demands. Recently, Albizuri et al. (2020) study
solutions for bargaining problems that satisfy a similar axiom if we interpret activity levels as
claims. We show that if a value satisfies Independence of Level Reductions and Efficiency, then it
satisfies Multi-Efficiency. Therefore, Multi-Efficiency can be seen as a desirable axiom for multi-
choice games. First, it is implied by two desirable axioms for multi-choice games. Second, from a
technical point of view, it is a necessary condition to be in the core. However, none of the above
mentioned single-valued solutions satisfies Multi-Efficiency. For this reason, we propose several
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solution concepts for multi-choice games satisfying Multi-Efficiency. This allows us to discuss the
trade-off between marginalism and egalitarianism by means of a compromise between multi-efficient
solutions. To that end, we first study a multi-efficient extension of the Shapley value, which we
call the multi-choice Shapley value. This value is computed as follows. Assume that the grand
coalition forms step by step starting from the empty coalition, in which no player participate at
all. At each step, one player increases its activity by one unit, let us say from j− 1 to j. However,
this player cannot increase its activity level until all other players have reached at least level j− 1,
except for those unable to do so, in which case, they play their maximal activity level. We say that
this coalition formation process follows a restricted order. The marginal contribution of a player for
an activity level to a coalition is the variation in worth that is created when that player reaches that
particular level from the level just below. The multi-choice Shapley value assigns to each activity
level of each player its expected marginal contribution assuming that each restricted order occurs
with equal probability. This value is the centroid of the Weber set and therefore belongs to the
core of super-modular multi-choice games. As an additional remark, we show that the multi-choice
Shapley value is closely related to the discrete serial cost sharing method for discrete cost sharing
problems as introduced by Moulin and Shenker (1992).

Then, we introduce the class of multi-choice Weighted Division values for multi-choice
games. Each multi-choice Weighted Division value divides the variation in worth between two
consecutive synchronized coalitions (e.g. the j-synchronized and the (j+1)-synchronized coalitions)
among the players able to play the required activity levels. Such division is done proportionally
to some exogenous weights on the activity levels of the players. Each value in this class is multi-
efficient. Whenever there are only two activity levels (0 and 1), these values coincide with the
Weighted Division values for TU-games (see Béal et al. (2016)). One of these values catches our
interest. We call this value the multi-choice Equal division value: it divides the variation in
worth between two consecutive synchronized coalitions equally among the players able to play the
required activity levels.

To our knowledge, no previous work has addressed the trade-off between marginalism and
egalitarianism in the context of multi-choice games. We address this trade-off by compromising
between the multi-choice Shapley value and the multi-choice Equal division value. To that end, we
introduce the multi-choice Egalitarian Shapley values for multi-choice games. This family of
values is composed of convex combinations of the multi-choice Shapley value and the multi-choice
Equal division value. Obviously, the multi-choice Egalitarian Shapley values are multi-efficient.
Since we consider multi-choice games, we can define a specific convex combination at each activity
level. This allows for different types of compromise, depending on the activity level.

We provide several axiomatic characterizations of these new multi-efficient solution concepts.
To that end, we invoke classical axioms as well as new axioms for multi-choice games. Among
the new axioms, we introduce two axioms that deal with what happens to the payoffs when the
maximal activity level of one player is reduced. We show that combining these two axioms implies
Independence of Level Reductions. Among the new axioms, we also introduce Equal Sign for Equal
Pairs which is a extension of Equal Sign for Equal Agents originally introduced by Casajus (2018)
for TU-games. Additionally, we propose Equal Treatment for Equal Pairs which strengthens Equal
Sign for Equal Pairs. Furthermore, we introduce Weak Monotonicity. This axiom relaxes the
axiom of Strong monotonicity for multi-choice games originally introduced by Klijn et al. (1999)),
but also boils down to the axiom of Weak Monotonicity as introduced by van den Brink et al.
(2013) for TU-games. Combining classical and new axioms for multi-choice games, we provide two
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characterizations of the multi-choice Shapley value, one that relies on a classical Additivity axiom
for multi-choice games (Theorem 1) and another one that does not (Theorem 2). Furthermore,
we show that the multi-choice Shapley value admits an expression in terms of Harsanyi dividends
(Corollary 2). Next, we provide an axiomatic characterization of the multi-choice Weighted Division
values (Theorem 3) and show that strengthening the Equal Sign for Equal Pairs axiom into the
Equal Treatment for Equal Pairs axiom results in a characterization of the multi-choice Equal
division value (Corollary 3). Finally, we provide an axiomatic characterization of the Egalitarian
Shapley values (Theorem 4).

The rest of the paper is organized as follows. After dealing with preliminaries on multi-choice
games in Section 2, we introduce multi-efficient solution concepts in Section 3. Section 3.1 intro-
duces the core as defined by Grabisch and Xie (2007) along with the Multi-Efficiency principle.
Subsection 3.2 introduces the multi-choice Shapley value, Section 3.3 introduces the multi-choice
Weighted Division values and Section 3.4 introduces the multi-choice Egalitarian Shapley values.
We provide the axiomatic characterizations in Section 4. We make some additional remarks re-
garding the multi-choice Shapley value and its relationship with the serial cost sharing method
in Section 5. Finally, Section 6 concludes the paper and Section 7 is an appendix containing the
proofs of the results.

2. Preliminaries

We denote by |A| the number of elements in finite set A. For each non-empty B ⊆ A, we denote
eB ∈ R|A| the vector such that (eB)i = 1 if i ∈ B and (eB)i = 0 otherwise. We denote by sign(x)
the sign of a scalar x ∈ R∗.

2.1. Multi-choice games

Let N = {1, . . . , n} be a fixed set of players and K ∈ N. Each player i ∈ N has a finite set of
pairwise distinct activity levels Mi := {0, . . . ,mi} such that mi ≤ K. For each player i ∈ N , the
set Mi is linearly ordered from the lowest activity level 0 (i does not participate cooperate) to the
maximal activity level mi. Denote by Q(j) ⊆ N the set of players able to play activity level j.
Formally, the set Q(j) is defined as

Q(j) =
{
i ∈ N : mi ≥ j

}
.

Without loss of generality, we assume that Q(1) = N . Let M be the cartesian product
∏
i∈N Mi.

Each element s = (s1, . . . , sn) ∈ M specifies a participation profile for players and is referred to
as a (multi-choice) coalition. So, a coalition indicates each player’s activity level. Then, m =
(m1, . . . ,mn) ∈ M is the players’ maximal participation profile that plays the role of the grand
coalition, whereas Θ = (0, . . . , 0) plays the role of the empty coalition. For s ∈ M, we denote by
(s−i, k) the coalition where all players except i play at levels defined in s while i plays at k ∈Mi.
The set M endowed with the usual binary relation ≤ on Rn induces a (complete) lattice with
greatest element m and least element Θ. For any two coalitions a, b ∈ M, a ∨ b and a ∧ b denote
their least upper bound and their greatest lower bound over M, respectively. A pair (i, j) ∈ M+

represents a player and one of its activity levels. We use the notation M+
i = Mi \ {0} for each

i ∈ N and M+ =
⋃
i∈N ({i}×M+

i ). For s ∈M, we introduce the set of top pairs T (s) containing
players playing the highest activity levels in s. Formally, the set of top pairs in s is defined as

∀s ∈M, T (s) =
{

(i, si) ∈M+ : si ≥ sk, ∀k ∈ N
}
. (1)
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A (cooperative) multi-choice game on N is a couple (m, v) where v :M−→ R is a characteristic
function, such that v(Θ) = 0, that specifies the worth v(s) when players participate at profile s.
Denote by G the set of multi-choice games (m, v) on N such that mi ≤ K for each i ∈ N . Notice
that TU-games can be viewed as a subclass of multi-choice games satisfying m = (1, . . . , 1). A
multi-choice game is super-modular if v(s ∨ t) + v(s ∧ t) ≥ v(s) + v(t) for each s, t ∈ M. A
multi-choice game (m, v) is the null game if v(s) = 0 for each s ∈M.

Let (m, v) ∈ G and a coalition s ∈ M such that si = j − 1. The surplus v(s + ei) − v(s)
refers to the marginal contribution of the player i for its activity level j (or simply the marginal
contribution of the pair (i, j)) to coalition s. A pair (i, j) ∈ M+ is a dummy pair in (m, v) ∈ G
if the marginal contribution of each pair (i, j′), such that j ≤ j′ ≤ mi, to each coalition is null.
Formally, (i, j) ∈M+ is a dummy pair if

∀s ∈M,∀j ≤ l ≤ mi, v(s−i, l) = v(s−i, j − 1). (2)

Obviously, in the null game, each pair is a dummy pair. Two distinct pairs containing the same
activity level are equal if they have the same marginal contributions to coalitions. Formally,
(i, j), (i′, j) ∈M+ are equal pairs if

∀s ∈M : si = si′ = j − 1, v(s+ ei) = v(s+ ei′). (3)

Observe that two dummy pairs in a game are equal. For (m, v) ∈ G, we define the sub-game
(t, vt) ∈ G, induced by t ∈M, as

∀s ∈M, vt(s) =

{
v(s) if s ≤ t,
0 else.

(4)

When no confusion arises, we simply denote the sub-game (t, vt) of (m, v) by (t, v) to avoid heavy
notation. The sub-game (t, v) corresponds to a cooperative situation in which each player i ∈ N
can play at most the level ti, where ti ≤ mi. In other words, this describes a situation where the
maximal activity level of some players have been reduced. Let t ∈M, t 6= (0, . . . , 0). An analogue
of an unanimity TU-game in the multi-choice setting is the concept of minimal effort game
(m,ut) ∈ G defined as

∀s ∈M, ut(s) =

{
1 if si ≥ ti for each i ∈ N,
0 otherwise.

(5)

For each multi-choice game (m, v) ∈ G, the characteristic function v admits a unique linear
decomposition in terms of minimal effort games (see Hsiao and Raghavan (1992)) as follows

v =
∑
t≤m

∆v(t)ut, where ∆v(t) = v(t)−
∑

s≤t,s 6=t
∆v(s). (6)

For each t ∈M, ∆v(t) is called the Harsanyi dividend of t.
A payoff vector for the game (m, v) is an element x ∈ RM+

, where xij ∈ R is the payoff
received by the pair (i, j) ∈M+. A set-valued solution on G is a map F that assigns a collection of
payoff vectors F (m, v) to each (m, v) ∈ G. A value f is a single-valued solution on G that assigns
a unique payoff vector f(m, v) to each (m, v) ∈ G.
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3. Multi-efficient solution concepts

In this section, we discuss a necessary condition for a payoff vector to be in the core of multi-
choice games as defined by (Grabisch and Xie, 2007), which we call Multi-Efficiency. We propose
new multi-efficient solution concepts for multi-choice games. We first provide a new extension of
the Shapley value (Shapley (1953)) from TU-games to multi-choice games. Next, we provide new
extensions of the Equal division value, the Weighted Division values and the Egalitarian Shapley
values from TU-games to multi-choice games.

3.1. Multi-Efficiency

The core of a multi-choice game (m, v) ∈ G (see Grabisch and Xie (2007)) is denoted by C(m, v)
and is defined as

x ∈ C(m, v) ⇐⇒


∀s ∈M,

∑
i∈N

si∑
j=1

xij ≥ v(s) and (7)

∀h ≤ max
k∈N

mk,
∑
i∈N

h∧mi∑
j=1

xij = v((h ∧mi)i∈N ). (8)

The first core condition (7) states that no coalition can achieve, by itself, a better outcome than
the one prescribed by the payoff vectors in the core. Observe that, on the class of multi-choice
games such that m = (1, . . . , 1), condition (7) coincides with the coalition rationality core condition
for TU-games. Assume that all players agree on forming a coalition in which everyone plays the
same activity level, let us say h. Players unable to cooperate at such level play their maximal
activity level. We call such coalition a h-synchronized coalition. The second condition (8) states
that a h-synchronized coalition achieves the same outcome than the one prescribed by the payoff
vectors in the core. Observe that, on the class of multi-choice games such that m = (1, . . . , 1),
condition (8) coincides with the efficiency core condition for TU-games. Let us reformulate (8) as
an axiom for solutions on G. Let f be a solution on G.

Multi-Efficiency (ME) For each (m, v) ∈ G, we have

∀h ≤ max
k∈N

mk,
∑
i∈N

h∧mi∑
j=1

fij(m, v) = v((h ∧mi)i∈N ). (9)

Remark 1. For each (m, v) ∈ G, (9) can be re-written as

∀h ≤ max
k∈N

mk,
∑
i∈Q(h)

fih(m, v) = v((h ∧mk)k∈N )− v(((h− 1) ∧mk)k∈N ). (10)

The sum of the payoffs of all pairs (i, h) containing activity level h is equal to the surplus generated
between the h-synchronized coalition and the (h− 1)-synchronized coalition.
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3.2. The multi-choice Shapley value

In this section, we define a multi-efficient value that extends the Shapley value from TU-games
to multi-choice games. This value belongs to the core of super-modular multi-choice games.

Let (m, v) ∈ G, we consider restricted orders over the set of pairs M+, which were originally
introduced by Grabisch and Xie (2007). These orders are such that no pair (i, j) ∈M+ is ordered
before a pair (i′, j′) ∈ M+ containing a strictly lower activity level j′ < j. Formally, a restricted
order over the set of pairs is a bijection σ : M+ → {1, . . . ,

∑
i∈N mi} defined as

∀(i, j), (i′, j′) ∈M+,
[
j < j′

]
=⇒

[
σ(i, j) < σ(i′, j′)

]
.

Denote by O the set of all restricted orders over the set of pairs. Obviously, we have O ⊆ O. The
number of restricted orders over the set of pairs is given by∏

j≤ max
k∈N

mk

|Q(j)|!

Let σ ∈ O be a restricted order and h ∈ {1, . . . ,
∑

i∈N mi}. We denote by sσ,h the coalition formed
after step h. Formally, it is defined as

∀i ∈ N, sσ,hi = max
{
j ∈Mi : σ(i, j) ≤ h

}
∪ {0}. (11)

We use the convention sσ,0 = Θ. For each σ ∈ O, the marginal vector ησ(m, v) is defined as

∀(i, j) ∈M+, ησij(m, v) = v(sσ,σ(i,j))− v(sσ,σ(i,j)−1).

Each ησij(m, v) represents the marginal contribution of (i, j) to the coalition sσ,σ(i,j)−1 formed
after σ(i, j) − 1 steps according to the restricted order σ. We have the material to define our
extension of the Shapley value from TU-games to multi-choice games. This value assigns to each
pair (i, j) ∈ M+ its expected marginal contribution assuming that each restricted order over the
set of pairs occurs with equal probability.

Definition 1. For each (m, v) ∈ G, the multi-choice Shapley value ϕ is defined as

∀(i, j) ∈M+, ϕij(m, v) =
1∏

j≤ max
k∈N

mk
|Q(j)|!

∑
σ∈O

ησij(m, v). (12)

Whenever m = (1, . . . , 1), this value coincides with the Shapley value on TU-games.

Remark 2. Following Grabisch and Xie (2007), for each (m, v) ∈ G, the Weber set W is the
convex hull of all marginal vectors defined as

W(m, v) = co({ησ(m, v) |σ ∈ O}).

The multi-choice Shapley value is the centroid of the Weber set. By Grabisch and Xie (2007), the
Weber set coincides with the core on the class of super-modular multi-choice games. Therefore,
for each super-modular multi-choice game (m, v) ∈ G, it holds that ϕ(m, v) ∈ C(m, v).
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Next results states that the multi-choice Shapley value admits an alternative expression which
requires less orders over the set of pairs to be computed. For each j ≤ maxk∈N mk, denote by
M+,j = {(i, j) ∈ M+ : i ∈ Q(j)} the subset of pairs containing the activity level j. We define
orders over the set of pairs M+,j . An order over M+,j is a bijection σj : M+,j → {1, . . . , |Q(j)|}.
Denote by Oj the set of all orders over M+,j . These orders can also be interpreted as orders over
the set of players in Q(j). For each σj ∈ Oj and h ∈ {0, . . . , |Q(j)|}, define sσj ,h as

∀i ∈ N, s
σj ,h
i =


j if i ∈ Q(j) and σj(i, j) ≤ h,
j − 1 if i ∈ Q(j) and σj(i, j) > h,

mi if i /∈ Q(j).

(13)

Observe that sσj ,|Q(j)| = (j ∧ mk)k∈N and sσj ,0 = ((j − 1) ∧ mk)k∈N . The coalition sσj ,h ∈ M
represents a situation in which each player able to play at j and ordered prior to step h, with
respect to σj , participates at its activity level j, whereas each player able to play j but not ordered
prior to step h, with respect to σj , participates at its activity level j − 1. Players unable to play j
participate at their maximal activity level.

Proposition 1. For each (m, v) ∈ G, the multi-choice Shapley value ϕ admits an alternative
expression given by

∀(i, j) ∈M+, ϕij(m, v) =
1

|Q(j)|!
∑
σj∈Oj

[
v(sσj ,σj(i,j))− v(sσj ,σj(i,j)−1)

]
. (14)

Proof. See Appendix 7.1. �

In the sequel, we will retain expression (14) of the multi-choice Shapley value.

3.3. The multi-choice Equal division value and Weighted Division values

In this section, we propose a new multi-efficient value that extends the Equal division value
from TU-games to multi-choice games. This value is referred to as the multi-choice Equal division
value. The multi-choice Equal division value divides the surplus generated between two consecutive
synchronized coalitions (10) equally among the pairs containing the activity level on which the
players in the larger of the two coalitions are synchronized.

Definition 2. For each (m, v) ∈ G, the multi-choice Equal division value ξ is defined as

∀(i, j) ∈M+, ξij(m, v) =
1

|Q(j)|

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N ))

]
. (15)

Whenever m = (1, . . . , 1), the multi-choice Equal division value boils down to the Equal division
value on TU-games. In addition, we introduce the class of multi-choice Weighted Division values.
Each value in this class divides the surplus generated between two consecutive synchronized coali-
tions (10) among the pairs containing the activity level on which the players in the larger of the
two coalitions are synchronized. Such division is done according to a weight system.
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Definition 3. Let β = {βij}i∈N,1≤j≤K be a weight system, such that βij > 0 for each i ∈ N and
1 ≤ j ≤ K. For each (m, v) ∈ G, a Weighted Division value ξβ is defined as

∀(i, j) ∈M+, ξβij(m, v) =
βij∑

k∈Q(j) β
kj

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

]
. (16)

Whenever m = (1, . . . , 1), these values boil down to the Weighted Division values on TU-games
introduced by Béal et al. (2016). Obviously, the multi-choice Equal division value is a multi-choice
Weighted Division value in which each weight is equal to 1.

3.4. The multi-choice Egalitarian-Shapley values

In this section, we propose a trade-off between marginalism and egalitarianism by considering
convex combinations of the multi-choice Shapley value and the multi-choice Equal division value.

Definition 4. Let α = {αj}1≤j≤K be a parameter system such that αj ∈ [0, 1] for each 1 ≤ j ≤ K.
For each (m, v) ∈ G, a multi-choice Egalitarian Shapley value χα is defined as

∀(i, j) ∈M+, χαij(m, v) = αjϕij(m, v) + (1− αj)ξij(m, v). (17)

Whenever m = (1, . . . , 1), these values boil down to the Egalitarian Shapley values on TU-games.
We illustrate the possibilities offered by multiple convex combinations with an example.

Example 1. Consider (m, v) ∈ G and i ∈ N such that mi = 3. Consider an Egalitarian Shapley
value defined by α1 = 0.2, α2 = 0.5 and α3 = 0.8. The payoff of i for an activity level j will
be closer to the multi-choice Equal division value if j = 1 and closer to the multi-choice Shapley
value if j = 3 . Formally, χαi1(m, v) is a payoff closer to ξi1(m, v), whereas χαi3(m, v) is a payoff
closer to ϕi3(m, v). Thus, egalitarianism is progressively overtaken by marginalism as the activity
level increases. This is due to the fact that α1 < α2 < α3. Depending on the parameter system, a
multi-choice Egalitarian Shapley value operates different compromises between egalitarianism and
marginalism for different activity levels. These differences can be progressive as it is the case in
this example.

4. Axiomatic characterizations

In this section, we discuss new and classical axioms for multi-choice games. We also provide
axiomatic characterizations of each solution introduced in Section 3.

4.1. Characterizations of the multi-choice Shapley value

We provide two axiomatic characterizations of the multi-choice Shapley value. The first charac-
terization relies on a Linearity axiom, whereas the second does not. We also provide an expression
of the multi-choice Shapley value in terms of Harsanyi dividends. Let f be a value on multi-choice
games. First, we introduce two classical axioms for multi-choice games.

Efficiency (E). For each (m, v) ∈ G, we have∑
i∈N

∑
j∈M+

i

fij(m, v) = v(m).

10



Linearity (L). For each (m, v), (m,w) ∈ G and λ ∈ R, we have

f(m, v + λw, ) = f(m, v) + λf(m,w).

The next three axioms deal with what happens to the payoffs when the maximal activity level
of one or several players is reduced. The first axiom was originally introduced by Hwang and Liao
(2009) and Béal et al. (2012). This axiom requires that if the maximal activity level of a player
reduces to a certain level, then the payoff of this player for this activity level remains unchanged
under the condition that the other players’ activities are unchanged. In other words, the payoff of
a player for a given activity level is independent from its own higher activity levels.

Independence of Individual Level Reduction (IIR). For each (m, v) ∈ G, we have

∀(i, j) ∈M+, fij(m, v) = fij((m−i, j), v).

The next axiom requires that if the maximal activity level of a player reduces to a certain level,
then each player is equally impacted.

Equal Loss Under Individual Level Reduction (EL). For each (m, v) ∈ G, we have

∀(i, j), (i′, j) ∈M+, fij(m, v)− fij((m−i, j), v) = fi′j(m, v)− fi′j((m−i, j), v).

The next axiom requires that if the maximal activity level of each player reduces to a certain
level, then the payoff of each player for this activity level remains unchanged. This axiom extends
the idea of (IIR) in the sense that the payoff of a player’s activity level is not only independent
from its own higher activity levels, but also from all the other players’ higher activity levels.

Independence of Level Reductions (IR). For each (m, v) ∈ G, we have

∀(i, j) ∈M+, fij(m, v) = fij((j ∧mk)k∈N , v).

It turns out that (IIR) combined with (EL) implies (IR) and that (IR) combined with (E) implies
(ME).

Proposition 2. If a value f on G satisfies (IIR) and (EL), then it satisfies (IR).

Proof. See Appendix 7.2. �

Remark 3. The converse of Proposition 2 is not true. Indeed, consider the value g defined, for
each (m, v) ∈ G, as

∀(i, j) ∈M+, gij(m, v) =

{
1 if i = 1, j = 1 and mi ≥ mk,∀k ∈ N,
0 otherwise.

The value g obviously satisfies (IR) but violates (IIR) and (EL). To see this, consider N = {1, 2, 3}
and (m, v) ∈ G such that m = (3, 2, 3). Observe that g11((2, 2, 3), v) = 0 6= g11(m, v) = 1,
which show that g violates (IR). Furthermore, g11(m, v) − g11((2, 2, 3), v) = 1 6= gij(m, v) −
gij((2, 2, 3), v) = 0, for each (i, j) 6= (1, 1), which shows that g violates (EL).

Proposition 3. If a value f on G satisfies (E) and (IR), then it satisfies (ME).

11



Proof. See Appendix 7.3. �

Corollary 1. If a value f on G satisfies (E), (IIR) and (EL), then it satisfies (ME).

Proof. This results follows directly from Proposition 2 and Proposition 3. �

Remark 4. The converse of Proposition 3 is not true. Indeed, consider the value d defined for
each (m, v) ∈ G as

∀(i, j) ∈M+, dij(m, v) =


v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

|{h ∈ N : mh ≥ mk,∀k ∈ N}|
if mi ≥ mk,∀k ∈ N,

0 otherwise.

The value d satisfies (ME), but does not verify (IR). To see this, consider N = {1, 2, 3} and
(m, v) ∈ G such that m = (3, 2, 3). Observe that d1,1((2, 2, 2), v) = 1

3v(1, 1, 1) 6= d1,1(m, v) which
shows that d violates (IR).

The next two axioms compare the payoffs of equal pairs (see (3) for the definition of equal
pairs). First, we introduce the Equal Treatment for Equal Pairs axiom, which states that two
equal pairs should receive the same payoff. We also suggest a relaxation of Equal Treatment for
Equal Pairs into Equal Sign for Equal Pairs axiom. This axiom states that two equal pairs should
receive a payoff of the same sign.

Equal Treatment for Equal Pairs (ET). For each (m, v) ∈ G and two distinct equal pairs
(i, j)(i′, j) ∈M+, we have

fij(m, v) = fi′j(m, v).

Whenever m = (1, . . . , 1), (ET) boils down to the classical axiom of equal treatment for equal for
TU-games.

Equal Sign for Equal Pairs (ES). For each (m, v) ∈ G and two distinct equal pairs (i, j)(i′, j) ∈
M+, we have

sign(fij(m, v)) = sign(fi′j(m, v)).

Whenever m = (1, . . . , 1), (ES) boils down to the equal sign for equal axiom originally introduced
by Casajus (2018). The next axiom considers dummy pairs (see (2)). This axiom, originally
introduced by Klijn et al. (1999), requires that any dummy pair receives a null payoff.

The Dummy Property (D). For each (m, v) ∈ G and each dummy pair (i, j) ∈M+, we have

fij(m, v) = 0.

Whenever m = (1 . . . , 1),(D) boils down to the classical null player property for TU-games. We
have the material to provide a first axiomatic characterization of the multi-choice Shapley value.

Theorem 1. A value f on G satisfies Efficiency (E), Independence of Individual Level Reduction
(IIR), Equal Loss Under Individual Level Reduction (EL), Linearity (L), Equal Sign for Equal
Pairs (ES) and The Dummy Property (D) if and only if f = ϕ.
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Proof. See Appendix 7.4. �

By Theorem 1, we provide another alternative expression of the multi-choice Shapley value in
terms of Harsanyi dividends.

Corollary 2. The multi-choice Shapley value admits an alternative expression in terms of Harsanyi
dividends. For each game (m, v) ∈ G, the value is defined as

∀(i, j) ∈M+, ϕij(m, v) =
∑
s∈M

(i,j)∈T (s)

∆v(s)

|T (s)|
. (18)

Proof. See Appendix 7.5. �

We provide a second axiomatic characterization of the multi-choice Shapley value without
resorting to (L). In line with Young (1985) and Casajus (2018), we use a Strong monotonicity
axiom. This axiom states that, if the marginal contributions to coalitions of a pair increase from
a game (m,w) to another game (m, v), then the payoff of this pair also increases.

Strong Monotonicity (SM). For each (m, v), (m,w) ∈ G, each (i, j) ∈ M+ and each s ∈ M
such that si = j − 1, we have

v(s+ ei)− v(s) ≥ w(s+ ei)− w(s), then, we have fij(m, v) ≥ fij(m,w).

Whenever m = (1, . . . , 1), (SM) boils down to the strong monotonicity axiom for TU-games intro-
duced by Young (1985). We have the material to provide a second axiomatic characterization of
the multi-choice Shapley value.

Theorem 2. A value f on G satisfies Efficiency (E), Independence of Individual Level Reduction
(IIR), Equal Loss Under Individual Level Reduction (EL), Strong monotonicity (SM) and Equal
Sign for Equal Pairs (ES) if and only if f = ϕ.

Proof. See Appendix 7.6. �

4.2. Characterization of the multi-choice Weighted Division values

In this section, we characterize the multi-choice Weighted Division values. To that end, we
introduce the Non-Negative Lower Bound axiom. This axiom requires that if the surplus generated
between two consecutive synchronized coalitions, let us say ((j − 1)∧mk)k∈N and (j ∧mk)k∈N , is
non-negative, then the payoff of each pair containing the activity level j has to be non-negative.

Non-Negative Lower Bound (NLB). For each (m, v) ∈ G and (i, j) ∈M+, such that

v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N ) ≥ 0, we have fij(m, v) ≥ 0.

We have the material to provide a axiomatic characterization of the multi-choice Weighted Division
values.

Theorem 3. A value f on G satisfies Efficiency (E), Independence of Individual Level Reduction
(IIR), Equal Loss Under Individual Level Reduction (EL), Linearity (L), Non-Negative Lower
Bound (NLB) and Equal Sign for Equal Pairs (ES) if and only if f = ξβ, for some β is a weight
system.
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Proof. See Appendix 7.7. �

By Theorem 3, we obtain a characterization of the multi-choice Equal division value. The proof
of this Corollary is given at the end of Appendix 7.7.

Corollary 3. A value f on G satisfies Efficiency (E), Independence of Individual Level Reduction
(IIR), Equal Loss Under Individual Level Reduction (EL), Linearity (L), Non-Negative Lower
Bound (NLB) and Equal treatment of equal pairs (ET) if and only if f = ξ.

4.3. Characterization of the multi-choice Egalitarian Shapley values

In this subsection we provide an axiomatic characterization of the multi-choice Egalitarian
Shapley values. To that end, we introduce two new axioms.

A multi-efficient value shares the surplus generated between two consecutive synchronized coali-
tions among the pairs containing the required activity level (see (10)). This surplus can eventually
be negative. Requiring that the payoff of a pair varies according to its marginal contributions
to coalitions regardless of the surplus to be shared is then a strong requirement in (SM). On the
contrary, it seems reasonable that the payoff of a pair, let us say (i, j) ∈ M+,j , does not decrease
from one game, let us say (m, v) ∈ G, to another, let us say (m,w) ∈ G, if the surplus generated
between the j-synchronized coalition and the (j−1)-synchronized coalition does not decrease from
(m, v) to (m,w). The next axiom is a weaker version of (SM) which requires that the surplus
generated between two synchronized coalitions should not decrease from one game to another.

Weak Monotonicity (WM). For each (m, v), (m,w) ∈ G and (i, j) ∈M+, such that

v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N ) ≥ w((j ∧mk)k∈N )− w(((j − 1) ∧mk)k∈N ),

and for each s ∈M, such that si = j − 1, we have

v(s+ ei)− v(s) ≥ w(s+ ei)− w(s), then, we have fij(m, v) ≥ fij(m,w).

Whenever m = (1, . . . , 1), (WM) boils down to the Weak Monotonicity axiom for TU-games
introduced by van den Brink et al. (2013). Obviously, (SM) implies (WM).

Consider (m, v) ∈ G and two distinct pairs (i, j), (i′, j) ∈ M+,j . We say that the pair (i, j) is
more desirable than the pair (i′, j) in (m, v) if its has better marginal contributions to coalitions.
Formally, (i, j) more desirable than (i′, j) if for each s ∈M, such that si = si′ = j − 1, we have

v(s+ ei) ≥ v(s+ ei′).

The next axiom requires that a pair receives a greater payoff than other less desirable pairs.

Level Desirability (LD). For each (m, v) ∈ G and two distinct pairs (i, j), (i′, j) ∈ M+, such
that (i, j) is desirable over (i′, j) in (m, v), we have

fij(m, v) ≥ fi′j(m, v).

Whenever m = (1, . . . , 1), (LD) boils down to the classical desirability axiom for TU-games. We
have the material to provide a characterization of the multi-choice Egalitarian Shapley values.
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Theorem 4. A solution f on G satisfies Efficiency (E), Independence of Individual Level Reduc-
tion (IIR), Equal loss under level reduction (EL), Linearity (L), Weak Monotonicity (WM) and
Level Desirability (LD) if and only if f = χα, for some parameter system α.

Proof. See Appendix 7.8. �

Remark 5. As mentioned in Example 1, in some economic situations, it may be interesting to
consider families of specific parameter systems, for instance parameter systems that operate a
progressive compromise between marginalims and egalitarianism. In this case, it is possible to
refine Theorem 4 in order to characterize multi-choice Egalitarian Shapley values endowed with
such parameter systems.

5. Additional remarks

In this last section, we make three remarks regarding the solutions introduced in this paper.
First, we discuss the relationship between the multi-choice Shapley value and the discrete serial
cost sharing method introduced by Moulin and Shenker (1992) for discrete cost sharing problems.
Then, we discuss a possible refinement of the Weighted Division values. Finally, we discuss a
potential application of the multi-choice Egalitarian Shapley values.

The class of discrete cost sharing problems is introduced by Moulin and Shenker (1992) and
studied by Moulin (1995), Albizuri et al. (2003), Sprumont (2005) and Bahel and Trudeau (2013)
to cite a few. Fix N = {1, . . . , n} a set of n different goods produced in indivisible units. A
discrete cost sharing problem is a couple (q, C), where q = (q1, . . . , qn). Each qi ∈ N represent
the demand in good i, and C is a non decreasing real-valued function on

∏
i∈N{0, 1, . . . , qi} such

that C(Θ) = 0. The total cost to be shared is given by C(q). As shown by Calvo and Santos
(2000) and Albizuri et al. (2003), one can view discrete cost sharing problems as a sub-class of
multi-choice games. Indeed, q can be interpreted as a vector of maximal activity levels and C
can be interpreted as characteristic function. Since C is a non decreasing real-valued function, it
follows that discrete cost sharing problems can be viewed as the subclass of multi-choice games
with a non decreasing real-valued characteristic function. We denote by C ⊆ G the class of discrete
cost sharing problems. In the cost sharing literature, a method on C is a map S that associates
to each problem (q, C) ∈ C a vector S(q, C) ∈ Rn satisfying the budget balanced condition i.e.∑

i∈N Si(q, C) = C(q). In this sense, a method on the class of discrete cost sharing problems differs
from a value, which distributes a payoff to each pair in M+. A popular cost sharing method for
cost sharing problems is the discrete serial cost sharing method (denoted SCS afterward)
introduced by Moulin and Shenker (1992).

In order to present the discrete serial cost sharing method, we define a specific TU-game.

Consider (q, C) ∈ C and j ≤ maxk∈N mk. Define the TU-game (Q(j), w
(q,C)
j ) as

∀E ⊆ Q(j), w
(q,C)
j (E) = C

(
((j − 1) ∧ qk)k∈N + eE

)
− C

(
((j − 1) ∧ qk)k∈N

)
.

The worth w
(q,C)
j (E) can be interpreted as the additional costs generated when each player (good)

in E increases its activity level (demand) from j− 1 to j while all the other players play either the
activity level j − 1 or their maximal feasible activity level if they are unable to do so. We denote
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by Sh the Shapley value (see Shapley (1953)) for TU-games. Albizuri et al. (2003) show that the
discrete serial cost sharing admits the following expression

∀i ∈ N, SCSi(q, C) =

qi∑
j=1

Shi

(
Q(j), w

(q,C)
j

)
. (19)

Consider (q, C) ∈ C. We say that a value f is consistent with a method S on C if we have

∀i ∈ N, Si(q, C)− Si(q − ei, C) = fiqi(q, C).

In other words, f is consistent with S if it describes the variation in cost share a good undergoes
when its demand increases by one unit. Whereas S describes the total cost share allocated to each
good.

Proposition 4. The multi-choice Shapley value is consistent with the discrete serial cost sharing
method proposed by Moulin and Shenker (1992).

Proof. See Appendix 7.9. �

Regarding the Weighted Division values, the weight system determining the value is indepen-
dent from the variables of the problem. One can also consider weight systems that depends on
(m, v). Fix βij(m, v) = v(((j−1)∧mk)k∈N\i, j) for each i ∈ Q(j). This particular weight represents
i’s contribution for its activity level j to the synchronized coalition (((j−1)∧mk)k∈N ). The result-
ing multi-choice Weighted Division value generalizes the proportional division value introduced by
Moriarity (1975); Banker (1981) and studied by Zou et al. (2019) from TU-games to multi-choice
games.

To conclude this section, we discuss a potential application of the multi-choice Egalitarian
Shapley values. Consider a wage assignment problem in a firm as discussed in Abe and Nakada
(2019). In a firm, each worker may receive a base salary in addition to a reward for its contribution
to the firm. This wage assignment may be more secure than an assignment without a base salary
given the possibility that employees cannot contribute due to raising children, for instance. Such
assignment can obviously be viewed as a compromise between marginalism and egalitarianism. Abe
and Nakada (2019) point out that the wage may be affected by exogenous variables independent of
one’s contributions, such as seniority or educational background. A way to address this problem
is to model it with a multi-choice game and endow each employee with a maximal activity level
representing its seniority or education background. In this case, if we assume that the assignment
of an employee is equal to the total payoff she receives by a multi-choice Egalitarian Shapley value,
then the base salary a worker receive corresponds to the egalitarian part of the value. Observe
that, the base salary of an employee will increase with respect to her seniority or education. In
addition, this increase depends on the parameter system used for the computation of the value.
For instance, one could select a parameter system that operates a progressive compromise between
marginalism and egalitarianism.
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6. Conclusion

In this paper we proposed several multi-efficient values for multi-choice games. We introduced
the multi-choice Shapley value and the multi-choice Weighted Division values. We also introduced
the multi-choice Equal division value as a specific Weighted Division value. This paper is in line
with the literature which deals with the trade-off between marginalism and egalitarianism using
cooperative game theory since we introduce multi-choice Egalitarian Shapley values for multi-choice
games. These values are computed as the convex combination of the multi-choice Shapley value
and the multi-choice Equal division value. We provided at least one axiomatic characterization for
each one of these values and families of values.

Some questions remain of interest for future research. It would be interesting to characterize
multi-efficient solutions for multi-choice games with a structure. Regarding multi-choice games
with a structure, several studies have already been conducted. Albizuri (2009) study multi-choice
games with a coalition structure, Béal et al. (2012) study multi-choice games with communication
constraints, and Lowing (2021) studies multi-choice games with a permission structure. The so-
lution concepts proposed in these studies are not multi-efficient. It can be interesting to look for
multi-efficient values for such games, since non-multi-efficient values cannot belong to the core.
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7. Appendix

This section contains all the proofs of our results. In order to carry out our proofs, we introduce
some definitions and remarks.

Remark 6. For t ∈ M, t 6= (0, . . . , 0), we formulate two distinct remarks regarding a minimal
effort game (m,ut). Each pair (i, j) ∈ M+, such that j > ti, is a dummy pair in (m,ut). Let
(i, j), (i′, j) ∈ M+ be two distinct pairs such that j ≤ ti and j ≤ ti′ . Both pairs are equal in
(m,ut).

Consider t ∈M, t 6= (0, . . . , 0). The Dirac game (m, δt) ∈ G, induced by t, is defined as

∀s ∈M, δt(s) =

{
1 if si = ti for each i ∈ N,
0 otherwise.

(20)

Remark 7. For t ∈M, t 6= Θ, we formulate two distinct remarks regarding a Dirac game (m, δt).
Each pair (i, j) ∈M+, such that j > ti + 1, is a dummy pair in (m, δt). If there exists two distinct
players i, i′ ∈ N such that ti = ti′ , then (i, ti) and (i′, ti′) are equal in (m, δt).

For each multi-choice game (m, v) ∈ G, the characteristic function v admits a unique linear
decomposition in terms of Dirac games as follows

v =
∑
t≤m

v(t)δt. (21)
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7.1. Proof of Proposition 1

We show that the multi-choice Shapley value admits an alternative expression given by (14).
Observe that there are |Ol| = |Q(l)|! ways to order the pairs in M+,l, for each l ≤ maxk∈N mk.
Additionally, there are

∏
l<j |Q(l)|! ways to order the pairs in M+,1, then the pairs in M+,2,

and so on, until the pairs in M+,l−1. Similarly, there are
∏
l>j |Q(l)|! ways to order the pairs

in M+,j+1, then the pairs in M+,j+2, and so on. Observe that, for each σ ∈ O, there exists
exactly one order σj ∈ Oj such that sσ,σ(i,j) = sσj ,σj(i,j). Additionally, for each σj ∈ Oj , there are∏
l<j |Q(l)|! ×

∏
l>j |Q(l)|! orders σ ∈ O such that sσ,σ(i,j) = sσj ,σj(i,j). It follows that, for each

(m, v) ∈ G and (i, j) ∈M+, we have

ϕij(m, v) =
1∏

l≤ max
k∈N

mk
|Q(l)|!

∑
σ∈O

[
v(sσ,σ(i,j))− v(sσ,σ(i,j)−1)

]

=
(
∏
l<j |Q(l)|!)(

∏
l>j |Q(l)|!)∏

≤ max
k∈N

mk
|Q(l)|!

∑
σj∈Oj

[
v(sσj ,σj(i,j))− v(sσj ,σj(i,j)−1)

]
.

The first line comes from the definition of the multi-choice Shapley value, the second line follows
from (13) and the fact that there are

∏
l<j |Q(l)|!×

∏
l>j |Q(l)|! orders σ ∈ O such that sσ,σ(i,j) =

sσj ,σj(i,j), for each σj ∈ Oj . Simplifying the expression, we obtain the desired result

∀(i, j) ∈M+, ϕij(m, v) =
1

|Q(j)|!
∑
σj∈Oj

[
v(sσj ,σj(i,j))− v(sσj ,σj(i,j)−1)

]
.

�

7.2. Proof of Proposition 2

Let (m, v) ∈ G and f a value satisfying (IIR) and (EL). For each (i, j) ∈M+, (IIR) implies

fij(m, v) = fij((m−i, j), v). (22)

Combining (22) with (EL) we obtain, for each (i′, j) ∈M+ such that i′ 6= i,

fij(m, v)− fij((m−i, j), v) = fi′j(m, v)− fi′j((m−i, j), v)

⇐⇒ fij((m−i, j), v)− fij((m−i, j), v) = fi′j(m, v)− fi′j((m−i, j), v)

⇐⇒ fi′j(m, v) = fi′j((m−i, j), v).

Therefore, by successive applications of (EL) and (IR), we obtain the desired result. �

7.3. Proof of Proposition 3

Let (m, v) ∈ G, h ≤ maxk∈N mk and f a value satisfying (E) and (IR). Consider the sub-game
((h ∧mk)k∈N , v). By (E), it holds that∑

i∈N

h∧mi∑
j=1

fij((h ∧mk)k∈N , v) = v((h ∧mk)k∈N ). (23)

By (IR), we have ∑
i∈N

h∧mi∑
j=1

fij((h ∧mk)k∈N , v) =
∑
i∈N

h∧mi∑
j=1

fij(m, v). (24)

Combining (23) with (24), we obtain the desired result. �
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7.4. Proof of Theorem 1

The proof is divided in two steps.
Step 1: we show that ϕ satisfies all the axioms of the statement of Theorem 1.
For each (m, v) ∈ G, we have∑

i∈N

∑
j∈M+

i

ϕij(m, v) =
∑

j≤ max
k∈N

mk

∑
i∈Q(j)

ϕij(m, v)

(14)
=

∑
j≤ max

k∈N
mk

1

|Q(j)|!
∑
σj∈Oj

∑
i∈Q(j)

[
v(sσj ,σj(i,j))− v(sσj ,σj(i,j)−1)

]
.

Observe that, for each σj ∈ Oj , we have∑
i∈Q(j)

[
v(sσj ,σj(i,j))− v(sσj ,σj(i,j)−1)

]
= v(sσj ,|Q(j)|)− v(sσj ,0).

By (13), for each σj ∈ Oj , we have

sσj ,|Q(j)| = (j ∧mk)k∈N , and sσj ,0 = ((j − 1) ∧mk)k∈N .

It follows that∑
i∈N

∑
j∈M+

i

ϕij(m, v) =
∑

j≤ max
k∈N

mk

1

|Q(j)|!
∑
σj∈Oj

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

]
. (25)

Since the quantity v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N ) is independent from any order σj ∈ Oj ,
it follows that it is summed as many times in (25) as there are orders in Oj . Therefore, we have∑

i∈N

∑
j∈M+

i

ϕij(m, v) =
∑

j≤ max
k∈N

mk

1

|Q(j)|!
Q(j)!

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N

]

=
∑

j≤ max
k∈N

mk

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

]
= v(m),

which shows that the value satisfies (E). By definition of the multi-choice Shapley value (see (14)),
the payoff of a pair is independent from any activities different from the activity level contained
in this pair. Therefore, we have that ϕ satisfies (IIR) and (EL). (L) follows directly from (14). By
(14), by definition of equal pairs (see (3)) and by definition of dummy pairs (see (2)), we have that
ϕ satisfies (ES) and (D). This concludes Step 1.

Step 2: To complete the proof, it remains to show that there is at most one value satisfying all
the axioms of the statement of Theorem 1. Take any f satisfying all the axioms of the statement
of Theorem 1. Consider any (m, v) ∈ G. We know that each multi-choice game admits a unique
linear decomposition in terms of minimal effort games {us}s∈M. Consider s ∈M such that s 6= Θ.
The set of top pairs T (s) (see (1)) can be re-written as

T (s) = {(i, sT ) ∈M+,sT : si = sT },
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where sT = maxi∈N si. Let us show that f(m,us) is uniquely determined. We divide this Step 2
into several sub-steps.

Step 2.1. Let us show that, for each (i, j) ∈ M+ such that j 6= sT , fij(m,us) is uniquely
determined.

Step 2.1.1. If j < sT , then (j ∧ mk)k∈N � s. It follows that ((j ∧ mk)k∈N , us) is the null
game since us(t) = 0 for each t ≤ (j ∧mk)k∈N . Recall that each pair is a dummy pair (see (2)) in
the null game. Since f satisfies (IIR) and (EL), by Proposition 2 it also satisfies (IR). Combining
these observations with (D), for each (i, j) ∈M+ such that j < sT , we obtain

fij(m,us)
(IR)
= fij((j ∧mk)k∈N , us)

(D)
= 0.

Step 2.1.2. If j > sT then, by Remark 6, (i, j) is a dummy pair in (m,us). By (D), for each
(i, j) ∈M+ such that j > sT , we have

fij(m,us)
(D)
= 0.

We have shown that fij(m,us) = 0, and so is uniquely determined for each (i, j) ∈ M+ such that
j 6= sT .

Step 2.2. Now, we show that, for each pair (i, j) ∈ M+ such that j = sT i.e. each pair

(i, sT ) ∈M+,sT , fisT (m,us) is uniquely determined.
To that end, consider the game (m,w) ∈ G defined as

∀t ≤ m, w(t) = us(t)−
∑

(i,sT )∈T (s)

ϕisT (m,us)u(0−i,sT )(t). (26)

Step 2.2.1. We show that ∑
(i,sT )∈M+,sT

fisT (m,w) = 0.

We consider pairs in M+,sT . By definition of M+,sT , observe that∑
i∈Q(sT )

fisT (m,w) =
∑

(i,sT )∈M+,sT

fisT (m,w).

We have that any pair (i, sT ) ∈ M+,sT is either in T (s) or not. Since f satisfies (E) and (IR), by
Proposition 3, f also satisfies (ME). Therefore we have

∑
(i,sT )∈M+,sT

fisT (m,w)
(ME)

= w((sT ∧mk)k∈N )− w(((sT − 1) ∧mk)k∈N )

(26)
= us((s

T ∧mk)k∈N )−
∑

(i,sT )∈T (s)

ϕisT (m,us)u(0−i,sT )((s
T ∧mk)k∈N )

−us(((sT − 1) ∧mk)k∈N )

+
∑

(i,sT )∈T (s)

ϕisT (m,us)u(0−i,sT )(((s
T − 1) ∧mk)k∈N ). (27)
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Observe that ((sT ∧mk)k∈N ) ≥ s ≥ ((0−i, s
T ), (((sT −1)∧mk)k∈N ) 6≥ s and (((sT −1)∧mk)k∈N ) 6≥

(0−i, s
T ), where (i, sT ) ∈ T (s). By definition of a minimal effort game (5), we have

us((s
T ∧mk)k∈N ) = 1, and, ∀(i, sT ) ∈M+,sT , u(0−i,sT )((s

T ∧mk)k∈N ) = 1,

us(((s
T − 1) ∧mk)k∈N ) = 0, and, ∀(i, sT ) ∈M+,sT , u(0−i,sT )(((s

T − 1) ∧mk)k∈N ) = 0.

It follows that (27) becomes∑
(i,sT )∈M+,sT

fisT (m,w) =1−
∑

(i,sT )∈T (s)

ϕisT (m,us)− 0 + 0. (28)

Observe that, since (i, sT ) /∈ T (s) if and only if sT > si, then each (i, sT ) /∈ T (s) is a dummy pair
in (m,us). Since ϕ satisfies (D), we have ϕisT (m,us) = 0, for each (i, sT ) /∈ T (s). Since ϕ satisfies
(E), (IIR) and (EL), by Corollary 1 the value satisfies (ME). Therefore, we have∑

(i,sT )∈T (s)

ϕisT (m,us)
(D)
=

∑
(i,sT )∈T (s)

ϕisT (m,us) +
∑

(i,sT )/∈T (s)

ϕisT (m,us)

=
∑

(i,sT )∈M+,sT

ϕisT (m,us)

(ME)
= us((s

T ∧mk)k∈N )

=1.

Therefore, (28) becomes ∑
(i,sT )∈M+,sT

fisT (m,w) =1− 1 = 0, (29)

which concludes Step 2.2.1.
Step 2.2.2. We show that, for each (i, sT ) ∈M+,sT , we have

fisT (m,w) = 0.

We know that each pair (i, sT ) /∈ T (s) is a dummy pair in (m,us). Moreover, each pair
(i, sT ) /∈ T (s) is a dummy pair in each (m,u0−i′ ,sT ), (i′, sT ) ∈ T (s). Indeed, in (m,u0−i′ ,sT ),

(i′, sT ) is the only productive pair and all other pairs are dummy pairs. It follows that each pair
(i, sT ) /∈ T (s) is a dummy pair in (m,w). By (D), for each (i, sT ) /∈ T (s), we have

fisT (m,w) = 0. (30)

It follows that ∑
(i,sT )∈M+,sT

fisT (m,w) =
∑

(i,sT )∈T (s)

fisT (m,w) +
∑

(i,sT )/∈T (s)

fisT (m,w)

(D)
=

∑
(i,sT )∈T (s)

fisT (m,w) + 0

(29)
= 0. (31)
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To complete the proof of Step 2.2.2 and to apply (ET), it remains to show that if there exist
two distinct pairs (i, sT ), (i′, sT ) ∈ T (s), then these pairs are equal. By Remark 6 two distinct pairs
(i, sT ), (i′, sT ) ∈ T (s) are equal in (m,us). Since ϕ satisfies (ET), it follows that ϕisT (m,us) =
ϕi′sT (m,us). By definition of a minimal effort game, for each t ∈ M such that ti = ti′ = sT − 1,
we have

u(0−i,sT )(t) = u(0−i′ ,sT )(t) = 0, (32)

and u(0−i,sT )(t+ ei) = u(0−i′ ,sT )(t+ ei′) = 1. (33)

Therefore, for each t ∈M such that ti = ti′ = sT − 1, we have∑
(k,sT )∈T (s)

ϕksT (m,us)u(0−k,sT )(t+ ei) =
∑

(k,sT )∈T (s)

ϕksT (m,us)u(0−k,sT )(t) + ϕisT (m,us)

=
∑

(k,sT )∈T (s)

ϕksT (m,us)u(0−k,sT )(t) + ϕi′sT (m,us)

=
∑

(k,sT )∈T (s)

ϕksT (m,us)u(0−k,sT )(t+ ei′).

Where the first equality and third equality follow from (32) and (33), and the second equality
follows from ϕisT (m,us) = ϕi′sT (m,us), since ϕ satisfies (ET). It follows that

w(t+ ei) = w(t+ ei′),

for each t ∈ M such that ti = ti′ = sT − 1, showing that (i, sT ), (i′, sT ) ∈ T (s) are equal pairs in
(m,w). By (ES) we have sign(fisT (m,w)) = sign(fi′sT (m,w)). It follows from (31) that, for each
(i, sT ) ∈ T (s), we have

fisT (m,w) = 0. (34)

Combining (30) with (34), the proof of Step 2.2.2 is complete.

Step 2.2.3. We show that for each (i, sT ) ∈M+,sT , we have

fisT (m,us) = ϕisT (m,us).

By (26), (34) and (L), for each (i, sT ) ∈M+,sT , we have

fisT (m,w)
(26),(L)

= fisT (m,us)− fisT
(
m,

∑
(k,sT )∈T (s)

ϕksT (m,us)u(0−k,sT )

)
⇐⇒ fisT (m,us)

(34)
= fisT

(
m,

∑
(k,sT )∈T (s)

ϕksT (m,us)u(0−k,sT )

)
(L)
=

∑
(k,sT )∈T (s)

ϕksT (m,us)fisT
(
m,u(0−k,sT )

)
.

Additionally, by (D) and (ME), we have that fisT (m,u(0−i,sT )) = 1 since (i, sT ) is the only pro-

ductive pair in (m,u(0−i,sT )). Therefore, for each (i, sT ) ∈M+,sT we have

ϕksT (m,us)fisT
(
m,u(0−k,sT )

)
=

{
ϕksT (m,us) if k = i,

0 otherwise.
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It follows that, for each (i, sT ) ∈M+,sT , we have

fisT (m,us) = ϕisT (m,us),

therefore fisT (m,us) is uniquely determined. This concludes Step 2.2.3.
From Step 2.1 and Step 2.2, we conclude that f(m,us) is uniquely determined. By (L), we

have that f(m, v) is uniquely determined, which concludes the proof of Theorem 1. �

7.5. Proof of Corollary 2

By the the proof of Theorem 1, ϕ satisfies (E), (IIR), (EL), (L), (D) and (ET). Consider
(m,us) ∈ G, s ∈M such that s 6= Θ. Similarly to (30), for each (i, j) /∈ T (s), (D) and (ME) imply

ϕij(m,us) = 0. (35)

All pairs in T (s) pairs are equal in (m,us), thus, by (ET), we have

ϕisT (m,us) = . . . = ϕi′sT (m,us). (36)

By (E) and (L), we obtain the desired result. �

7.6. Proof of Theorem 2

From Theorem 1, we know that ϕ satisfies (E), (IIR), (EL) and (ES). By definition (see (14)),
the multi-choice Shapley value satisfies (SM)

Next, we show that ϕ is the unique value satisfying all the axioms of the statement of Theorem
2. Take any f satisfying all the axioms of the statement of Theorem 2 and consider any (m, v) ∈ G.
Recall that (m, v) ∈ G can be rewritten as (m,

∑
t∈M ∆v(t)ut). We define the set of coalitions for

which the Harsanyi dividend is non-null as

T (v) = {t ∈M | ∆v(t) 6= 0}.

By induction on the cardinality of T (v), we show that

f(m, v) = ϕ(m, v).

Initialization: If |T (v)| = 0, then each dividend is null. The only game (m, v) ∈ G such that
|T (v)| = 0 is the null game. Recall that M+,j = {(i, j) ∈ M+ : i ∈ Q(j)}. Since f satisfies (E),
(IIR) and (EL), by Corollary 1, it satisfies (ME). It follows that, for each j ≤ maxk∈N mk, we have∑

(i,j)∈M+,j

fij(m, v)
(ME)

= v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

=0. (37)

Recall that any two distinct pairs (i, j)(i′, j) ∈M+,j are equal in the null game (m, v). Therefore,
by (ES), we have

sign(fij(m, v)) = sign(fi′j(m, v)). (38)

Combining (37) and (38), for each j ≤ maxk∈N mk and each (i, j) ∈M+,j , we obtain

fij(m, v) = 0.
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Recall also that each pair is a dummy pair in the null game. Since ϕ satisfies (D), for each
j ≤ maxk∈N mk and each (i, j) ∈M+,j , we have

ϕij(m, v)
(D)
= 0 = fij(m, v).

This concludes the initialization.
Hypothesis: Fix r ∈ N such that r < |M|− 1. We assume that, for each (m, v) ∈ G such that

|T (v)| ≤ r, we have
f(m, v) = ϕ(m, v).

Induction: Consider any (m, v) ∈ G such that |T (v)| = r + 1. Let us show that

f(m, v) = ϕ(m, v).

We define the minimum of the set T (v) as

p =
∧

t∈T (v)

t.

Two cases can be distinguished. First, assume that p 6= Θ. Consider any pair (i, j) ∈M+ such
that j > pi. By definition of p, there exists a t ∈ T (v) such that j > ti. For such t, consider the
game (m, v − ∆v(t)ut). By definition of a minimal effort game (5) and Remark 1, we have that
(i, j) is a dummy pair in (m,∆v(t)ut) . Therefore (i, j) has the same marginal contributions in
(m, v) and in (m, v −∆v(t)ut). Moreover, observe that |T (v)| > |T (v −∆v(t)ut)|. Therefore, we
have r ≥ |T (v −∆v(t)ut)|. By the induction hypothesis and (SM), for each (i, j) ∈M+ such that
j > pi, we have

fij(m, v)
SM
= fij(m, v −∆v(t)ut)

Hyp
= ϕij(m, v −∆v(t)ut)

SM
= ϕij(m, v). (39)

Next, we assume that p = Θ. For each (i, j) ∈M+, there exists a t ∈ T (v) such that j > ti. In
this case, (39) holds for each (i, j) ∈M+ and the proof is complete.

It remains to show that, if p 6= Θ, then for each (i, j) ∈M+ such that j ≤ pi, we have

fij(m, v) = ϕij(m, v).

We proceed in two steps.
Step 1. We define the game (m,w) ∈ G as

w = v −
∑

(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j), (40)

and we show that, for each (i, l) ∈M+ such that l ≤ pi, we have

fil(m,w) = 0. (41)

Step 1.1. To that end, we show that∑
(i,l)∈M+,l

l≤pi

fil(m,w) = 0.
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By Corollary 1, f satisfies (ME). By (ME) and (40), for each l ≤ maxk∈N mk, we have∑
(i,l)∈M+,l

fil(m,w)
ME
= w((l ∧mk)k∈N )− w((l − 1 ∧mk)k∈N

⇐⇒
∑

(i,l)∈M+,l

l≤pi

fil(m,w) =w((l ∧mk)k∈N )− w((l − 1 ∧mk)k∈N −
∑

(i,l)∈M+,l

l>pi

fil(m,w)

(40)
= v((l ∧mk)k∈N )− v((l − 1 ∧mk)k∈N −

∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j)((l ∧mk)k∈N )

+
∑

(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N )−
∑

(i,l)∈M+,l

l>pi

fil(m,w).

(42)

Before proceeding further into the computation of (42), observe that

−
∑

(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j)((l ∧mk)k∈N ) +
∑

(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N )

=−
∑

(i,j)∈M+

j≤pi
j<l

ϕij(m, v)u(0−i,j)((l ∧mk)k∈N )−
∑

(i,j)∈M+

j≤pi
j=l

ϕij(m, v)u(0−i,j)((l ∧mk)k∈N )

−
∑

(i,j)∈M+

j≤pi
j>l

ϕij(m, v)u(0−i,j)((l ∧mk)k∈N )

+
∑

(i,j)∈M+

j≤pi
j<l

ϕij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N ) +
∑

(i,j)∈M+

j≤pi
j≥l

ϕij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N )

By definition, pi ≤ mi, for each i ∈ N . For each i ∈ N and j ≤ pi ≤ mi, we have

u(0−i,j)((l ∧mk)k∈N )

{
1 if j ≤ (l ∧mi),

0 otherwise.

It follows that

−
∑

(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j)((l ∧mk)k∈N ) +
∑

(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N )

=−
∑

(i,j)∈M+

j≤pi
j<l

ϕij(m, v)−
∑

(i,j)∈M+

j≤pi
j=l

ϕij(m, v) +
∑

(i,j)∈M+

j≤pi
j<l

ϕij(m, v)

=−
∑

(i,j)∈M+

j≤pi
j=l

ϕij(m, v) = −
∑

(i,l)∈M+,l

l≤pi

ϕil(m, v). (43)
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By (43), (42) becomes∑
(i,l)∈M+,l

l≤pi

fil(m,w) = v((l ∧mk)k∈N )− v((l − 1 ∧mk)k∈N −
∑

(i,l)∈M+,l

l≤pi

ϕil(m, v)−
∑

(i,l)∈M+,l

l>pi

fil(m,w).

(44)

By (39), for each (i, l) ∈M+,l such that l > pi, we have

fil(m,w) = ϕil(m,w). (45)

Combining (44) and (45), we obtain∑
(i,l)∈M+,l

l≤pi

fil(m,w) = v((l ∧mk)k∈N )− v((l − 1 ∧mk)k∈N −
∑

(i,l)∈M+,l

l≤pi

ϕil(m, v)−
∑

(i,l)∈M+,l

l>pi

ϕil(m,w).

(46)

Moreover, each (i, l) ∈M+,l, such that l > pi, is a dummy pair in (m,u0−i,j), for each (i, j) ∈M+

such that j ≤ pi. By definition of (m,w) (see (40)), it follows that each pair (i, l), such that
l > pi, has the same marginal contributions in (m,w) and in (m, v). Since ϕ satisfies (SM), for
each (i, l) ∈M+,l such that l > pi, we have

ϕil(m,w) = ϕil(m, v). (47)

Combining (46), (47) and the fact that ϕ satisfies (ME), we obtain∑
(i,l)∈M+,l

l≤pi

fil(m,w) =v((l ∧mk)k∈N )− v((l − 1 ∧mk)k∈N −
∑

(i,l)∈M+,l

ϕil(m, v)

(ME)
= 0. (48)

This concludes Step 1.1.
Step 1.2. We show that all the pairs (i, l) ∈M+,l, such that l ≤ pi, are equal in (m,w).
By definition of M+,l, we have that l ≥ 1. Consider two pairs (i, l), (i′, l) ∈ M+,l such that

l ≤ pi and l ≤ pi′ . Since p =
∧
t∈T (v) t, we have that each t ∈ T (v) verifies ti ≥ l and ti′ ≥ l. In

other words, for each s ∈ M, such that si < l or si′ < l, we have ∆v(s) = 0. Therefore, for each
s ∈M such that si = si′ = l − 1, we have

v(s+ ei) = v(s+ ei′) = 0. (49)

Therefore, (i, l) and (i′, l) are equal in (m, v). Since ϕ satisfies (ET) and by (40), for each s ∈ M
such that si = si′ = l − 1, we have

w(s+ ei)
(40)
= v(s+ ei)−

∑
(h,j)∈M+

j≤ph

ϕhj(m, v)u(0−h,j)(s+ ei)
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= v(s+ ei)−
∑

(h,j)∈M+

j≤ph
h6=i,i′

ϕhj(m, v)u(0−h,j)(s+ ei)−
∑
j≤pi′
j≤l−1

ϕi′j(m, v)u(0−i′ ,j)(s+ ei)

−
∑
j≤pi
j≤l−1

ϕij(m, v)u(0−i,j)(s+ ei)− ϕil(m, v)u(0−i,l)(s+ ei)

= v(s+ ei)−
∑

(h,j)∈M+

j≤ph
h6=i,i′

ϕhj(m, v)u(0−h,j)(s+ ei)−
∑
j≤pi′
j≤l−1

ϕi′j(m, v)u(0−i′ ,j)(s+ ei)

−
∑
j≤pi
j≤l−1

ϕij(m, v)u(0−i,j)(s+ ei)− ϕil(m, v)

(ET ),(49)
= v(s+ ei′)−

∑
(h,j)∈M+

j≤ph
h6=i,i′

ϕhj(m, v)u(0−h,j)(s+ ei′)−
∑
j≤pi′
j≤l−1

ϕi′j(m, v)u(0−i′ ,j)(s+ ei′)

−
∑
j≤pi
j≤l−1

ϕij(m, v)u(0−i,j)(s+ ei′)− ϕi′l(m, v)

(40)
= w(s+ ei′).

Therefore, two pairs (i, l) and (i′, l), such that l ≤ pi and l ≤ pi′ , are equal in (m,w). This
concludes Step 1.2

By (ES), we have

sign(fil(m,w)) = sign(fi′l(m,w)). (50)

Combining (48) and (50), for each (i, l) ∈M+ such that l ≤ pi, we obtain

fil(m,w) = 0,

which concludes Step 1.
Step 2. For each (i, j) ∈M+, such that 0 < j ≤ pi, we define the game (m,wij) ∈ G as

wij = v − ϕij(m, v)u(0−i,j). (51)

In this step, we first show that, for each (i, j) ∈M+ such that j ≤ pi, we have

ϕij(m, v) = fij(m, v)− fij(m,wij).

The game (m,wij) is defined in such a way that the pair (i, j) has the same marginal contribution
in (m,w) as in (m,wij). Indeed, observe that the pair (i, j) has null marginal contributions to
coalition in each game (m,u(0−i′ ,j′)) such that i′ 6= i or i′ = i and j′ 6= j. Therefore, by (SM), for

each (i, j) ∈M+ such that j ≤ pi, we have

fij(m,w) = fij(m,w
ij). (52)
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Additionally, by (ME), (51) and the definition of a minimal effort game (see (5)), we have∑
(k,j)∈M+,j

fkj(m,w
ij)

ME
= wij((j ∧mk)k∈N )− wij(((j − 1) ∧mk)k∈N )

(51)
= v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )− ϕij(m, v)u(0−i,j)((j ∧mk)k∈N )

+ ϕij(m, v)u(0−i,j)(((j − 1) ∧mk)k∈N )

(5)
=v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )− ϕij(m, v). (53)

Each pair in M+,j \{(i, j)} is dummy in (m,u0−i,j). Therefore, by (51), each pair in M+,j \{(i, j)}
has the same marginal contribution in (m,wij) and in (m, v). It follows that, by (SM), each pair
in M+,j \ {(i, j)} receives the same payoff in (m,wij) and in (m, v). Then, we have∑

(k,j)∈M+,j

fkj(m,w
ij) =

∑
(k,j)∈M+,j

k 6=i

fkj(m,w
ij) + fij(m,w

ij)

SM
=

∑
(k,j)∈M+,j

k 6=i

fkj(m, v) + fij(m,w
ij)

ME
= v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N − fij(m, v) + fij(m,w

ij). (54)

Combining (53) and (54), for each (i, j) ∈M+ such that j ≤ pi, we obtain

ϕij(m, v) = fij(m, v)− fij(m,wij), (55)

which concludes Step 2.
We have the material to conclude the proof of the Induction step. By (52), we have fij(m,w

ij) =
fij(m,w) and by (41) we have fij(m,w) = 0, for each (i, j) ∈ M+ such that j ≤ pi. By (55), for
each (i, j) ∈M+ such that j ≤ pi, we have

fij(m, v) = ϕij(m, v).

Therefore, for each (m, v) ∈ G and each (i, j) ∈ M+, we have fij(m, v) = ϕij(m, v). The proof is
complete. �

7.7. Proof of Theorem 3

The proof is divided in two steps.
Step 1: We show the existence of a solution. Let β = {βij}i∈N,1≤j≤K be a weight system,

such that βij > 0 for each i ∈ N and 1 ≤ j ≤ K. We show that ξβ satisfies all the axioms of the
statement of Theorem 3.

For each (m, v) ∈ G, we have∑
i∈N

∑
j∈M+

i

ξβij(m, v) =
∑

j≤ max
k∈N

mk

∑
i∈Q(j)

βij∑
k∈Q(j) β

kj

[
v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

]

=
∑

j≤ max
k∈N

mk

v((j ∧mk)k∈N )− v(((j − 1) ∧mk)k∈N )

= v(m).
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The second equality follows from the fact that
∑

i∈Q(j) β
ij = 1. This shows that the value satisfies

(E). By definition of the Weighted Division values (see (16)), the payoff of a pair does not depends
on activity levels different from the one contained in this pair. Therefore, ξβ satisfies both (IIR)
and (EL). (L) is direct from the definition of ξβ. By (16) and the fact that the weight system
consists of strictly positive weights, we have that ξβ satisfies (NLB). This concludes Step 1.

Step 2: We show the uniqueness of the solution. Let f be a value satisfying all the axioms
of the statement of Theorem 3. We show that there exists a weight system such that f coincides
with a multi-choice Weighted Division value. We know that each characteristic function v admits
a linear decomposition in terms of Dirac games. By (L), for each (m, v) ∈ G, we have

f(m, v) =
∑
s≤m

v(s)f(m, δs).

For each s ∈M, we show that
f(m, δs) = ξβij(m, δs),

for some weight system β. We consider several cases.
Case 1. Suppose that s ∈ M is not a synchronized coalition, that is s 6= ((l ∧mk)k∈N ), for

each l ≤ maxk∈N mk. In other words, s is not a synchronized coalition. Since f satisfies (E), (IIR)
and (EL), by Corollary 1 it satisfies (ME). Therefore, by (ME), for each j ≤ maxk∈N mk, we have∑

(i,j)∈M+,j

fij(m, δs) = δs((j ∧mk)k∈N )− δs(((j − 1) ∧mk)k∈N ).

Since s 6= ((j ∧mk)k∈N ) and s 6= (((j − 1) ∧mk)k∈N ), by definition of a Dirac game, we have∑
(i,j)∈M+,j

fij(m, δs) = 0. (56)

Since δs((j ∧mk)k∈N )− δs(((j − 1) ∧mk)k∈N ) ≥ 0, by (NLB) and (56), for each (i, j) ∈M+,j , we
have

fij(m, δs) ≥ 0. (57)

Combining (56) and (57), for each (i, j) ∈M+,j , we have

fij(m, δs) = 0 = ξβij(m, δs),

for any weight system β.
Case 2. Suppose that s ∈ M is a synchronized coalition, that is s = (l ∧ mk)k∈N , where

l ≤ maxk∈N mk. In other words, s is a synchronized coalition. Take any activity level j such that
j < l. By (ME), we have∑

(i,j)∈M+,j

fij(m, δs) = δs((j ∧mk)k∈N )− δs(((j − 1) ∧mk)k∈N ).

Since s 6= ((j ∧mk)k∈N ) and s 6= (((j − 1) ∧mk)k∈N ), by definition of a Dirac game, we have∑
(i,j)∈M+,j

fij(m, δs) = 0.
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Observe that δs((j ∧ mk)k∈N ) − δs(((j − 1) ∧ mk)k∈N ) ≥ 0. Similarly to Case 1, by (NLB) and
(56), for each pair (i, j) ∈M+,j such that j < l, we have

fij(m, δs) = 0 = ξβij(m, δs),

for any weight system β.
Case 3. Suppose that s ∈ M is a synchronized coalition such that s = (l ∧mk)k∈N , where

l ≤ maxk∈N mk. Similarly to Case 2, for each (i, j) ∈M+ such that j > l + 1, we have

fij(m, δs) = 0 = ξβij(m, δs),

for any weight system β.
Case 4. Suppose that s ∈ M is a synchronized coalition such that s = (l ∧mk)k∈N , where

l ≤ maxk∈N mk. Consider the pairs (i, j) ∈ M+ such that j = l, that is the pairs in M+,l. By
(ME) and the definition of a Dirac game, we have∑

(i,l)∈M+,l

fil(m, δs) = δs((l ∧mk)k∈N )− δs((l − 1 ∧mk)k∈N )

= 1. (58)

Two distinct pairs (i, l), (i′, l) ∈M+,l are equal in (m, δs). Therefore, by (ES) we have

Sign(fil(m, δs)) = Sign(fi′l(m, δs)). (59)

From (58) and (59), it follows that there exists a set of real weights {βkl}k∈Q(l) verifying βkl > 0,

for each (k, l) ∈M+,l, and such that, for each (i, l) ∈M+,l, we have

fil(m, δs) =
βil∑

k∈Q(l) β
kl

= ξβij(m, δs).

Case 5. Consider s ∈ M , such that s = (l ∧mk)k∈N , where l < maxk∈N mk. Consider the
pairs (i, l + 1) ∈M+,l+1. By (ME) and the definition of a Dirac game, we have∑

(i,l+1)∈M+,l+1

fi(l+1)(m, δs) = δs(((l + 1) ∧mk)k∈N )− δs((l ∧mk)k∈N ) = 0− 1 = −1.

Similarly to Case 4, there exists a set of real weights {βi(l+1)}i∈Q(l+1) verifying βi(l+1) > 0, and

such that, for each (i, l + 1) ∈M+,l+1, we have

fi(l+1)(m, δs) = − βi(l+1)∑
k∈Q(l+1) β

k(l+1)
= ξβi(l+1)(m, δs).

Therefore, for each s ∈M, we have f(m, δs) = ξβ(m, δs), for some weight system β = {βij}(i,j)∈M+ .
By (L), we conclude the proof of Theorem 3. �

Observe that in the uniqueness part of the proof of Theorem 3, the existence of a weight system
follows directly from (ES) (see (59)). By strengthening (ES) into (ET), we characterize the specific
Weighted Division value ξβ where βij = βi

′j for each 1 ≤ j ≤ K and any two i, i′ ∈ N . This
specific Weighted Division value is the multi-choice Equal division value. This proves Corollary 3.
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7.8. Proof of Theorem 4

Before starting the proof, which is divided in two steps, we provide a useful remark.

Remark 8. By definition, (LD) implies (ET). If (m, v) ∈ G is the null game, then (ME) and (LD)
imply fij(m, v) = 0, for each (i, j) ∈M+.

Consider any parameter system α. By definition and the fact that multi-choice Egalitarian
Shapley values are convex combinations of the multi-choice Shapley value and the multi-choice
Equal division value (see (17)), χα satisfies all the axioms of the statement of Theorem 4.

Next, we show that the multi-choice Egalitarian Shapley values are the only values satisfying
all the axioms of the statement of Theorem 4. Consider a value f satisfying all the axioms of the
statement of Theorem 4. To prove uniqueness, we show that, for each (m, v) ∈ G, there exists a
parameter system α such that we have

f(m, v) = χα(m, v).

Similarly to the proof of Theorem 1 and Theorem 3, for each (m, v) ∈ G, we have

f(m, v)
(L)
=
∑
t≤m

∆t(v)f(m,ut).

For each t ∈ M, we introduce the notation tT = maxi∈N ti. Consider any 1 ≤ x ≤ mT . Let us
show that f can be written, for each (m,ut) such that tT = x, as

∀(i, j) ∈M+, fij(m,ut) =

{
αxϕix(m,ut) + (1− αx)ξix(m,ut) if j = x,

0 otherwise,

for some 0 ≤ αx ≤ 1. Consider all pairs (i, j) ∈ M+ such that j < x. Since f satisfies (IIR) and
(EL), by Corollary 2, f satisfies (IR). Therefore, we have

fij(m,ut) = fij((j ∧mk)k∈N , ut).

Since ((j ∧mk)k∈N , ut) is the null game, by Remark 8, for each (i, j) ∈ M+ such that j < x, we
have

fij(m,ut) = 0. (60)

Consider all pairs (i, j) ∈ M+ such that j > x. These pairs are all dummy pairs in (m,ut) and
thus are equal. From Remark 8 and (ME), for each (i, j) ∈M+ such that j > x, we have

fij(m,ut) = 0. (61)

Now, consider all pairs (i, x) ∈ M+,x. We show that f can be written, for each (m,ut) such
that tT = x, as

∀(i, x) ∈M+,x, fix(m,ut) = αxϕix(m,ut) + (1− αx)ξix(m,ut),

for some 0 ≤ αx ≤ 1. We proceed by induction on Qt(x) the number of players that play x in the
coalition t.

31



Initialization: Assume that Qt(x) = 1. In this case, there is exactly one player, let us say
k ∈ N , that plays x in t. Any two distinct pairs (i, x), (i′, x) ∈M+,x such that i, i′ 6= k are dummy
pairs in (m,ut) and thus are equal. It follows that, for each pair (i, x) ∈M+,x such that i 6= k, we
have

fix(m,ut) = fi′x(m,ut) = c,

for some c ∈ R. The pair (k, x) being the only non-dummy pair in (m,ut) and ut(m) ≥ 0, (LD)
implies that fkx(m,ut) ≥ cx, which can also be written fkx(m,ut) = c+αx for some αx ≥ 0. (ME)
implies that fkx(m,ut) = 1− (Q(x)− 1)c, and thus αx = 1−Q(x)c. We obtain

c =
1− αx

Q(x)
.

By (8), each pair receives a zero payoff in the null game. Observe that each pair has better marginal
contribution to coalitions in (m,ut) than in the null game. By (WM), it follows that fix(m,ut) ≥ 0,
for each (i, x) ∈M+,x. It follows that

c =
1− αx

Q(x)
≥ 0 =⇒ αx ≤ 1.

Therefore, for each (i, x) ∈M+,x, we have

fix(m,ut) =


1− αx

Q(x)
if j = x and i 6= k

1− αx

Q(x)
+ αx if j = x and i = k,

(62)

for some 0 ≤ αx ≤ 1. Observe that, for each (i, x) ∈M+,x, we have

ξix(m,ut) =
1

Q(x)
, ϕix(m,ut) =

{
0 if i 6= k,

1 if i = k.

Comparing ξix(m,ut) and ϕix(m,ut) with (62), we have

∀(i, x) ∈M+,x, fix(m,ut) = αxϕix(m,ut) + (1− αx)ξix(m,ut).

for some 0 ≤ αx ≤ 1. This concludes the initialization step.
Hypothesis: Consider W ∈ N such that 1 ≤ W < |Q(x)|. Consider any t such that Qt(x) =

W . In this case, there are W players that play x in t. We suppose that we have

∀(i, x) ∈M+,x, fix(m,ut) = αxϕix(m,ut) + (1− αx)ξix(m,ut).

Induction: Consider any t such that Qt(x) = W + 1. Let s = t− eh, for some h ∈ N such that
th = x. Obviously, we have Qs(x) = W . Recall that (i, x) /∈ T (t) if and only if ti < x. Observe
that if (i, x) /∈ T (t) then (i, x) /∈ T (s). If (i, x) /∈ T (t) then (i, x) is a dummy pair in (m,ut) and
is also a dummy pair in (m,us). Therefore, each (i, x) /∈ T (t) has the same contributions in both
games (m,ut) and (m,us). Then by double application of (WM), the induction hypothesis and by
definition of ϕ and ξ, for each (i, x) /∈ T (t), we have

fix(m,ut)
(WM)

= fix(m,us)
Hyp
= αxϕix(m,us) + (1− αx)ξix(m,us) =

(1− αx)

Q(x)
. (63)
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By (ME), (63) and the definition of a minimal effort game, we have∑
(i,x)∈T (t)

fix(m,ut) =ut((x ∧mk)k∈N )− ut(((x− 1) ∧mk)k∈N )−
∑

(i,x)/∈T (t)

fix(m,ut)

=1− 0− (|Q(x)| − |T (t)|)1− αx

|Q(x)|
. (64)

Additionally, any two distinct pairs (i, x), (i′, x) ∈ M+,x, such that (i, x), (i′, x) ∈ T (t), are equal
in (m,ut). By Remark 8, f satisfies (ET), therefore for each (i, x) ∈ T (t), we have

fix(m,ut) = c,

for some c ∈ R. It follows that ∑
(i,x)∈T (t)

fix(m,ut) = |T (t)|c. (65)

Therefore, combining (64) and (65), for each (i, x) ∈ T (t), we obtain

c =

1− (|Q(x)| − |T (t)|)1− αx

|Q(x)|
|T (t)|

.

It follows that, for each (i, x) ∈ T (t), we have

fix(m,ut) =

1− (|Q(x)| − |T (t)|)1− αx

|Q(x)|
|T (t)|

=
αx

|T (t)|
+

1− αx

|Q(x)|
= αxϕix(m,ut) + (1− αx)ξix(m,ut). (66)

Combining (63) and (66), if sT = x, then for each (i, x) ∈M+,x, we have

fix(m,ut) = αxϕix(m,ut) + (1− αx)ξix(m,ut).

This concludes the induction.
We have shown that there exists a parameter system α such that f can be written, for each

(m,ut) such that tT = x, as

∀(i, j) ∈M+, fij(m,ut) =

{
αxϕix(m,ut) + (1− αx)ξix(m,ut) if j = x,

0 otherwise.

By definition of multi-choice Egalitarian Shapley values (see (17)), for such a parameter systems
α, there is a χα such that, for each (m,ut), we have

f(m,ut) = χα(m,ut).

We conclude by (L) that there exists parameter system α such that, for each (m, v) ∈ G, we have

f(m, v) = χα(m, v).

This concludes the proof. �
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7.9. Proof of Proposition 4

Observe that, for each i ∈ N and j < qi, we have

∀E ⊆ Q(j), w
(q,C)
j (E) = w

(q−ei,C)
j (E).

Therefore, we have

∀i ∈ N, j < qi, Shi

(
N,w

(q,C)
j

)
= Shi

(
N,w

(q−ei,C)
j

)
. (67)

Additionally, recall that, for each j ≤ maxk∈N mk, the set of orders Oj over M+,j can be interpreted
as the set of orders over the set of players in Q(j). An order over Q(j) is a bijection σNj : Q(j)→
{1, . . . , |Q(j)|}. We denote by Q(j) the set of of orders over Q(j). Consider an order σNj ∈ Qj and

h ∈ {1, . . . , |Q(j)|}. Recall that, for each B ⊆ N , the vector eB ∈ R|A| is defined by (eB)i = 1 if
i ∈ B and (eB)i = 0 otherwise. We denote by

((j − 1) ∧ qk)k∈N + e
E
σN
j
,h

the coalition in which each player in Q(j) ordered prior to step h with respect to σNj , participates at

its activity level j, whereas each player in Q(j) ordered after step h with respect to σNj , participates
at its activity level j − 1. Each player not in Q(j) participates at its maximal activity level.
Obviously, this coalition coincides with sσj ,h, where σj is the counterpart of σNj among the orders

in Oj . We use the convention ((j − 1) ∧ qk)k∈N + e
E
σN
j
,0 = ((j − 1) ∧ qk)k∈N . Consider an order

σNj ∈ Qj . For each i ∈ Q(j), we denote by

µ
σNj
i (q, C) = C

(
((j − 1) ∧ qk)k∈N + e

E
σN
j
,σN
j

(i)

)
− C

(
((j − 1) ∧ qk)k∈N + e

E
σN
j
,σN
j

(i)−1

)
, (68)

the marginal contribution of player i for its activity level j with respect to the order σNj . By (13),
(14) and (68), for each (q, C) ∈ C, the multi-choice Shapley value can be re-written as

∀(i, j) ∈M+,j , ϕij(q, C) =
1

|Q(j)|!
∑

σNj ∈Qj

µ
σNj
i (q, C).

By definition of the Shapley value for TU-games (see Shapley (1953)), for each j ≤ maxk∈N mk,
we have

∀i ∈ Q(j), Shi

(
N,w

(q,C)
j

)
=

1

|Q(j)|!
∑

σNj ∈Qj

µ
σNj
i (q, C) = ϕij(q, C). (69)

It follows that the multi-choice Shapley value is consistent with the discrete serial cost sharing
method since, for each i ∈ N , we have

SCSi(q, C)− SCSi(q − ei, C) =

qi∑
j=1

Shi

(
N,w

(q,C)
j

)
−
qi−1∑
j=1

Shi

(
N,w

(q−ei,C)
j

)
= Shi

(
N,w(q,C)

qi

)
= ϕiqi(q, C),

where the second equality follows from (19) and (67), and the third equality follows from (69). �
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