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Abstract

We present some mathematical tools widely used in courses taught in (under)graduate
programs in economics. We hope that readers can learn how to apply mathemat-
ical results in economics and how to prove them. We focus on two topics: finite-
dimensional convex optimization and discrete-time dynamical systems.! We also
present several applications in economics.

*CNRS, PSE, CASED. Email: Cuong.Le-Van@univ-parisl.fr

EM Normandie Business School, Métis Lab. Emails: npham@em-normandie.fr, pns.pham@gmail.com.
Webpage: https://phamns.wordpress.com/

'We do not cover linear algebra in this lecture. For more complete treatments of mathematics for
economics, see Simon and Blume (1994), Hoy et al. (2001).
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1 Some basics of mathematical analysis

An excellent introduction of mathematical analysis can be found in Rudin (1976). In the
following, we only cover essential notions and results that are extremely useful in economics
and will be used for the next sections.

1.1 Bounds, inferior, superior

Definition 1. A greatest element of a subset S of a partially ordered set (P,<)* is an
a € S satisfying b < a Vb € S.

A least element of a subset S of a partially ordered set (P,<) is an a € S satisfying
a<bVbes.

Definition 2. A lower bound of a subset S of a partially ordered set (P, <) is an element
a of P such that: a < x for all xz € S.

A lower bound a of S is called an infimum (or greatest lower bound, or meet; abbreviated
inf) of S if, for all lower bounds y of S in P, y < a (a is larger than or equal to any other
lower bound).

Similarly, an upper bound of a subset S of a partially ordered set (P, <) is an element
b of P such that b> xz¥Vx € S.

An upper bound b of S is called a supremum (or least upper bound, or join; abbreviated
sup) of S if, for all upper bounds z of S in P, z > b (b is less than any other upper bound).

Exercise 1. Let S = (0,1) in (R, <).
(i) Prove that inf S =0 and sup S = 1.
(ii) Prove that there is neither any greatest element nor least element of S.

Proposition 1. Let A C R be a nonempty set. The sup(A) is the unique element (even-
tually +00) such that :

(1) If © > sup(A) then x ¢ A

(i1) if x < sup(A) then there exists a € A such that x < a

(i1i) There ezists a sequence in A which converges to sup(A).

Proof. (i) If € A then z < sup(A) since this one is an upper bound of A. The result is
then obvious.

(ii) If not, for any a € A,a < x and z is an upper bound which is smaller than the
smallest upper bound which is sup(A).

(iii) First suppose that sup(A) is finite. Then for any k € N, there exists a* € A which
satisfies sup(A) —% < a® <sup(A). The sequence {a*}; converges to sup(A). Now suppose
sup(A) = 400.The set A is then unbounded from above. Hence, for any & € N, there exists
a® € A with a* > k. Obviously, the sequence {a*}, converges to +o0o = sup(A). O

Proposition 2. Let A C R be a nonempty set. The inf(A) is the unique element (eventu-
ally —o0) such that :

(1) If © < inf(A) then z ¢ A

(i) if © > inf(A) then there exists a € A such that x > a

(i1i) There ezists a sequence in A which converges to inf(A).

2The set P and the binary relation < constitute a partially ordered set if the binary < is reflexive
(x < x), transitive (z < y and y < z imply that x < 2) and anti-symmetric (z < y and y < = imply that
x

=y).
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1.2 Sequence and limit

A sequence is a function whose domain is the positive numbers. We write (x;); = (1, z2,...,).
The value x; may be in R, RY or in other spaces.
A subsequence (zy, ), of (zx)y is an infinite sequence wy,, T,, . . . where ki, ko, ... is an

infinite increasing sequence of integers.
We now focus on the case v € RY = {(ay,as,...,ay) :a; ER,Vi=1,...,N}. We say
that a sequence (x;); has the limit z if, for any € > 0, there is a positive integer n such that

|z: — x| < e Vi >n, where ||ja —b| = \/Zi]\il(ai — b;)? is the distance between vectors a
and b.

Definition 3. A sequence having the limit is said to be convergent (in this case, we write
lim,, o0 x, = x). A sequence is divergent if it is not convergent.

Definition 4. A sequence of real numbers {z*}, converges to +oo (notation x* — +o00)
if: for any A € R, there exists K such that, if k > K then x* > A.

Exercise 2. Prove that ||a - b|| < ||a||||b]| where a-b = (a1by, ..., anby).

Exercise 3. The above distance || - || between two vectors satisfies the Triangle Inequality:
2+ yll < [lzll + [yl

and
o = 2| < [lz =yl + lly — =]l
Theorem 1. A sequence in R™ has at most one limit.
Proof. Assume {x;}, in R™ has two limits a,b. Then, given ¢ > 0, one can find N,, N,

such that, for any n > N,, one has ||z, — a|| < ¢ and any n > N, one has ||z, — b|| < e.
In this case, if we take N > max{N,, Ny}, we have

la—0b| = |la -2y +ay —b|| < |la—2N|| + |2V —b]| <2 Ve
It means that [|ja — b|] < 2¢ Ve > 0. So, we have ||a — b|| = 0 and hence a = b. O
Theorem 2. A sequence of points {x*}, in R™ converges to x = (x1,%9,...,2,), where
af = (ab 2k, .. 2k, if, and only if, 2¥ — x; for anyi=1,... n.
Proof. Exercise O

Remark 1. Prove that If the real sequences (a,) and (b,) converge to x € R, then any
sequence (c,) satisfying a, < ¢, < b, ¥n also converges to x.

Properties 1. Suppose that two real-value sequences x,, and y, are convergent with limits
x and y respectively. We have

1. lim,,_, cx, = cx Ve € R.
2. limy, oo (Tp + yn) =+ ¥.

3. lim, o0 Tpyn = 2y.
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4o imy oo (Tn/yn) = x/y if y # 0.
Exercise 4 (Theorem 3.20 (Rudin, 1976)). Prove that

~

. Ifp >0, then lim,_,o 1/n? = 0.
CIfp >0, then lim, o p'/" = 1.3
. limy, oo nt/™ = 1.

=01

_n%
(14p)™

2
3
4. If p>0, and a € R, then lim,,_,
5. If |x| < 1, then lim,, o 2™ = 0.

Proof. Point 4. Recall the binomial theorem: (z+y)" = >, ()a" " y* = >0, (§)aFy"*

|
where (Z) = m By applying this theorem, we have

(1+M"=§:(Zﬁ"kk:}:“”_n”ﬁn_k+nﬁ

k=0 k=0

Given p and «, choose k > «a, k > 0. Choose n > 2k, we have

nn—1)---(n—k+1) , Pt nfph
X p:n(n—l)'--(n—k+1)ﬁ>§y

(I+p)" >

because n — k + 1 > n/2. Therefore,

n® 28K
n < k
(I+p"  p
Since a — k < 0, the right hand side converges to zero when n goes to infinity. So,
limy, o0 iy = 0. O

Exercise 5. Find the limit (if it exists) of the following real-value sequences:

(~1)"/n.
2. x, = (1)

1. xz,

Definition 5. A real-value sequence is increasing (respectively, strictly increasing) if x,.1 >
x, Vn (respectively, x,.1 > x, Vn). It is decreasing (respectively, strictly decreasing) if
Tp1 < x, Vn (respectively, x,. 1 < x, Vn).

A sequence is bounded if it has a lower bound and an upper bound.

Theorem 3 (monotone convergence theorem). A monotonic sequence (with real values)
15 convergent if and only if it is bounded.

3Hint: Define x = p'/™ — 1. Observe that (14 2)" > 1 +naz V2 > 0 and n is integer.

“Hint: Let k be an integer and higher than «. Prove that (1 + p)® > Z’;Z’: vn > 2k.
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Proof. Consider a monotonically increasing sequence (x,,).

Suppose that (x,,) is convergent to x. It is easy to see that z,, is bounded by x.

Suppose now that (x,) is bounded. In this case, we have sup,, ,, < co. We will prove
that it is convergent and lim, ., x,, = sup,, x,,. We do so by using the definition. Denote
¢ = sup,, T,. Let € be strictly positive. By definition of supremum, there exists an element
T, such that ¢ — x,, < € (indeed, otherwise ¢ — ¢ > x,,, Vm, which means that ¢ — € is an
upper bound of (z,,) and smaller than ¢, a contradiction). We have |z, — ¢| = ¢ — z, Vn
because z,, < c.

For n > m, we have |z, —¢| =¢c—x, < ¢ —x, <€ So, lim, . z, = sup,.

]

Example 1. (Growth, Interest rates). At date 0 (initial date), the GDP per capita of
countries a and b are y, and y, respectively with y, < yp.
Denote y;; the GDP per capita of country i at period t.
Assume that the rate of growth of country i is r; which is constant over time, fori = a,b.
Assume that ro > 1, > 0.
Prove that

1. Yor — Yps converges to infinity

2. and there is a date ty such that Y, — yp < 0Vt <ty and yor — ype > 0 VE > to.

Example 2 (Compound interest). (1) The value of P usd invested at an annual rate of
interest v compounded n times per year is
Vi=P(1+5)
n
When n — oo, we define
V= lim V, = lim P(1+2)"
n

n—oo n—oo
This is the value of P usd invested for one year at an interest rate of r with continuous
compounding.
Prove that
V = Pe".

where e is the natural number. It approrimately equals 2.71828. Recall the definitions of
e.

]_ n
ezlimP(l—i——)
n—oo n
=1 1 1 1
p— —:]_ — DY
¢ nzzon! R R

(2) The value of P usd invest for t years becomes

()

Prove that

V, = lim V,, = Pe"
n—00 ’
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Definition 6. The limit inferior of a sequence (x,,) is defined by

liminf z, = lim ( inf xm) or liminf x,, = sup ( inf mm)
n—00 n—oo \ m>n n—00 n>0 m>n

The limit superior of a sequence (x,) is defined by

limsup x, = lim (sup xm> or limsupx,, = inf (sup xm>
n—00 n—=00 \m>n n—00 n20 \ m>np

Note that the sequence a,, = inf,,>,, ,, is increasing while the sequence b,, = sup,,,~,, Tm
is decreasing.

Exercise 6. Prove that limsup,_,..(—1)" =1 and liminf,_,,(—1)" = —1.

Exercise 7. Suppose that liminf,, ,. x, > a. Prove that there exists a positive integer
ng > 0 such that x,, > a VYn > ng.

1.3 Series

Definition 7. Let (a;) be a sequence. s, =Y . a; is called a series.

Example: Present value of a stream of payments. Present value of incomes.
Remark 2. 1. If the series converges, then lim,, o a, = 0.

2. The converse may not hold.

We introduce ”comparison test” which is very useful.

Proposition 3. 1. If there exists Ny such that |a,| < ¢, ¥Yn > Ny, and if Y ¢, con-
verges, then Y a, converges

2. If there exists Ny such that a, > d,, VYn > Ny, and if Y d, diverges, then ) a,
diverges

Proposition 4. 1. The series converges if limsup,,_,. |“=| < 1.

an

2. The series diverges if there exists ng such that |2 > 1 Vn > ny.

3. The series diverges if liminf, . |“+]| > 1.

an

Exercise 8. Prove that

n n(n+1
1Y k= (2 )

n n(n+1)(2n+1
2. 3 k2 = nlotlintl)

n 2(n+1)2
3. S0 kP = mletl

y; Zn k4 — n(6n*+15n34+10n2—1)
. t=1" — 30 :

Exercise 9. Prove that
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1.3 éak a”:11 ifa # 1, and equals n if a = 1.

2. 3 iak_% ifa#1, and equalsn — 1 ifa = 1.
n a— n a”+1—a”+2 a -
3. Doy k= le= +(1,1_1)2 teifa # 1.

4. > opepat = 1= ifa € (0,1), and equals 0o if a > 1.

©

(Present Value of a Stream of Payments) Given that the interest rate is strictly
positive (r > 0), prove that

& v

Z (I+r)* -

=
Exercise 10. Prove that
1.y L <ooifa>1.
2. 3 L =00 ifa<1. In particular, >, £ = oco.

Exercise 11. Prove that

=1
e=) q=ltityg gt <

n=0
Exercise 12. Consider a positive sequence (a,). Prove that

n

nhjEOH 1+ a;) < oo if and only if Zaz<oo

i=1 i=1

1.4 Open, closed and compact sets

For x € R™, the open ball B(x,r) with centre x and radius r is the set B(z,r) = {y € R™:
ly =l <7}

e A set S € R"is open if for all x € S there exists r > 0 such that B(z,7) C S. In
particular the ball B(z,r) is an open set.

e A point x is in the interior of a set S C R"™ if there exists r > 0 such that the open
ball B(x,r) is contained in S. The set of all interior points of S is denoted by intS.

o A set S €R"is closed if its complement S¢ = {z € R" : z ¢ S} is open
Properties 2. e The union of an arbitrary collection of open sets is again open

o The intersection of an arbitrary collection of open sets is not always open. Example:
Sn=0—-=1/n,24+1/n). Then Np>15, = [1,2] is a closed set.

e The intersection of a finite collection of open sets is open

September 3, 2021 Page 9
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o The sum of two open sets is open, where we define the sum of two sets Sy, Ss of R"
by
Sl‘l—SQ:{JIGRnZ:L‘le—Fl'Q,{L‘l ESl,ZL‘Q GSQ}

e The union of a finite collection of closed sets is closed

o The unton of an arbitrary collection of closed sets is not always closed. Fxample:
Sp=10,1—1/n]. Then U,>1S, = [0,1) is not closed.

e The intersection of an arbitrary collection of closed sets is closed

o The sum of two closed sets is not always closed.

Ezample: S; = {(z,y) e R? : 2 > 0,y =1}, S = {(z,y) e R? : 2 > 0,y = —1}.

Note that (0,0) & Sy + Sy because, if (x,y) € Sy + Sz, we must have x > 0. :
Definition 8. Let S C RY. We say that S is bounded if there exists M such that S C

B(0,M). In other words, S is bounded if there exists M > 0 such that ||z|| < M for all
resS.

Theorem 4 (the Bolzano-Weierstrass theorem). If the sequence (z,,) in RN is bounded,
then it has a convergent subsequence.

Proof. Let us firstly prove the result in the space R. Let (x,) be a bounded sequence.
We will construct a subsequence of (z,), which is monotonic. Then, by applying
Theorem 3, this subsequence is convergent.
It remains to prove the following result.

Lemma 1. Every infinite sequence (x,) in R has a monotone subsequence.
Proof. Define
A={neN:VYp>n,z, <uz,}
B={neN:3p>n,z,>z,}
There are two cases.

1. card(A) = oo. Let (ng)x be an increasing infinite sequence in A. Then the subse-
quence (x,, ) of (z,) is decreasing.

2. card(A) < co. Let N, be the highest element of A. Hence, for any n > N,, we have
n € B. Take m; = N, + 1, then m; € B and hence there exists my > m; such
that x,,, > z,,,. By induction argument, there exists an increasing infinite sequence
(mg)x such that x,, , > o, Vk. So, the subsequence (2,,, ) of () is increasing.

[
We now consider the case of RY. Let (z) C RY. z = (z14,...,Znk). Since (zy) is
bounded, the sequence (z;;) is bounded for any i = 1,..., N. So, there is a subsequence
(%1, )m Which is convergent.
We consider the subsequence xy, ,, = (L1, s T2k100s - - - > TN 1) Of (T1)-
Since (22,4, ,,) is bounded, it has a convergent subsequence (22, ,,) With (k2) C (kim).
By induction argument, we con construct subsequences (knm) C (kxv—1m) C -+ C (k1,m)
and the subsequence Ty, . = (T1ky.m> T2kyms - s TNkym) Of (Z1) is convergent. O
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Definition 9. Let S C RY. We say that S is compact if it is bounded and closed

Theorem 5. Let S C RY. The following statements are equivalent

1. S is compact.
2. S is bounded and closed. (The Heine—Borel theorem.)

3. For all sequences {x*} in S, there exists a subsequence {x*},, which converges to a
point x € S.°

Proof. We prove the equivalence between (2) and (3).

(3) implies (2): Assume S has the property that for all sequences {z*} in S, there exists
a subsequence {z*},, which converges to a point € S. Let us prove it is compact. First,
S is bounded. If not there exists a sequence {z*}; C S with lim_, 1 ||2*|| = +0c. There
exists a subsequence {z*»}, of {2*}, which converges to some x € S, which is impossible
since lim,, ||z%"|| = +o0.
We now prove S is closed. Suppose {z*}, C S converges to z. There exists a subsequence
which converges in .S. This limit must be x. Hence, z € S.

(2) implies (3): Assume that S is compact. We will assume S C R?. One can easily
see that the proof can be carried on when the dimension of the space is larger than 2.
Let {z*} be a sequence of S. Write ¥ = (2}, %), Vk. Since S is bounded, there exists a
subsequence {z%"},, which converges to some z; € R. But there exists also a subsequence

{zy"} of {$’§"}n which converges to some z5 € R. Since S is closed, (1, x2) € S since it

is the limit of {(x’f’” : xgnl)}l. To summarize, we have found a subsequence of {*} which
converges to a point in S. 0

Properties 3. e The union of a finite collection of compact sets is compact.
e The union of an arbitrary collection of compact sets is NOT ALWAYS compact.
o The intersection of an arbitrary collection of compact sets is compact.

o The sum of two compact sets is compact.

1.5 Continuous functions

Mappings Let f : S — T, where S C R", T" C R™. Then S is called the domain of f,
and T is the range of f. For R C S, the image of R under f is

f(R)y={yeT:y= f(z), for some x € R}
For U C T, the inverse image of U, f~1(U) is
fHU)={xeS: f(z) =y,y e U}
The set f~1(U) may be empty.

5We can also prove that S is compact if and only if every open covering of S has a finite sub-covering.
Here, we define that: An open covering of a set S is a collection of open sets {U, } such that S C U,U,,.
This definition is in general used when R¥ is replaced by a topological space.
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e A mapping f : S — R™, where S C R" is continuous at = € S if for all sequences
{zx} in S converging to x, we have that f(xy) — f(z). Equivalently, f is continuous
at © € S, if for every € > 0 there exists 6 > 0 such that if y € S and ||y — 2| < §

then [[f(y) — f(z)[| <e.

o Let f(z) = (fi(x),..., fm(x)) where f; is a mapping from S to R. Then f is contin-
uous at x € S if, and only if, each f; is continuous at x.

e A mapping f is continuous on S if it is continuous at any = € S.

o let f:R" - R” g : R" — R™ Assume f,g are continuous. Then f + g is
continuous. If A is a real number, then \f is continuous.

o let f:R" - R™ g: R™ — RP. Assume f,g are continuous. The mapping gof
defined by gof(z) = g(f(x)) for any z is continuous.

e Let f:R"™ — R™. Then f is continuous if, and only if, for any open set A C R™,
f7Y(A) is open in R™. Equivalently, f is continuous if, and only if, for any closed set
ACR™ f~1(A) is closed in R™.

Proof. Assume f is continuous. Let A € R™ be open. We will show that f~!(A)
is open. For that, let z € f~!(A). Since A is open, there exists an open ball
B(f(z),e) C A. Since f is continuous, there exists 0 > 0 such that if y € B(x, §) then
f(y) € B(f(x),e) C A. This implies y € f~'(A). Equivalently, B(z,d) C f~!(A)
and f~'(A) is open.

Conversely, assume that for any open set A C R™, the set f~!(A) is open. We
will prove that f is continuous. Let A = {z € R™ : ||z — f(x)|| < €}. The set
A is open. Observe that z € f~!(A). Since f~'(A) is open, there exists an open
ball B(z,d) C f~'(A). That means, if |y — z|| < § then f(y) € A or equivalently
| f(y) — f(z)|| < e. We have proved that f is continuous.

To prove that f is continuous if, and onl! y if, for any closed set A C R™, f~1(A) is
closed in R™, one can observe that f~1(A°) = (f~1(4))". O

Theorem 6 (Intermediate value theorem). Let f be a continuous function on the interval
[a,b]. If f(a) < f(b) and c € (f(a), f(b)), then there exists a point v € (a,b) such that
6

f(2) =c.
Note that such a x is not necessarily unique.

Proof. Define S = {d € [a,b] : f(d) < c}. S is non-empty and bounded. So, there exists
the supremum of S. Let x = sup(S). We can prove that f(z) = c.
[l

Example 3 (The demand, the supply and equilibrium price). Let D(p) and S(P) be the
demand and supply functions which depend on the price p > 0. Assume that D and S are
continuous.

A price p > 0 is said to be an equilibrium price if D(p) = S(P).

According to Theorem 6, there is an equilibrium price p is D(0) — S(0) > 0 and
lim, o D(z) — S(z) < 0.

6A generalization of this theorem can be found in Theorem 4.22 in Rudin (1976).
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Proposition 5. Let f : S — R™, where S C R". Assume S is compact and f is continuous
on S. Then f(S) is compact.

Proof. First, f(.S)is bounded. If not there exists a sequence {y"},, C f(.S) with lim,,, 1  ||y"

+oo. We can write y” = f(z") with ™ € S for every n. Since S is compact, there exists
a subsequence {x" }; which converges to some x € S and f(x™) converges to f(x). That
is a contradiction since || f(z™)|| converges to infinity too.

We now show that f(S) is closed. For that, let {y"}, C f(S)— y. We claim that y € f(95).
Write " = f(z™) with 2" € S for every n. Since S is compact, there exists a subsequence
{z™}\, which converges to some x in S and f(z™) converges to f(z). We must have

y = f(z). Hence, y € f(S9). ]

Theorem 7 (Weirstrass Theorem). Let f : S — R, where S C R™. Assume S is compact,
nonempty and [ is continuous on S. Then [ has both a maximum and a minimum.

Proof. Let M = sup(f(5)). There exists a sequence { f(z")},, converging to M. Since S
is compact, there exists a subsequence {z™} which converges to some x € S and f(z"*)
converges to f(z) € f(S). We have M = f(x) and hence, M = max(f(S)). The proof is
similar for min(f(.59)). O

1.6 Derivatives

A motivation: The Total- and Marginal-Cost Functions. Suppose that the total
cost function of a firm is C' = C(y) where y is its output. Let us look at

AC _ Cly+Ay) —Cy)

Ay Ay

This represents the (average) rate of change in cost per added unit of output produced. If
we know ﬁ—i, then we can compute the change in cost C(y + Ay) — C(y) as a function of

Ay by using the formula C(y + Ay) — C(y) = ﬁ—i x Ay.
The instantaneous rate of change (the marginal-cost of production) is

_ iy Gy Ay) —Cy)
Ay—0 Ay Ay—0 Ay

This motivates us to study derivatives of functions.
Differentiability of real functions

e Let f: 5 — R, where S C R. We say that f is differentiable at xo € S, where xg
must be in the interior of S, if there exists the limit

o S) — f)
T—xQ r — g
Denote this limit by f’(zo). This is called the derivative of function f at xz.
Note that we have
@)~ Jlao) — Pl = 20)

h—0 Tr — 2o

=0
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o Let f: S5 — R, where S C R". We say that f is differentiable at o € S, where x,
must be in the interior of S, if there exists a vector a € R™ so that

f(z) = f(xo) —a- (z — x0)

[l = o

— 0, asx — x9

where ||z — 20| = /(21 — 201)? + - - - + (¥ — Ton)?

The vector a is called the derivative of f at xy and is denoted by D f(z(). Moreover,
we say that f is differentiable on S if it is differentiable at every point of S. We
can regard Df as a mapping from S to R™. If Df is continuous, we say that f is
continuously differentiable or f is C*.

o Let f: S5 — R, where S C R". We study the derivative via partial derivatives.
Let (eq,...,e,) be the canonical basis of R". If e; is a vector of this basis, then the
coordinates of e; equal zero excepted the i—th coordinate which equals 1. The i—th
partial derivative of f at a point x is the number %ff) defined by

0 te;) —
() :hm{f(ﬂ €) f(év)}

o0x; t—0 t

Differentiability of mappings

e A mapping f : S — R™, where S C R", is differentiable at zo € S, where xy must
be in the interior of .S, if there exists a m X n matrix A so that

f(z) = f(xo) — Alx — 20)

[l = o

— 0, asz — xg

where |z — zo|| = \/(z1 — 201)?+ - + (zn — T9,)? The matrix A is called the
derivative of f at xg and is denoted by D f(zy). Moreover, we say that f is differen-
tiable on S if it is differentiable at every point of S.

o If f is differentiable on a set S, its derivative D f can be seen as a mapping Df : S —
R™*™ If this mapping is continuous, we say that f is continuously differentiable or

fis C

Properties 4. Let f : S — R, where S C R" is an open set. If f is differentiable on S,
then it is continuous on s.

Proof. Using definition. O]

Theorem 8. Let f: S — R, where S CR" is an open set. The function f is C* on S if,
and only if, all partial derivatives of f exist and are continuous on S. In that case we also

have
_ (9f(=) 0f(x) of(x)
Df(a:)_ ( 8371 ) ax2 PR axn )

Second derivatives
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o Let f: 5 — R, where S C R". Then the derivative D f(z) = <8f(z) o) M)

- Or1 ’ Oxg ' Oxn
is also a mapping from S to R". If Df is differentiable then f is called twice differen-
tiable with second derivative D?f(z). The partial derivatives of the partial derivatives

of f are denoted by % if « # j, and by 6261; @) if = J. In these cases we have
i J i

[0%f(z) 9% f(x) 7

8w% T Ox10xn

D)= | ..

02 f(x) 9 f(x)

LOzndz1 =" Oz2

This matrix is called the Hessian of f at x.

e When f is twice differentiable on S and each second partial derivative is a continuous
function, then f is called twice continuously differentiable or C?.

Theorem 9. If f is C% on S C R, then D*f(x) is a symmetric matriz, i.e. gifa(? = gifé?
10T jOTq
foralli,j and all x € S.

Notice that it can happen that % % if our assumptions are not satisfied.
7 7 J 7

Exercise 13. (Rudin, 1976) Define

f(0,0) =0
flay) =258 if (3,y) # (0,0)

Prove that
1. f, Dif, Dof are continuous in R2.
2. Dyof and Dayy f exist at every point of R?, and are continuous except at (0,0).
3. Di15f(0,0) =1 and Dy, f(0,0) = —1.
(

Theorem 10 (Rolle’s theorem). Let f be a function from [a,b] into R. Assume that f is
continuous on [a,b], differentiable on (a,b), and f(a) = f(b). Then there exists ¢ € (a,b)
such that f'(c) = 0.

Proof. Since f is continuous, there exist m = min{f(z) : x € [a,b]} and M = maz{f(zx):
x € [a,b]}.

If m = M, then f is constant which implies that its derivative equals zero.

If m < M, we have either f(a) > m or f(a) < M. Without loss of generality, we
can assume that f(a) > m. Then there exists ¢ such that f(c) = m. We observe that
¢ # a,c#b. Define ¢(h) = w with A f) and h is small enough so that c+h € [a, b].
By definition, we have limj,_,o ¢(c) = f'(c).

We will prove that f’(¢) = 0. By definition of ¢, we have f(c+ h) — f(h) > 0, Vh
satisfying ¢ + h € [a,b]. Let h > 0 and tend to zero, we have f'(¢) > 0. Let h < 0 and
tend to zero, we have f'(c) < 0. Therefore, f'(c) = 0.

0
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Theorem 11 (Mean value theorem). Let f be a function from [a,b] into R. Assume that
f is continuous on [a,b], differentiable on (a,b). Then there exists ¢ € (a,b) such that

f'(e) = 150,

Proof. Without loss of generality, we assume that a < b.
Consider the function

We have g(a) = g(b). Applying Rolle’s theorem, we get the result. O

The following theorem is very important for Optimization and Dynamical System. We
state the result without proof.

Theorem 12 (Taylor expansion). Let f : S — R, where S C R"™ is an open set. Pick
Xo € S

1. If f is CY on S, then for any x € S we can write
f(x) = f(zo) + Df(x0) - (x — z0) + Ri(z, x0)||x — 20|

where Ry (o, x9) =0 and Ry(x,x0) = 0 as © — xo.

We explicitly write

flxe, . smn) = f(oa, -+ Tom +Z — 20,4) + Ri(z, 20) ||z — 0|

81:1

2. If f is C% on S, then for any x € S, one can write

f(x) = f(wo) + Df(wo) - (x — 0) + %(z — 20)' D? f(x0)(z — 20) + Ra(, 20) ||z — 20|

where Ry(xo,x0) =0 and Ry(x,x0) — 0 as © — xo.

We explicitly write

f(:Cl, . ,.Tn) :f<$0,1, . ,xoyn) + Z 8‘];(::0) (l’l — 513'071')

"2 Z 0z 8x] — o) (T — xo,5) + Ro(, 20) |2 — 2o

2 (Quasi)Convexity and (quasi)concavity

The notion of convexity is very important in economics. Indeed, in economic models,
the budget set of agents are usually assumed to be convex. In many setups, we assume
that preferences of agents are convex or the utility functions are (quasi)concave. These
observations motivate us to study the (quasi)convex and (quasi)concave functions.
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2.1 Convexity and concavity

Definition 10 (Convex set). A set A in R™ is convex if \a+(1—A\)b e AVa e A, Vb e A,
VA € [0,1] (the line segment is a subset of A).

Definition 11 (Concavity). Let f : A — R be a function defined from A, a nonempty set
of R™, into R. We require that A is convez.

1. f is convex on A if

FOa+ (1= MNb) < Af(a) + (1 — N f(b)Va € A,¥b e AYA € [0, 1].

2. f is strictly convex on A if

FOa+ (1= Nb) < Af(a)+ (1= N\ f(b)Va € A,¥b € A,a #b,VA € (0,1).

3. The function f: A — R is concave on A if —f is convex.

Explicitly, f is concave on A if

Va, € A,VCLQ € A,V)\ S [0, 1] ,f()\al + (1 — )\)CLQ) > /\f(CL1> + (1 — )\)f(ag)

It is strictly concave on A if:

Va; € A,Vay € A ay # az, YA €]0,1], f(Aa; + (1 — Nag) > Af(ar) + (1 — ) f(az).

The function f(x) = 22 is strictly convex and f(z) = '/? is strictly concave. The
function f(x) = Az is convex and concave but neither strictly convex nor strictly concave.

Proposition 6 (Jensen inequality). Let U be a nonempty convex set of R™ and let f : U —
R be a convex function on U. Then f is convex if, and only if, for any integer p > 2, for
any p elements of U, x1,...,x,, for any p positive numbers A1, ..., Ny, the sum of which
equals 1, then

f(/\lxl + ...+ /\pl’p) S /\1f(ZL'1) + ...+ )\pf(l'p)

Proof. Let f : U — R where U is a convex, nonempty subset of R". Assume f convex.
Let z1,...,z, be p elements of U.

If p = 2, then obviously f(Mx1 + ...+ M\pzp) < Aif(z1) + .. + A f(zy).
Assume that Jensen Inequality holds for p — 1. We will show that it holds also for p. If
Ap = 1, then the result is trivially true. So, we assume A\, # 1. Let s,_1 = A\; + ...+ A\_1.
We have:

A Ap
/\11’1 + ...+ /\pxp = Sp—l( L 1+ ...+ P 11Ep_1) -+ (]_ — Sp—l)xp-
Sp—1 Sp—1
The function f being convex, we have:
Ay Api
f()\lwl + ...+ )\p.fL'p) S Spflf(s 1+ ...+ S .%'pfl) + (1 — Spfl)f<$p).
p—1 p—1
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We have assumed that Jensen Inequality holds for p — 1. Hence

A Ape A Ape
f(E=m+ o+ Py ) < = flmn) + o I f ().
Sp—1 Sp—1 Sp—1 Sp—1
Thus:
f(>\1x1 + ..+ )\pl'p) S )\1f(.l’1) + ...+ )\pf(xp)
The converse is true by taking p = 2. O]

The following theorem is very important and useful.

Theorem 13 (first-order convexity condition). Let f be a differentiable function from its
domain (dom(f)) into R. Assume that dom(f) is convex.
1. fis convex if and only if, for any x,y € dom(f), we have f(y)—f(x) > Df(x)-(y—x).
f s strictly convex if and only if, for any x,y € dom(f), x # y we have f(y)— f(x) >
Df(z) - (y — ).
2. f is concave if and only if, for any x,y € dom(f), we have f(y) — f(x) < Df(z) -
(y — ).
f is strictly concave if and only if, for any x,y € dom(f), x # y we have f(y)—f(x) <
Df(z) - (y — ).

Proof. Notice that we cannot directly use Taylor’s expansion. Let us prove the first point.
Suppose that f is convex. We have to prove that f(y) — f(x) > Df(z)- (y —x) for any

z,y € dom(f). Let x,y € dom(f). Consider z(\) = (1 — X\)z + Ay with A € [0, 1]. Since

dom(f) is convex, we have z(\) € dom(f), YA € [0, 1]. By the convexity of f, we have

fF(L=Nz+Xxy) < (1 =N f(2)+ A f(y) & flz+ My —2)) < flz) + Mf(y) — f(2))
or equivalently

Let A go to zero, we get that Df(x) - (y —x) < f(y) — f(x).
Suppose now that

fy) = f(2) 2 Df(x) - (y = =), Va,y € dom(f) (1)
Consider z(A) = (1 — Az + Ay with A € [0,1]. Applying (1), we have
f@) = f(2) 2 Df(2) - (z—2) = (1= N)(f(z) = f(2)) = (1= A) '
fy) = f(2) 2 Df(2) - (y—2) = A(f(y) = f(2)) = ADf(2) - (x —2) (3)
Taking the sum of both sides, we get that

L =N (f(@) = f(2)) +A(f(y) = [(2)) = A =N)Df(2) - (x —2) + ADf(2) - (x — 2)
& (1 =Nf(z)+Af(y) = f(2)

So, the function f is convex. O
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Corollary 1. Consider f : dom(f) — R. Assume that f is convex. If x € dom(f) such
that DJ(z) = 0, then £(z) = minacaomep( (@)

The following properties are very useful. We can prove them by using definition.
Properties 5. We have the following properties.

1. If f,g are convex from a convex set U into R and if A is a nonnegative real number,
then f+ g and (\f) are conver.

2. Let f, g be two convex functions from a convexr set U, into R. Then max(f,g) is
convex. More generally, consider a collection of convex functions { fi;}i=1...1, from U
into R. Then max{f; |i=1,...,1} is convex from U into R.

3. If functions f : U - R, g: V = R, with f(U) C V, are convez, if g is nondecreasing,
then g o f is convex.

4. If (fi)ien is a sequence of convex functions from R™ into R which converges pointwise,
i.e. Yx € R", the sequence (f;(x))ien converges in R, then the function defined for
all z € R™ by f(x) = lim; 1o fi(z) is convex from R™ into R.

Proof. Let us prove point 2. Denote f = maz;f;. Let a,b € U and A € [0, 1]. We have
fiha+ (1= A)b) < Afi(a) + (1 = A)fi(b) < Af(a) + (1= A)f(D).

Taking the maximum over i, we have f(Aa + (1 — A)b) < Af(a) + (1 — A)f(b). So, the
function f is convex.

O
Example 4 (Simple composition results). 1. If g is convex then e9®) is convex.
2. If g is concave and positive, then log g(x) is concave.
3. If g is concave and positive, then 1/g(x) is convex.
4. If g is convex and nonnegative and p > 1, then (g(x))? is convex.

5. If g is convex then —In(—g(x)) is conver on {z : g(z) < 0}.

2.1.1 Convexity and continuity

Theorem 14. If f is convex from an open set U C R™ into R, then it is continuous in
U.”
Proof. Tt is not easy to prove this result. We need an intermediate step.

Lemma 2. Letl f be a conver function from an open set U of R" into R. Assume 0 € U.
Then, there exists a closed ball B(0,7) C U such that f is bounded above on B(0,r).

"See Theorem 5.2.1 in Florenzano and Le Van (2001) for a stronger result.
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Proof. Since 0 € U, one can choose a > 0 sufficiently small such that the convex hull
V = co{ael,... ae™ —ael, ... —ae"}? where the e are the vectors of the canonical basis
of R", is contained in U.

V has a nonempty interior, 0 is in the interior of V. Thus, V' contains a closed ball
B(0,7).% Any z in V may be expressed as: x = ay 1 \el —a Y Me! with \; > 0, \] >
0,Vi, Y (A + A)) = 1. Since f is convex,

f(z) < Z (Nif(a€’) + N f(—ae’)) <max {f(ae'),..., f(ae"), f(—ae"),..., f(—ae™)}.

Therefore f is bounded above on B(0,7). O

We now prove Theorem 14. Let zy € U. Define V.= U — {z9}. Observe that
V' is convex, open and 0 € V. Consider the function A : V' — R defined by h(x) =
f(z + x0) — f(xg). Obviously h is convex and h(0) = 0. Moreover, f is continuous at x
if, and only if, h is continuous at 0.

We will prove that h is continuous at 0. Let {z"}, C V converge to 0. We have to
prove that h(z™) converges to h(0) = 0.

Since V is open and 0 € V, there exists a closed ball B(0,7) C V. Since {2"}, converge
to 0, there exists ng such that {2"},>,, C B(0,7). Let S denote the sphere of radius r:
S={zxeR":|z|| =r}. Define y" = lr;iju, 2" = —”r;,:LH. Then y* € S, 2" € S,Vn. One
can see that

o (Y

r r

- (L)
=" [ ——— | 2
Pl Tl

Since h is convex, we then get

) < Wﬂmw»+0—wfwhm%J@wmw>
< 10 G ny)
r yeS
_ LA S (N L N et
0=h0) < r+WﬂW()+(r+mw)h()

=0 < h(z")+ Mh(z") < h(z") + "] sup h(y).
T T yeS

Let n — 4o00. Then ||z"|| — 0 and
limsup h(z,) < 0= h(0)

n

0 < liminfh(z").

- n

8Let T = {ai,as,...,a,} C R™. We define: the convex hull of T denoted by coT is the set

col = {x:x:i)\laz},)\i ZO,Vi,zm:)\i =1
i=1

i=1

9See Lemma 1.2.1 in Florenzano and Le Van (2001).
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Summing up
0 =h(0) < liminf h(z") < limsup h(x,) < 0= h(0)

n

Hence 0 = h(0) = lim h(x™). O

2.1.2 Testing concavity and convexity

Definition 12 (Definite and semidefinite matrices). Let A be an n x n matriz. Then
A is said to be

e positive definite if x’ Az > 0 for all x € R", 2 # 0
e positive semidefinite if x’ Ax >0 for all x € R™
e negative definite if ¥’ Ax <0 for allz € R", x #£0

e negative semidefinite if 2’ Ax <0 for all x € R™

Example 5. The matriz I = {a O] , where a,b > 0, is positive-definite.

0 b

In particular, the identity matriz I = [0 (1)] s positive-definite.

The matriz [ = [ 0] , where a,b < 0, is negative-definite.

a
0 b

Proposition 7 (second-order convexity condition). Let f : A — R be a function defined
from A, a nonempty, convex set of R", into R. Assume that f is twice continuously
differentiable.

1. f is concave if and only if D*f(x) is negative semidefinite for every x € A.

If D?f(x) is negative definite for every x € A, then the function is strictly concave.'®

2. f is convex if and only if D*f(x) is positive semidefinite for every x € A.

If D*f(x) is positive definite for every x € A, then the function is strictly conver.

Proof. To present a proof. Let us prove point 1.
]

Corollary 2. Let f : A — R be a function defined from A, a nonempty, convex set of R,
into R. Assume that f is twice continuously differentiable.

1. f is concave if and only if f"(x) <0 for every x € A.
If f"(x) < 0 for every x € A, then the function is strictly concave.

2. f is convez if and only if f"(x) > 0 for every x € A.
If f"(x) > 0 for every x € A, then the function is strictly conver.

10We do not have ”if and only if” for the strictly concave function. Indeed, the function f(z) = —a* is

strictly concave, but its second derivative equals 0 at x = 0.
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Exercise 14 (Function of one variable). 1. Exponential. e is convex on R, for any
a € R.

Power. x% is conver on Ry, when a > 1 or a <0, and concave for a € [0, 1].
Power of absolute value: |x|P, for p > 1, is convex on R.

Logarithm: log(x) is concave on R, . .

v e o

Negative entropy: xlog(x) (either on Ry, or on Ry, defined as 0 for x = 0) is
CONVEL. 1S CONvETL.

Proposition 7 leads to the following result.

Corollary 3. Let f : A — R be a function defined from A, a nonempty, convex set of R?,
into R. Assume that f is twice continuously differentiable.

1. f is concave if and only if

f11($1,$2) S 0 (4&)
fa2(21,22) <0 (4b)
Jir(@r, x2) fao (w1, 22) — (f12(1’17$2))2 >0 (4c)
2. f s strictly concave if and only if
fn(il?l,fljg) <0 (5&)
f11(w1, 29) faa (21, 22) — (f12($1,$2))2 > 0. (5b)

This result is very useful when we need to verify the concavity (convexity) of a function
of 2 variables. When the function is of several variables, we need conditions to check
whether the Hessian matrix D?f is negative or positive (semi)definite. Linear Algebra
answers this question.

Positive (semi)definite matrix: a test

Matrices are commonly written in box brackets or parentheses:

a;ix a2 -+ Q1ip @13 A2 -+ Q1p
ag1 Q22 -+  A2p Q21 Q22 -+ A2p

A= . . . . = . . . . = (az‘j) e R™".
am1 Am2 Amn Am1 Am2 Amn

Given a matrix A, we denote by A the k£ x k submatrix of A formed by taking just
the first k£ rows and columns of A. It means that

a1; Q12 - A1k

Q21 Q22 -+ A2k
A =

Q1 Qg2 - Agk

We give without proof the following tests in Linear Algebra.
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Lemma 3 (Sylvester’s criterion). Let A be a symmetric n x n matrix.

(i) A is positive definite if, and only if, detAy >0 for allk =1,...,n

(i1) A is negative definite if, and only if, detAy > 0 for all even k € {1,...,n} and
detAy, < 0 for all odd k € {1,...,n}. (i.e., (=1)'det(A;) >0Vi=1,...,n).

There is NO equivalence of the above result for positive or negative SEMIDEFINITE
matrices.

Lemma 4. Let A be a symmetric n x n matrix. A is negative semidefinite if and only
if (—1)'det(AT) > 0Vi=1,...,n and for every permutation 7 of the indices {1,...,n}.!*

These two lemmas and Proposition 7 allow us to verify whether a function f which is
twice continuously differentiable is (strictly)concave or (strictly)convex via the Hessian of

f
Exercise 15 (Function of several variables). 1. Norms. f(z) = ||z| is convex on R™.
2. Max function. f(x) = maz;(x;) is convex on R".
3. Quadratic-over-linear function. The function f(x,y) = % defined on the domain
dom(f) =R xR,
1S convex.

4. Log-sum-exp function. f(x)=In(e™ + .-+ €*) is conver on R".

3=

5. Geometric mean: The function f(z) = <a:1:c2 . xn> is convex on dom(f) =R7, .

6. Quadratic functions: f(x) = %xTQx + 'z on R™, where Q € R™" is a positive
definite matrix and ¢ € R".

2.2 Quasiconvexity and quasiconcavity

Definition 13 (Quasi-concavity). Let f : A — R be a function defined from A, a nonempty
set of R™, into R. We require that A is convexz.

1. We say that f is quasi-concave if its upper contour sets {x € A : f(x) > t} are
convex sets for any t, that is

fz+ (1= N)a') >t if min(f(x), f(2')) > ¢
foranyt e R, z,2" € A, A € [0,1].
2. We say that f is strictly quasi-concave if it satisfies:
JO@+ (1= Na') > ¢ if min(f(z), f(2')) > t

foranyt e R, x,2" € A, x £ 2', A € (0,1).

1A permutation of the set S = {1,...,n} is defined as a bijection from S to itself.
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3. [ is call (strictly) quasiconvex if —f is (strictly) quasiconcave. Precisely, f is call
quasiconvez if {x € A: f(x) <t} are convex sets for any t.

4. A function that is both quasiconvexr and quasiconcave is quasilinear.
Example 6. 1. Prove that In(x) on Ry is quasiconvex and quasiconcave.

2. Prove that sin(x) on R is neither quasiconvex nor quasiconcave.

3. Consider the function f:R? — R with domain(f) =R2% and f(x1,x2) = x172.

(a) Prove that f is neither convex nor concave.

(b) Prove that f is quasiconcave on R% but not quasiconcave on R2.
Properties 6. (i) f is quasiconcave if and only if
fQz+ (1= Na') = min(f(z), f(2'))

for any x,2" € A, X € [0,1].
f is strictly quasiconcave if and only if

fQz + (1= A)z') > min(f(z), f(2'))

foranyt € R, z,2" € A, A € [0,1].
(i1) Any increasing function of one variable is quasiconcave.
(11i) A concave function is quasiconcave. However, the converse is not true.

Properties 7. 1. If f; is quasiconvex and X\ > 0, then \f; is quasiconvez.
2. 1If f; is quasiconvex for all i € I, then sup,(f;) is quasiconvez.
3. If f is quasiconvex and g is non-decreasing from R into R, then go f is quasiconver.
Notice that the sum of two quasiconvex functions need not be quasiconvex.

Exercise 16. Suppose that f(x,y) is quasiconver and C' is a convex set. Prove that

g(x) = inf f(z,y)

yeC

1S quasiconvex

2.2.1 Testing quasiconcavity and quasiconvexity

Theorem 15 (first-order quasiconvexity condition). Let f be a differentiable function from
its domain (dom(f)) into R. Assume that dom(f) is convex.

1. f is quasiconvez if and only if, for any x,y € dom(f), we have that:
fly) < f(@) = Df(x)-(y —x) <0. (6)
2. f is quasiconcave if and only if, for any x,y € dom(f), we have that.

fly) > f(x) = Df(z)- (y —x) > 0. (7)
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Proof. Let us prove point 2.
Necessary condition. Suppose that f is quasiconcave.
Let z,y € dom(f). Assume that f(y) > f(x). We have to prove that D f(z)-(y—=z) > 0.
Since f is quasiconcave, we have

S =Nz + Ay) = min(f(z), f(y) = f(z)
for any A € [0,1]. Observe that (1 — A)x + Ay =z + A(y — x). Hence, we have
[+ My —2)) — f(=z)
A

Let A go to zero, we get that Df(z)- (y —x) > 0.
Sufficient condition. Suppose that f satisfies condition (7). We will prove that f is
quasiconcave, i.e.,

>0 Ve (0,1).

J((A =Nz + Ay) = min(f(z), f(y))

for any z,y € A, A € [0, 1].

Suppose that this is not true. That is there exists x,y € A, A € [0,1] such that
FU(L =Xz + Ay) < min(f(x), f(y)). We have to find a contradiction.

Without loss of generality, we assume that f(y) > f(z). So, we have

FU =Nz + X y) < f(z) < fly).

For each 6 € [0, 1], we define zyp = (1—0)x+0y = 2+60(y—=z) and g(8) = f((1—0)x+0y).
Since dom(f) is convex, we have zy € dom(f).
We present two ways to get a contradiction

1. Proof 1. Since g(\) < g(0), there exists A\; € (0, A) such that ¢'(\;) = M < 0.

Since g(\) < g(1), there exists Ay € (A, 1) such that ¢’'(A\2) = % > 0. To sum
up, we have 0 < Ay < A < Ay < 1 and ¢'(Ag) > 0 > ¢’(A\;). This implies that
g (M)A — A1) <0 and ¢g'(A2)(A — Ag) < 0.

If g(A1) > g(A2), ie., f((1—=A1)z+ My) > f((1 — Aa)x + Aay), we apply condition
(7) to get get ¢'(A2)(A1 — A2) > 0, a contradiction.

If g(A1) < g(A2), ie, fF((1—=X)z+ Ny) < f((1 = X))z + \y), we apply condition
(7) to get get ¢'(A1)(A2 — A1) > 0, a contradiction.

2. Proof 2. Define m = minge)p,11{g(0)} and 0* = inf{f € [0,1] : g(d) = m}. Notice
that m < f(x).

By continuity of the function g and m < f(x), there exists ¢ > 0 such that g(¢) < f(z)
VO € (0" —€,6%).

By definition of 6%, we have g(0) > m V0 < 0*.

So, we have g(0) > m = g(6*) VO € (0* — ¢,0%). Take 0 € (0* — ¢,0%). Applying the

mean value theorem, there exists 7 € (6* — €, 6*) such that

(0) — 9(6)

’ g
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This means that
Df(z)-(y—x)>0. (8)

Now, since 7 € (0* —¢,0%), we have g(7) < f(z), i.e., f(x) > f((1—7T)x+Ty). Recall
that f(y) > f(z), we have f(y) > f((1 —7)x + 7y). Using condition (7), we get that
Df((1—7)z+7y) (1 —7)(y —x)) > 0 which is equivalent to

Df(z) - (y— ) > 0.
which is a contradiction with (8). We have finished our proof.
[

Theorem 16 (second-order quasiconvexity condition). Let f : A — R be a function
defined from A, a nonempty, convex set of R™, into R. Assume that f is twice continuously
differentiable.

1. If f is quasiconvex, we have that:

z € dom(f),y € R",y"Df(z) =0=y" D*f(x)y > 0.

2. f is quasiconvex if f satisfies
y'Df(x) = 0= y"D*f(x)y >0
for any x € dom(f) and y € R™, y # 0.

Proof. See Florenzano and Le Van (2001) or Boyd and Vandenberghe (2004) among others.
O

For other second-order conditions for quasiconvexity, see Exercise 3.44 in Boyd and
Vandenberghe (2004).
We present here a simple test for functions of 2 variables.

Proposition 8. Let f : A — R be a function defined from A, a nonempty, convex set
of R?, into R. Suppose that (1) f is twice continuously differentiable, (2) f is strictly

increasing in each component (fi = 8% >0, fo = g—x’; on A).

1. If f is quasiconcave, then the determinant of the bordered Hessian is non-negative

0 fi fo
the bordered Hessian: Bo = | f1 fi1  fio
fo fa S
that is
2f1($1,$2)f2($1,$2)f12($1,$2) - [f1($1,$2)]2f22($1,$2) - [f2($17$2)}2f11($1,$2) >0
\V/(J?l,l‘z) S A.
2. If

2f1(21, 22) fo(w1, 22) fra(w1, 22) — [f1($1,x2)]2f22(9€1>$2) - [f2($1>$2)}2f11(1’1,132) >0
V(zq,x9) € A, then f is strictly quasiconcave.

Proof. See Simon and Blume (1994), page 530, among others. O
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2.3 Other exercises

Exercise 17. For each of the following functions, determine if the function is convex,
concave, quasicoOnver, or quasiconcave.

1. f(z)=¢"—1onR.

l1—0o

r)=%— —2onR,.

l1—0o

xr1x2 ++-

_ oz 2
. flxy, xe —é on R .

2
3
4 f
5

)
71, 79) = —— on R?
)

6. f(xy1,mq) = % on RxR,,.

More exercises can be found in Florenzano and Le Van (2001) and Boyd and Vanden-
berghe (2004).
The following exercises are important in Economics.

Exercise 18 (Probability and Statistics). Let X be a real-valued random variable defined
by P(X = a;) = Probability(X = a;) = p; where a1 < as < --- < a,. For each of the
following functions of p on the simplex A, (defined by A, = {p € R} :p1+---+p, =1}),
determine if the function is convex, concave, quasiCOnNver, or quasiconcave.

- E(X) =), pia;.
. P(X > a)

~

. Pla< X <p).

2
3
4. 2, piln(p:) (the negative entropy of the distribution).
5. Var(X) = B(X — E(X))? = B(X?) — (E(X))2.

6. Quartile(X) = inf{3: P(X < B) > 0.25}

Exercise 19 (Functions in economics). For each of the following functions, determine if
the function is convex, concave, quasiconvex, or quasiconcave.

1. Cobb-Douglas function: f(x1,x2) = xfzy* on R, , where a € [0,1].
2. Cobb-Douglas function: f(z1, ) = x%ah on R2 ., where a > 0,5 > 0.
3. Leontief function: f(x1,x2) = min(Z, %2) on R% , where a > 0,b > 0.

4. Constant elasticity of substitution (CES) function: f(x1,x3) = (ax’; +bah)+ on R? .,
where a > 0,b > 0.12

2Hint: Look at two cases r < 1 and r > 1.
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5. The sum of squared residuals (in the multiple linear regression,):

n k
e 30 =3 (= o 3 )
j=1

=1

on R¥L. (Readers may like to consider the case k = 1 to simplify the calculation.)

3 Finite-dimensional optimization

3.1 Motivating examples

1. Utility maximization problem
2. Profit maximization problem

3. Cost minimization problem

3.2 Convex optimization in finite-dimensional spaces

This section uses Florenzano and Le Van (2001).
Let f: 5 — R, where S C R" is a nonempty set.

e A point x € S is a global maximum (respectively, global minimum) of f on S if
fy) < f(z) (respectively, f(y) > f(z)) for all y € S.

e A point x € S is a local mazimum (respectively, local minimum) of f on S if there
exists r > 0 such that f(y) < f(x) (respectively, f(y) > f(z)) forally € SN B(x,r).

e A point z € Sis a strict local mazimum (respectively, strict local minimum) of f
on S if there exists r > 0 such that f(y) < f(z) (respectively, f(y) > f(z)) for all
y € SNB(x,r),y # .

e A point z € S is an unconstrained local mazimum (respectively, unconstrained local
minimum) of f on S if there exists » > 0 such that B(z,r) C S and f(y) < f(x)
(respectively, f(y) > f(x)) for all y € B(z,r).

Remark 3. Assume that the set S is convex. Any local minimum of a convex function is
also a global minimum. A strictly convex function will have at most one global minimum.

Proof. Let x be a local minimum. It means that there exists » > 0 such that f(y) < f(x)
for all y € SN B(x, 7).

We have to prove that f(y) > f(z) for all y € S. Suppose that there exists y € S such
that f(y) < f(x) Define zy = (1 — A)z + Ay. Since S is convex, we have that z), € S.
Observe that

n=z+ ANy —x)

So, we can choose A > 0 small enough so that z, € B(z,).
We now look at f(z)). By the convexity of the function f, we have

f(2) = F(A =Nz +dy) < (1= A)f(z) + Af(y)
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Since f(y) < f(x), we get that f(z\) < f(x). This is a contradiction to the fact that x is
a local minimum. We have finished our proof. O

We aim to give the necessary and sufficient conditions for a point to be an optimal
solution to Problem (P):

(P) Minimize fo(x) under the constraints ¢ g¢;(x) <0, Vi € J

where fy : R” — R is a convex function, I, J and K are finite and possibly empty sets, for
all © € I, f; is convex, non-affine function from R" into R, for all € JU K, g; is a non-null
affine function.

The function fj is called the objective function. A feasible point is a point x € R™ that
satisfies all the constraints. An optimal solution to (P) or simply a solution to (P) is a
feasible point T, such that for all feasible point z, fo(x) > fo(T).

Let I be a finite set, card(Il) denotes the number of elements of I.

3.2.1 Separation theorems

H is a hyperplane in R" if there exists p € R” p # 0 and o € R such that H = {x € R":
p-r=a}.
Proposition 9. [First separation theorem/ Let A and B be two nonempty disjoint convex

subsets of R™. There there exist o, B, a < S andp € R*, p# 0, such thatp-a < a < [ <
p-b, foralla € A, allb € B (i.e., we can separate A and B by a hyperplane).

Proof. See Florenzano and Le Van (2001). O

Proposition 10. [Second separation theorem] Let A and B be two nonempty disjoint closed
convex subsets of R™. If one of them is compact, then there there exist o, 3, a < 3 and
pER", p#0, such thatp-a<a < <p-b, foralla € A, allb € B (i.e., we can strictly
separate A and B by a hyperplane).

Proof. See Florenzano and Le Van (2001). O
Notice that the compactness in Proposition 10 is an important assumption.

Exercise 20. Let A = {(z,y) : zy > 1, > 0} and B = {(z,y) : * < 0}. Prove that
A and B are non-empty, convex, closed and disjoint. Prove that X and Y cannot be
strictly separated, i.e., there do not exist o, 3, a« < [ and p € R", p # 0, such that
prala<fB<p-b, foralla€e A, allbe B.

Note that A and B are not bounded in this ezample. Therefore, they are not compact.

The following result is very important.

Proposition 11. Let C' be nonempty convex sets in R™ and P = (R™ x {Ogr}) where,
m > 0,7 >0, m+r=n. Suppose that C N (R™ x {Og-}) = 0. Then there exists p € R,
p # 0 such that

p-r<0<p-yVereP VyeC

and there exists z € C such that p -z > 0.
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Proof. Applying Proposition 3.2.6 in Florenzano and Le Van (2001).
O

Let us illustrate this result by considering a particular case: n =2, m =2, r = 0. In
this case, P = {(z,y) : < 0,y < 0}. A line p = (p1, p2) is represented by an equation

&

P C.

Figure 1: Monotonic convergence versus oscillatory convergence

p1z + poy = 0. Our result says that there is a line that separates P and C' and there is a
point z = (21, z2) € C such that z is above the line p, i.e., p1z1 + p22ze > 0.
When the set C' is 'y in the graphic, it is easy to geometrically check our result.
When the set C'is Cy = {(z,y) : > 0,y < 0}, we can choose the line "z = 07, i.e.,
p = (p1,p2) = (1,0). It is easy to see that this line separates P and Cy. Moreover, for any
z € Cy, we have p1z1 + pozo = 21 > 0.

3.2.2 Necessary and sufficient condition for optimality

Lemma 5. (i) Let f be a linear function on R™ (in the sense that f(x) = Az = Az +
o4 Apzy). If f(x) >0 for any x then f = 0.

(i1) Hence, if g is an affine function (i.e., g(x) = Ax + B) which satisfies g(x) > 0 for
any x, then g equals a nonnegative constant.

Proof. (i) Suppose f # 0. There exists z such that f(z) > 0. But we have a contradiction
0> —f(z) = f(—z) > 0. Hence f = 0.

(ii) We can write Yz, g(z) = f(z) + b where f is linear and b is a real constant. Let
x € R". We have f(z)4+b > 0. Let A > 0. We also have Af(z)+b= f(Ax)+b >0, VA > 0.
This is equivalent to f(z) + 2 > 0 for all A > 0. Let A — +oo. We get f(z) > 0. But
x has been arbitrarily chosen. That means f(z) > 0, Va. Thus, f = 0 and g(z) = b, Vz.
And b > 0. O

Lemma 6. Let I, J and K be finite possibly empty sets in N, and for all 1 € I, f; is a
convex, non-affine function from R™ into R, and for all i € JU K, g; is non-null affine
function. Assume there exists xo such that

gl(l’o) = O, Vi e K.
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If the system:
filx) <0, Viel
gi(zr) <0, VieJ
gi(z) =0, Vie K.

has no solution, then there exist nonnegative real scalars (N\;)icr, (1i)ics, and real numbers
(1i)ick, at least one of the (\;)ier is not zero, which verify:

Z Aifix) + Z pigi(x) + Z pigi(z) > 0, Va.
il icJ €K
Proof. Let p = card(l), ¢ = card(J), r = card(K), and

=, Vi € ], fZ(ZL') < Z; }

J— . . p+q+r
Z = {(ZZ)ZEIUJUK eR T Vie JUK, gi(x) = 2

The set Z is convex, nonempty and Z N (R”" x {Og-}) = 0. From Proposition 11 there
exist real scalars (\;);er, (tt:)iesur, all of them not being equal to zero, which verify:

Zkizi + Z Wizi = Z)\z(z' + ZMC@', Vz € Z, V¢ € RPY

iel e JUK iel icJ

and there exists z € Z such that Y., \iz; + >, /5 pizi > 0.

If for some i, \; < 0, then letting z; tend to +o00, we get a contradiction. Thus
AN >0, Viel.

If for some ¢ € J, one has u; < 0, then letting (; tend to —oo, we have another
contradiction. Hence, p; > 0, Vi € J.

Let £ > 0 and x € R™. Define z € Z by

Zi = f1($)+€, Vi € 1,
2 = gi(x), Vie JUK.

We have > ., Aifi(x) + D ic 0k 1igi(x) +€> ., A > 0. Let € tend to zero. We obtain
that Y .., Nifi(®) + D0 0k igi(x) >0, Vo € R™. ZZ

To end the proof, it remains to show that at least one of the (\;);es is strictly pos-
itive. Assume the contrary. We then have ) ., . p;gi(r) > 0, Vo € R™ and hence
> icsuk Migi(xo) = 0. The affine function ) . , #;g; has a minimum in R”. From Lemma
5, it must be equal to zero. But since Ziel iz + ZiGJUK wiz; > 0 for some z € Z, and
since all the (\;);c; are equal to zero, there exists « such that ) ., . pigi(x) > 0. That
contradicts that Y. ;. pig; is equal to zero. O

Definition 14. The Problem (P) satisfies Slater Condition (S) if there exists xo such that:

fi(zo) <0, Viel,
gl(I(]) S 0, VZ € J,
gl<33'0) = 0, Vi e K.
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Proposition 12. Consider Problem (P). Assume that (P) satisfies Slater Condition (S).
If (P) has an optimal solution T, then there exists scalars (N;)ier, (f:)icsux Such that:
VieJ, u >0, p9(7) =0.

(i)
Z)+ Z)xifi Z 1:9i(T) < fo(x) + Z)\ifi(JU) + Z 1igi(z)

il 1€JUK icl 1€JUK

for any x.
(iii) If fo, (fi)ier; (9:)icouk are differentiable, then

0=Dfo(@) + Y ADfi@ + ) mDg(7)

iel 1€EJUK

Proof. Let a = fo(T). Then the following system has no solution (why? Readers should
explain this point).
Jolx) <

Z(.21:)<O Viel,
gi(x) <0, Vie J,
gi(z) =0, Vi € K.

The Slater condition allows us to apply Lemma 6. According to Lemma 6, there exist
Aoy (Ai)ier, (pi)iesur such that A\g > 0,\; > 0, Vi € I,; > 0, Vi € J, at least one of the
Ao, (Ai)ier is strictly positive, and

x)— )+ Z i fi(x) + Z pigi(z) >0, V. (10)
iel i€ JUK
We claim that Ao > 0. Indeed, if Ay = 0, then Va, >~ .., Xifi(x) + > ;e jux Higi(z) > 0.
Moreover, since there exists at least one i € I such that A; > 0, we deduce » ., Ai fi(zo) +
Y icsuk Migi(xo) < 0, a contradiction.
Thus Ay > 0 and one can, without loss of generality, suppose \g = 1.
Define the convex function h by

2)+ Y (Nfi)@) + Y gi(x), Vo e R™
el i€JUK

The inequality (10) can be equivalently rewritten as h(x) > « Vz. But h(T) — a =

Dier Mifi(T )+Zz€JUK pigi(z) < 0. Hence, a = h(z). Thus >, ; Aifi( @)+ e o 1i9i(T) =
0 and since 7 is feasible, one has Vi € I, \;fi(Z) = 0 and Vi € J, p;9;(F) = 0. We have
proved Assertion (i).

Now, h(z) > a Va is equivalent to

T) + Z )\sz Z Mzgz < fO + Z Ai fz Z Migi(l’)
el 1€ JUK iel 1€ JUK

for any . We have proved assertion (ii). Statement (iii) is obvious when fo, (f)ier, (9i)icsur
are differentiable. The proof is now complete. O

Definition 15. The real numbers (\;)icr, (1t:)icqurx are called Lagrange parameters, La-
grange multipliers or Kuhn-Tucker coefficients or more simply multipliers of Problem (P).
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Definition 16. We say that T, (X\;)ier, (pi)icsux satisfy Kuhn-Tucker Conditions of Prob-
lem (P) if they satisfy Conditions (i), (i) and (ii).
(i) Viel, X\ =0, fi(z) <0,Nfi(T) =0,
Vi€ J, pi >0,9(7) <0, p9:(x) = 0.
(ii) Vi € K, g;(T) = 0.
(i) fo(T) + X ier Xifi(®) + Xicsom 1i9i(T) < fo() + Xoier Mifi() + Xoiejur migi(@) for
any x.
Conditions (i), (ii) and (iii) are called Kuhn-Tucker Conditions for Problem (P).

Definition 17. The Lagrangian of Problem (P) is the function L : RE x RE x R™™7xR" —
R defined by: for all (A, p,x) = (M)ier, (i)ies, (1)iex, ),

L\ o) = folw) + > Nifilw) + > pagi(w) + > pigi().

iel icJ €K
where p = card(I),q = card(J) and r = card(J U K).

Proposition 13. Let T, (\)icr, (t:)icsux verify Kuhn-Tucker Conditions for Problem (P).
Then T is a solution to (P).

Proof. Let Vo € R", h(x) = fo(z) + e, (Nifi) (@) + Xic ik tigi(z). Condition (iii) is
equivalent to h(z) > h(T),Vx. Combining conditions (i) and (ii), we get h(z) > f(T), Vz.
Let x satisfy the contraints of Problem (P). We obtain fy(z) > fo(Z), V. O

Theorem 17 (Kuhn-Tucker (minimization problem)). Assume that Slater Condition is
satisfied for Problem (P). ThenT is a solution to (P) if, and only if, there exists coefficients
(No)ier, (l)iequr which, together with T, satisfy Kuhn-Tucker Conditions for Problem (P).

Proof. The statement follows from Proposition 12 and Proposition 13. ]

As particular case of Proposition 12, we get the following result when the problem is
without convex constraints.

Corollary 4. Consider Problem (P) without convex constraints, i.e.

gi(x) =0, Vie K.

min fo(z) under the constraints {

where fo: R™ — R is convex, and for all i € JU K, g; is affine.
For this problem, Slater Condition is: Jxo such that g;(zo) < 0, Vi € J, and g;(x¢) = 0,
Vie K.

The problem (P) has an optimal solution T if and only if there exist scalars (p;)icsux
verifying:
(i) Vi€ J, pi >0, 1;9:(%) =0,
(ii) fo(T) + D ic ok 1iGi(T) < fo(w) + .0 0k 1igi(x) for any

Proof. Obvious O]
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Remark 4. (i) The Slater condition is very important even in the one-dimensional case.
Consider the following example:

min{ f(z) =z | 2* < 0}.

The problem has a unique solution T = 0. The Slater condition is not satisfied. There
exists no X > 0 such that 0 =7 + A2 < x + Mz for any x € R.

(1) It is important to notice that Slater Condition is not necessary to obtain Kuhn-Tucker
Conditions. In the previous example, Slater Condition is not satisfied and there is no Kuhn-
Tucker coefficient. Now replace this problem by an equivalent problem which is min{ f(x) =
x| g(z) = |z| < 0}. As before, Slater Condition does not hold. The unique solution is
always T =0. Let A =1, we have successively g(0) = 0, g(0) =0 and 0 = £(0) + Ag(0) <
f(x) + Ag(x) =z + |z|, for any x € R. In other words, Kuhn-Tucker Conditions hold.
(111) In the previous example, one can check that Kuhn-Tucker Conditions are sufficient for
0 to be a solution. This result is quite general as it will be proved in the next proposition.

Maximization problem

In many economic models, we need to maximize a function subject to several constraints
(physical constraint, financial constraint, legal constraint, ...). We present here the result
concerning the following maximization problem (P’):

(P Maximize fy(z) under the constraints ¢ g¢;(x) <0, Vi € J
gi(z) =0, Vi € K.

where fy : R” — R is a concave function, I, J and K are finite and possibly empty sets,
for all © € I, f; is convex, non-affine function from R" into R, for all « € JU K, g¢; is a
non-null affine function.

Definition 18. The Lagrangian of Problem (P') is the function L : R, x RL x R4 xR" —
R defined by: for all (A, i, x) = (M)ier, (1a)ies, (a)iex @),
L pox) = folx) = > Nfil@) =Y migi(z) = Y migi(x).
iel ieJ ieK
where p = card(I),q = card(J) and r = card(J U K).
Theorem 18 (Kuhn-Tucker (maximization problem)). Assume that functions f;, g; are
differentiable.

Assume that Slater Condition is satisfied for Problem (P'). Then T is a solution to
(P) if, and only if, there exists coefficients (\;)icr, (1t:)icqurx which, together with T, satisfy
Kuhn-Tucker Conditions for Problem (P), i.e.,

VieJ, pu; >0, p9,(T) =0.

fo@) =Y M@ = D migi(@) = folw) = D Nefila) = Y gix) (1)

iel i€ JUK el 1€ JUK
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for any x.

If fo, (fi)ier, (9:)icqur are differentiable, then condition (11) is replaced by

Dfy(z) = Z \iD fi(T) + Z 1iDg;i(T) (12)

el 1€JUK

Proof. This is a direct consequence of Theorem 17. O

3.3 Applications

Theorems 17 and 18 have many applications in economics, econometrics and finance. In
the following, we present some applications.

3.3.1 Consumer maximization problem

The consumer maximizes her utility by choosing allocation (z1,...,x,) of commodity
max Ul(xy,...,z,)
(I17---,-73n)

subject to: p1xy + - ppr, < W
r12>20,...,2, 20

where p; is price of commodity ¢ and w is the consumer’s income. (p;) and w are endoge-
nously given.

Assume that the function U : R} — R is continuously differentiable. Assume that
p; > 0 Vi, w > 0. Assume that U is concave. Assume that g—g(x) >0 Vi, V.

We consider a simple example

Example 7. Consider n = 2 and u(z) = 27'z5* where o; > 0. We want to solve the

following problem

a1 002
max I, Ty

(w1,22)

subject to: p1x1 + pars < w
712 0,22 >0

where p; > 0 is price of commodity ¢ and w > 0 is the consumer’s income.

Notice that our objective function is quasiconcave but not concave. We cannot directly
apply Theorem 18. We proceed as follows.

If (a1, as) is a solution to the above problem, then a; > 0,a > 0 (why?). This implies
that (a1, az) is a solution of the following problem

(P.) énzix f(x1,22) = In(x{"25?) = aqln(xy) + agln(xs)

subject to: pixy + pore < w
r1 20,2020
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The objective function is concave now. It is differentiable on R . Applying Theorem 18,
there exist non-negative multipliers Ai, As, A such that

s_acl(al’@) = —A1 +p1A
0

6_1,2(%,@2) = —A2 + P2
Mr1 =0, Ao = 0, \(p171 + pavz — w) =0

Since a; > 0,ay > 0, we have Ay = Ay = 0. From this, we find that ”;—‘jl = pi‘f. Observe

that g—afl(al, as) = p1A which implies that A > 0. Thus, we have pja; + paay = w."3
Therefore, we get that

g (&%)
a1 = —w’ Ay = —W.
1 a1 + Qg P20z a1+ Qo
We have proved that if (ai,asz) is a solution, then pja; = —*—w, peay = —22

ai+ag ) a1+oo

Lastly, we see that such a pair (a;, ay) with the above multipliers satisfy the Kuhn-Tucker

conditions for the problem (F.). We conclude that (—%—% —%2—1) is the unique solution
.. 1t+az p1’? aitoz p2

of the original problem.

Exercise 21. Consider the function u : R2 — R, defined by u(cy, c2) = al% +a2% where
a; > 0,as >0, € (0,1).

Let w > 0,p; > 0,ps > 0.

We want to solve the following problem:

D1C1 + paco S w

(P): Maximize u(cy, cy) under the constraints:
¢120,c02>0

1. Prove that the set B = {(c1,¢2) : p1ey +paca < w, ¢ > 0,¢9 > 0} is convez, compact.
Prove that the problem (P) has a solution.
Prove that the function u is strictly concave on RZ.

Prove that: if (c1,c2) is a solution, then picy + paca = w.

Assume that (c1,¢2) is a solution and ¢y > 0,c > 0.

(a) Is the Slater condition satisfied and why? If this is the case, write the Kuhn-
Tucker conditions.

(b) Find this solution (c1,co).

(¢) When p; increases, how does the solution (c1,c2) change? Provide an economic
interpretation.

3In general, if the function f is strictly increasing in one component, then pia; + peas = w. Indeed,
if p1a; + paas < w, then we can increase a; and/or as by € with € is low enough such that pi(a; + €) +
p2(as + €) < w to get a strictly higher value of the objective function).
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6. We want to prove that the solution found in Question & is the unique solution of the

problem (P).

(a) Assume that ¢y = 0 at optimum. Find ¢ and compute ug = u(cy, c2)

(b) Prove that (z, “=E%) is in the set B for any x satisfying € [0,w/p].

7u)—pl:l:)_,ulo

and prove that u(r+ > 0 forx > 0

(c) Compute lim, . >0
small enough.

(d) Prove that ¢ cannot be zero.

(e) Prove that ¢; > 0,c¢2 > 0 at optimum and hence the solution (c1, ca) in Question
5 is the unique solution of the problem (P).

7. We now use another method to prove that the solution found in Question & is the
unique solution of the problem (P).

(a) Assume that (¢}, cy) is a solution of the problem (P) and that (¢}, cy) # (c1,¢a).

Prove that u(%, #) > u(cy, ¢a).

(b) How can we get a contradiction?

Proof. 1. Convexity: let ¢ = (¢1,¢2) and ¢ = (¢}, ¢,) be in B. We have to check that
Ac+ (1 =N € B for any A € [0,1]. This is easy.

Compactness: we see that p;e; < w Vi = 1,2. Since p; > 0, we have ¢; € [0,w/p;].
So, B is bounded. It is easy to see that B is closed. Therefore, B is compact.

2. The function u is continuous and B is compact. So, the problem (P) has a solution.

3. The function ai% is strictly concave for any ¢ = 1,2. So, the function w is strictly
concave.

Remark: We can also compute the Hessian matrix and then prove that u is strictly
concave.

4. Tt is easy to see that, if (c1,c2) is a solution, then pic; + pecy = w. Otherwise, we
can improved a little bit ¢; or ¢y to get a strictly higher utility.

5. Assume that (¢, c2) is a solution and ¢; > 0, ¢y > 0.

(a) The Problem (P) satisfies Slater Condition (S) if there exists (c1, ¢2) such that:

pic1 + pace S w
—C1 S 0
—C S 0.

It is easy to see that Slater condition is satisfied. So, we can write the first-order
conditions

a—1
aicy = Ap1

a—1
ACy ~ = AD2
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(b) From the first-order condition, we can compute ¢; and ¢y as functions of A.
Then, we use pic; + paco = w to get an equation of A. Solving this equation,
we find A and then compute ¢y, ¢s:

1 1
(ﬂ)l—a )l—a
p1
1 1
—a T—a
2

= +

T—
1

G = ) Co =

,_.
r"‘/\
g

[V (v

K

1
—a
2

)
s}
IS}

+

i
i
i

—a

Q
Q

—a I— 1
1 2

3
3

I
2

3
3

(¢c) When p; increases, we see that the optimal value ¢; decreases (this is a version
of "Law of demand”). We also observe that ¢, increases (this is a substitution
effect).

6. If c; = 0, we have pscs = w and hence ¢ = w/p2. We have ug = u(0,w/p2) = 2 ()"

It is easy to see that (z, *-2+*) is in the set B for any x satisfying € [0, w/pi].

We have
o, (g
w—pizy _ < P2 _ a2 (w)\o
u(z, = ) — uo Ly a7 a(m)
T T

(wfplz)a

a—1 ) a2 (w\a

A ()
e T

The first terms converges to infinity while the second converges to @f}—i(}%)a_l when
x goes to zero (because o — 1 < 0).

wW—p1T w—p1T
PLT) . . u(w, P2 )~y
1s continuous in T, we have

Since ° > 0 for z > 0 small

enough.

We have seen that u(z, “2**) > ug for z > 0 small enough. So, the allocation
(0,w/py) cannot be optimal. It means that ¢; cannot be zero. By using the same
argument, ¢ cannot be zero. So, we have ¢; > 0 and ¢ > 0 at optimal.

7. We now use another method to prove that the solution found in Question 5 is the
unique solution of the problem (P).

Assume that (¢}, ¢,) is a solution of the problem (P) and that (¢}, ¢}) # (¢1, ¢2). Since
u is strictly concave, we have
c1 + Cll Co + 0/2 1 1 1

1
u( 9 ) 9 ) > iu(cla 02) + 5’&(0/1, CIZ) > §u(clv C2) + 5”(617 62) = u<clv 02)'

So, (Clgcll : CQ;CIQ) is in the set B and u(q;cll : 6220/2) is strictly higher that the maximum

value u(eq, ¢2). This is a contradiction. So, we have proved the uniqueness.

O
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Exercise 22. (1) For the following utility functions, check whether there are continuous,
monotomic, strictly monotonic, concave, quasi-concave.

Leontief preference: u(x) = min{aqxy, asxs}, ap >0,h=1,2
T) = 1Ty + Coxe, Cp > 0
=o'z oy, ap >0

(x)
(x)
(x)
u(z) = m?—l—x%)é, a € (0,1)
(x)
(x)
(z)

—e M ap > 0.

(2) For each of above functions, find the solution of the following maximization problem
max U(zy,xs)
(z1,22)

subject to: p1xy + poxs < W
21 20,2020

where p; > 0 s price of commodity i and w > 0 is the consumer’s income.

Proof. Let consider the Leontief utility function. u(x) = min{aix1, asxs}, «ap > 0,h =
1,2. This function is continuous. It is increasing in each component but it may not be
strictly increasing. Indeed, if min{ayz1, aszs} = aqzy, then we have u(xy, zh) = u(xq, x2)
for all x4, > 5.

Notice that this function is not differentiable at the point (xy,z5) satisfying ayzy =
asTy. So, we cannot use our tests based on derivatives to verify the (quasi)concavity of

u. We can prove the concavity of this function by using definition. See also Proposition
5. O

Exercise 23. In a two-good economy. The consumption set of a consumer is X = {x €
R? : zy + @2 > 1}, Let u(wy, x2) = @1 + 4a. Let the price (p1,ps) = (1,2).

1. Find the solution of the following maximization problem
max U(xy,xs)
(Z1yeeyTn)
subject to: v € X
P121 + paxe S w

where w > 0 is the consumer’s income.

2. The solution (x1,x2) depends on w. Does the demand of the commodity 1 (i.e., (1))
increase with the income w?
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3.3.2 A two-period optimal growth model

An agent living for two periods (present and future, represented by 0 and 1) wants to
choose consumption allocation (cg, ¢1) and physical capital k; to maximize her(his) utility
U(Co, Cl)

(cglc?zil) U(co, 1) (13)
subject to: ¢; > 0,¢7 > 0,k; >0 (14)
co + k1 < wy (15)
c1 < wy + F(ky) (16)

where wg,w; are given and strictly positive. The function F' is assumed to be strictly
increasing, concave, continuously differentiable and F'(0) = 0.

We would like to solve this problem to understand the optimal value of (cq,cq, kq).
Notice that in this setup, k; can be also interpreted as investment.

First, it is easy to see that the Slater condition is satisfied. So, we can write the
Lagrangian

L= U(Co, Cl) + UoCo + p1C1 + ,ukkl + )\o(wo — Cy — k’l) + )\1(w1 + F(k’l) — Cl) (17)

Assume that Ul(co, ¢1) = u(co) + Bu(cy) where the function u is strictly concave, increasing,
continuously differentiable, u'(0) = oo. Parameter /3 represents the rate of time preference.

Since u/(0) = oo, we have ¢y > 0,¢; > 0 at optimum (Qreader: why?), which implies
that py = @1 = 0. Therefore, the first-order conditions become

U (cy, ¢ ,
%—Aoﬁu(q)):)\o
aUgCO;Cl) _ )\1 o ﬁul(01) _ )\1
C1

M — )\0 + )\1F/<k1) =0« )\0 = Alpl(kl) + L
pks =0, pp >0

So, we obtain that u'(co) = SF'(k1)u'(c1) + pr. At optimum, we must have c¢o + k1 = wy
and ¢; = wy + F(ky). Thus, we get that

u'(wo — ky) = BF'(ky)u'(wy + F(k1)) + (18)

Notice that at this stage, we do not require that F”(0) = oo.
There are two cases.

1. k; > 0. In this case, we have pr = 0 and hence k; is determined by
H(ky) = u'(wo — k1) — BF' (k1)u'(wy + F(k1)) =0 (19)

The function H is strictly increasing in k1. H(0) = u'(wo) — SF'(0)u/(wy) while
H(wy) = 0o because v/ (0) = oo. So, the existence of a strictly positive solution k;
requires that

u'(wo) — BF'(0)u' (wq) < 0.
It means that the productivity F’(0), the rate of time preference 3, the endowment
at initial date wy are high and the endowment at date 1 is low.
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2. k; = 0. Condition (18) becomes

u'(wo) — BF'(0)u (wy) < 0.

To sum up, we obtain the following result:

Proposition 14. Assume that above conditions hold. Assume also that v'(0) = oo. The
optimal choice ky is strictly positive if and only if

u'(wo) — BEF'(0)u' (wy) < 0
In such a case, ky is the unique solution to the equation H(ky) = 0.

It is useful to consider some particular cases.

1. Assume that u(c) = in(c), F'(k) = Ak® where o € (0,1), and w; = 0. In this case,
F'(0) = co. We have

1 1 1
— A a—1 — A a—1 2
Wy — k’l ﬁa kl wi + Ak’? 601 kl Ak? ( 0)
af
= 21
& ky 1+ ap Wo (21)

The investment k; is increasing in the initial endowment wy and the rate of time
preference.

2. Assume that u(c) = In(c), F'(k) = Ak, wy > 0. We have that

(a) Ifwy; < BAwg, then ky is strictly positive and we can compute that k; = 8 ﬁﬁ(ﬁ‘)’l .

The investment is increasing in the productivity A, the rate of time preference
[, the initial endowment but decreasing in the endowment in the future.

(b) If wy > BAwy, then k; = 0. The intuition: when the productivity, the initial
endowment, the rate of time preference are low, but the endowment in the future
is high, we do not need to save/invest.

3.3.3 Cost minimization problem

Let prices be strictly positive p; > 0,...,p, > 0. The firm minimizes its cost by choosing
allocation (x1,...,z,) of inputs such that the production F'(z1,...,x,) is not less than a
given level y.

T1,...,Tn
subject to: 21 > 0,2, >0 (23)
F(zy,...,2,) >y (24)

ai a2

Example 8. Assume that n = 2, F(xq1,x2) = Ax{'z3* with ai,as > 0 and a; + ay < 1.
Find the solution of the cost minimization problem.
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Solution. This is a minimization problem. The objective function is linear and hence
convex.

We rewrite F'(zq1,22) > y as y — F(z1,22) < 0. Since the function F' is concave, the
function —F' is convex. We can easily check that the Slater condition is satisfied. So, we
can apply Theorem 17. The Lagrangian is

L =pia1 + poxs + ANy — Azl 23?) + pa(—21) + pia(—12)

The first order conditions are

0L i1 a

_8x1 =p; — Aaj Az} ! x5> —pp =0
oL

02 = Py — Aag Az P2l — 1y =0

prry =0,  pexe =0

Since F(x1,x9) = Ax{'xz5? > y > 0, we have 1 > 0,29 > 0. Thus, py = us = 0.
According to the FOCs, we have

a;—1 a
no_ Aay Az Tyt aiws . a1 pa

a1 .as—1
P2 AagAxi'xy?T a9 as P1

At optimum, we must have y = F(x1,x3), and hence,

a1 P2 a a1 P2ya
Yy = Ax‘l“xg? = A(——Ig) lx‘2‘2 = A(——) lx‘2’1+a2
a2 P1 a2 P1

Therefore, we find that

=L 2 P1y L
To = Aata (—=—=)a “2ya1+a2
ai p2
1
Aa1+a2 (_p_2 a1+a2 ya1+a2
a3 P1

The optimal quantity of input 1 is increasing in the output y and the price of input 2 but
decreasing in the price of input 1 and the productivity A.
We can also compute the cost function

CL1+CL2

a1
Cost = p1x1 + paxs = a—p2$2 + P22 = P2lo
2

a1

a a =1 a e 1
. ™ 2p2Aa1+a2 <_2]£) artag gragtay
a2 ai P2
aj + as 2L 22 1

— 1Ta2 ,a1Tal
U‘Q—Aalﬁ»agp p ya1+a2
a1+a a1+a

CL21 2 a/ll 2

The cost is increasing in input prices py, p2, the output y, but decreasing in the productivity
A. m
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Proposition 15 (Shephard’s lemma). Consider the cost minimization problem. Assume
that F is in C* (i.e., twice continuously differentiable). Assume that F is strictly increasing
in each component and concave. Let x*(y,p) denote the solution of the problem and C(y, p)
the optimal value (cost function). Suppose that p; > 0 and z > 0 Yi. Prove that

: _9C(y.p),,.

i (y,p) = 9, Vi (25)
oxzy  Ox}
;D i‘v’z,j. (26)

Proof. The Lagrangian is
L= szwi + )\(y — F(zq,... ,xn)) -+ ZN@'(—%‘)

The first order conditions imply that, for any ¢,

oL OF

%(I?---JET«L)—MZU

zipi =0
Under assumption z; > 0, we have p; = 0. So, we get that

OF

ren

pi=A

The cost function is C'(y,p) = >, piz}. Thus, we can compute

oC(y,p)
C Op

axt

By taking the derivative with respect to p; of both sides of the equation F(xj,...,z}) =y,
we have

—~ OF 0
S o (@) iy
=1 axt apz
Since gF (z5,...,2%) = pi/ A, we get that > ;" 1pt— = 0. So, by combining with (27), we
obtain 808%’_?) = z}. From this, we compute

dx;  9*Cly,p)

2

apj 3]93'3]%
dry  0°Cly,p)
Op; apz'apj
Since LCWn) _ ZCWD) o ohtain (26). O

Op;Op; Op;Op;
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3.3.4 Profit maximization problem

Let prices of inputs be strictly positive p; > 0,...,p, > 0. Denote p be the price of output.

The firm maximizes its profit by choosing allocation (z1,...,x,) of inputs:
( max )pF(xlaaxn)_(plxl—{'_l_pnfEn) (28)
L1,y Tp
subject to: x1 > 0,2, > 0 (29)

Assume that the function F': R} — R is continuously differentiable. Assume that F
is concave. Assume that F' is increasing in each component. %(m) > 0 Vi, V.
In the case of two inputs, the problem becomes

(max) pF (21, 22) — (D121 + pa) (30)
1,22
subject to: x1 > 0,29 >0 (31)

Exercise 24. Find the solution and compute the maximum profit of the profit mazimization
problem for the following cases:

1. n=1, F(z) = ax where a > 0.

2. n=1, f(x) = Az™ where A >0, a € (0,1).

3. n=2, F(x1,x9) = Az 25? where A > 0,a; > 0,00 > 0,09 + ay < 1.
4. n=2, f(x1,x9) = axy + bxy, where a,b > 0.
.

n =2, f(x1,x2) = min(az, bry) where a,b > 0.

S

f(x1,20) = (Aa] + Bah)r, where r < 1,1 # 0.

7. n =3, F(x1, 19, x3) = Az x5225% where A > 0,04 > 0,5 > 0,3 > 0, a1 +astaz <
1.

When oy + o + a3 = 1, compute the cost share Z?i;?m,

Linear production functions. Let us consider the case f(z1,22) = ax; + bxs, where
a,b> 0. Then pf(xy,x2) —p121—p2xe = p(axs+brs) —p1x1 —pazs The profit maximization
problem becomes

max (pa — p1)xy + (pb — p2)xs
(z1,2n
subject to: 1 > 0,29 > 0
Suppose that (x1, ) is a solution. It is easy to see that
o If pa = py, then z; takes any value.

e If pa > pq, then z; = oc.

o If pa < py, then z; = 0.
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]

Leontief production functions. We now consider f(z1, z9) = min(ax,, bxy) where a, b >
0. The profit maximization problem becomes

(max)pmm(axl, bxa) — p1x1 — paxe subject to: x1 > 0,29 >0

T1,Tn

The objective function is not differentiable. So, we cannot apply the Kuhn-Tucker theorem.
We will prove that: if (z1,x2) is a solution, then az; = bxy. Indeed, if, azy > bxg, then
min(azy, brs) = brs. We can introduce ) = x; — € where ax| > bxs. Then, the new
profit w(z, x2) is strictly higher than m(z1,x2), a contradiction. Hence, we cannot have

axy > bxro. Similarly, we cannot have ax; < bxy. So, ax; = brs. The remaining is simple.
H

Cobb-Douglas production function (the case of one variable). The problem becomes

max pAz® — p1x
x>0

where o € (0,1) while p, p; are the prices of output, input respectively.
First, a solution  must be strictly positive z > 0 (why?).!* The FOC implies that we
have apA(z)*~! = p; at optimal. So, the solution is

apA 1
p1 .

xr =

So, the optimal choice of input of the firm is increasing in the productivity A and the
output price p while decreasing in the input price p;. O]

Cobb-Douglas production function (the case of two variables). The problem be-
comes

max pAxtxS? — pir1 — Pt
xlzomzop 1 To p p

where a1 + ap < 1.
Denote II = max,, >0 4,>0 PAZT 5% — p121 — paxa. Observe that IT > 0. Moreover, at
optimum, if x1 =0 or x5 = 0, then z; = x5, = 0.
1. Assume that oy + ag = 1. Let (21, x2) be a solution.
If x4y =0 or x5 =0, then II = 0.
If 21 > 0,25 > 0. We have the FOCs

ar—1 _as o
onpAryt T ry* —pr =0
-1
aopAxtxy?T " — po = 0.

4ndeed, by definition of Z, we have pA(Z)® —p;Z > pAx® —pia,Vr. If £ = 0, we have 0 > pAx® —pyz =
2(pAz®~t — p;), V. Hence, 0 > x(pAx®~1 — p1),Va. Let z be closed to zero but still strictly positive so
that pAz®~1 — p; > 0, we have a contradiction. Therefore, we have Z > 0.
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Hence,

a1—1 042
pr apAz]t T xh SIS L — b1 062x
C aepAr® Tt agx 2T ppag
P2 QP AT Ty 21 P2y

From this and the FOCs, we have

l—ag, a2
yaNes p P
1= aapAa T ()™ e pA = S
P2 g 1 SN )
To sum up, we have the following result:
(a) If pA < %, then the unique solution is z; = x5 = 0. In this case, the
@ Ao
profit II = 0.
l—ag ag
(b) If pA = %, then any coupe (z1,7;) satisfying v, = 2122z, > 0 is a

solution. In this case, the profit IT = 0.

(c) If pA > r_ PP there is no solution. Indeed, let us consider an allocation
a1

-2 027
Qg

Ty = T;—Q—%:l, we have that

a; /P11 & P1 Qg
pAz{'xy? — prry — pexe = pAx] 1(p—2a—1xl) — 1Ty — pgp—Qa—lml (32)
062 a (e %] aag T
_ pAl‘a1+a2p(lm — —p15171(1 + _2) — Y21 32 . P11 (33)
Po” aq Pa™ Oy a1
1—ao
a5’
= 2 (pa%ie T ) (34)
ay p1 TDPe

11—
Since pATa; — 1 > 0, when we let x; tend to infinity, the profit of this
P

2
allocatlon (:cl, x9) tends to infinity.

2. Assume that oy +ay —1 < 1. A solution (z1,x9) must satisfy z; > 0,29 > 0 (why?).
We have the FOCs

a11a2

a1pAz] -1 =0
a1 . op— 1 _
aopAx{tTy? T —py = 0.
Hence, we get
a1—1 7

p1 apAxf T ay? g g, = D102
= T = 2 = ——11.
P2 opAxtag? Qo P2

From this and the FOCs, we have

1—ao

P = O[lpral 1(]2_1'1) 2 <:>pr?1+04271 pi a2p2

P2 O a; Pay?
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Since a1 + as — 1 < 1, we can easily find that

1
o pA l—al—ag
I = l—ag ag

Py )
l—ag ag
A Qg

This is increasing in the productivity A, the output price p but decreasing in the
input prices p1, ps.

O

3.3.5 Least squares regression

The sum of squared residuals (in the multiple linear regression):

n

k
P 5 = D (0= o= Do By
j=1

i=1
on RF*L,

1. Let us start by considering the case k = 1.

n

f(Bo, B1) = Z (Z/i — Bo — 51%)2

i=1
We want to solve the following problem

n

2
Minimize(g, 5, f (G0 51) = > (yz- — By — 51@-)
i=1
subject to By € R, 51 € R
This is an unconstrained convex minimization problem.

The objective function is convex (why?).

The first-order conditions (or Kuhn-Tucker conditions) give us

n

B Z%(% —I)= sz(?/z )

i=1
Bo =9y — b

where 7 = Z%Ll Ty = Z%l Yi are the sample averages.

Notice that 377" @i(z;—2) = 321, (2:—2)” and 300, i(yi—y) = Do, (2i—2) (i =)

2. We now consider the general case. We want to solve the following problem

n k
2
Minimizeg,, ... g,) Z <yi — Bo — Zﬁjilfi,j)
i=1 j=1

subject to By € R,--- | B € R

This is an unconstrained convex minimization problem.
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3.4 Non-convex optimization (optional)

We follow the exposition of Florenzano and Le Van (2001).

3.4.1 Unconstrained Optimization

First-order conditions for an unconstrained optimum

Theorem 19. Suppose x* € S is either an unconstrained local minimum or an uncon-
strained local mazimum. Then D f(z*) = 0.

Proof. Suppose that z* is an unconstrained local maximum. There exists r > 0 such that
B(z*,r) C S and f(y) < f(2*) for all y € B(z*, 7). Assume a = Df(z*) # 0. From the
Taylor expansion, we have

f(@) = &)+ Df(a®) - (x — ") + Ra(z, 27) |2 — 27|

For any real number ¢, define z; = x* + ta. For t close enough to zero, we have that
x; € B(z*,r)NS. Then

flz) = f
= f
f

*

(%) +a- (z — 2%) + Ry(wg, %) ||v — 27
(z) +75||a||2 + Ry (2" + ta, z%)[t[||a]]
(%) + t||a]| (||a]| + Ri(z* + ta,z*)), when t >0
f(z")

*

X

when ¢ is small enough. We get a contradiction. Hence D f(z*) = 0. The proof is similar
when x* is an unconstrained local minimum. O

A point z is an optimum for f if it is either a maximum or a minimum of f. If it is an
unconstrained local optimum, we have proved that Df(z) = 0.
Second order conditions for an unconstrained local optimum

Lemma 7. (i) Let M be a positive definite n x n matriz. Let S(0,1) denote the unit-sphere
of R". Then mingeg(,1) ' Mz > 0.

(i1) Let M be a negative definite n x n matriz. Let S(0,1) denote the unit-sphere of
R™. Then max,egs(,1) ' Mz < 0.

Proof. (i) The function ¢ : S(0,1) — R, defined by ¢(x) = 2’Mz for z € S(0,1) is
continuous and positive for any = € S(0,1). Since S(0, 1) is compact, 1) has a minimum on
S(0,1) which is positive, i.e. there exists £ € S(0,1) which satisfies 0 < (z) = T'’Mz =
min,eg(,1) ' Mx.

(ii) The proof is similar. O

Theorem 20. Let f : S — R, where S C R". Assume xq is an unconstrained local
optimum of f. If D*f(xq) is negative definite then xq is an unconstrained local mazimum.
If D*f(x) is positive definite, then xq is an unconstrained local mimimum.
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Proof. We must have D f(zq) = 0. Consider the Taylor expansion

f(x) = f(wo) + Df(wo) - (x — o) + 1(95 — 20)' D*f(20)(x — o) + Ra(x, 20) |2 — 20 |)?

2
1
= flzo) + 5z~ 29)' D* f(20)(x — o) + Ra(, z0) ||z — wol|*
Assume D?f(xq) positive definite. When z # z, let u = Tl € S(0,1). We know that

mingeg(,1) &' D? f(xo)x = o > 0. Therefore,

flz) = flxo) + %(f — 20)' D f (o) (x — 20) + Ra(x, o)z — 2o

1
= f(zo) + §||ac — 0||*W D f (zo)u + Ro(z, 20)||z — 20]|*, When z # 2

1
f(zo) + §||3j — x0||* [ + 2Ry(w, 0)] , when  # 2

When z is close to zy but different from zy, we have a + 2Rs(z, x9) > 0 and thus f(z) >
f(zo). We have that x is an unconstrained local minimum.

Similarly, when D?f(x) is negative definite then z is an unconstrained local maximum.

O

3.4.2 Constrained optimization

Definition 19. Let f be a continuously differentiable mapping from an open, nonempty
conver set U of R™ into R". Let a € U. Then f(a) = (fi(a),..., fau(a)).The Jacobian
matriz Jr(a) is

Dfi(a)

D f>(a)

D fu(a)

where the row-vector D f;(a) is the derivative of f; at point a.

Ji(a) =

Let f be a function from an open, convex, nonempty set U of R™ into R. We say
that f is locally minimal at T under the constraints x € I, if T € [" and if there exists a
neighborhood V' of T such that Vo € VNI, f(x) > f(Z).

Consider the following problem (P):

zreU
(P) min fo(z) under the constraints ¢ fi(z) <0, Vi=1,...,1
gi(r)=0,Vi=1,... K

where fy and f;, for i = 1,...,1, ¢;, for it = 1,..., K are continuously differentiable
functions from an open, convex, nonempty set U of R" into R.

Lemma 8. Let f be a differentiable function from an open, convex set U C R™ x RP x R?
into R. We suppose 0 € U. Suppose that the function f : (x,y,z) — f(x,y,2) is locally
manimal at 0 under the constraints x > 0,y = 0. Then:

f2(0,0,0) >0, f.(0,0,0) = 0.
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Proof. Let C = {(x,y,2) € R™" x R? x R? | z > 0,y = 0}. Let (r,s,t) € C. Then there
exists A\; > 0 such that VA € [0, A\1[, one has (Ar, As, \t) € C N U. The function F defined
by VA > 0, FI(\) = f(Ar, As, At) is locally minimal at 0. Hence, F'(0) > 0, i.e.

1'(0,0,0) - (r,s,t) >0, V(r,s,t) € C.

In particular, f2(0,0,0)-7 > 0, Vr € R™ such that r > 0, f2(0,0,0)-t > 0, V¢ € R?. Hence:
f2(0,0,0) > 0 and f.(0,0,0) = 0. -

Let x be a feasible point, i.e. fi(x) <0,Vi=1,...,1,and ¢g;(x) =0,Vi=1,..., K.
Let I(x) = {i| fi(x) = 0}. We say that the constraints of Problem (P) are regular at x if
the gradients (D f;(x))ier(z), (Dgi(x))i=1,.. Kk are linearly independent.

Theorem 21. Suppose that fy is locally minimal at T under the constraints of Problem
(P). Suppose also that the constraints are reqular at T. Then there exist non-negative
scalars (N\;)ier, and scalars (p;)icrc such that:

(1) Dfo(T) = = >0yt MDSiT) + 2oy i 15 D5 (T),

Proof. Observe that fy is also locally minimal at T under the constraints

filz) <0, Vi € I(z),
{ gi(x)=0,Vi=1,... K
where [(Z) ={i e I | fi(z) = 0}.
Suppose that I(Z) has cardinal J. Since, by assumption, the constraints are regular
at z, there exists 0y,...,0,, vectors of R", with ¢ = n — J — K, such that the ma-
trix ((Dfi(T))iz1...15 (Dgz( ))i=t,..k, 01, ...,0,) is invertible. Define éz(x) =6, (v — @),
Vi=1,...,q,Vz € R", and the map ¢ from R" into R" by

(@) = (= fil@)ier@ (95(2))imtics (0:(2))im1,...0)-

One has ¢(Z) = 0, and J,(7) is invertible, where J,(7) is the Jacobian matrix of ¢ at
Z. From the Local inversion theorem (Theorem 22), ¢ has, in a neighborhood V' of Z, an
inverse =1 which is continuously differentiable.

Define, on ¢(V), the map F' = fyop ™. One has: F(u,v,w) = fo(z) if p(x) = (u,v,w). In
particular, '(0,0,0) = fo(Z). Hence F(u,v, w) > ( ,O O) for u > 0,v = 0. From Lemma
8, F(0,0,0) > 0 and F(0,0,0) = 0, that means: F’(0,0,0) = (\,u,0) with A € R and
p € RE. But D fo(x) = F'(0,0,0)(J,(Z)). Since

Jo(T) = (=D fi(T))icr@), (Dgi(T))ick, (0i)i=1,...q),

.....

one gets:
Dfo(m)=— > ANDfi@+ > mDg(T)
1€I(T) i=1,...,. K
with \; > 0, Vi € I(T). Define \; = 0, Vi ¢ I(Z). Relation (i) is thus proved. We have
Nifi(Z) =0,Vi=1,...,1, that is Condition (ii). ]

Exercise 25. Solve
min{(3v2z + 3y — 1)

under the constraints

{eneria + Loy

September 3, 2021 Page 50



Le Van and Pham Mathematics for Economics

4 Comparative Statics

We are interested in a fundamental question: What is the effect of a change in an exoge-
nous variable on the solution value of the endogenous variable? The issue is referred to
”comparative statics”.

4.1 Mathematical tools

We present fundamental tools that help us to do comparative statics.

Theorem 22. [The Inverse Function Theorem] Let f be a continuously differentiable map-
ping from an open, nonempty set E of R™ into R™. Consider a point a € E. Denote
b= f(a).

Assume that the Jacobian matriz J¢(a) (derivatives of f)

[oh o
{ of of ] ViAo On

J: a— a = . = . .
. S A B L R

81‘1 8:En

is invertible. V7 f; is the transpose (row vector) of the gradient of the i component.
Then

1. there exists an open set U and V in R™ such that a € U and b € V', f is one-to-one
onU, and f(U)=V.

2. the inverse function of f (denoted by f~') is continuously differentiable on V.

Recall: The inverse function f=' is defined by: for y € V, take v € U such that
f(z) =y (this value z is uniquely determined because f is one-to-one on U). Then

we defined f~(y) =z, i.e., [T f(x)) = .
Proof. See Rudin (1976), page 221. ]

Theorem 23. [The implicit Functions Theorem] Let f be a continuously differentiable
function from an open, nonempty set E = U x V of R™™ (U C R", V € R™) into R™.
Suppose that f(a,b) = 0 for some point (a,b) € U x V. Assume that that Df,(a,b) is
invertible, where D fq(a,b) is the partial derivative of f with respect to the variable (a) at
point (a,b) defined by

ofh

ofi
Oa, (aab) 87.%(@7 b)
Dfa(a,b) = : :
Ofn 0 fn
a_al(a’b) E(a’ b)

1. Then there exists an open set Uy C U containing a, an open set Vi € V' containing
b, an open set W containing 0 and a function g : Vi x W — Uy such that

flx,y) =z x=g(y,2) VeelU,VyeV,VzeW

Moreover, g is continuously differentiable on Vi x W.
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2. In particular, we have that:
flz,y) =0 z=9¢(y) VrelU,VyeW (35)

where ¢ is differentiable on Vi. Moreover, we can compute the derivative of ¢ by
using f(¢(y),y) =0

Df.(o(y),y)Do(y) + Df,((¢(y),y)) =0

Note that D f.(¢(y),y) is an n x n matriz while D f,((¢(y),y)) is an n x m matriz.

on | oh 001 o0
Df, = : : , Do= : :
Ofn Ofn O IPn
_G_xl . T 3y - e
[0h . Oh
oy OYm
Ofn O fn
Re OYm

The function ¢ is implicitly defined by (35).

4.2 Applications in Economics

Let us explicitly write f(a,b) = 0 as follows

i@, @by, b)) = 0

fn(al,...an,bl,...,bm) =0.

In economics, aq, ..., a, are viewed as endogenous variables while by, ..., b,, exogenous. To
study the effect of exogenous variables (b;) on endogenous variables (a;) or to understand
how (a;) changes when (b;) changes, we can apply the implicit function theorem and
compute the derivatives of (a;) as functions of (b;).

Let us consider a two-period optimal growth model introduced in Section 3.3.2. Let
conditions in Proposition 14 be satisfied. Then, the optimal physical capital k; is deter-
mined by

u' (wo — k1) — BF'(k1)u'(wy + F(k1)) =0 (36)

Notice that wgy,wq, B are exogenous parameters while k; is endogenous and depends on

wo, wi, f.
Denote f(k1,wo, wr, f) = v (wo—k1)—PF'(k1)u'(wi+F(ky)). Observe that the function

f is striclty increasing in k; and wy, but strictly decreasing in wy and 3
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Assume that v' and F” are continuously differentiable. Applying the implicit functions
theorem, the optimal value k; determined by f(k;, wo,wi,3) = 0 can be expressed as a
differentiable function of wy, wy, 5. We write k; = ki (wo, wy, 5).

We now look at the role of the initial endowment wy. Taking the derivative with respect
to wy of both sides of the equation f(ki,wq,wq, ) = 0, we have

0 ok 0
a—]i(kl,wo,wl,ﬂ)a_u;(wmwhﬂ) + a—jo(kl,wo,whﬁ) =0
Since g—,i > 0 and 88—150 < 0, we get that g—fut(wo,wl,ﬁ) > 0. It means that the optimal

value k; is increasing in the initial endowment.

5 Discrete dynamical systems (difference equations)

5.1 Motivating examples

The basic idea is that, in some cases the (economic) outcomes at a period depend on the
variables in the pass. For instance,

T141 = fl(ﬂil,t, s ,llfn,t)
Tpt4+1 = fn(xl,t; T w'En,t)'
So, investigating the evolution of the sequence (z14,..., %, ) requires us to deal with this

dynamical system.!®

5.2 One-dimensional, first-order systems

Consider the one-dimentional autonomous, first-order difference equation:

Yir1 = f(y)Vt = 0 (37)
Yo is given and f : R — R is a real function. If we consider the system
Yer1 = fe(y)Vt >0 (38)

where the function f; depends on time, then it is called ”non-autonomous”

Definition 20. A solution of this difference equation is a trajectory (z:)i>o that satisfies

(37) and initial condition xy = y.

Definition 21. Let [ be a function and © € R (or in general, in the domain of f).

We define f"(x) the nth iterate of f under f by the following relationship: f"(x) =

ffrH@)vn = 1, fo(z) = .

Definition 22. 1. A steady-state equilibrium (or equilibrium point, or fixed point) is a
value x* satisfying f(x*) = x*.

2. x is an eventually equilibrium (fized) point if there exists a positive integer r and
an equilibrium point x* such that f"(z) = x*, f~Y(x) # x*, where f*(x) is the nth
iterate of f under f.

15See Bosi and Ragot (2011) for an excellent introduction of discrete dynamical systems.
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5.2.1 Linear cases
Consider a linear, first-order, autonomous difference equation
Ty = axy +b

where a, b are constants.
We can proved that

l—a

Jatz+ bV >0, ifa #£ 1
b l’o+btifa:1.

Consequently, if a € (—1,1), we have lim; o 2 = b/(1 — a) Vyp.
Notice that z* = b/(1 — a) is the unique steady state when a # 1. We also observe that

_Jd g —y )+ YV >0, ifa#1
e {y0+bt ifa=1

Graphics here.

1. a € (0,1). (Monotonic Convergence)

2. a € (—1,0). (Oscillatory Convergence)

3. a>1,0#0. (Go to infinity. Monotonic Divergence)

4. a = —1. (Two-period cycles)

5. a < —1. (Oscillatory Divergence)

Xpeg =~ 2T 4 ¥t
2 g:x
1.2 *
X, —>
Ayl e - e D
7%-———-:"--- :--}“; \V
. \
06 ' )I\ 1 ‘.
o Rl G o
. | E ! Xy
4N +7eT
‘ Lo
Coa ]
" ! [ |
' \ o |
P ]
N
07 uz; 0 0% o 7 ]
o X A Ay

Figure 2: Monotonic convergence versus oscillatory convergence
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Exercise 26. Consider a linear, first-order, nonautonomous difference equation

Yey1 = QY + by

where ay, by are real values.
Prove that
- t—1
= ([T S0 (IT2)
i=k

Exercise 27. Study the following system
Ty = Az

where xg > 0 is given, A >0 and a > 0.
Find the fixed points.
Find conditions (based on xg, A, o) under which z; converges (diverges).
Hint: Consider a =1, a0 > 1,a < 1.

Exercise 28. Study the following system
Tir1 = Amax(z; — b,0)

where xo > 0 1s given, A >0 and b > 0.

Find the fixed points.

Find conditions (based on o, A,b) under which x; converges (diverges).

Hint: Draw the graph of the function f(z) = Amax(x — b,0). Consider A = 1, A >
1,A< 1.

Proof. Let x > 0 be a fixed point. We have x = Amax(z — b,0). Since x > 0, we have
maz(x — b,0) > 0. This implies that z — b > 0. Hence, max(z — b,0) = x — b. From this,
we can find by z = A(z — b), i.e., (A —1) = Ab. O

Exercise 29. Suppose that aggregate consumption in period t is given by
C,=A+BY,,

where Y; represents the income in period t and B € (0,1) is the marginal propensity to
consume out of the previous year’s income.
Assume that

Y, =C,+ I
]t:(l"'g)t

where g > 0 s the exogenous growth rate in investment spending.

1. Prove that

t—1
=BY,+ ) (A+(1+g)k)B~*
k=0

1
:BtYO+A1

_ Rt

—3 —l—A((l—l—g)t—Bt)
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2. Moreover, we have

Ii =B
i Yy,
Y,

dm =4

3. When happens if g < 07

5.2.2 Nonlinear, first-order, autonomous difference equation

When the function f is not linear, it is not easy to explicitly compute f*(xg) or investigate
the evolution of f'(xg). There may exist multiple steady-state equilibria. Indeed, let
consider the system ki, = f(k;) where f(z) = Az%°(1 +z), A > 0, and ko > 0. We can
check that if A < 0.5, then there are two steady states (see Example 9).

5.2.3 Convergence and global stability

In economics, we are particularly interested in the convergence and stability of the sequence
z; = f'(x). We would like to find conditions under which the sequence z; converges.

Proposition 16. Let f : S — S where S is a closed set of R. Suppose that f is increasing.
Suppose that there exists a unique x* such that f(x*) = x*. Moreover, f(z) < x Y > z*,
and f(x) > x Yo < z*. Then the system (x;) defined by xy11 = f(x;) converges to x* for
any o € S.

Proof. 1f xy = z*, then z; = z*, Vt.

If xg < 2*, then f(xg) > zy, or, equivalently, z; > xy. By induction, we can easily prove
that the sequence z; is increasing: x;.1 > x;, Vt. Indeed, this holds for t = 0. Assume that
it holds until date t. Since ;) > x;_1, we have f(x;) < f(x;—1), which is equivalent to
Ty < xy. So, x4 18 increasing. Notice that xyyq > x; means that f(x;) > x;. According to
our assumption, this implies that x; < z*. To sum up, x; is increasing and bounded from
above. Thus, it converges to some value z. We will prove that & = z*. Since 2,11 = f(x),
by letting ¢ tend to infinity, we have & = f(z). Since the fixed point is unique, we obtain
that z = z*.

For the case o > x*, we can use a similar argument to prove that z; decreasingly
converges to z*. O

Definition 23 (contraction mapping). A function f : R — R is a contraction mapping
(or function) if there exists 0 € (0,1) such that |f(x) — f(y)| < 0|lx — y| Vz,y.

If f is differentiable and sup, |f'(x)| < 1, then f is a contraction mapping (why?).

Notice that the condition |f(z) — f(y)| < 0|z — y| Vz,y is quite restrictive. It is not
satisfied for the function f(z) = z%. Indeed, we have | f(x)— f(y)| = [(z+y)(x—y)| > |[z—y|
if (2 + )] > 1

We present the following result which is a simple case of Banach Fixed Point Theorem
that shows the existence and uniqueness of the fixed point of a contraction mapping in a
complete metric space.
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Figure 3: lim;_, x; = 2%, Vg > 0. See Proposition 16.

Proposition 17 (The Contraction Mapping Theorem). Let f : R — R be contraction
mapping. Then

1. f is a unique fized point x* (i.e., there is a unique x* such that f(x*) = z*).
2. 1f"(xg) — x| < 0™|xg — x*| Vn > 1.
Corollary 5. Consider the difference equation x,y = f(x;) where f : R — R.

1. If f is a contraction mapping, then the system has a unique steady-state x* and
limy oo ¢y = * for any xg.

2. Assume that f is differentiable and sup, |f'(x)| < 1, then the system has a unique
steady-state x* and lim;_,o, x; = x* for any x,.

We also state the results in the space R™.

Proposition 18. Let f : R" — R"™ be contraction mapping, i.e., there exists 6 € (0,1)
such that

1f (@) = fW)l < Ollz =yl Va,y.
1. f has a unique fized point x* (i.e., there is a unique x* such that f(x*) = z*).
2. For every xy € R, the sequence (xy), determined by x,11 = f(x;) Vt, converges to x*.
Proof. Although we consider the space R”, the proof in a complete metric space is similar.

Uniqueness of x*. Suppose that there is x # x* such that f(x) = x. Since f is a
contraction mapping, we have

1 () = f@)] < Ollz =" ||,
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However, f(z) — f(z*) =z — z*. Hence, ||z —* || < 8||z —* || < ||z —* ||, a contradiction.
Therefore, we have proved the uniqueness of x*.

Existence of z*. Let zp € R". Consider the sequence (z;) defined by =11 = f(x¢), V¢,
e, 1y = f'(x). We will prove that z; converges to x*.

First, we prove that (z;) is a Cauchy sequence in the sense that: Ve > 0, there exists
no such that ||z, — x| <€, Vn > ng,m > ng. Indeed, we have

22 — @1l = [|f(21) = flzo)l] < Ollz1 — o
|Tnt1 — znl = ([ f(20) = f(zna)l| < Ofzn — 2pa|| < -0 <021 — 0]
and hence, for n > m, we have
|20 — 2|l = |20 — Zno1 + -+ Tt — Til| <z — il + -+ 4 |21 — T
<O Moy —aol + -0 <O ar — @l = lwr — a0 (L HO 4+ O
1
<oy — zollo™ ——
< Jlzy = o 1-0

For any € > 0, since 6 € (0,1), we can choose ng such that ||z; — 2o]|#™ 15 < €. Then, for
any n > ng, m > ng, we have

1 1
p = Tl < 71— 20|07 < [y — |67 < e.
ln = nll < 71 = w0} < oy — 67— < e

Second, since () is a Cauchy sequence, it converges to some value z € R™ (see Rudin
(1976)). By definition, we have x;,1 = f(x;). Let t tend to infinity, we get that 7 = f(Z).
However, since the fixed point is unique, we obtain that z = x*. It means that x; converges
to z*.

O
5.2.4 Local stability

Definition 24. 1. The equilibrium point x* is stable (or Lyapunov stable) if, for any
e > 0, there exists 0 > 0 such that: |ro — x*| < § implies that |f™"(xo) — z*| < €
Vn > 0.

If x* is not stable, then it is called unstable.
2. x* is said to be attracting if there exists n > 0 such that:
|zg — x*| < n implies lim z; = x*
t—o00

x* 1s called global attracting if n = oo.

3. x* is said to be asymptotically stable equilibrium point if it is stable and attracting.

If n = o0, then x* is said to be globally asymptotically stable.

Definition 25. The equilibrium point x* is said to be hyperbolic if | f'(xz*)| # 1.

Theorem 24. Let x* be an equilibrium point of the difference equation x,1 = f(x).
Assume that [ is continuously differentiable at x*. We have that:
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Figure 4: Monotonic convergence versus oscillatory convergence

1. If | f(x*)| < 1, then x* is asymptotically stable.
2. If | f'(z*)| > 1, then x* is unstable.

Proof. (1) Suppose that |f’(z*)| < 1. We can choose M such that |f'(z*)| < M < 1. Since

f'(x) is continuous, there exists an interval J = (2* — v, 2* 4+ ), where v > 0, such that
|f'(x)] <M <1Vz e J.
Let xg € J. We have

wy—a’ = fzo) — 2" = f(xo) — f(2") = f'()(wo — 27)

where £ is between zy and z*. (Recall that xy may be lower or higher than z*.) By
consequence, we have

21— 27| = | f/(lwo — 27| £ Mlzo — ™| < |z — 27| <
This implies that x; € J. By induction we get that x,, € J Vn and
|z, —a*| < M"|zo — x*|Vn.
Let € > 0, choose § < min(+, €), then we have
|z, — 2| < M"|xg — 2| < |zo — 2| < < €Vn.

So, x* is stable. z* is attracting because: |rq — z*| < § implies that lim; ,., z; = x*.
Therefore, x* is stable.

(2) We now suppose that |f'(z*)| > 1. Since f’(z) is continuous and |f’(z*)| > 1, there
exist ¥ > 0 and M > 1 such that |f'(z)| > M > 1Vr € J = (a* — v, 2" + 7).

September 3, 2021 Page 59



Le Van and Pham Mathematics for Economics

Suppose that z* is stable. Let € be in the interval (0,7). So, there exist § > 0 such
that: |xg — 2*| < d implies that |f"(zo) — z*| < € ¥n > 0.

Take 0 < a < min(e,d). We have: |zg — 2*| < o implies that |f"(x¢) — 2% < € Vn > 0.

Take z¢ be such that 0 < |zg — 2*| < . We have |z,, — 2*| < € <y Vn > 0. Hence,
xn € J Vn. So, we get that

[ — %] = [ (Ea)llwn—1 — 2% 2 - = Mg — 27|

where &, is between xy and x* and hence belongs the interval J.
Since M > 1, |z, — *| must tend to infinity, a contradiction (because |z, — z*| < ¢€).
Therefore, x* is not stable. O

Example 9 (increasing return to scale and middle-income trap). Consider the system
ki1 = f(k) where f(z) = Az®3(1 + 1), A >0, and ko > 0 is given. k; can be interpreted
as the physical capital stock of the economy at date t (see Section 5.2.6).

Solving the problem. The equation determining the steady states is x = Az%%(1 + ), or
equivalently Az — 2%° + A = 0.

Denote A = 1 — 4A2. There is no positive steady state if and only if A < 0 or equiva-
lently A > 1/2. In this case, we can check that Az%%(1+z) > z, Vo > 0. By consequence,
k; is strictly increasing in ¢t. Since there is no positive steady state, k; converges to infinity.

Economically, we can say that when the productivity A is high (in the sense that
A > 1/2), the economy grows without bound (k; converges to infinity).

There are 2 positive steady states if and only if A > 0 or equivalently, 0 < A < 1/2.
We can easily compute these two steady state:'6

1—+v1—4A2
2A

2 1—|—\/1—4A22
o= ()

We can see in the graph that f(z) > z,Va € (0,21) or x € (zy,00), and f(z) < x,Va €
(xp,xH).

xr, = (

1. We can see that =, is asymptotically stable because |f'(x1)| < 1. (Actually, f'(z.) €
(0,1).)
2. We now prove k; increasingly converges to oo if ky > xy. Then, xy is not stable.

For kg > xy, we can show that k; is strictly increasing in ¢ (use the fact that
f(z) > z,Vo € (zg,00)). By consequence, k; converges. It cannot converge to a
steady state because ki1 > k; > xy, Vt. So, it must converge to infinity.

The point zy is not stable because k; converges to infinity for any ko > zp.

3. We now want to prove that: lim; .o k; = x; Vko € (0, 25).

First, observe that f(z) >z if x € (0,21) and f(z) < x if x € (zp,zy).

(a) We prove that k; increasingly converges to x, if kg € (0,zy).
Proof: Let ky € (0,z1). By applying the above remark, we have f(ky) < ko,
and hence, k; < k.

6However, we can eventually provide analysis without computing zr,, x .
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Since f is increasing, we have f(kg) < f(x) = x or equivalently k; < x.

By using the induction argument, we can prove that k; 1 < k; and k; < zp, for
any t. Since the sequence k; is increasing and bounded from above, it converges
to some value, say k*, and f(k*) = k*. Since k* < x, we have k* = x.

(b) By using a similar argument, we can prove that k; decreasingly converges to x,
if kg € (l’L,ZL’H).
4. We now look at the role of A and provide an economic interpretation.

Observe that xy is decreasing in A. The point zy can be viewed as a middle income
trap in the sense that k; converges to infinity for any ky > zy while k; < xp, Vt (this
means that we cannot overcome this threshold zy) if kg < zg.

The middle income trap is decreasing in the productivity A. This leads to an inter-
pretation: The higher the level of productivity A, the lower the middle income trap,
the higher possibility we can get the growth (k; converges to infinity).

O
Exercise 30. Consider the system x;11 = xt(l +7r(1— mt))
1. Prove that a =1 is a fixed point.
2. Prove that if r € (0,1), then a = 1 is asymptotically stable.
3. If r =0, then a = 1 is not asymptotically stable.

4. Study the (asymptotically) stability of this fized point in the case r = 2.

Exercise 31. Let us consider the system x;1 = f(x;) with f(z) = 2°° (0.5 + 0.4x). (1)
Find two positive steady states. (2) Prove that among these points, one steady state is
asymptotically stable while another one is unstable.!”

1"Readers may like to use https://www.desmos.com/calculator?lang=en to draw the graph of the func-
tion f.
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5.2.5 Nonhyperbolic fixed points

Proposition 19. Let z* be a fized point and f'(z*) = 1. Assume that f is in C3. We
have

1. If f"(x*) # 0, then x* is unstable.
2. If f"(z*) =0 and f"(z*) > 0 then x* is unstable.
3. If f"(z*) =0, and f"(z*) < 0 then x* is asymptotically stable.

Proof. By using the Taylor theorem and f'(z*) = 1, we have

Fe) =f*) + £ = %)+ @) 2+ Bafa, o — 27| (39)
=F@) + (o = 2%) 4 5 )@ = 2+ Ryl ae - 2P (10)
F@) =)+ @) = 1) + 5 @) = a0+ 27— P+ R ) e = a7
=FE) + =) 1 = ) - 2 Ryl - 2t
(11)
1. If f"(2*) # 0, then we consider two cases.

(a) f"(z*) > 0. In this case, f’(x) is increasing in a neighborhood (z* — ¢, * +9) of
x*. Since f'(z*) =1, we have f'(xz) > 1= f'(z*) Vo € (z*,2* + ). By adopting
the argument in the proof of part 2 of Theorem 24, we can prove that x* is
unstable.

(b) f"(x*) < 0. Using the same argument, we have that z* is unstable.

2. If f"(z*) =0 and f”(z*) > 0, then we have

Fa) = £ = (= 1) (14 7)o = a)) + R, 2w — .

By adopting the argument in the proof of part 2 of Theorem 24, we can prove that
x* is unstable.

3. If f"(2*) =0, and f"”(z*) < 0, then (41) implies that

F@) = £ = (=2 (14 £ = 2)) + R, 2l — 2P

By adopting the argument in the proof of part 1 of Theorem 24, we can prove that
x* is asymptotically stable.

]
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5.2.6 Application: Solow growth models

We consider a model & la Solow.

Solow Model: a+ S =Y

It = St
kivyr = k(1 =9)+ I
S; = sY,
Y, = Ak?L; 7 a € (0,1)
A=A
L;=1
where ¢;, Sy, I; are consumption, saving, investment at date ¢ (t =0,1,...,400), s € (0,1)

is the exogenous saving rate, k; is the physical capital stock at date t (kg > 0 is given),
0 € [0, 1] is the capital depreciation rate, Y; is the output.

Proposition 20. Consider the above Solow model.

1. Prove that, for any t > 0,

Y, = Ak
Yi _ <@)a
Y, Ky

kt-}—l = k:t(]- — 5) + SAIC?

2. Prove that k; and Y; converge. Find k* = limy_.oo k; and Y* = lim;_, Y;. How k*
and Y* depend on A, s?
3. Is k* asymptotically stable? Why? Illustrate your arguments by diagrams.

The long-term rate of growth g of the output depends strongly on the rate of growth of the
TFP A. The higher A, the higher the rate of growth g.

Proof. Left to the readers. O]

We now consider a more general model a la Solow.

Solow Model: g+ S =Y

I, =25,

kipr = k(1= 6) + I,

Sy = sY;

Y, = AkPL 7 a € (0,1)
Ay = a(l + 7)t

Lt = Lo(l —l— n)t

Here v > —1 is the rate of growth of the TFP A;, n > —1 is the rate of growth of the
labor force. Both of them are assumed to be exogenous.
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Proposition 21. Consider the above Solow model.

1. Prove that, for anyt > 0,
Y, = a(l+9) KL
Y, k @
1 _ (1+)(1 +n)l—a< t+1)

Y: ky
kt+1 = kt(l — 5) + S(I(l + ’Y)tktaL%_a

2. Prove that % — g where AY; =Y. — Y, and g satisfies
l+g=(1+n)(147)7=

The long-term rate of growth ¢ of the output depends strongly on the rate of growth
of the TFP A;. The higher ~, the higher the rate of growth g.

Proof. Left to the readers. O

5.2.7 Application: a Malthusian growth model

In 1798, Thomas Malthus wrote: ”"Through the animal and vegetable kingdoms, nature
has scattered the seeds of life abroad with the most profuse and liberal hand. ... The
germs of existence contained in this spot of earth, with ample food, and ample room to
expand in, would fill millions of worlds in the course of a few thousand years. Necessity,
that imperious all pervading law of nature, restrains them within the prescribed bounds.
The race of plants, and the race of animals shrink under this great restrictive law. And the
race of man cannot, by any efforts of reason, escape from it. Among plants and animals
its effects are waste of seed, sickness, and premature death. Among mankind, misery and
vice.” 18

Thomas Malthus hypothesized that population growth is an inverse function of income
per capita. Inspired by this idea, we assume that

Nepr = Ny b

Ny Wy

where w; is income per capita, /N, is population in period ¢ while a, b are positive constants.
Assume that w; is given by

Y
-

Wy

where Y; is aggregate output in the economy. Assume that
Y, = Np

where a € (0, 1).

18See Thomas Malthus, 1798. An Essay on the Principle of Population. Chapter I.
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From this, we get that
o Na—l
= Nh

Hence, the income is a decreasing function of the population. Rearranging equations, we
obtain a nonlinear, first-order difference equation:

NtJr]_ = Nt(l +n— bNtl_a)
Exercise 32. 1. Find the positive steady states of this dynamical system.

2. Are they asymptotically stable or unstable? Why?

5.3 Multiple-dimensional, first-order systems

We now consider a multiple-dimensional, first-order system: x;,; = f(x;) where f: R" —
R™. Explicitly, we write that

Tit+1 = f1($1,t, T 7$n,t)

Tnt+1 = fn(xl,ta T >$n,t)'

In general, it is difficult to deal with this system.

Let us look at a steady states x* determined by f(z*) = z*. Notice that it is not easy
to compute x*.

Assume that, for any 7, the function f; is in C* (continuously differentiable). Applying
the Taylor’s theorem, in a neighborhood of z*, we can approximate f; by an affine function

* afl *
filxie, o one) =fil2l, ... 2, +Z aazk kt = Tj)
+ Ry(wy, ") ||z, — 27|
where R;(x*,2*) = 0 and Ry(xy,2*) — 0 as z; — x*.
This can be rewritten in a matrix form
igry oo i)
Ty 11 83:1 axn T1g b1 Ry (e, 2|2 — 2|
: = P e o B e :
Tnt+1 afn( *) L afn( *) Lt b;; Rn(fEt, I‘*)”I't - .Z'*H
o0xq ox,,
. X % no Ofi(z*) .«
where b?; = fi(z1, .. ..,xn) — > oo Tk . _
So, in the following we focus on a linear dynamical system given by ;.1 = Ax; + b,
ie.,
T1t4+1 Ay e Aln Tt by
= -
T t+1 Anl Tt Ann Tt bn
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when b = 0, the system is said to be homogeneous.
Let z* be a fixed point 2* = Ax* +b. x* exists and equals (I — A)~'b if the determinant
det(I — A) # 0 where [ is the n x n identity matrix. We have that

Ty — " = A(xy — %)
hence z; — 2* = A'(zo — 2*)Vt > 0

It remains to compute A’. This task is not easy. Linear Algebra helps us to deal with this
problem. Assume that we can diagonalize the matrix A in the sense that

A=VvDV™!
where the matrix V' is convertible and D is a diagonal matrix
AN - 0
D=|: -
0 - A\,
and \; € R, \; # A, Vi, j. This happens if the characteristic polynomial det(A — AI) has n
different real roots. So, under this condition, we obtain A* = VD!V ~! Vt and hence

xy— 2t = VD'V g — ")Vt >0
)\fi o 0

Dt=1|: -. :

o --- )\fl

To sump up, x; converges to the steady state x* if the polynomial det(A — AI) has n
different real roots (\;)™, and |\;| < 1 Vi."

19See Simon and Blume (1994) among others for more details.
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