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Abstract

We present some mathematical tools widely used in courses taught in (under)graduate
programs in economics. We hope that readers can learn how to apply mathemat-
ical results in economics and how to prove them. We focus on two topics: finite-
dimensional convex optimization and discrete-time dynamical systems.1 We also
present several applications in economics.
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1We do not cover linear algebra in this lecture. For more complete treatments of mathematics for

economics, see Simon and Blume (1994), Hoy et al. (2001).
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1 Some basics of mathematical analysis

An excellent introduction of mathematical analysis can be found in Rudin (1976). In the
following, we only cover essential notions and results that are extremely useful in economics
and will be used for the next sections.

1.1 Bounds, inferior, superior

Definition 1. A greatest element of a subset S of a partially ordered set (P,≤)2 is an
a ∈ S satisfying b ≤ a ∀b ∈ S.

A least element of a subset S of a partially ordered set (P,≤) is an a ∈ S satisfying
a ≤ b ∀b ∈ S.

Definition 2. A lower bound of a subset S of a partially ordered set (P,≤) is an element
a of P such that: a ≤ x for all x ∈ S.

A lower bound a of S is called an infimum (or greatest lower bound, or meet; abbreviated
inf) of S if, for all lower bounds y of S in P , y ≤ a (a is larger than or equal to any other
lower bound).

Similarly, an upper bound of a subset S of a partially ordered set (P,≤) is an element
b of P such that b ≥ x∀x ∈ S.

An upper bound b of S is called a supremum (or least upper bound, or join; abbreviated
sup) of S if, for all upper bounds z of S in P , z ≥ b (b is less than any other upper bound).

Exercise 1. Let S = (0, 1) in (R,≤).
(i) Prove that inf S = 0 and supS = 1.
(ii) Prove that there is neither any greatest element nor least element of S.

Proposition 1. Let A ⊂ R be a nonempty set. The sup(A) is the unique element (even-
tually +∞) such that :

(i) If x > sup(A) then x /∈ A
(ii) if x < sup(A) then there exists a ∈ A such that x < a
(iii) There exists a sequence in A which converges to sup(A).

Proof. (i) If x ∈ A then x ≤ sup(A) since this one is an upper bound of A. The result is
then obvious.

(ii) If not, for any a ∈ A, a ≤ x and x is an upper bound which is smaller than the
smallest upper bound which is sup(A).

(iii) First suppose that sup(A) is finite. Then for any k ∈ N, there exists ak ∈ A which
satisfies sup(A)− 1

k
< ak ≤ sup(A). The sequence {ak}k converges to sup(A). Now suppose

sup(A) = +∞.The set A is then unbounded from above. Hence, for any k ∈ N, there exists
ak ∈ A with ak ≥ k. Obviously, the sequence {ak}k converges to +∞ = sup(A).

Proposition 2. Let A ⊂ R be a nonempty set. The inf(A) is the unique element (eventu-
ally −∞) such that :

(i) If x < inf(A) then x /∈ A
(ii) if x > inf(A) then there exists a ∈ A such that x > a
(iii) There exists a sequence in A which converges to inf(A).

2The set P and the binary relation ≤ constitute a partially ordered set if the binary ≤ is reflexive
(x ≤ x), transitive (x ≤ y and y ≤ z imply that x ≤ z) and anti-symmetric (x ≤ y and y ≤ x imply that
x = y).
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1.2 Sequence and limit

A sequence is a function whose domain is the positive numbers. We write (xi)i = (x1, x2, . . . , ).
The value xi may be in R,RN or in other spaces.

A subsequence (xkn)n of (xk)k is an infinite sequence xk1 , xk2 , . . . where k1, k2, . . . is an
infinite increasing sequence of integers.

We now focus on the case x ∈ RN ≡ {(a1, a2, . . . , aN) : ai ∈ R,∀i = 1, . . . , N}. We say
that a sequence (xi)i has the limit x if, for any ε > 0, there is a positive integer n such that

‖xi − x‖ ≤ ε ∀i ≥ n, where ‖a − b‖ ≡
√∑N

i=1(ai − bi)2 is the distance between vectors a

and b.

Definition 3. A sequence having the limit is said to be convergent (in this case, we write
limn→∞ xn = x). A sequence is divergent if it is not convergent.

Definition 4. A sequence of real numbers {xk}k converges to +∞ (notation xk → +∞)
if: for any A ∈ R, there exists K such that, if k ≥ K then xk ≥ A.

Exercise 2. Prove that ‖a · b‖ ≤ ‖a‖‖b‖ where a · b ≡ (a1b1, . . . , aNbN).

Exercise 3. The above distance ‖ · ‖ between two vectors satisfies the Triangle Inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖

and
‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖

Theorem 1. A sequence in Rn has at most one limit.

Proof. Assume {xk}k in Rn has two limits a, b. Then, given ε > 0, one can find Na, Nb

such that, for any n ≥ Na, one has ‖xn − a‖ ≤ ε and any n ≥ Nb, one has ‖xn − b‖ ≤ ε.
In this case, if we take N ≥ max{Na, Nb}, we have

‖a− b‖ = ‖a− xN + xN − b‖ ≤ ‖a− xN‖+ ‖xN − b‖ ≤ 2ε ∀ε

It means that ‖a− b‖ ≤ 2ε ∀ε > 0. So, we have ‖a− b‖ = 0 and hence a = b.

Theorem 2. A sequence of points {xk}k in Rn converges to x = (x1, x2, . . . , xn), where
xk = (xk1, x

k
2, . . . , x

k
n), if, and only if, xki → xi for any i = 1, . . . , n.

Proof. Exercise

Remark 1. Prove that If the real sequences (an) and (bn) converge to x ∈ R, then any
sequence (cn) satisfying an ≤ cn ≤ bn ∀n also converges to x.

Properties 1. Suppose that two real-value sequences xn and yn are convergent with limits
x and y respectively. We have

1. limn→∞ cxn = cx ∀c ∈ R.

2. limn→∞(xn + yn) = x+ y.

3. limn→∞ xnyn = xy.
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4. limn→∞(xn/yn) = x/y if y 6= 0.

Exercise 4 (Theorem 3.20 (Rudin, 1976)). Prove that

1. If p > 0, then limn→∞ 1/np = 0.

2. If p > 0, then limn→∞ p
1/n = 1.3

3. limn→∞ n
1/n = 1.

4. If p > 0, and α ∈ R, then limn→∞
nα

(1+p)n
= 0.4

5. If |x| < 1, then limn→∞ x
n = 0.

Proof. Point 4. Recall the binomial theorem: (x+y)n =
∑n

k=0

(
n
k

)
xn−kyk =

∑n
k=0

(
n
k

)
xkyn−k

where

(
n

k

)
≡ n!

k! (n− k)!
. By applying this theorem, we have

(1 + p)n =
n∑
k=0

(
n

k

)
1n−kpk =

n∑
k=0

n(n− 1) · · · (n− k + 1)

k!
pk

≥ n(n− 1) · · · (n− k + 1)

k!
pk ∀k ≤ n

Given p and α, choose k > α, k > 0. Choose n > 2k, we have

(1 + p)n ≥ n(n− 1) · · · (n− k + 1)

k!
pk = n(n− 1) · · · (n− k + 1)

pk

k!
>
nk

2k
pk

k!

because n− k + 1 > n/2. Therefore,

nα

(1 + p)n
<

2kk!

pk
nα−k

Since α − k < 0, the right hand side converges to zero when n goes to infinity. So,
limn→∞

nα

(1+p)n
= 0.

Exercise 5. Find the limit (if it exists) of the following real-value sequences:

1. xn = (−1)n/n.

2. xn = (−1)n.

Definition 5. A real-value sequence is increasing (respectively, strictly increasing) if xn+1 ≥
xn ∀n (respectively, xn+1 > xn ∀n). It is decreasing (respectively, strictly decreasing) if
xn+1 ≤ xn ∀n (respectively, xn+1 < xn ∀n).

A sequence is bounded if it has a lower bound and an upper bound.

Theorem 3 (monotone convergence theorem). A monotonic sequence (with real values)
is convergent if and only if it is bounded.

3Hint: Define x ≡ p1/n − 1. Observe that (1 + x)n > 1 + nx ∀x > 0 and n is integer.
4Hint: Let k be an integer and higher than α. Prove that (1 + p)n > nkpk

2kk!
∀n > 2k.
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Proof. Consider a monotonically increasing sequence (xn).
Suppose that (xn) is convergent to x. It is easy to see that xn is bounded by x.
Suppose now that (xn) is bounded. In this case, we have supn xn <∞. We will prove

that it is convergent and limn→∞ xn = supn xn. We do so by using the definition. Denote
c ≡ supn xn. Let ε be strictly positive. By definition of supremum, there exists an element
xm such that c− xm < ε (indeed, otherwise c− ε ≥ xm ∀m, which means that c− ε is an
upper bound of (xn) and smaller than c, a contradiction). We have |xn − c| = c − xn ∀n
because xn ≤ c.

For n ≥ m, we have |xn − c| = c− xn ≤ c− xm ≤ ε. So, limn→∞ xn = supn.

Example 1. (Growth, Interest rates). At date 0 (initial date), the GDP per capita of
countries a and b are ya and yb respectively with ya < yb.

Denote yi,t the GDP per capita of country i at period t.
Assume that the rate of growth of country i is ri which is constant over time, for i = a, b.
Assume that ra > rb > 0.
Prove that

1. ya,t − yb,t converges to infinity

2. and there is a date t0 such that ya,t − yb,t ≤ 0 ∀t ≤ t0 and ya,t − yb,t > 0 ∀t > t0.

Example 2 (Compound interest). (1) The value of P usd invested at an annual rate of
interest r compounded n times per year is

Vn = P
(

1 +
r

n

)n
When n→∞, we define

V = lim
n→∞

Vn = lim
n→∞

P
(

1 +
r

n

)n
.

This is the value of P usd invested for one year at an interest rate of r with continuous
compounding.

Prove that

V = Per.

where e is the natural number. It approximately equals 2.71828. Recall the definitions of
e.

e = lim
n→∞

P
(

1 +
1

n

)n
e =

∞∑
n=0

1

n!
= 1 +

1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ · · ·

(2) The value of P usd invest for t years becomes

Vn,t = P
[(

1 +
r

n

)n]t
Prove that

Vt ≡ lim
n→∞

Vn,t = Pert
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Definition 6. The limit inferior of a sequence (xn) is defined by

lim inf
n→∞

xn ≡ lim
n→∞

(
inf
m≥n

xm

)
or lim inf

n→∞
xn ≡ sup

n≥0

(
inf
m≥n

xm

)
The limit superior of a sequence (xn) is defined by

lim sup
n→∞

xn ≡ lim
n→∞

(
sup
m≥n

xm

)
or lim sup

n→∞
xn ≡ inf

n≥0

(
sup
m≥n

xm

)
Note that the sequence an ≡ infm≥n xm is increasing while the sequence bn ≡ supm≥n xm

is decreasing.

Exercise 6. Prove that lim supn→∞(−1)n = 1 and lim infn→∞(−1)n = −1.

Exercise 7. Suppose that lim infn→∞ xn > a. Prove that there exists a positive integer
n0 > 0 such that xn > a ∀n > n0.

1.3 Series

Definition 7. Let (at) be a sequence. sn ≡
∑n

t= at is called a series.

Example: Present value of a stream of payments. Present value of incomes.

Remark 2. 1. If the series converges, then limn→∞ an = 0.

2. The converse may not hold.

We introduce ”comparison test” which is very useful.

Proposition 3. 1. If there exists N0 such that |an| ≤ cn ∀n ≥ N0, and if
∑
cn con-

verges, then
∑

n an converges

2. If there exists N0 such that an ≥ dn ∀n ≥ N0, and if
∑
dn diverges, then

∑
n an

diverges

Proposition 4. 1. The series converges if lim supn→∞ |
an+1

an
| < 1.

2. The series diverges if there exists n0 such that |an+1

an
| ≥ 1 ∀n ≥ n0.

3. The series diverges if lim infn→∞ |an+1

an
| > 1.

Exercise 8. Prove that

1.
∑n

t=1 k = n(n+1)
2

2.
∑n

t=1 k
2 = n(n+1)(2n+1)

6
.

3.
∑n

t=1 k
3 = n2(n+1)2

4
.

4.
∑n

t=1 k
4 = n(6n4+15n3+10n2−1)

30
.

Exercise 9. Prove that
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1.
∑n−1

k=0 a
k = an−1

a−1
if a 6= 1, and equals n if a = 1.

2.
∑n−1

k=1 a
k = an−a

a−1
if a 6= 1, and equals n− 1 if a = 1.

3.
∑n

k=1 ka
k = (a−1)(n+1)an+1−an+2+a

(a−1)2
if a 6= 1.

4.
∑∞

k=0 a
k = 1

1−a if a ∈ (0, 1), and equals ∞ if a ≥ 1.

5. (Present Value of a Stream of Payments) Given that the interest rate is strictly
positive (r > 0), prove that

∞∑
k=1

V

(1 + r)k
=
V

r
.

Exercise 10. Prove that

1.
∑∞

n=1
1
na
<∞ if a > 1.

2.
∑∞

n=1
1
na

=∞ if a ≤ 1. In particular,
∑∞

n=1
1
n

=∞.

Exercise 11. Prove that

e ≡
∞∑
n=0

1

n!
= 1 +

1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ · · · <∞

Exercise 12. Consider a positive sequence (an). Prove that

lim
n→∞

n∏
i=1

(1 + ai) <∞ if and only if
n∑
i=1

ai <∞.

1.4 Open, closed and compact sets

For x ∈ Rn, the open ball B(x, r) with centre x and radius r is the set B(x, r) ≡ {y ∈ Rn :
‖y − x‖ < r}.

• A set S ∈ Rn is open if for all x ∈ S there exists r > 0 such that B(x, r) ⊆ S. In
particular the ball B(x, r) is an open set.

• A point x is in the interior of a set S ⊆ Rn if there exists r > 0 such that the open
ball B(x, r) is contained in S. The set of all interior points of S is denoted by intS.

• A set S ∈ Rn is closed if its complement Sc = {x ∈ Rn : x /∈ S} is open

Properties 2. • The union of an arbitrary collection of open sets is again open

• The intersection of an arbitrary collection of open sets is not always open. Example:
Sn = (1− 1/n, 2 + 1/n). Then ∩n≥1Sn = [1, 2] is a closed set.

• The intersection of a finite collection of open sets is open
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• The sum of two open sets is open, where we define the sum of two sets S1, S2 of Rn

by
S1 + S2 = {x ∈ Rn : x = x1 + x2, x1 ∈ S1, x2 ∈ S2}

• The union of a finite collection of closed sets is closed

• The union of an arbitrary collection of closed sets is not always closed. Example:
Sn = [0, 1− 1/n]. Then ∪n≥1Sn = [0, 1) is not closed.

• The intersection of an arbitrary collection of closed sets is closed

• The sum of two closed sets is not always closed.

Example: S1 = {(x, y) ∈ R2 : x > 0, y = 1
x
}, S2 = {(x, y) ∈ R2 : x > 0, y = − 1

x
}.

Note that (0, 0) 6∈ S1 + S2 because, if (x, y) ∈ S1 + S2, we must have x > 0.

Definition 8. Let S ⊂ RN . We say that S is bounded if there exists M such that S ⊆
B(0,M). In other words, S is bounded if there exists M > 0 such that ‖x‖ ≤ M for all
x ∈ S.

Theorem 4 (the Bolzano-Weierstrass theorem). If the sequence (xn) in RN is bounded,
then it has a convergent subsequence.

Proof. Let us firstly prove the result in the space R. Let (xn) be a bounded sequence.
We will construct a subsequence of (xn), which is monotonic. Then, by applying

Theorem 3, this subsequence is convergent.
It remains to prove the following result.

Lemma 1. Every infinite sequence (xn) in R has a monotone subsequence.

Proof. Define

A = {n ∈ N : ∀p ≥ n, xp ≤ xn}
B = {n ∈ N : ∃p ≥ n, xp > xn}

There are two cases.

1. card(A) = ∞. Let (nk)k be an increasing infinite sequence in A. Then the subse-
quence (xnk) of (xn) is decreasing.

2. card(A) <∞. Let Na be the highest element of A. Hence, for any n > Na, we have
n ∈ B. Take m1 = Na + 1, then m1 ∈ B and hence there exists m2 > m1 such
that xm2 > xm1 . By induction argument, there exists an increasing infinite sequence
(mk)k such that xmk+1

> xmk ∀k. So, the subsequence (xmk)k of (xn) is increasing.

We now consider the case of RN . Let (xk) ⊂ RN . xk = (x1,k, . . . , xN,k). Since (xk) is
bounded, the sequence (xi,k) is bounded for any i = 1, . . . , N . So, there is a subsequence
(x1,k1,m)m which is convergent.

We consider the subsequence xk1,m = (x1,k1,m , x2,k1,m , . . . , xN,k1,m) of (xk).
Since (x2,k1,m) is bounded, it has a convergent subsequence (x2,k2,m) with (k2,m) ⊂ (k1,m).

By induction argument, we con construct subsequences (kN,m) ⊂ (kN−1,m) ⊂ · · · ⊂ (k1,m)
and the subsequence xkN,m = (x1,kN,m , x2,kN,m , . . . , xN,kN,m) of (xk) is convergent.
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Definition 9. Let S ⊂ RN . We say that S is compact if it is bounded and closed

Theorem 5. Let S ⊂ RN . The following statements are equivalent

1. S is compact.

2. S is bounded and closed. (The Heine–Borel theorem.)

3. For all sequences {xk} in S, there exists a subsequence {xkm}m which converges to a
point x ∈ S.5

Proof. We prove the equivalence between (2) and (3).
(3) implies (2): Assume S has the property that for all sequences {xk} in S, there exists

a subsequence {xkm}m which converges to a point x ∈ S. Let us prove it is compact. First,
S is bounded. If not there exists a sequence {xk}k ⊂ S with limk→+∞ ‖xk‖ = +∞. There
exists a subsequence {xkn}n of {xk}k which converges to some x ∈ S, which is impossible
since limn ‖xkn‖ = +∞.
We now prove S is closed. Suppose {xk}k ⊂ S converges to x. There exists a subsequence
which converges in S. This limit must be x. Hence, x ∈ S.

(2) implies (3): Assume that S is compact. We will assume S ⊂ R2. One can easily
see that the proof can be carried on when the dimension of the space is larger than 2.
Let {xk} be a sequence of S. Write xk = (xk1, x

k
2),∀k. Since S is bounded, there exists a

subsequence {xkn1 }n which converges to some x1 ∈ R. But there exists also a subsequence

{xknl2 }l of {xkn2 }n which converges to some x2 ∈ R. Since S is closed, (x1, x2) ∈ S since it

is the limit of {(xknl1 , x
knl
2 )}l. To summarize, we have found a subsequence of {xk} which

converges to a point in S.

Properties 3. • The union of a finite collection of compact sets is compact.

• The union of an arbitrary collection of compact sets is NOT ALWAYS compact.

• The intersection of an arbitrary collection of compact sets is compact.

• The sum of two compact sets is compact.

1.5 Continuous functions

Mappings Let f : S → T , where S ⊆ Rn, T ⊆ Rm. Then S is called the domain of f ,
and T is the range of f . For R ⊆ S, the image of R under f is

f(R) = {y ∈ T : y = f(x), for some x ∈ R}

For U ⊆ T , the inverse image of U , f−1(U) is

f−1(U) = {x ∈ S : f(x) = y, y ∈ U}

The set f−1(U) may be empty.

5We can also prove that S is compact if and only if every open covering of S has a finite sub-covering.
Here, we define that: An open covering of a set S is a collection of open sets {Uα}α such that S ⊆ ∪αUα.
This definition is in general used when RN is replaced by a topological space.
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• A mapping f : S → Rm, where S ⊆ Rn is continuous at x ∈ S if for all sequences
{xk} in S converging to x, we have that f(xk)→ f(x). Equivalently, f is continuous
at x ∈ S, if for every ε > 0 there exists δ > 0 such that if y ∈ S and ‖y − x‖ < δ
then ‖f(y)− f(x)‖ < ε.

• Let f(x) = (f1(x), . . . , fm(x)) where fi is a mapping from S to R. Then f is contin-
uous at x ∈ S if, and only if, each fi is continuous at x.

• A mapping f is continuous on S if it is continuous at any x ∈ S.

• Let f : Rn → Rm, g : Rn → Rm. Assume f, g are continuous. Then f + g is
continuous. If λ is a real number, then λf is continuous.

• Let f : Rn → Rm, g : Rm → Rp. Assume f, g are continuous. The mapping gof
defined by gof(x) = g(f(x)) for any x is continuous.

• Let f : Rn → Rm. Then f is continuous if, and only if, for any open set A ⊆ Rm,
f−1(A) is open in Rn. Equivalently, f is continuous if, and only if, for any closed set
A ⊆ Rm, f−1(A) is closed in Rn.

Proof. Assume f is continuous. Let A ∈ Rm be open. We will show that f−1(A)
is open. For that, let x ∈ f−1(A). Since A is open, there exists an open ball
B(f(x), ε) ⊂ A. Since f is continuous, there exists δ > 0 such that if y ∈ B(x, δ) then
f(y) ∈ B(f(x), ε) ⊂ A. This implies y ∈ f−1(A). Equivalently, B(x, δ) ⊂ f−1(A)
and f−1(A) is open.
Conversely, assume that for any open set A ⊂ Rm, the set f−1(A) is open. We
will prove that f is continuous. Let A = {z ∈ Rm : ‖z − f(x)‖ < ε}. The set
A is open. Observe that x ∈ f−1(A). Since f−1(A) is open, there exists an open
ball B(x, δ) ⊂ f−1(A). That means, if ‖y − x‖ < δ then f(y) ∈ A or equivalently
‖f(y)− f(x)‖ < ε. We have proved that f is continuous.
To prove that f is continuous if, and onl! y if, for any closed set A ⊆ Rm, f−1(A) is
closed in Rn, one can observe that f−1(Ac) = (f−1(A))

c
.

Theorem 6 (Intermediate value theorem). Let f be a continuous function on the interval
[a, b]. If f(a) < f(b) and c ∈ (f(a), f(b)), then there exists a point x ∈ (a, b) such that
f(x) = c.6

Note that such a x is not necessarily unique.

Proof. Define S ≡ {d ∈ [a, b] : f(d) ≤ c}. S is non-empty and bounded. So, there exists
the supremum of S. Let x ≡ sup(S). We can prove that f(x) = c.

Example 3 (The demand, the supply and equilibrium price). Let D(p) and S(P ) be the
demand and supply functions which depend on the price p ≥ 0. Assume that D and S are
continuous.

A price p > 0 is said to be an equilibrium price if D(p) = S(P ).
According to Theorem 6, there is an equilibrium price p is D(0) − S(0) > 0 and

limx→∞D(x)− S(x) < 0.
6A generalization of this theorem can be found in Theorem 4.22 in Rudin (1976).
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Proposition 5. Let f : S → Rm, where S ⊆ Rn. Assume S is compact and f is continuous
on S. Then f(S) is compact.

Proof. First, f(S) is bounded. If not there exists a sequence {yn}n ⊂ f(S) with limn→+∞ ‖yn‖ =
+∞. We can write yn = f(xn) with xn ∈ S for every n. Since S is compact, there exists
a subsequence {xnk}k which converges to some x ∈ S and f(xnk) converges to f(x). That
is a contradiction since ‖f(xnk)‖ converges to infinity too.
We now show that f(S) is closed. For that, let {yn}n ⊂ f(S)→ y. We claim that y ∈ f(S).
Write yn = f(xn) with xn ∈ S for every n. Since S is compact, there exists a subsequence
{xnk}k which converges to some x in S and f(xnk) converges to f(x). We must have
y = f(x). Hence, y ∈ f(S).

Theorem 7 (Weirstrass Theorem). Let f : S → R, where S ⊆ Rn. Assume S is compact,
nonempty and f is continuous on S. Then f has both a maximum and a minimum.

Proof. Let M = sup(f(S)). There exists a sequence {f(xn)}n converging to M . Since S
is compact, there exists a subsequence {xnk} which converges to some x ∈ S and f(xnk)
converges to f(x) ∈ f(S). We have M = f(x) and hence, M = max(f(S)). The proof is
similar for min(f(S)).

1.6 Derivatives

A motivation: The Total- and Marginal-Cost Functions. Suppose that the total
cost function of a firm is C = C(y) where y is its output. Let us look at

∆C

∆y
=
C(y + ∆y)− C(y)

∆y

This represents the (average) rate of change in cost per added unit of output produced. If
we know ∆C

∆y
, then we can compute the change in cost C(y + ∆y)− C(y) as a function of

∆y by using the formula C(y + ∆y)− C(y) = ∆C
∆y
×∆y.

The instantaneous rate of change (the marginal-cost of production) is

lim
∆y→0

∆C

∆y
= lim

∆y→0

C(y + ∆y)− C(y)

∆y

This motivates us to study derivatives of functions.
Differentiability of real functions

• Let f : S → R, where S ⊆ R. We say that f is differentiable at x0 ∈ S, where x0

must be in the interior of S, if there exists the limit

lim
x→x0

f(x)− f(x0)

x− x0

Denote this limit by f ′(x0). This is called the derivative of function f at x0.

Note that we have

lim
h→0

f(x)− f(x0)− f ′(x0)(x− x0)

x− x0

= 0
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• Let f : S → R, where S ⊆ Rn. We say that f is differentiable at x0 ∈ S, where x0

must be in the interior of S, if there exists a vector a ∈ Rn so that

f(x)− f(x0)− a · (x− x0)

‖x− x0‖
→ 0, as x→ x0

where ‖x− x0‖ ≡
√

(x1 − x0,1)2 + · · ·+ (xn − x0,n)2.

The vector a is called the derivative of f at x0 and is denoted by Df(x0). Moreover,
we say that f is differentiable on S if it is differentiable at every point of S. We
can regard Df as a mapping from S to Rn. If Df is continuous, we say that f is
continuously differentiable or f is C1.

• Let f : S → R, where S ⊆ Rn. We study the derivative via partial derivatives.
Let (e1, . . . , en) be the canonical basis of Rn. If ei is a vector of this basis, then the
coordinates of ei equal zero excepted the i−th coordinate which equals 1. The i−th
partial derivative of f at a point x is the number ∂f(x)

∂xi
defined by

∂f(x)

∂xi
= lim

t→0

{
f(x+ tei)− f(x)

t

}
Differentiability of mappings

• A mapping f : S → Rm, where S ⊆ Rn, is differentiable at x0 ∈ S, where x0 must
be in the interior of S, if there exists a m× n matrix A so that

f(x)− f(x0)− A(x− x0)

‖x− x0‖
→ 0, as x→ x0

where ‖x − x0‖ ≡
√

(x1 − x0,1)2 + · · ·+ (xn − x0,n)2 The matrix A is called the
derivative of f at x0 and is denoted by Df(x0). Moreover, we say that f is differen-
tiable on S if it is differentiable at every point of S.

• If f is differentiable on a set S, its derivative Df can be seen as a mapping Df : S →
Rm×n. If this mapping is continuous, we say that f is continuously differentiable or
f is C1.

Properties 4. Let f : S → R, where S ⊆ Rn is an open set. If f is differentiable on S,
then it is continuous on s.

Proof. Using definition.

Theorem 8. Let f : S → R, where S ⊆ Rn is an open set. The function f is C1 on S if,
and only if, all partial derivatives of f exist and are continuous on S. In that case we also
have

Df(x) =

(
∂f(x)

∂x1

,
∂f(x)

∂x2

, . . . ,
∂f(x)

∂xn

)
Second derivatives
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• Let f : S → R, where S ⊆ Rn. Then the derivative Df(x) =
(
∂f(x)
∂x1

, ∂f(x)
∂x2

, . . . , ∂f(x)
∂xn

)
is also a mapping from S to Rn. If Df is differentiable then f is called twice differen-
tiable with second derivative D2f(x). The partial derivatives of the partial derivatives

of f are denoted by ∂2f(x)
∂xi∂xj

if i 6= j, and by ∂2f(x)

∂x2i
if i = j. In these cases we have

D2f(x) =


∂2f(x)

∂x21
. . . ∂

2f(x)
∂x1∂xn

. . . . .

. . . . .

. . . . .
∂2f(x)
∂xn∂x1

. . . ∂
2f(x)
∂x2n


This matrix is called the Hessian of f at x.

• When f is twice differentiable on S and each second partial derivative is a continuous
function, then f is called twice continuously differentiable or C2.

Theorem 9. If f is C2 on S ⊆ Rn, then D2f(x) is a symmetric matrix, i.e. ∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

for all i, j and all x ∈ S.

Notice that it can happen that ∂2f(x)
∂xi∂xj

6= ∂2f(x)
∂xj∂xi

if our assumptions are not satisfied.

Exercise 13. (Rudin, 1976) Define{
f(0, 0) = 0

f(x, y) = xy(x2−y2)
x2+y2

if (x, y) 6= (0, 0)

Prove that

1. f , D1f , D2f are continuous in R2.

2. D12f and D21f exist at every point of R2, and are continuous except at (0, 0).

3. D12f(0, 0) = 1 and D21f(0, 0) = −1.

Theorem 10 (Rolle’s theorem). Let f be a function from [a, b] into R. Assume that f is
continuous on [a, b], differentiable on (a, b), and f(a) = f(b). Then there exists c ∈ (a, b)
such that f ′(c) = 0.

Proof. Since f is continuous, there exist m ≡ min{f(x) : x ∈ [a, b]} and M ≡ max{f(x) :
x ∈ [a, b]}.

If m = M , then f is constant which implies that its derivative equals zero.
If m < M , we have either f(a) > m or f(a) < M . Without loss of generality, we

can assume that f(a) > m. Then there exists c such that f(c) = m. We observe that

c 6= a, c 6= b. Define φ(h) ≡ f(c+h)−f(h)
h

with h 6 0 and h is small enough so that c+h ∈ [a, b].
By definition, we have limh→0 φ(c) = f ′(c).

We will prove that f ′(c) = 0. By definition of c, we have f(c + h) − f(h) ≥ 0, ∀h
satisfying c + h ∈ [a, b]. Let h > 0 and tend to zero, we have f ′(c) ≥ 0. Let h < 0 and
tend to zero, we have f ′(c) ≤ 0. Therefore, f ′(c) = 0.
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Theorem 11 (Mean value theorem). Let f be a function from [a, b] into R. Assume that
f is continuous on [a, b], differentiable on (a, b). Then there exists c ∈ (a, b) such that

f ′(c) = f(b)−f(a)
b−a .

Proof. Without loss of generality, we assume that a < b.
Consider the function

g(x) ≡ f(x)− f(b)− f(a)

b− a
(x− a)

We have g(a) = g(b). Applying Rolle’s theorem, we get the result.

The following theorem is very important for Optimization and Dynamical System. We
state the result without proof.

Theorem 12 (Taylor expansion). Let f : S → R, where S ⊆ Rn is an open set. Pick
x0 ∈ S

1. If f is C1 on S, then for any x ∈ S we can write

f(x) = f(x0) +Df(x0) · (x− x0) +R1(x, x0)‖x− x0‖

where R1(x0, x0) = 0 and R1(x, x0)→ 0 as x→ x0.

We explicitly write

f(x1, . . . , xn) = f(x0,1, . . . , x0,n) +
n∑
i=1

∂f(x0)

∂xi
(xi − x0,i) +R1(x, x0)‖x− x0‖

2. If f is C2 on S, then for any x ∈ S, one can write

f(x) = f(x0) +Df(x0) · (x− x0) +
1

2
(x− x0)′D2f(x0)(x− x0) +R2(x, x0)‖x− x0‖2

where R2(x0, x0) = 0 and R2(x, x0)→ 0 as x→ x0.

We explicitly write

f(x1, . . . , xn) =f(x0,1, . . . , x0,n) +
n∑
i=1

∂f(x0)

∂xi
(xi − x0,i)

+
1

2

∑
i,j

∂2f(x0)

∂xi∂xj
(xi − x0,i)(xj − x0,j) +R2(x, x0)‖x− x0‖

2 (Quasi)Convexity and (quasi)concavity

The notion of convexity is very important in economics. Indeed, in economic models,
the budget set of agents are usually assumed to be convex. In many setups, we assume
that preferences of agents are convex or the utility functions are (quasi)concave. These
observations motivate us to study the (quasi)convex and (quasi)concave functions.
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2.1 Convexity and concavity

Definition 10 (Convex set). A set A in Rn is convex if λa+(1−λ)b ∈ A ∀a ∈ A, ∀b ∈ A,
∀λ ∈ [0, 1] (the line segment is a subset of A).

Definition 11 (Concavity). Let f : A→ R be a function defined from A, a nonempty set
of Rn, into R. We require that A is convex.

1. f is convex on A if

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)∀a ∈ A,∀b ∈ A,∀λ ∈ [0, 1].

2. f is strictly convex on A if

f(λa+ (1− λ)b) < λf(a) + (1− λ)f(b)∀a ∈ A,∀b ∈ A, a 6= b,∀λ ∈ (0, 1).

3. The function f : A→ R is concave on A if −f is convex.

Explicitly, f is concave on A if

∀a1 ∈ A,∀a2 ∈ A, ∀λ ∈ [0, 1] , f(λa1 + (1− λ)a2) ≥ λf(a1) + (1− λ)f(a2).

It is strictly concave on A if:

∀a1 ∈ A, ∀a2 ∈ A, a1 6= a2,∀λ ∈ ]0, 1[ , f(λa1 + (1− λ)a2) > λf(a1) + (1− λ)f(a2).

The function f(x) = x2 is strictly convex and f(x) = x1/2 is strictly concave. The
function f(x) = Ax is convex and concave but neither strictly convex nor strictly concave.

Proposition 6 (Jensen inequality). Let U be a nonempty convex set of Rn and let f : U →
R be a convex function on U . Then f is convex if, and only if, for any integer p ≥ 2, for
any p elements of U , x1, . . . , xp, for any p positive numbers λ1, . . . , λp, the sum of which
equals 1, then

f(λ1x1 + . . .+ λpxp) ≤ λ1f(x1) + . . .+ λpf(xp).

Proof. Let f : U → R where U is a convex, nonempty subset of Rn. Assume f convex.
Let x1, . . . , xp be p elements of U .

If p = 2, then obviously f(λ1x1 + . . .+ λpxp) ≤ λ1f(x1) + . . .+ λpf(xp).
Assume that Jensen Inequality holds for p − 1. We will show that it holds also for p. If
λp = 1, then the result is trivially true. So, we assume λp 6= 1. Let sp−1 = λ1 + . . .+ λp−1.
We have:

λ1x1 + . . .+ λpxp = sp−1

( λ1

sp−1

x1 + . . .+
λp−1

sp−1

xp−1

)
+ (1− sp−1)xp.

The function f being convex, we have:

f(λ1x1 + . . .+ λpxp) ≤ sp−1f
( λ1

sp−1

x1 + . . .+
λp−1

sp−1

xp−1

)
+ (1− sp−1)f(xp).
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We have assumed that Jensen Inequality holds for p− 1. Hence

f(
λ1

sp−1

x1 + . . .+
λp−1

sp−1

xp−1) ≤ λ1

sp−1

f(x1) + . . .+
λp−1

sp−1

f(xp−1).

Thus:
f(λ1x1 + . . .+ λpxp) ≤ λ1f(x1) + . . .+ λpf(xp).

The converse is true by taking p = 2.

The following theorem is very important and useful.

Theorem 13 (first-order convexity condition). Let f be a differentiable function from its
domain (dom(f)) into R. Assume that dom(f) is convex.

1. f is convex if and only if, for any x, y ∈ dom(f), we have f(y)−f(x) ≥ Df(x)·(y−x).

f is strictly convex if and only if, for any x, y ∈ dom(f), x 6= y we have f(y)−f(x) >
Df(x) · (y − x).

2. f is concave if and only if, for any x, y ∈ dom(f), we have f(y) − f(x) ≤ Df(x) ·
(y − x).

f is strictly concave if and only if, for any x, y ∈ dom(f), x 6= y we have f(y)−f(x) <
Df(x) · (y − x).

Proof. Notice that we cannot directly use Taylor’s expansion. Let us prove the first point.
Suppose that f is convex. We have to prove that f(y)− f(x) ≥ Df(x) · (y−x) for any

x, y ∈ dom(f). Let x, y ∈ dom(f). Consider z(λ) ≡ (1 − λ)x + λy with λ ∈ [0, 1]. Since
dom(f) is convex, we have z(λ) ∈ dom(f), ∀λ ∈ [0, 1]. By the convexity of f , we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)⇔ f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x))

or equivalently
f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

Let λ go to zero, we get that Df(x) · (y − x) ≤ f(y)− f(x).
Suppose now that

f(y)− f(x) ≥ Df(x) · (y − x),∀x, y ∈ dom(f) (1)

Consider z(λ) ≡ (1− λ)x+ λy with λ ∈ [0, 1]. Applying (1), we have

f(x)− f(z) ≥ Df(z) · (x− z)⇒ (1− λ)
(
f(x)− f(z)

)
≥ (1− λ)Df(z) · (x− z) (2)

f(y)− f(z) ≥ Df(z) · (y − z)⇒ λ
(
f(y)− f(z)

)
≥ λDf(z) · (x− z) (3)

Taking the sum of both sides, we get that

(1− λ)
(
f(x)− f(z)

)
+ λ
(
f(y)− f(z)

)
≥ (1− λ)Df(z) · (x− z) + λDf(z) · (x− z)

⇔ (1− λ)f(x) + λf(y) ≥ f(z)

So, the function f is convex.

September 3, 2021 Page 18



Le Van and Pham Mathematics for Economics

Corollary 1. Consider f : dom(f) → R. Assume that f is convex. If x ∈ dom(f) such
that Df(x) = 0, then f(x) = mina∈dom(f)(f(a)).

The following properties are very useful. We can prove them by using definition.

Properties 5. We have the following properties.

1. If f, g are convex from a convex set U into R and if λ is a nonnegative real number,
then f + g and (λf) are convex.

2. Let f , g be two convex functions from a convex set U, into R. Then max(f, g) is
convex. More generally, consider a collection of convex functions {fi}i=1,...,I , from U
into R. Then max{fi | i = 1, . . . , I} is convex from U into R.

3. If functions f : U → R, g : V → R, with f(U) ⊂ V , are convex, if g is nondecreasing,
then g ◦ f is convex.

4. If (fi)i∈N is a sequence of convex functions from Rn into R which converges pointwise,
i.e. ∀x ∈ Rn, the sequence (fi(x))i∈N converges in R, then the function defined for
all x ∈ Rn by f(x) = limi→+∞ fi(x) is convex from Rn into R.

Proof. Let us prove point 2. Denote f = maxifi. Let a, b ∈ U and λ ∈ [0, 1]. We have

fi(λa+ (1− λ)b) ≤ λfi(a) + (1− λ)fi(b) ≤ λf(a) + (1− λ)f(b).

Taking the maximum over i, we have f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b). So, the
function f is convex.

Example 4 (Simple composition results). 1. If g is convex then eg(x) is convex.

2. If g is concave and positive, then log g(x) is concave.

3. If g is concave and positive, then 1/g(x) is convex.

4. If g is convex and nonnegative and p ≥ 1, then (g(x))p is convex.

5. If g is convex then −ln(−g(x)) is convex on {x : g(x) < 0}.

2.1.1 Convexity and continuity

Theorem 14. If f is convex from an open set U ⊂ Rn into R, then it is continuous in
U .7

Proof. It is not easy to prove this result. We need an intermediate step.

Lemma 2. Let f be a convex function from an open set U of Rn into R. Assume 0 ∈ U .
Then, there exists a closed ball B̄(0, r) ⊂ U such that f is bounded above on B̄(0, r).

7See Theorem 5.2.1 in Florenzano and Le Van (2001) for a stronger result.
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Proof. Since 0 ∈ U, one can choose α > 0 sufficiently small such that the convex hull
V = co{αe1, . . . , αen,−αe1, . . . ,−αen},8 where the ei are the vectors of the canonical basis
of Rn, is contained in U .

V has a nonempty interior, 0 is in the interior of V . Thus, V contains a closed ball
B̄(0, r).9 Any x in V may be expressed as: x = α

∑n
i=1 λie

i−α
∑n

i=1 λ
′
ie
i with λi ≥ 0, λ′i ≥

0,∀i,
∑n

i=1(λi + λ′i) = 1. Since f is convex,

f(x) ≤
n∑
i=1

(
λif(αei) + λ′if(−αei)

)
≤ max

{
f(αe1), . . . , f(αen), f(−αe1), . . . , f(−αen)

}
.

Therefore f is bounded above on B̄(0, r).

We now prove Theorem 14. Let x0 ∈ U . Define V ≡ U − {x0}. Observe that
V is convex, open and 0 ∈ V . Consider the function h : V → R defined by h(x) =
f(x + x0) − f(x0). Obviously h is convex and h(0) = 0. Moreover, f is continuous at x0

if, and only if, h is continuous at 0.
We will prove that h is continuous at 0. Let {xn}n ⊂ V converge to 0. We have to

prove that h(xn) converges to h(0) = 0.
Since V is open and 0 ∈ V , there exists a closed ball B̄(0, r) ⊂ V . Since {xn}n converge

to 0, there exists n0 such that {xn}n≥n0 ⊂ B̄(0, r). Let S denote the sphere of radius r:
S ≡ {x ∈ Rn : ‖x‖ = r}. Define yn = rxn

‖xn‖ , z
n = − rxn

‖xn‖ . Then yn ∈ S, zn ∈ S,∀n. One
can see that

xn =
‖xn‖yn

r
+

(
1− ‖x

n‖
r

)
0

0 =
r

r + ‖xn‖
xn +

(
‖xn‖

r + ‖xn‖

)
zn

Since h is convex, we then get

h(xn) ≤ ‖xn‖
r

h(yn) +

(
1− ‖x

n‖
r

)
h(0) =

‖xn‖
r

h(yn)

≤ ‖xn‖
r

sup
y∈S

h(y)

0 = h(0) ≤ r

r + ‖xn‖
h(xn) +

(
‖xn‖

r + ‖xn‖

)
h(zn)

⇒ 0 ≤ h(xn) +
‖xn‖
r

h(zn) ≤ h(xn) +
‖xn‖
r

sup
y∈S

h(y).

Let n→ +∞. Then ‖xn‖ → 0 and

lim sup
n

h(xn) ≤ 0 = h(0)

0 ≤ lim inf
n

h(xn).

8Let T = {a1, a2, . . . , am} ⊂ Rn. We define: the convex hull of T denoted by coT is the set

coT =

{
x : x =

m∑
i=1

λiai

}
, λi ≥ 0,∀i,

m∑
i=1

λi = 1

9See Lemma 1.2.1 in Florenzano and Le Van (2001).

September 3, 2021 Page 20



Le Van and Pham Mathematics for Economics

Summing up
0 = h(0) ≤ lim inf

n
h(xn) ≤ lim sup

n
h(xn) ≤ 0 = h(0)

Hence 0 = h(0) = lim
n
h(xn).

2.1.2 Testing concavity and convexity

Definition 12 (Definite and semidefinite matrices). Let A be an n×n matrix. Then
A is said to be

• positive definite if x′Ax > 0 for all x ∈ Rn, x 6= 0

• positive semidefinite if x′Ax ≥ 0 for all x ∈ Rn

• negative definite if x′Ax < 0 for all x ∈ Rn, x 6= 0

• negative semidefinite if x′Ax ≤ 0 for all x ∈ Rn

Example 5. The matrix I =

[
a 0
0 b

]
, where a, b > 0, is positive-definite.

In particular, the identity matrix I =

[
1 0
0 1

]
is positive-definite.

The matrix I =

[
a 0
0 b

]
, where a, b < 0, is negative-definite.

Proposition 7 (second-order convexity condition). Let f : A → R be a function defined
from A, a nonempty, convex set of Rn, into R. Assume that f is twice continuously
differentiable.

1. f is concave if and only if D2f(x) is negative semidefinite for every x ∈ A.

If D2f(x) is negative definite for every x ∈ A, then the function is strictly concave.10

2. f is convex if and only if D2f(x) is positive semidefinite for every x ∈ A.

If D2f(x) is positive definite for every x ∈ A, then the function is strictly convex.

Proof. To present a proof. Let us prove point 1.

Corollary 2. Let f : A→ R be a function defined from A, a nonempty, convex set of R,
into R. Assume that f is twice continuously differentiable.

1. f is concave if and only if f ′′(x) ≤ 0 for every x ∈ A.

If f ′′(x) < 0 for every x ∈ A, then the function is strictly concave.

2. f is convex if and only if f ′′(x) ≥ 0 for every x ∈ A.

If f ′′(x) > 0 for every x ∈ A, then the function is strictly convex.

10We do not have ”if and only if” for the strictly concave function. Indeed, the function f(x) = –x4 is
strictly concave, but its second derivative equals 0 at x = 0.
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Exercise 14 (Function of one variable). 1. Exponential. eax is convex on R, for any
a ∈ R.

2. Power. xa is convex on R++ when a ≥ 1 or a ≤ 0, and concave for a ∈ [0, 1].

3. Power of absolute value: |x|p, for p ≥ 1, is convex on R.

4. Logarithm: log(x) is concave on R++.

5. Negative entropy: xlog(x) (either on R++, or on R+, defined as 0 for x = 0) is
convex. is convex.

Proposition 7 leads to the following result.

Corollary 3. Let f : A→ R be a function defined from A, a nonempty, convex set of R2,
into R. Assume that f is twice continuously differentiable.

1. f is concave if and only if

f11(x1, x2) ≤ 0 (4a)

f22(x1, x2) ≤ 0 (4b)

f11(x1, x2)f22(x1, x2)−
(
f12(x1, x2)

)2 ≥ 0 (4c)

2. f is strictly concave if and only if

f11(x1, x2) < 0 (5a)

f11(x1, x2)f22(x1, x2)−
(
f12(x1, x2)

)2
> 0. (5b)

This result is very useful when we need to verify the concavity (convexity) of a function
of 2 variables. When the function is of several variables, we need conditions to check
whether the Hessian matrix D2f is negative or positive (semi)definite. Linear Algebra
answers this question.

Positive (semi)definite matrix: a test

Matrices are commonly written in box brackets or parentheses:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 = (aij) ∈ Rm×n.

Given a matrix A, we denote by Ak the k × k submatrix of A formed by taking just
the first k rows and columns of A. It means that

Ak =


a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk


We give without proof the following tests in Linear Algebra.
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Lemma 3 (Sylvester’s criterion). Let A be a symmetric n× n matrix.
(i) A is positive definite if, and only if, detAk > 0 for all k = 1, . . . , n
(ii) A is negative definite if, and only if, detAk > 0 for all even k ∈ {1, . . . , n} and

detAk < 0 for all odd k ∈ {1, . . . , n}. (i.e., (−1)idet(Ai) > 0 ∀i = 1, . . . , n).

There is NO equivalence of the above result for positive or negative SEMIDEFINITE
matrices.

Lemma 4. Let A be a symmetric n× n matrix. A is negative semidefinite if and only
if (−1)idet(Aπi ) > 0 ∀i = 1, . . . , n and for every permutation π of the indices {1, . . . , n}.11

These two lemmas and Proposition 7 allow us to verify whether a function f which is
twice continuously differentiable is (strictly)concave or (strictly)convex via the Hessian of
f .

Exercise 15 (Function of several variables). 1. Norms. f(x) = ‖x‖ is convex on Rn.

2. Max function. f(x) = maxi(xi) is convex on Rn.

3. Quadratic-over-linear function. The function f(x, y) = x2

y
defined on the domain

dom(f) = R× R++

is convex.

4. Log-sum-exp function. f(x) = ln(ex1 + · · ·+ exn) is convex on Rn.

5. Geometric mean: The function f(x) =
(
x1x2 · · ·xn

) 1
n

is convex on dom(f) ≡ Rn
++.

6. Quadratic functions: f(x) = 1
2
xTQx + cTx on Rn, where Q ∈ Rn×n is a positive

definite matrix and c ∈ Rn.

2.2 Quasiconvexity and quasiconcavity

Definition 13 (Quasi-concavity). Let f : A→ R be a function defined from A, a nonempty
set of Rn, into R. We require that A is convex.

1. We say that f is quasi-concave if its upper contour sets {x ∈ A : f(x) ≥ t} are
convex sets for any t, that is

f(λx+ (1− λ)x′) ≥ t if min(f(x), f(x′)) ≥ t

for any t ∈ R, x, x′ ∈ A, λ ∈ [0, 1].

2. We say that f is strictly quasi-concave if it satisfies:

f(λx+ (1− λ)x′) > t if min(f(x), f(x′)) ≥ t

for any t ∈ R, x, x′ ∈ A, x 6= x′, λ ∈ (0, 1).

11A permutation of the set S ≡ {1, . . . , n} is defined as a bijection from S to itself.
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3. f is call (strictly) quasiconvex if −f is (strictly) quasiconcave. Precisely, f is call
quasiconvex if {x ∈ A : f(x) ≤ t} are convex sets for any t.

4. A function that is both quasiconvex and quasiconcave is quasilinear.

Example 6. 1. Prove that ln(x) on R++ is quasiconvex and quasiconcave.

2. Prove that sin(x) on R is neither quasiconvex nor quasiconcave.

3. Consider the function f : R2 → R with domain(f) ≡ R2
+ and f(x1, x2) = x1x2.

(a) Prove that f is neither convex nor concave.

(b) Prove that f is quasiconcave on R2
+ but not quasiconcave on R2.

Properties 6. (i) f is quasiconcave if and only if

f(λx+ (1− λ)x′) ≥ min(f(x), f(x′))

for any x, x′ ∈ A, λ ∈ [0, 1].
f is strictly quasiconcave if and only if

f(λx+ (1− λ)x′) > min(f(x), f(x′))

for any t ∈ R, x, x′ ∈ A, λ ∈ [0, 1].
(ii) Any increasing function of one variable is quasiconcave.
(iii) A concave function is quasiconcave. However, the converse is not true.

Properties 7. 1. If fi is quasiconvex and λ > 0, then λfi is quasiconvex.

2. If fi is quasiconvex for all i ∈ I, then supi(fi) is quasiconvex.

3. If f is quasiconvex and g is non-decreasing from R into R, then g ◦ f is quasiconvex.

Notice that the sum of two quasiconvex functions need not be quasiconvex.

Exercise 16. Suppose that f(x, y) is quasiconvex and C is a convex set. Prove that

g(x) ≡ inf
y∈C

f(x, y)

is quasiconvex

2.2.1 Testing quasiconcavity and quasiconvexity

Theorem 15 (first-order quasiconvexity condition). Let f be a differentiable function from
its domain (dom(f)) into R. Assume that dom(f) is convex.

1. f is quasiconvex if and only if, for any x, y ∈ dom(f), we have that:

f(y) ≤ f(x)⇒ Df(x) · (y − x) ≤ 0. (6)

2. f is quasiconcave if and only if, for any x, y ∈ dom(f), we have that.

f(y) ≥ f(x)⇒ Df(x) · (y − x) ≥ 0. (7)
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Proof. Let us prove point 2.
Necessary condition. Suppose that f is quasiconcave.
Let x, y ∈ dom(f). Assume that f(y) ≥ f(x). We have to prove that Df(x)·(y−x) ≥ 0.
Since f is quasiconcave, we have

f((1− λ)x+ λy) ≥ min(f(x), f(y)) = f(x)

for any λ ∈ [0, 1]. Observe that (1− λ)x+ λy = x+ λ(y − x). Hence, we have

f(x+ λ(y − x))− f(x)

λ
≥ 0 ∀λ ∈ (0, 1].

Let λ go to zero, we get that Df(x) · (y − x) ≥ 0.
Sufficient condition. Suppose that f satisfies condition (7). We will prove that f is

quasiconcave, i.e.,

f((1− λ)x+ λy) ≥ min(f(x), f(y))

for any x, y ∈ A, λ ∈ [0, 1].
Suppose that this is not true. That is there exists x, y ∈ A, λ ∈ [0, 1] such that

f((1− λ)x+ λy) < min(f(x), f(y)). We have to find a contradiction.
Without loss of generality, we assume that f(y) ≥ f(x). So, we have

f((1− λ)x+ λy) < f(x) ≤ f(y).

For each θ ∈ [0, 1], we define zθ ≡ (1−θ)x+θy = x+θ(y−x) and g(θ) ≡ f((1−θ)x+θy).
Since dom(f) is convex, we have zθ ∈ dom(f).

We present two ways to get a contradiction

1. Proof 1. Since g(λ) < g(0), there exists λ1 ∈ (0, λ) such that g′(λ1) = g(λ)−g(0)
λ

< 0.

Since g(λ) < g(1), there exists λ2 ∈ (λ, 1) such that g′(λ2) = g(λ)−g(1)
λ−1

> 0. To sum
up, we have 0 < λ1 < λ < λ2 < 1 and g′(λ2) > 0 > g′(λ1). This implies that
g′(λ1)(λ2 − λ1) < 0 and g′(λ2)(λ1 − λ2) < 0.

If g(λ1) ≥ g(λ2), i.e., f((1 − λ1)x + λ1y) ≥ f((1 − λ2)x + λ2y), we apply condition
(7) to get get g′(λ2)(λ1 − λ2) ≥ 0, a contradiction.

If g(λ1) ≤ g(λ2), i.e., f((1 − λ1)x + λ1y) ≤ f((1 − λ2)x + λ2y), we apply condition
(7) to get get g′(λ1)(λ2 − λ1) ≥ 0, a contradiction.

2. Proof 2. Define m ≡ minθ∈[0,1]{g(θ)} and θ∗ ≡ inf{θ ∈ [0, 1] : g(θ) = m}. Notice
that m < f(x).

By continuity of the function g andm < f(x), there exists ε > 0 such that g(θ) < f(x)
∀θ ∈ (θ∗ − ε, θ∗).
By definition of θ∗, we have g(θ) > m ∀θ < θ∗.

So, we have g(θ) > m = g(θ∗) ∀θ ∈ (θ∗ − ε, θ∗). Take θ ∈ (θ∗ − ε, θ∗). Applying the
mean value theorem, there exists τ ∈ (θ∗ − ε, θ∗) such that

g′(τ) =
g(θ)− g(θ∗)

θ − θ∗
< 0
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This means that

Df(zτ ) · (y − x) > 0. (8)

Now, since τ ∈ (θ∗− ε, θ∗), we have g(τ) < f(x), i.e., f(x) > f((1− τ)x+ τy). Recall
that f(y) ≥ f(x), we have f(y) > f((1− τ)x+ τy). Using condition (7), we get that
Df((1− τ)x+ τy) · ((1− τ)(y − x)) ≥ 0 which is equivalent to

Df(zτ ) · (y − x) ≥ 0.

which is a contradiction with (8). We have finished our proof.

Theorem 16 (second-order quasiconvexity condition). Let f : A → R be a function
defined from A, a nonempty, convex set of Rn, into R. Assume that f is twice continuously
differentiable.

1. If f is quasiconvex, we have that:

x ∈ dom(f), y ∈ Rn, yTDf(x) = 0⇒ yTD2f(x)y ≥ 0.

2. f is quasiconvex if f satisfies

yTDf(x) = 0⇒ yTD2f(x)y > 0

for any x ∈ dom(f) and y ∈ Rn, y 6= 0.

Proof. See Florenzano and Le Van (2001) or Boyd and Vandenberghe (2004) among others.

For other second-order conditions for quasiconvexity, see Exercise 3.44 in Boyd and
Vandenberghe (2004).

We present here a simple test for functions of 2 variables.

Proposition 8. Let f : A → R be a function defined from A, a nonempty, convex set
of R2, into R. Suppose that (1) f is twice continuously differentiable, (2) f is strictly
increasing in each component (f1 ≡ ∂f

∂x1
> 0, f2 ≡ ∂f

∂x2
on A).

1. If f is quasiconcave, then the determinant of the bordered Hessian is non-negative

the bordered Hessian: B2 ≡

 0 f1 f2

f1 f11 f12

f2 f21 f22


that is

2f1(x1, x2)f2(x1, x2)f12(x1, x2)−
[
f1(x1, x2)

]2
f22(x1, x2)−

[
f2(x1, x2)

]2
f11(x1, x2) ≥ 0

∀(x1, x2) ∈ A.

2. If

2f1(x1, x2)f2(x1, x2)f12(x1, x2)−
[
f1(x1, x2)

]2
f22(x1, x2)−

[
f2(x1, x2)

]2
f11(x1, x2) > 0

∀(x1, x2) ∈ A, then f is strictly quasiconcave.

Proof. See Simon and Blume (1994), page 530, among others.
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2.3 Other exercises

Exercise 17. For each of the following functions, determine if the function is convex,
concave, quasiconvex, or quasiconcave.

1. f(x) = ex − 1 on R.

2. f(x) = x1−σ

1−σ − 2 on R+.

3. f(x1, x2) = x1x2 on R2
++.

4. f(x1, x2) = 1
x1x2

on R2
++.

5. f(x1, x2) = x1
x2

on R2
++.

6. f(x1, x2) =
x21
x2

on R× R++.

More exercises can be found in Florenzano and Le Van (2001) and Boyd and Vanden-
berghe (2004).

The following exercises are important in Economics.

Exercise 18 (Probability and Statistics). Let X be a real-valued random variable defined
by P (X = ai) = Probability(X = ai) = pi where a1 < a2 < · · · < an. For each of the
following functions of p on the simplex ∆n (defined by ∆n ≡ {p ∈ Rn

+ : p1 + · · ·+ pn = 1}),
determine if the function is convex, concave, quasiconvex, or quasiconcave.

1. E(X) ≡
∑

i piai.

2. P (X ≥ α)

3. P (α ≤ X ≤ β).

4.
∑

i piln(pi) (the negative entropy of the distribution).

5. V ar(X) ≡ E(X − E(X))2 = E(X2)− (E(X))2.

6. Quartile(X) ≡ inf{β : P (X ≤ β) ≥ 0.25}

Exercise 19 (Functions in economics). For each of the following functions, determine if
the function is convex, concave, quasiconvex, or quasiconcave.

1. Cobb-Douglas function: f(x1, x2) = xα1x
1−α
2 on R2

++, where α ∈ [0, 1].

2. Cobb-Douglas function: f(x1, x2) = xα1x
β
2 on R2

++, where α > 0, β > 0.

3. Leontief function: f(x1, x2) = min(x1
a
, x2
b

) on R2
++, where a > 0, b > 0.

4. Constant elasticity of substitution (CES) function: f(x1, x2) = (axr1 + bxr2)
1
r on R2

++,
where a > 0, b > 0.12

12Hint: Look at two cases r < 1 and r > 1.
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5. The sum of squared residuals (in the multiple linear regression):

f(β0, β1, · · · , βk) ≡
n∑
i=1

(
yi − β0 −

k∑
j=1

βjxi,j

)2

on Rk+1. (Readers may like to consider the case k = 1 to simplify the calculation.)

3 Finite-dimensional optimization

3.1 Motivating examples

1. Utility maximization problem

2. Profit maximization problem

3. Cost minimization problem

3.2 Convex optimization in finite-dimensional spaces

This section uses Florenzano and Le Van (2001).
Let f : S → R, where S ⊆ Rn is a nonempty set.

• A point x ∈ S is a global maximum (respectively, global minimum) of f on S if
f(y) ≤ f(x) (respectively, f(y) ≥ f(x)) for all y ∈ S.

• A point x ∈ S is a local maximum (respectively, local minimum) of f on S if there
exists r > 0 such that f(y) ≤ f(x) (respectively, f(y) ≥ f(x)) for all y ∈ S∩B(x, r).

• A point x ∈ S is a strict local maximum (respectively, strict local minimum) of f
on S if there exists r > 0 such that f(y) < f(x) (respectively, f(y) > f(x)) for all
y ∈ S ∩B(x, r), y 6= x.

• A point x ∈ S is an unconstrained local maximum (respectively, unconstrained local
minimum) of f on S if there exists r > 0 such that B(x, r) ⊆ S and f(y) ≤ f(x)
(respectively, f(y) ≥ f(x)) for all y ∈ B(x, r).

Remark 3. Assume that the set S is convex. Any local minimum of a convex function is
also a global minimum. A strictly convex function will have at most one global minimum.

Proof. Let x be a local minimum. It means that there exists r > 0 such that f(y) ≤ f(x)
for all y ∈ S ∩B(x, r).

We have to prove that f(y) ≥ f(x) for all y ∈ S. Suppose that there exists y ∈ S such
that f(y) < f(x) Define zλ ≡ (1 − λ)x + λy. Since S is convex, we have that zλ ∈ S.
Observe that

zλ = x+ λ(y − x)

So, we can choose λ > 0 small enough so that zλ ∈ B(x, r).
We now look at f(zλ). By the convexity of the function f , we have

f(zλ) = f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)
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Since f(y) < f(x), we get that f(zλ) < f(x). This is a contradiction to the fact that x is
a local minimum. We have finished our proof.

We aim to give the necessary and sufficient conditions for a point to be an optimal
solution to Problem (P ):

(P ) Minimize f0(x) under the constraints


fi(x) ≤ 0, ∀i ∈ I
gi(x) ≤ 0, ∀i ∈ J
gi(x) = 0, ∀i ∈ K.

where f0 : Rn → R is a convex function, I, J and K are finite and possibly empty sets, for
all i ∈ I, fi is convex, non-affine function from Rn into R, for all i ∈ J ∪K, gi is a non-null
affine function.

The function f0 is called the objective function. A feasible point is a point x ∈ Rn that
satisfies all the constraints. An optimal solution to (P ) or simply a solution to (P ) is a
feasible point x, such that for all feasible point x, f0(x) ≥ f0(x).

Let I be a finite set, card(I) denotes the number of elements of I.

3.2.1 Separation theorems

H is a hyperplane in Rn if there exists p ∈ Rn, p 6= 0 and α ∈ R such that H = {x ∈ Rn :
p · x = α}.

Proposition 9. [First separation theorem] Let A and B be two nonempty disjoint convex
subsets of Rn. There there exist α, β, α ≤ β and p ∈ Rn, p 6= 0, such that p · a ≤ α ≤ β ≤
p · b, for all a ∈ A, all b ∈ B (i.e., we can separate A and B by a hyperplane).

Proof. See Florenzano and Le Van (2001).

Proposition 10. [Second separation theorem] Let A and B be two nonempty disjoint closed
convex subsets of Rn. If one of them is compact, then there there exist α, β, α < β and
p ∈ Rn, p 6= 0, such that p · a ≤ α < β ≤ p · b, for all a ∈ A, all b ∈ B (i.e., we can strictly
separate A and B by a hyperplane).

Proof. See Florenzano and Le Van (2001).

Notice that the compactness in Proposition 10 is an important assumption.

Exercise 20. Let A = {(x, y) : xy ≥ 1, x ≥ 0} and B = {(x, y) : x ≤ 0}. Prove that
A and B are non-empty, convex, closed and disjoint. Prove that X and Y cannot be
strictly separated, i.e., there do not exist α, β, α < β and p ∈ Rn, p 6= 0, such that
p · a ≤ α < β ≤ p · b, for all a ∈ A, all b ∈ B.

Note that A and B are not bounded in this example. Therefore, they are not compact.

The following result is very important.

Proposition 11. Let C be nonempty convex sets in Rn and P = (Rm
− × {0Rr}) where,

m ≥ 0, r ≥ 0, m + r = n. Suppose that C ∩ (Rm
− × {0Rr}) = ∅. Then there exists p ∈ Rn,

p 6= 0 such that
p · x ≤ 0 ≤ p · y,∀x ∈ P, ∀y ∈ C

and there exists z ∈ C such that p · z > 0.
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Proof. Applying Proposition 3.2.6 in Florenzano and Le Van (2001).

Let us illustrate this result by considering a particular case: n = 2, m = 2, r = 0. In
this case, P = {(x, y) : x ≤ 0, y ≤ 0}. A line p = (p1, p2) is represented by an equation

Figure 1: Monotonic convergence versus oscillatory convergence

p1x + p2y = 0. Our result says that there is a line that separates P and C and there is a
point z = (z1, z2) ∈ C such that z is above the line p, i.e., p1z1 + p2z2 > 0.

When the set C is C1 in the graphic, it is easy to geometrically check our result.
When the set C is C2 ≡ {(x, y) : x > 0, y ≤ 0}, we can choose the line ”x = 0”, i.e.,

p = (p1, p2) = (1, 0). It is easy to see that this line separates P and C2. Moreover, for any
z ∈ C2, we have p1z1 + p2z2 = z1 > 0.

3.2.2 Necessary and sufficient condition for optimality

Lemma 5. (i) Let f be a linear function on Rn (in the sense that f(x) = Ax = A1x1 +
· · ·+ Anxn). If f(x) ≥ 0 for any x then f = 0.

(ii) Hence, if g is an affine function (i.e., g(x) = Ax+B) which satisfies g(x) ≥ 0 for
any x, then g equals a nonnegative constant.

Proof. (i) Suppose f 6= 0. There exists x such that f(x) > 0. But we have a contradiction
0 > −f(x) = f(−x) ≥ 0. Hence f = 0.

(ii) We can write ∀x, g(x) = f(x) + b where f is linear and b is a real constant. Let
x ∈ Rn. We have f(x)+b ≥ 0. Let λ > 0. We also have λf(x)+b = f(λx)+b ≥ 0, ∀λ > 0.
This is equivalent to f(x) + b

λ
≥ 0 for all λ > 0. Let λ → +∞. We get f(x) ≥ 0. But

x has been arbitrarily chosen. That means f(x) ≥ 0, ∀x. Thus, f = 0 and g(x) = b, ∀x.
And b ≥ 0.

Lemma 6. Let I, J and K be finite possibly empty sets in N, and for all i ∈ I, fi is a
convex, non-affine function from Rn into R, and for all i ∈ J ∪ K, gi is non-null affine
function. Assume there exists x0 such that{

gi(x0) ≤ 0, ∀i ∈ J
gi(x0) = 0, ∀i ∈ K.
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If the system: 
fi(x) < 0, ∀i ∈ I
gi(x) ≤ 0, ∀i ∈ J
gi(x) = 0, ∀i ∈ K.

has no solution, then there exist nonnegative real scalars (λi)i∈I , (µi)i∈J , and real numbers
(µi)i∈K, at least one of the (λi)i∈I is not zero, which verify:∑

i∈I

λifi(x) +
∑
i∈J

µigi(x) +
∑
i∈K

µigi(x) ≥ 0, ∀x.

Proof. Let p = card(I), q = card(J), r = card(K), and

Z =

{
(zi)i∈I∪J∪K ∈ Rp+q+r

∣∣∣∣ ∃x, ∀i ∈ I, fi(x) < zi
∀i ∈ J ∪K, gi(x) = zi

}
The set Z is convex, nonempty and Z ∩ (Rp+q

− × {0Rr}) = ∅. From Proposition 11 there
exist real scalars (λi)i∈I , (µi)i∈J∪K , all of them not being equal to zero, which verify:∑

i∈I

λizi +
∑
i∈J∪K

µizi ≥
∑
i∈I

λiζi +
∑
i∈J

µiζi, ∀z ∈ Z, ∀ζ ∈ Rp+q
−

and there exists z ∈ Z such that
∑

i∈I λizi +
∑

i∈J∪K µizi > 0.
If for some i, λi < 0, then letting zi tend to +∞, we get a contradiction. Thus

λi ≥ 0, ∀i ∈ I.
If for some i ∈ J , one has µi < 0, then letting ζi tend to −∞, we have another

contradiction. Hence, µi ≥ 0, ∀i ∈ J .
Let ε > 0 and x ∈ Rn. Define z ∈ Z by{

zi = fi(x) + ε, ∀i ∈ I,
zi = gi(x), ∀i ∈ J ∪K.

We have
∑

i∈I λifi(x) +
∑

i∈J∪K µigi(x) + ε
∑

i∈I λi ≥ 0. Let ε tend to zero. We obtain
that

∑
i∈I λifi(x) +

∑
i∈J∪K µigi(x) ≥ 0, ∀x ∈ Rn. ZZ

To end the proof, it remains to show that at least one of the (λi)i∈I is strictly pos-
itive. Assume the contrary. We then have

∑
i∈J∪K µigi(x) ≥ 0, ∀x ∈ Rn and hence∑

i∈J∪K µigi(x0) = 0. The affine function
∑

i∈J∪K µigi has a minimum in Rn. From Lemma
5, it must be equal to zero. But since

∑
i∈I λizi +

∑
i∈J∪K µizi > 0 for some z ∈ Z, and

since all the (λi)i∈I are equal to zero, there exists x such that
∑

i∈J∪K µigi(x) > 0. That
contradicts that

∑
i∈J∪K µigi is equal to zero.

Definition 14. The Problem (P ) satisfies Slater Condition (S) if there exists x0 such that:

fi(x0) < 0, ∀i ∈ I,
gi(x0) ≤ 0, ∀i ∈ J,
gi(x0) = 0, ∀i ∈ K.
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Proposition 12. Consider Problem (P ). Assume that (P ) satisfies Slater Condition (S).
If (P ) has an optimal solution x, then there exists scalars (λi)i∈I , (µi)i∈J∪K such that:
(i) ∀i ∈ I, λi ≥ 0, λifi(x) = 0,
∀i ∈ J , µi ≥ 0, µigi(x) = 0.
(ii)

f0(x) +
∑
i∈I

λifi(x) +
∑
i∈J∪K

µigi(x) ≤ f0(x) +
∑
i∈I

λifi(x) +
∑
i∈J∪K

µigi(x)

for any x.
(iii) If f0, (fi)i∈I , (gi)i∈J∪K are differentiable, then

0 = Df0(x) +
∑
i∈I

λiDfi(x) +
∑
i∈J∪K

µiDgi(x)

Proof. Let α = f0(x). Then the following system has no solution (why? Readers should
explain this point). 

f0(x) < α,
fi(x) < 0, ∀i ∈ I,
gi(x) ≤ 0, ∀i ∈ J,
gi(x) = 0, ∀i ∈ K.

The Slater condition allows us to apply Lemma 6. According to Lemma 6, there exist
λ0, (λi)i∈I , (µi)i∈J∪K such that λ0 ≥ 0, λi ≥ 0, ∀i ∈ I, µi ≥ 0, ∀i ∈ J , at least one of the
λ0, (λi)i∈I is strictly positive, and

λ0(f0(x)− α) +
∑
i∈I

λifi(x) +
∑
i∈J∪K

µigi(x) ≥ 0, ∀x. (10)

We claim that λ0 > 0. Indeed, if λ0 = 0, then ∀x,
∑

i∈I λifi(x) +
∑

i∈J∪K µigi(x) ≥ 0.
Moreover, since there exists at least one i ∈ I such that λi > 0, we deduce

∑
i∈I λifi(x0) +∑

i∈J∪K µigi(x0) < 0, a contradiction.
Thus λ0 > 0 and one can, without loss of generality, suppose λ0 = 1.
Define the convex function h by

h(x) = f0(x) +
∑
i∈I

(λifi)(x) +
∑
i∈J∪K

µigi(x), ∀x ∈ Rn.

The inequality (10) can be equivalently rewritten as h(x) ≥ α ∀x. But h(x) − α =∑
i∈I λifi(x)+

∑
i∈J∪K µigi(x) ≤ 0. Hence, α = h(x). Thus

∑
i∈I λifi(x)+

∑
i∈J∪K µigi(x) =

0 and since x is feasible, one has ∀i ∈ I, λifi(x) = 0 and ∀i ∈ J , µigi(x) = 0. We have
proved Assertion (i).

Now, h(x) ≥ α ∀x is equivalent to

f0(x) +
∑
i∈I

λifi(x) +
∑
i∈J∪K

µigi(x) ≤ f0(x) +
∑
i∈I

λifi(x) +
∑
i∈J∪K

µigi(x)

for any x. We have proved assertion (ii). Statement (iii) is obvious when f0, (fi)i∈I , (gi)i∈J∪K
are differentiable. The proof is now complete.

Definition 15. The real numbers (λi)i∈I , (µi)i∈J∪K are called Lagrange parameters, La-
grange multipliers or Kuhn-Tucker coefficients or more simply multipliers of Problem (P ).
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Definition 16. We say that x, (λi)i∈I , (µi)i∈J∪K satisfy Kuhn-Tucker Conditions of Prob-
lem (P ) if they satisfy Conditions (i), (ii) and (iii).
(i) ∀i ∈ I, λi ≥ 0, fi(x) ≤ 0, λifi(x) = 0,
∀i ∈ J , µi ≥ 0, gi(x) ≤ 0, µigi(x) = 0.
(ii) ∀i ∈ K, gi(x) = 0.
(iii) f0(x) +

∑
i∈I λifi(x) +

∑
i∈J∪K µigi(x) ≤ f0(x) +

∑
i∈I λifi(x) +

∑
i∈J∪K µigi(x) for

any x.
Conditions (i), (ii) and (iii) are called Kuhn-Tucker Conditions for Problem (P ).

Definition 17. The Lagrangian of Problem (P ) is the function L : Rp
+×R

q
+×Rr−q×Rn →

R defined by: for all (λ, µ, x) = ((λi)i∈I , (µi)i∈J , (µi)i∈K , x),

L(λ, µ, x) = f0(x) +
∑
i∈I

λifi(x) +
∑
i∈J

µigi(x) +
∑
i∈K

µigi(x).

where p = card(I), q = card(J) and r = card(J ∪K).

Proposition 13. Let x, (λi)i∈I , (µi)i∈J∪K verify Kuhn-Tucker Conditions for Problem (P ).
Then x is a solution to (P ).

Proof. Let ∀x ∈ Rn, h(x) = f0(x) +
∑

i∈I(λifi)(x) +
∑

i∈J∪K µigi(x). Condition (iii) is
equivalent to h(x) ≥ h(x),∀x. Combining conditions (i) and (ii), we get h(x) ≥ f(x), ∀x.
Let x satisfy the contraints of Problem (P ). We obtain f0(x) ≥ f0(x), ∀x.

Theorem 17 (Kuhn-Tucker (minimization problem)). Assume that Slater Condition is
satisfied for Problem (P ). Then x is a solution to (P ) if, and only if, there exists coefficients
(λi)i∈I , (µi)i∈J∪K which, together with x, satisfy Kuhn-Tucker Conditions for Problem (P ).

Proof. The statement follows from Proposition 12 and Proposition 13.

As particular case of Proposition 12, we get the following result when the problem is
without convex constraints.

Corollary 4. Consider Problem (P ) without convex constraints, i.e.

min f0(x) under the constraints

{
gi(x) ≤ 0, ∀i ∈ J
gi(x) = 0, ∀i ∈ K.

where f0 : Rn → R is convex, and for all i ∈ J ∪K, gi is affine.
For this problem, Slater Condition is: ∃x0 such that gi(x0) ≤ 0, ∀i ∈ J , and gi(x0) = 0,
∀i ∈ K.

The problem (P ) has an optimal solution x if and only if there exist scalars (µi)i∈J∪K
verifying:
(i) ∀i ∈ J, µi ≥ 0, µigi(x) = 0,
(ii) f0(x) +

∑
i∈J∪K µigi(x) ≤ f0(x) +

∑
i∈J∪K µigi(x) for any x

Proof. Obvious
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Remark 4. (i) The Slater condition is very important even in the one-dimensional case.
Consider the following example:

min{f(x) = x | x2 ≤ 0}.

The problem has a unique solution x = 0. The Slater condition is not satisfied. There
exists no λ ≥ 0 such that 0 = x+ λx2 ≤ x+ λx for any x ∈ R.
(ii) It is important to notice that Slater Condition is not necessary to obtain Kuhn-Tucker
Conditions. In the previous example, Slater Condition is not satisfied and there is no Kuhn-
Tucker coefficient. Now replace this problem by an equivalent problem which is min{f(x) =
x | g(x) = |x| ≤ 0}. As before, Slater Condition does not hold. The unique solution is
always x = 0. Let λ = 1, we have successively g(0) = 0, λg(0) = 0 and 0 = f(0) + λg(0) ≤
f(x) + λg(x) = x+ |x|, for any x ∈ R. In other words, Kuhn-Tucker Conditions hold.
(iii) In the previous example, one can check that Kuhn-Tucker Conditions are sufficient for
0 to be a solution. This result is quite general as it will be proved in the next proposition.

Maximization problem

In many economic models, we need to maximize a function subject to several constraints
(physical constraint, financial constraint, legal constraint, ...). We present here the result
concerning the following maximization problem (P ′):

(P ′) Maximize f0(x) under the constraints


fi(x) ≤ 0, ∀i ∈ I
gi(x) ≤ 0, ∀i ∈ J
gi(x) = 0, ∀i ∈ K.

where f0 : Rn → R is a concave function, I, J and K are finite and possibly empty sets,
for all i ∈ I, fi is convex, non-affine function from Rn into R, for all i ∈ J ∪ K, gi is a
non-null affine function.

Definition 18. The Lagrangian of Problem (P ′) is the function L : Rp
+×R

q
+×Rr−q×Rn →

R defined by: for all (λ, µ, x) = ((λi)i∈I , (µi)i∈J , (µi)i∈K , x),

L(λ, µ, x) = f0(x)−
∑
i∈I

λifi(x)−
∑
i∈J

µigi(x)−
∑
i∈K

µigi(x).

where p = card(I), q = card(J) and r = card(J ∪K).

Theorem 18 (Kuhn-Tucker (maximization problem)). Assume that functions fi, gi are
differentiable.

Assume that Slater Condition is satisfied for Problem (P ′). Then x is a solution to
(P ) if, and only if, there exists coefficients (λi)i∈I , (µi)i∈J∪K which, together with x, satisfy
Kuhn-Tucker Conditions for Problem (P ), i.e.,

1. ∀i ∈ I, λi ≥ 0, λifi(x) = 0,
∀i ∈ J , µi ≥ 0, µigi(x) = 0.

2.

f0(x)−
∑
i∈I

λifi(x)−
∑
i∈J∪K

µigi(x) ≥ f0(x)−
∑
i∈I

λifi(x)−
∑
i∈J∪K

µigi(x) (11)
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for any x.

If f0, (fi)i∈I , (gi)i∈J∪K are differentiable, then condition (11) is replaced by

Df0(x) =
∑
i∈I

λiDfi(x) +
∑
i∈J∪K

µiDgi(x) (12)

Proof. This is a direct consequence of Theorem 17.

3.3 Applications

Theorems 17 and 18 have many applications in economics, econometrics and finance. In
the following, we present some applications.

3.3.1 Consumer maximization problem

The consumer maximizes her utility by choosing allocation (x1, . . . , xn) of commodity

max
(x1,...,xn)

U(x1, . . . , xn)

subject to: p1x1 + · · · pnxn ≤ w

x1 ≥ 0, . . . , xn ≥ 0

where pi is price of commodity i and w is the consumer’s income. (pi) and w are endoge-
nously given.

Assume that the function U : Rn
+ → R is continuously differentiable. Assume that

pi > 0 ∀i, w > 0. Assume that U is concave. Assume that ∂U
∂xi

(x) > 0 ∀i,∀x.
We consider a simple example

Example 7. Consider n = 2 and u(x) = xα1
1 x

α2
2 where αi > 0. We want to solve the

following problem

max
(x1,x2)

xα1
1 x

α2
2

subject to: p1x1 + p2x2 ≤ w

x1 ≥ 0, x2 ≥ 0

where pi > 0 is price of commodity i and w > 0 is the consumer’s income.
Notice that our objective function is quasiconcave but not concave. We cannot directly

apply Theorem 18. We proceed as follows.
If (a1, a2) is a solution to the above problem, then a1 > 0, a2 > 0 (why?). This implies

that (a1, a2) is a solution of the following problem

(Pe) max
(x1,x2)

f(x1, x2) = ln(xα1
1 x

α2
2 ) = α1ln(x1) + α2ln(x2)

subject to: p1x1 + p2x2 ≤ w

x1 ≥ 0, x2 ≥ 0
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The objective function is concave now. It is differentiable on R2
++. Applying Theorem 18,

there exist non-negative multipliers λ1, λ2, λ such that

∂f

∂x1

(a1, a2) = −λ1 + p1λ

∂f

∂x2

(a1, a2) = −λ2 + p2λ

λ1x1 = 0, λ2x2 = 0, λ(p1x1 + p2x2 − w) = 0

Since a1 > 0, a2 > 0, we have λ1 = λ2 = 0. From this, we find that p1a1
α1

= p2a2
α2

. Observe

that ∂f
∂x1

(a1, a2) = p1λ which implies that λ > 0. Thus, we have p1a1 + p2a2 = w.13

Therefore, we get that

p1a1 =
α1

α1 + α2

w, p2a2 =
α2

α1 + α2

w.

We have proved that if (a1, a2) is a solution, then p1a1 = α1

α1+α2
w, p2a2 = α2

α1+α2
w.

Lastly, we see that such a pair (a1, a2) with the above multipliers satisfy the Kuhn-Tucker
conditions for the problem (Pe). We conclude that ( α1

α1+α2

w
p1
, α2

α1+α2

w
p2

) is the unique solution
of the original problem.

Exercise 21. Consider the function u : R2
+ → R+ defined by u(c1, c2) = a1

cα1
α

+a2
cα2
α

where
a1 > 0, a2 > 0, α ∈ (0, 1).

Let w > 0, p1 > 0, p2 > 0.
We want to solve the following problem:

(P ) : Maximize u(c1, c2) under the constraints:

{
p1c1 + p2c2 ≤ w

c1 ≥ 0, c2 ≥ 0

1. Prove that the set B ≡ {(c1, c2) : p1c1 + p2c2 ≤ w, c1 ≥ 0, c2 ≥ 0} is convex, compact.

2. Prove that the problem (P) has a solution.

3. Prove that the function u is strictly concave on R2
+.

4. Prove that: if (c1, c2) is a solution, then p1c1 + p2c2 = w.

5. Assume that (c1, c2) is a solution and c1 > 0, c2 > 0.

(a) Is the Slater condition satisfied and why? If this is the case, write the Kuhn-
Tucker conditions.

(b) Find this solution (c1, c2).

(c) When p1 increases, how does the solution (c1, c2) change? Provide an economic
interpretation.

13In general, if the function f is strictly increasing in one component, then p1a1 + p2a2 = w. Indeed,
if p1a1 + p2a2 < w, then we can increase a1 and/or a2 by ε with ε is low enough such that p1(a1 + ε) +
p2(a2 + ε) < w to get a strictly higher value of the objective function).
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6. We want to prove that the solution found in Question 5 is the unique solution of the
problem (P).

(a) Assume that c1 = 0 at optimum. Find c2 and compute u0 ≡ u(c1, c2)

(b) Prove that (x, w−p1x
p2

) is in the set B for any x satisfying ∈ [0, w/p1].

(c) Compute limx→0,x>0

u(x,
w−p1x
p2

)−u0
x

and prove that
u(x,

w−p1x
p2

)−u0
x

> 0 for x > 0
small enough.

(d) Prove that c1 cannot be zero.

(e) Prove that c1 > 0, c2 > 0 at optimum and hence the solution (c1, c2) in Question
5 is the unique solution of the problem (P).

7. We now use another method to prove that the solution found in Question 5 is the
unique solution of the problem (P).

(a) Assume that (c′1, c
′
2) is a solution of the problem (P) and that (c′1, c

′
2) 6= (c1, c2).

Prove that u(
c1+c′1

2
,
c2+c′2

2
) > u(c1, c2).

(b) How can we get a contradiction?

Proof. 1. Convexity: let c = (c1, c2) and c′ = (c′1, c
′
2) be in B. We have to check that

λc+ (1− λ)c′ ∈ B for any λ ∈ [0, 1]. This is easy.

Compactness: we see that pici ≤ w ∀i = 1, 2. Since pi > 0, we have ci ∈ [0, w/pi].
So, B is bounded. It is easy to see that B is closed. Therefore, B is compact.

2. The function u is continuous and B is compact. So, the problem (P ) has a solution.

3. The function ai
cαi
α

is strictly concave for any i = 1, 2. So, the function u is strictly
concave.

Remark: We can also compute the Hessian matrix and then prove that u is strictly
concave.

4. It is easy to see that, if (c1, c2) is a solution, then p1c1 + p2c2 = w. Otherwise, we
can improved a little bit c1 or c2 to get a strictly higher utility.

5. Assume that (c1, c2) is a solution and c1 > 0, c2 > 0.

(a) The Problem (P ) satisfies Slater Condition (S) if there exists (c1, c2) such that:

p1c1 + p2c2 ≤ w

−c1 ≤ 0

−c2 ≤ 0.

It is easy to see that Slater condition is satisfied. So, we can write the first-order
conditions

a1c
α−1
1 = λp1

a2c
α−1
2 = λp2
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(b) From the first-order condition, we can compute c1 and c2 as functions of λ.
Then, we use p1c1 + p2c2 = w to get an equation of λ. Solving this equation,
we find λ and then compute c1, c2:

c1 =
(a1
p1

)
1

1−α

a
1

1−α
1

p
α

1−α
1

+
a

1
1−α
2

p
α

1−α
2

, c2 =
(a2
p2

)
1

1−α

a
1

1−α
1

p
α

1−α
1

+
a

1
1−α
2

p
α

1−α
2

(c) When p1 increases, we see that the optimal value c1 decreases (this is a version
of ”Law of demand”). We also observe that c2 increases (this is a substitution
effect).

6. If c1 = 0, we have p2c2 = w and hence c2 = w/p2. We have u0 = u(0, w/p2) = a2
α

( w
p2

)α

It is easy to see that (x, w−p1x
p2

) is in the set B for any x satisfying ∈ [0, w/p1].

We have

u(x, w−p1x
p2

)− u0

x
=
a1

xα

α
+ a2

(
w−p1x
p2

)α

α
− a2

α
( w
p2

)α

x

= a1
xα−1

α
+
a2

(
w−p1x
p2

)α

α
− a2

α
( w
p2

)α

x

The first terms converges to infinity while the second converges to a2
p1
p2

( w
p2

)α−1 when

x goes to zero (because α− 1 < 0).

Since
u(x,

w−p1x
p2

)−u0
x

is continuous in x, we have
u(x,

w−p1x
p2

)−u0
x

> 0 for x > 0 small
enough.

We have seen that u(x, w−p1x
p2

) > u0 for x > 0 small enough. So, the allocation

(0, w/p2) cannot be optimal. It means that c1 cannot be zero. By using the same
argument, c2 cannot be zero. So, we have c1 > 0 and c2 > 0 at optimal.

7. We now use another method to prove that the solution found in Question 5 is the
unique solution of the problem (P).

Assume that (c′1, c
′
2) is a solution of the problem (P) and that (c′1, c

′
2) 6= (c1, c2). Since

u is strictly concave, we have

u(
c1 + c′1

2
,
c2 + c′2

2
) >

1

2
u(c1, c2) +

1

2
u(c′1, c

′
2) ≥ 1

2
u(c1, c2) +

1

2
u(c1, c2) = u(c1, c2).

So, (
c1+c′1

2
,
c2+c′2

2
) is in the set B and u(

c1+c′1
2
,
c2+c′2

2
) is strictly higher that the maximum

value u(c1, c2). This is a contradiction. So, we have proved the uniqueness.
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Exercise 22. (1) For the following utility functions, check whether there are continuous,
monotomic, strictly monotonic, concave, quasi-concave.

Leontief preference: u(x) = min{α1x1, α2x2}, αh > 0, h = 1, 2

u(x) = c1x1 + c2x2, ch > 0

u(x) = xα1
1 x

α2
2 . . . xαnn , αh > 0

u(x) = (xα1 + xα2 )
1
α , α ∈ (0, 1)

u(x) = x1(1 +
√
x2)

u(x) = x1 +
√
x2)

u(x) = −e−α1x1 − e−α2x2 , αh > 0.

(2) For each of above functions, find the solution of the following maximization problem

max
(x1,x2)

U(x1, x2)

subject to: p1x1 + p2x2 ≤ w

x1 ≥ 0, x2 ≥ 0

where pi > 0 is price of commodity i and w > 0 is the consumer’s income.

Proof. Let consider the Leontief utility function. u(x) = min{α1x1, α2x2}, αh > 0, h =
1, 2. This function is continuous. It is increasing in each component but it may not be
strictly increasing. Indeed, if min{α1x1, α2x2} = α1x1, then we have u(x1, x

′
2) = u(x1, x2)

for all x′2 > x2.
Notice that this function is not differentiable at the point (x1, x2) satisfying α1x1 =

α2x2. So, we cannot use our tests based on derivatives to verify the (quasi)concavity of
u. We can prove the concavity of this function by using definition. See also Proposition
5.

Exercise 23. In a two-good economy. The consumption set of a consumer is X = {x ∈
R2

+ : x1 + x2 ≥ 1}. Let u(x1, x2) = x1 + 4x2. Let the price (p1, p2) = (1, 2).

1. Find the solution of the following maximization problem

max
(x1,...,xn)

U(x1, x2)

subject to: x ∈ X
p1x1 + p2x2 ≤ w

where w > 0 is the consumer’s income.

2. The solution (x1, x2) depends on w. Does the demand of the commodity 1 (i.e., x(1))
increase with the income w?
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3.3.2 A two-period optimal growth model

An agent living for two periods (present and future, represented by 0 and 1) wants to
choose consumption allocation (c0, c1) and physical capital k1 to maximize her(his) utility
U(c0, c1)

max
(c0,c1,k1)

U(c0, c1) (13)

subject to: c1 ≥ 0, c1 ≥ 0, k1 ≥ 0 (14)

c0 + k1 ≤ w0 (15)

c1 ≤ w1 + F (k1) (16)

where w0, w1 are given and strictly positive. The function F is assumed to be strictly
increasing, concave, continuously differentiable and F (0) = 0.

We would like to solve this problem to understand the optimal value of (c0, c1, k1).
Notice that in this setup, kt can be also interpreted as investment.

First, it is easy to see that the Slater condition is satisfied. So, we can write the
Lagrangian

L = U(c0, c1) + µ0c0 + µ1c1 + µkk1 + λ0(w0 − c0 − k1) + λ1(w1 + F (k1)− c1) (17)

Assume that U(c0, c1) = u(c0)+βu(c1) where the function u is strictly concave, increasing,
continuously differentiable, u′(0) =∞. Parameter β represents the rate of time preference.

Since u′(0) = ∞, we have c0 > 0, c1 > 0 at optimum (@reader: why?), which implies
that µ0 = µ1 = 0. Therefore, the first-order conditions become

∂U(c0, c1)

∂c0

− λ0 ⇔ u′(c0) = λ0

∂U(c0, c1)

∂c1

− λ1 ⇔ βu′(c1) = λ1

µk − λ0 + λ1F
′(k1) = 0⇔ λ0 = λ1F

′(k1) + µk

µkk1 = 0, µk ≥ 0

So, we obtain that u′(c0) = βF ′(k1)u′(c1) + µk. At optimum, we must have c0 + k1 = w0

and c1 = w1 + F (k1). Thus, we get that

u′(w0 − k1) = βF ′(k1)u′(w1 + F (k1)) + µk (18)

Notice that at this stage, we do not require that F ′(0) =∞.
There are two cases.

1. k1 > 0. In this case, we have µk = 0 and hence k1 is determined by

H(k1) ≡ u′(w0 − k1)− βF ′(k1)u′(w1 + F (k1)) = 0 (19)

The function H is strictly increasing in k1. H(0) = u′(w0) − βF ′(0)u′(w1) while
H(w0) = ∞ because u′(0) = ∞. So, the existence of a strictly positive solution k1

requires that
u′(w0)− βF ′(0)u′(w1) < 0.

It means that the productivity F ′(0), the rate of time preference β, the endowment
at initial date w0 are high and the endowment at date 1 is low.

September 3, 2021 Page 40



Le Van and Pham Mathematics for Economics

2. k1 = 0. Condition (18) becomes

u′(w0)− βF ′(0)u′(w1) ≤ 0.

To sum up, we obtain the following result:

Proposition 14. Assume that above conditions hold. Assume also that u′(0) = ∞. The
optimal choice k1 is strictly positive if and only if

u′(w0)− βF ′(0)u′(w1) < 0

In such a case, k1 is the unique solution to the equation H(k1) = 0.

It is useful to consider some particular cases.

1. Assume that u(c) = ln(c), F ′(k) = Akα where α ∈ (0, 1), and w1 = 0. In this case,
F ′(0) =∞. We have

1

w0 − k1

= βαAkα−1
1

1

w1 + Akα1
= βαAkα−1

1

1

Akα1
(20)

⇔ k1 =
αβ

1 + αβ
w0 (21)

The investment k1 is increasing in the initial endowment w0 and the rate of time
preference.

2. Assume that u(c) = ln(c), F ′(k) = Ak, w1 > 0. We have that

(a) If w1 < βAw0, then k1 is strictly positive and we can compute that k1 = βAw0−w1

A(1+β)
.

The investment is increasing in the productivity A, the rate of time preference
β, the initial endowment but decreasing in the endowment in the future.

(b) If w1 ≥ βAw0, then k1 = 0. The intuition: when the productivity, the initial
endowment, the rate of time preference are low, but the endowment in the future
is high, we do not need to save/invest.

3.3.3 Cost minimization problem

Let prices be strictly positive p1 > 0, . . . , pn > 0. The firm minimizes its cost by choosing
allocation (x1, . . . , xn) of inputs such that the production F (x1, . . . , xn) is not less than a
given level y.

min
(x1,...,xn)

p1x1 + · · ·+ pnxn (22)

subject to: x1 ≥ 0, xn ≥ 0 (23)

F (x1, . . . , xn) ≥ y (24)

Example 8. Assume that n = 2, F (x1, x2) = Axa11 x
a2
2 with a1, a2 > 0 and a1 + a2 ≤ 1.

Find the solution of the cost minimization problem.
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Solution. This is a minimization problem. The objective function is linear and hence
convex.

We rewrite F (x1, x2) ≥ y as y − F (x1, x2) ≤ 0. Since the function F is concave, the
function −F is convex. We can easily check that the Slater condition is satisfied. So, we
can apply Theorem 17. The Lagrangian is

L = p1x1 + p2x2 + λ
(
y − Axa11 x

a2
2

)
+ µ1(−x1) + µ2(−x2)

The first order conditions are

∂L

∂x1

= p1 − λa1Ax
a1−1
1 xa22 − µ1 = 0

∂L

∂x2

= p2 − λa2Ax
a1
1 x

b1−1
2 − µ2 = 0

µ1x1 = 0, µ2x2 = 0

Since F (x1, x2) = Axa11 x
a2
2 ≥ y > 0, we have x1 > 0, x2 > 0. Thus, µ1 = µ2 = 0.

According to the FOCs, we have

p1

p2

=
λa1Ax

a1−1
1 xa22

λa2Ax
a1
1 x

a2−1
2

=
a1x2

a2x1

⇒ x1 =
a1

a2

p2

p1

x2

At optimum, we must have y = F (x1, x2), and hence,

y = Axa11 x
a2
2 = A

(a1

a2

p2

p1

x2

)a1xa22 = A
(a1

a2

p2

p1

)a1xa1+a2
2

Therefore, we find that

x2 = A
−1

a1+a2

(a2

a1

p1

p2

) a1
a1+a2 y

1
a1+a2

x1 = A
−1

a1+a2

(a1

a2

p2

p1

) a1
a1+a2 y

1
a1+a2

The optimal quantity of input 1 is increasing in the output y and the price of input 2 but
decreasing in the price of input 1 and the productivity A.

We can also compute the cost function

Cost = p1x1 + p2x2 =
a1

a2

p2x2 + p2x2 =
a1 + a2

a1

p2x2

=
a1 + a2

a2

p2A
−1

a1+a2

(a2

a1

p1

p2

) a1
a1+a2 y

1
a1+a2

=
a1 + a2

a
a2

a1+a2
2 a

a1
a1+a2
1

A
−1

a1+a2 p
a1

a1+a2
1 p

a2
a1+a2
2 y

1
a1+a2

The cost is increasing in input prices p1, p2, the output y, but decreasing in the productivity
A.
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Proposition 15 (Shephard’s lemma). Consider the cost minimization problem. Assume
that F is in C2 (i.e., twice continuously differentiable). Assume that F is strictly increasing
in each component and concave. Let x∗(y, p) denote the solution of the problem and C(y, p)
the optimal value (cost function). Suppose that pi > 0 and x∗i > 0 ∀i. Prove that

x∗i (y, p) =
∂C(y, p)

∂pi
∀i (25)

∂x∗i
∂pj

=
∂x∗j
∂pi
∀i, j. (26)

Proof. The Lagrangian is

L =
∑
i

pixi + λ
(
y − F (x1, . . . , xn)

)
+
∑
i

µi(−xi)

The first order conditions imply that, for any i,

∂L

∂xi
= pi − λ

∂F

∂xi
(x∗1, . . . , x

∗
n)− µi = 0

x∗iµi = 0

Under assumption x∗i > 0, we have µi = 0. So, we get that

pi = λ
∂F

∂xi
(x∗1, . . . , x

∗
n),∀i

The cost function is C(y, p) =
∑

i pix
∗
i . Thus, we can compute

∂C(y, p)

∂pi
= x∗i +

n∑
t=1

pt
∂x∗t
∂pi

(27)

By taking the derivative with respect to pi of both sides of the equation F (x∗1, . . . , x
∗
n) = y,

we have

n∑
t=1

∂F

∂xt
(x∗1, . . . , x

∗
n)
∂x∗t
∂pi

= 0

Since ∂F
∂xt

(x∗1, . . . , x
∗
n) = pt/λ, we get that

∑n
t=1 pt

∂x∗t
∂pi

= 0. So, by combining with (27), we

obtain ∂C(y,p)
∂pi

= x∗i . From this, we compute

∂x∗i
∂pj

=
∂2C(y, p)

∂pj∂pi
∂x∗j
∂pi

=
∂2C(y, p)

∂pi∂pj

Since ∂2C(y,p)
∂pj∂pi

= ∂2C(y,p)
∂pi∂pj

, we obtain (26).
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3.3.4 Profit maximization problem

Let prices of inputs be strictly positive p1 > 0, . . . , pn > 0. Denote p be the price of output.
The firm maximizes its profit by choosing allocation (x1, . . . , xn) of inputs:

max
(x1,...,xn)

pF (x1, . . . , xn)− (p1x1 + · · ·+ pnxn) (28)

subject to: x1 ≥ 0, xn ≥ 0 (29)

Assume that the function F : Rn
+ → R is continuously differentiable. Assume that F

is concave. Assume that F is increasing in each component. ∂F
∂xi

(x) > 0 ∀i, ∀x.
In the case of two inputs, the problem becomes

max
(x1,x2)

pF (x1, x2)− (p1x1 + p2x2) (30)

subject to: x1 ≥ 0, x2 ≥ 0 (31)

Exercise 24. Find the solution and compute the maximum profit of the profit maximization
problem for the following cases:

1. n = 1, F (x) = ax where a > 0.

2. n = 1, f(x) = Axα where A > 0, α ∈ (0, 1).

3. n = 2, F (x1, x2) = Axα1
1 x

α2
2 where A > 0, α1 > 0, α2 > 0, α1 + α2 ≤ 1.

4. n = 2, f(x1, x2) = ax1 + bx2, where a, b > 0.

5. n = 2, f(x1, x2) = min(ax1, bx2) where a, b > 0.

6. f(x1, x2) =
(
Axr1 +Bxr2)

1
r , where r < 1, r 6= 0.

7. n = 3, F (x1, x2, x3) = Axα1
1 x

α2
2 x

α3
3 where A > 0, α1 > 0, α2 > 0, α3 > 0, α1+α2+α3 ≤

1.

When α1 + α2 + α3 = 1, compute the cost share pixi∑
i pixi

.

Linear production functions. Let us consider the case f(x1, x2) = ax1 + bx2, where
a, b > 0. Then pf(x1, x2)−p1x1−p2x2 = p(ax1+bx2)−p1x1−p2x2 The profit maximization
problem becomes

max
(x1, xn)

(pa− p1)x1 + (pb− p2)x2

subject to: x1 ≥ 0, x2 ≥ 0

Suppose that (x1, x2) is a solution. It is easy to see that

• If pa = p1, then x1 takes any value.

• If pa > p1, then x1 =∞.

• If pa < p1, then x1 = 0.
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Leontief production functions. We now consider f(x1, x2) = min(ax1, bx2) where a, b >
0. The profit maximization problem becomes

max
(x1, xn)

pmin(ax1, bx2)− p1x1 − p2x2 subject to: x1 ≥ 0, x2 ≥ 0

The objective function is not differentiable. So, we cannot apply the Kuhn-Tucker theorem.
We will prove that: if (x1, x2) is a solution, then ax1 = bx2. Indeed, if, ax1 > bx2, then
min(ax1, bx2) = bx2. We can introduce x′1 = x1 − ε where ax′1 > bx2. Then, the new
profit π(x′1, x2) is strictly higher than π(x1, x2), a contradiction. Hence, we cannot have
ax1 > bx2. Similarly, we cannot have ax1 < bx2. So, ax1 = bx2. The remaining is simple.

Cobb-Douglas production function (the case of one variable). The problem becomes

max
x≥0

pAxα − p1x

where α ∈ (0, 1) while p, p1 are the prices of output, input respectively.
First, a solution x̄ must be strictly positive x̄ > 0 (why?).14 The FOC implies that we

have αpA(x̄)α−1 = p1 at optimal. So, the solution is

x̄ = (
αpA

p1

)
1

1−α .

So, the optimal choice of input of the firm is increasing in the productivity A and the
output price p while decreasing in the input price p1.

Cobb-Douglas production function (the case of two variables). The problem be-
comes

max
x1≥0,x2≥0

pAxα1
1 x

α2
2 − p1x1 − p2x2

where α1 + α2 ≤ 1.
Denote Π ≡ maxx1≥0,x2≥0 pAx

α1
1 x

α2
2 − p1x1 − p2x2. Observe that Π ≥ 0. Moreover, at

optimum, if x1 = 0 or x2 = 0, then x1 = x2 = 0.

1. Assume that α1 + α2 = 1. Let (x1, x2) be a solution.

If x1 = 0 or x2 = 0, then Π = 0.

If x1 > 0, x2 > 0. We have the FOCs

α1pAx
α1−1
1 xα2

2 − p1 = 0

α2pAx
α1
1 x

α2−1
2 − p2 = 0.

14Indeed, by definition of x̄, we have pA(x̄)α−p1x̄ ≥ pAxα−p1x,∀x. If x̄ = 0, we have 0 ≥ pAxα−p1x =
x(pAxα−1 − p1),∀x. Hence, 0 ≥ x(pAxα−1 − p1),∀x. Let x be closed to zero but still strictly positive so
that pAxα−1 − p1 > 0, we have a contradiction. Therefore, we have x̄ > 0.
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Hence,

p1

p2

=
α1pAx

α1−1
1 xα2

2

α2pAx
α1
1 x

α2−1
2

=
α1x2

α2x1

⇔ x2 =
p1

p2

α2

α1

x1.

From this and the FOCs, we have

p1 = α1pAx
α1−1
1

(p1

p2

α2

α1

x1

)α2 ⇔ pA =
p1−α2

1 pα2
2

α1−α2
1 αα2

2

To sum up, we have the following result:

(a) If pA <
p
1−α2
1 p

α2
2

α
1−α2
1 α

α2
2

, then the unique solution is x1 = x2 = 0. In this case, the

profit Π = 0.

(b) If pA =
p
1−α2
1 p

α2
2

α
1−α2
1 α

α2
2

, then any coupe (x1, x2) satisfying x2 = p1
p2

α2

α1
x1 ≥ 0 is a

solution. In this case, the profit Π = 0.

(c) If pA >
p
1−α2
1 p

α2
2

α
1−α2
1 α

α2
2

, there is no solution. Indeed, let us consider an allocation

x2 = p1
p2

α2

α1
x1, we have that

pAxα1
1 x

α2
2 − p1x1 − p2x2 = pAxα1

1 (
p1

p2

α2

α1

x1)α2 − p1x1 − p2
p1

p2

α2

α1

x1 (32)

= pAxα1+α2
1

pα2
1

pα2
2

αα2
2

αα2
1

− p1x1(1 +
α2

α1

) = pAx1
pα2

1

pα2
2

αα2
2

αα2
1

− p1x1

α1

(33)

= x1
p1

α1

(
pA

αα2
2 α1−α2

1

p1−α2
1 pα2

2

− 1
)

(34)

Since pA
α
α2
2 α

1−α2
1

p
1−α2
1 p

α2
2

− 1 > 0, when we let x1 tend to infinity, the profit of this

allocation (x1, x2) tends to infinity.

2. Assume that α1 +α2− 1 < 1. A solution (x1, x2) must satisfy x1 > 0, x2 > 0 (why?).
We have the FOCs

α1pAx
α1−1
1 xα2

2 − p1 = 0

α2pAx
α1
1 x

α2−1
2 − p2 = 0.

Hence, we get

p1

p2

=
α1pAx

α1−1
1 xα2

2

α2pAx
α1
1 x

α2−1
2

=
α1x2

α2x1

⇔ x2 =
p1

p2

α2

α1

x1.

From this and the FOCs, we have

p1 = α1pAx
α1−1
1

(p1

p2

α2

α1

x1

)α2 ⇔ pAxα1+α2−1
1 =

p1−α2
1 pα2

2

α1−α2
1 αα2

2
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Since α1 + α2 − 1 < 1, we can easily find that

x1 =
( pA

p
1−α2
1 p

α2
2

α
1−α2
1 α

α2
2

) 1
1−α1−α2

This is increasing in the productivity A, the output price p but decreasing in the
input prices p1, p2.

3.3.5 Least squares regression

The sum of squared residuals (in the multiple linear regression):

f(β0, β1, · · · , βk) ≡
n∑
i=1

(
yi − β0 −

k∑
j=1

βjxi,j

)2

on Rk+1.

1. Let us start by considering the case k = 1.

f(β0, β1) ≡
n∑
i=1

(
yi − β0 − β1xi

)2

We want to solve the following problem

Minimize(β0,β1)f(β0, β1) ≡
n∑
i=1

(
yi − β0 − β1xi

)2

subject to β0 ∈ R, β1 ∈ R

This is an unconstrained convex minimization problem.

The objective function is convex (why?).

The first-order conditions (or Kuhn-Tucker conditions) give us

β1

n∑
i=1

xi(xi − x̄) =
n∑
i=1

xi(yi − ȳ)

β0 = ȳ − β1x̄

where x̄ ≡
∑n
i=1 xi
n

, ȳ ≡
∑n
i=1 yi
n

are the sample averages.

Notice that
∑n

i=1 xi(xi−x̄) =
∑n

i=1(xi−x̄)2 and
∑n

i=1 xi(yi−ȳ) =
∑n

i=1(xi−x̄)(yi−ȳ).

2. We now consider the general case. We want to solve the following problem

Minimize(β0,...,βk)

n∑
i=1

(
yi − β0 −

k∑
j=1

βjxi,j

)2

subject to β0 ∈ R, · · · , βk ∈ R

This is an unconstrained convex minimization problem.
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3.4 Non-convex optimization (optional)

We follow the exposition of Florenzano and Le Van (2001).

3.4.1 Unconstrained Optimization

First-order conditions for an unconstrained optimum

Theorem 19. Suppose x∗ ∈ S is either an unconstrained local minimum or an uncon-
strained local maximum. Then Df(x∗) = 0.

Proof. Suppose that x∗ is an unconstrained local maximum. There exists r > 0 such that
B(x∗, r) ⊆ S and f(y) ≤ f(x∗) for all y ∈ B(x∗, r). Assume a = Df(x∗) 6= 0. From the
Taylor expansion, we have

f(x) = f(x∗) +Df(x∗) · (x− x∗) +R1(x, x∗)‖x− x∗‖

For any real number t, define xt = x∗ + ta. For t close enough to zero, we have that
xt ∈ B(x∗, r) ∩ S. Then

f(xt) = f(x∗) + a · (xt − x∗) +R1(xt, x
∗)‖xt − x∗‖

= f(x∗) + t‖a‖2 +R1(x∗ + ta, x∗)|t|‖a‖
= f(x∗) + t‖a‖ (‖a‖+R1(x∗ + ta, x∗)) , when t ≥ 0

> f(x∗)

when t is small enough. We get a contradiction. Hence Df(x∗) = 0. The proof is similar
when x∗ is an unconstrained local minimum.

A point x is an optimum for f if it is either a maximum or a minimum of f . If it is an
unconstrained local optimum, we have proved that Df(x) = 0.

Second order conditions for an unconstrained local optimum

Lemma 7. (i) Let M be a positive definite n×n matrix. Let S(0, 1) denote the unit-sphere
of Rn. Then minx∈S(0,1) x

′Mx > 0.
(ii) Let M be a negative definite n × n matrix. Let S(0, 1) denote the unit-sphere of

Rn. Then maxx∈S(0,1) x
′Mx < 0.

Proof. (i) The function ψ : S(0, 1) → R+ defined by ψ(x) = x′Mx for x ∈ S(0, 1) is
continuous and positive for any x ∈ S(0, 1). Since S(0, 1) is compact, ψ has a minimum on
S(0, 1) which is positive, i.e. there exists x̄ ∈ S(0, 1) which satisfies 0 < ψ(x̄) = x̄′Mx̄ =
minx∈S(0,1) x

′Mx.
(ii) The proof is similar.

Theorem 20. Let f : S → R, where S ⊆ Rn. Assume x0 is an unconstrained local
optimum of f . If D2f(x0) is negative definite then x0 is an unconstrained local maximum.
If D2f(x0) is positive definite, then x0 is an unconstrained local mimimum.
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Proof. We must have Df(x0) = 0. Consider the Taylor expansion

f(x) = f(x0) +Df(x0) · (x− x0) +
1

2
(x− x0)′D2f(x0)(x− x0) +R2(x, x0)‖x− x0‖2

= f(x0) +
1

2
(x− x0)′D2f(x0)(x− x0) +R2(x, x0)‖x− x0‖2

Assume D2f(x0) positive definite. When x 6= x0, let u = x−x0
‖x−x0‖ ∈ S(0, 1). We know that

minx∈S(0,1) x
′D2f(x0)x = α > 0. Therefore,

f(x) = f(x0) +
1

2
(x− x0)′D2f(x0)(x− x0) +R2(x, x0)‖x− x0‖2

= f(x0) +
1

2
‖x− x0‖2u′D2f(x0)u+R2(x, x0)‖x− x0‖2, when x 6= x0

≥ f(x0) +
1

2
‖x− x0‖2 [α + 2R2(x, x0)] , when x 6= x0

When x is close to x0 but different from x0, we have α + 2R2(x, x0) > 0 and thus f(x) ≥
f(x0). We have that x0 is an unconstrained local minimum.

Similarly, whenD2f(x0) is negative definite then x0 is an unconstrained local maximum.

3.4.2 Constrained optimization

Definition 19. Let f be a continuously differentiable mapping from an open, nonempty
convex set U of Rn into Rn. Let a ∈ U . Then f(a) = (f1(a), . . . , fn(a)).The Jacobian
matrix Jf (a) is

Jf (a) =


Df1(a)
Df2(a)
. . .

Dfn(a)


where the row-vector Dfi(a) is the derivative of fi at point a.

Let f be a function from an open, convex, nonempty set U of Rn into R. We say
that f is locally minimal at x under the constraints x ∈ Γ, if x ∈ Γ and if there exists a
neighborhood V of x such that ∀x ∈ V ∩ Γ, f(x) ≥ f(x).

Consider the following problem (P ):

(P̃ ) min f0(x) under the constraints


x ∈ U
fi(x) ≤ 0, ∀i = 1, . . . , I
gi(x) = 0, ∀i = 1, . . . , K

where f0 and fi, for i = 1, . . . , I, gi, for ii = 1, . . . , K are continuously differentiable
functions from an open, convex, nonempty set U of Rn into R.

Lemma 8. Let f be a differentiable function from an open, convex set U ⊂ Rm×Rp×Rq

into R. We suppose 0 ∈ U . Suppose that the function f : (x, y, z) → f(x, y, z) is locally
minimal at 0 under the constraints x ≥ 0, y = 0. Then:

f ′x(0, 0, 0) ≥ 0, f ′z(0, 0, 0) = 0.
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Proof. Let C = {(x, y, z) ∈ Rm × Rp × Rq | x ≥ 0, y = 0}. Let (r, s, t) ∈ C. Then there
exists λ1 > 0 such that ∀λ ∈ [0, λ1[, one has (λr, λs, λt) ∈ C ∩ U . The function F defined
by ∀λ ≥ 0, F (λ) = f(λr, λs, λt) is locally minimal at 0. Hence, F ′(0) ≥ 0, i.e.

f ′(0, 0, 0) · (r, s, t) ≥ 0, ∀(r, s, t) ∈ C.

In particular, f ′x(0, 0, 0) ·r ≥ 0, ∀r ∈ Rm such that r ≥ 0, f ′z(0, 0, 0) · t ≥ 0, ∀t ∈ Rq. Hence:
f ′x(0, 0, 0) ≥ 0 and f ′z(0, 0, 0) = 0.

Let x be a feasible point, i.e. fi(x) ≤ 0, ∀i = 1, . . . , I, and gi(x) = 0, ∀i = 1, . . . , K.
Let I(x) = {i | fi(x) = 0}. We say that the constraints of Problem (P ) are regular at x if
the gradients (Dfi(x))i∈I(x), (Dgi(x))i=1,...,K are linearly independent.

Theorem 21. Suppose that f0 is locally minimal at x under the constraints of Problem
(P ). Suppose also that the constraints are regular at x. Then there exist non-negative
scalars (λi)i∈I , and scalars (µi)i∈K such that:
(i) Df0(x) = −

∑
i=1,...,I λiDfi(x) +

∑
i=1,...,K µjDgj(x),

(ii) λifi(x) = 0, ∀i = 1, . . . , I.

Proof. Observe that f0 is also locally minimal at x under the constraints{
fi(x) ≤ 0, ∀i ∈ I(x),
gi(x) = 0, ∀i = 1, . . . , K

where I(x) = {i ∈ I | fi(x) = 0}.
Suppose that I(x) has cardinal J . Since, by assumption, the constraints are regular
at x, there exists θ1, . . . , θq, vectors of Rn, with q = n − J − K, such that the ma-
trix ((Dfi(x))i=1,...,I ; (Dgi(x))i=1,...,K , θ1, . . . , θq) is invertible. Define θ̃i(x) = θi · (x − x),
∀i = 1, . . . , q, ∀x ∈ Rn, and the map ϕ from Rn into Rn by

ϕ(x) = ((−fi(x))i∈I(x), (gj(x))i=1,...,K , (θ̃i(x))i=1,...,q).

One has ϕ(x) = 0, and Jϕ(x) is invertible, where Jϕ(x) is the Jacobian matrix of ϕ at
x. From the Local inversion theorem (Theorem 22), ϕ has, in a neighborhood V of x, an
inverse ϕ−1 which is continuously differentiable.
Define, on ϕ(V ), the map F = f0 ◦ϕ−1. One has: F (u, v, w) = f0(x) if ϕ(x) = (u, v, w). In
particular, F (0, 0, 0) = f0(x). Hence F (u, v, w) ≥ F (0, 0, 0) for u ≥ 0, v = 0. From Lemma
8, F ′u(0, 0, 0) ≥ 0 and F ′w(0, 0, 0) = 0, that means: F ′(0, 0, 0) = (λ, µ, 0) with λ ∈ RJ

+ and
µ ∈ RK . But Df0(x) = F ′(0, 0, 0)(Jϕ(x)). Since

Jϕ(x) = ((−Dfi(x))i∈I(x), (Dgi(x))i∈K , (θi)i=1,...,q),

one gets:

Df0(x) = −
∑
i∈I(x)

λiDfi(x) +
∑

i=1,...,K

µiDgi(x)

with λi ≥ 0, ∀i ∈ I(x). Define λi = 0, ∀i /∈ I(x). Relation (i) is thus proved. We have
λifi(x) = 0,∀i = 1, . . . , I, that is Condition (ii).

Exercise 25. Solve
min{(3

√
2x+ 3y − 1)

under the constraints {
(x, y) ∈ R2 : x2 +

y2

2
= 1}
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4 Comparative Statics

We are interested in a fundamental question: What is the effect of a change in an exoge-
nous variable on the solution value of the endogenous variable? The issue is referred to
”comparative statics”.

4.1 Mathematical tools

We present fundamental tools that help us to do comparative statics.

Theorem 22. [The Inverse Function Theorem] Let f be a continuously differentiable map-
ping from an open, nonempty set E of Rn into Rn. Consider a point a ∈ E. Denote
b = f(a).

Assume that the Jacobian matrix Jf (a) (derivatives of f)

J =

[
∂f

∂x1

· · · ∂f

∂xn

]
=

∇
Tf1
...

∇Tfn

 =


∂f1

∂x1

· · · ∂f1

∂xn
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xn


is invertible. ∇Tfi is the transpose (row vector) of the gradient of the i component.

Then

1. there exists an open set U and V in Rn such that a ∈ U and b ∈ V , f is one-to-one
on U , and f(U) = V .

2. the inverse function of f (denoted by f−1) is continuously differentiable on V .

Recall: The inverse function f−1 is defined by: for y ∈ V , take x ∈ U such that
f(x) = y (this value x is uniquely determined because f is one-to-one on U). Then
we defined f−1(y) = x, i.e., f−1(f(x)) = x.

Proof. See Rudin (1976), page 221.

Theorem 23. [The implicit Functions Theorem] Let f be a continuously differentiable
function from an open, nonempty set E = U × V of Rn+m (U ⊂ Rn, V ∈ Rm) into Rn.
Suppose that f(a, b) = 0 for some point (a, b) ∈ U × V . Assume that that Dfa(a, b) is
invertible, where Dfa(a, b) is the partial derivative of f with respect to the variable (a) at
point (a, b) defined by

Dfa(a, b) =


∂f1

∂a1

(a, b) · · · ∂f1

∂an
(a, b)

...
. . .

...
∂fn
∂a1

(a, b) · · · ∂fn
∂an

(a, b)


1. Then there exists an open set U1 ⊂ U containing a, an open set V1 ∈ V containing

b, an open set W containing 0 and a function g : V1 ×W → U1 such that

f(x, y) = z ⇔ x = g(y, z) ∀x ∈ U1, ∀y ∈ V1, ∀z ∈ W

Moreover, g is continuously differentiable on V1 ×W .
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2. In particular, we have that:

f(x, y) = 0⇔ x = φ(y) ∀x ∈ U1,∀y ∈ V1 (35)

where φ is differentiable on V1. Moreover, we can compute the derivative of φ by
using f(φ(y), y) = 0

Dfx(φ(y), y)Dφ(y) +Dfy((φ(y), y)) = 0

Note that Dfx(φ(y), y) is an n× n matrix while Dfy((φ(y), y)) is an n×m matrix.

Dfx =


∂f1

∂x1

· · · ∂f1

∂xn
...

. . .
...

∂fn
∂x1

· · · ∂fn
∂xn

 , Dφ =


∂φ1

∂y1

· · · ∂φ1

∂ym
...

. . .
...

∂φn
∂y1

· · · ∂φn
∂ym



Dfy =


∂f1

∂y1

· · · ∂f1

∂ym
...

. . .
...

∂fn
∂y1

· · · ∂fn
∂ym


The function φ is implicitly defined by (35).

4.2 Applications in Economics

Let us explicitly write f(a, b) = 0 as follows

f1(a1, . . . , an, b1, . . . , bm) = 0

· · ·
fn(a1, . . . an, b1, . . . , bm) = 0.

In economics, a1, . . . , an are viewed as endogenous variables while b1, . . . , bm exogenous. To
study the effect of exogenous variables (bj) on endogenous variables (ai) or to understand
how (ai) changes when (bi) changes, we can apply the implicit function theorem and
compute the derivatives of (ai) as functions of (bj).

Let us consider a two-period optimal growth model introduced in Section 3.3.2. Let
conditions in Proposition 14 be satisfied. Then, the optimal physical capital k1 is deter-
mined by

u′(w0 − k1)− βF ′(k1)u′(w1 + F (k1)) = 0 (36)

Notice that w0, w1, β are exogenous parameters while k1 is endogenous and depends on
w0, w1, β.

Denote f(k1, w0, w1, β) ≡ u′(w0−k1)−βF ′(k1)u′(w1+F (k1)). Observe that the function
f is striclty increasing in k1 and w1, but strictly decreasing in w0 and β
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Assume that u′ and F ′ are continuously differentiable. Applying the implicit functions
theorem, the optimal value k1 determined by f(k1, w0, w1, β) = 0 can be expressed as a
differentiable function of w0, w1, β. We write k1 = k1(w0, w1, β).

We now look at the role of the initial endowment w0. Taking the derivative with respect
to w0 of both sides of the equation f(k1, w0, w1, β) = 0, we have

∂f

∂k1

(k1, w0, w1, β)
∂k1

∂w0

(w0, w1, β) +
∂f

∂w0

(k1, w0, w1, β) = 0

Since ∂f
∂k1

> 0 and ∂f
∂w0

< 0, we get that ∂k1
∂w0

(w0, w1, β) > 0. It means that the optimal
value k1 is increasing in the initial endowment.

5 Discrete dynamical systems (difference equations)

5.1 Motivating examples

The basic idea is that, in some cases the (economic) outcomes at a period depend on the
variables in the pass. For instance,

x1,t+1 = f1(x1,t, · · · , xn,t)
· · ·

xn,t+1 = fn(x1,t, · · · , xn,t).

So, investigating the evolution of the sequence (x1,t, . . . , xn,t) requires us to deal with this
dynamical system.15

5.2 One-dimensional, first-order systems

Consider the one-dimentional autonomous, first-order difference equation:

yt+1 = f(yt)∀t ≥ 0 (37)

y0 is given and f : R→ R is a real function. If we consider the system

yt+1 = ft(yt)∀t ≥ 0 (38)

where the function ft depends on time, then it is called ”non-autonomous”

Definition 20. A solution of this difference equation is a trajectory (xt)t≥0 that satisfies
(37) and initial condition x0 = y0.

Definition 21. Let f be a function and x ∈ R (or in general, in the domain of f).
We define fn(x) the nth iterate of f under f by the following relationship: fn(x) =
f(fn−1(x))∀n ≥ 1, f 0(x) ≡ x.

Definition 22. 1. A steady-state equilibrium (or equilibrium point, or fixed point) is a
value x∗ satisfying f(x∗) = x∗.

2. x is an eventually equilibrium (fixed) point if there exists a positive integer r and
an equilibrium point x∗ such that f r(x) = x∗, f r−1(x) 6= x∗, where fn(x) is the nth
iterate of f under f .

15See Bosi and Ragot (2011) for an excellent introduction of discrete dynamical systems.
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5.2.1 Linear cases

Consider a linear, first-order, autonomous difference equation

xt+1 = axt + b

where a, b are constants.
We can proved that

xt =

{
atx0 + b1−at

1−a ∀t ≥ 0, if a 6= 1

x0 + bt if a = 1.

Consequently, if a ∈ (−1, 1), we have limt→∞ xt = b/(1− a) ∀y0.
Notice that x∗ ≡ b/(1−a) is the unique steady state when a 6= 1. We also observe that

xt =

{
at(y0 − y∗) + y∗∀t ≥ 0, if a 6= 1

y0 + bt if a = 1.

Graphics here.

1. a ∈ (0, 1). (Monotonic Convergence)

2. a ∈ (−1, 0). (Oscillatory Convergence)

3. a ≥ 1, b 6= 0. (Go to infinity. Monotonic Divergence)

4. a = −1. (Two-period cycles)

5. a < −1. (Oscillatory Divergence)

Figure 2: Monotonic convergence versus oscillatory convergence
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Exercise 26. Consider a linear, first-order, nonautonomous difference equation

yt+1 = atyt + bt

where at, bt are real values.
Prove that

yt =
( t−1∏
i=1

ai

)
y0 +

t−1∑
k=0

bk

( t−1∏
i=k

ai
ak

)
Exercise 27. Study the following system

xt+1 = Axαt

where x0 > 0 is given, A > 0 and α > 0.
Find the fixed points.
Find conditions (based on x0, A, α) under which xt converges (diverges).
Hint: Consider α = 1, α > 1, α < 1.

Exercise 28. Study the following system

xt+1 = Amax(xt − b, 0)

where x0 > 0 is given, A > 0 and b > 0.
Find the fixed points.
Find conditions (based on x0, A, b) under which xt converges (diverges).
Hint: Draw the graph of the function f(x) = Amax(x − b, 0). Consider A = 1, A >

1, A < 1.

Proof. Let x > 0 be a fixed point. We have x = Amax(x − b, 0). Since x > 0, we have
max(x− b, 0) > 0. This implies that x− b > 0. Hence, max(x− b, 0) = x− b. From this,
we can find x by x = A(x− b), i.e., x(A− 1) = Ab.

Exercise 29. Suppose that aggregate consumption in period t is given by

Ct = A+BYt−1

where Yt represents the income in period t and B ∈ (0, 1) is the marginal propensity to
consume out of the previous year’s income.

Assume that

Yt = Ct + It

It = (1 + g)t

where g > 0 is the exogenous growth rate in investment spending.

1. Prove that

Yt = BtY0 +
t−1∑
k=0

(
A+ (1 + g)k

)
Bt−1−k

= BtY0 + A
1−Bt

1−B
+ A

(
(1 + g)t −Bt

)
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2. Moreover, we have

lim
t→∞

Ct
Yt−1

= B

lim
t→∞

Yt
It

= A

3. When happens if g < 0?

5.2.2 Nonlinear, first-order, autonomous difference equation

When the function f is not linear, it is not easy to explicitly compute f t(x0) or investigate
the evolution of f t(x0). There may exist multiple steady-state equilibria. Indeed, let
consider the system kt+1 = f(kt) where f(x) = Ax0.5(1 + x), A > 0, and k0 > 0. We can
check that if A < 0.5, then there are two steady states (see Example 9).

5.2.3 Convergence and global stability

In economics, we are particularly interested in the convergence and stability of the sequence
xt = f t(x0). We would like to find conditions under which the sequence xt converges.

Proposition 16. Let f : S → S where S is a closed set of R. Suppose that f is increasing.
Suppose that there exists a unique x∗ such that f(x∗) = x∗. Moreover, f(x) < x ∀x > x∗,
and f(x) > x ∀x < x∗. Then the system (xt) defined by xt+1 = f(xt) converges to x∗ for
any x0 ∈ S.

Proof. If x0 = x∗, then xt = x∗, ∀t.
If x0 < x∗, then f(x0) > x0, or, equivalently, x1 > x0. By induction, we can easily prove

that the sequence xt is increasing: xt+1 ≥ xt,∀t. Indeed, this holds for t = 0. Assume that
it holds until date t. Since xt) ≥ xt−1, we have f(xt) ≤ f(xt−1), which is equivalent to
xt+1 ≤ xt. So, xt is increasing. Notice that xt+1 ≥ xt means that f(xt) ≥ xt. According to
our assumption, this implies that xt ≤ x∗. To sum up, xt is increasing and bounded from
above. Thus, it converges to some value x̄. We will prove that x̄ = x∗. Since xt+1 = f(xt),
by letting t tend to infinity, we have x̄ = f(x̄). Since the fixed point is unique, we obtain
that x̄ = x∗.

For the case x0 > x∗, we can use a similar argument to prove that xt decreasingly
converges to x∗.

Definition 23 (contraction mapping). A function f : R → R is a contraction mapping
(or function) if there exists θ ∈ (0, 1) such that |f(x)− f(y)| ≤ θ|x− y| ∀x, y.

If f is differentiable and supx |f ′(x)| < 1, then f is a contraction mapping (why?).
Notice that the condition |f(x) − f(y)| ≤ θ|x − y| ∀x, y is quite restrictive. It is not

satisfied for the function f(x) = x2. Indeed, we have |f(x)−f(y)| = |(x+y)(x−y)| ≥ |x−y|
if |(x+ y)| ≥ 1.

We present the following result which is a simple case of Banach Fixed Point Theorem
that shows the existence and uniqueness of the fixed point of a contraction mapping in a
complete metric space.
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Figure 3: limt→∞ xt = x∗, ∀x0 > 0. See Proposition 16.

Proposition 17 (The Contraction Mapping Theorem). Let f : R → R be contraction
mapping. Then

1. f is a unique fixed point x∗ (i.e., there is a unique x∗ such that f(x∗) = x∗).

2. |fn(x0)− x∗| ≤ θn|x0 − x∗| ∀n ≥ 1.

Corollary 5. Consider the difference equation xt+1 = f(xt) where f : R→ R.

1. If f is a contraction mapping, then the system has a unique steady-state x∗ and
limt→∞ xt = x∗ for any x0.

2. Assume that f is differentiable and supx |f ′(x)| < 1, then the system has a unique
steady-state x∗ and limt→∞ xt = x∗ for any x0.

We also state the results in the space Rn.

Proposition 18. Let f : Rn → Rn be contraction mapping, i.e., there exists θ ∈ (0, 1)
such that

‖f(x)− f(y)‖ ≤ θ‖x− y‖ ∀x, y.

1. f has a unique fixed point x∗ (i.e., there is a unique x∗ such that f(x∗) = x∗).

2. For every x0 ∈ R, the sequence (xt), determined by xt+1 = f(xt) ∀t, converges to x∗.

Proof. Although we consider the space Rn, the proof in a complete metric space is similar.
Uniqueness of x∗. Suppose that there is x 6= x∗ such that f(x) = x. Since f is a

contraction mapping, we have

‖f(x)− f(x∗)‖ ≤ θ‖x−∗ ‖.
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However, f(x) − f(x∗) = x − x∗. Hence, ‖x −∗ ‖ ≤ θ‖x −∗ ‖ < ‖x −∗ ‖, a contradiction.
Therefore, we have proved the uniqueness of x∗.

Existence of x∗. Let x0 ∈ Rn. Consider the sequence (xt) defined by xt+1 = f(xt), ∀t,
i.e, xt = f t(x0). We will prove that xt converges to x∗.

First, we prove that (xt) is a Cauchy sequence in the sense that: ∀ε > 0, there exists
n0 such that ‖xn − xm‖ < ε,∀n > n0,m > n0. Indeed, we have

‖x2 − x1‖ = ‖f(x1)− f(x0)‖ ≤ θ‖x1 − x0‖
‖xn+1 − xn‖ = ‖f(xn)− f(xn−1)‖ ≤ θ‖xn − xn−1‖ ≤ · · · ≤ θn‖x1 − x0‖

and hence, for n > m, we have

‖xn − xm‖ = ‖xn − xn−1 + · · ·+ xm+1 − xm‖ ≤ ‖xn − xn−1‖+ · · ·+ ‖xm+1 − xm‖
≤ θn−1‖x1 − x0‖+ · · · ≤ θm‖x1 − x0‖ = ‖x1 − x0‖θm(1 + θ + · · ·+ θn−1−m)

≤ ‖x1 − x0‖θm
1

1− θ

For any ε > 0, since θ ∈ (0, 1), we can choose n0 such that ‖x1 − x0‖θn0 1
1−θ < ε. Then, for

any n > n0,m > n0, we have

‖xn − xm‖ ≤ ‖x1 − x0‖θm
1

1− θ
≤ ‖x1 − x0‖θn0

1

1− θ
< ε.

Second, since (xt) is a Cauchy sequence, it converges to some value x̄ ∈ Rn (see Rudin
(1976)). By definition, we have xt+1 = f(xt). Let t tend to infinity, we get that x̄ = f(x̄).
However, since the fixed point is unique, we obtain that x̄ = x∗. It means that xt converges
to x∗.

5.2.4 Local stability

Definition 24. 1. The equilibrium point x∗ is stable (or Lyapunov stable) if, for any
ε > 0, there exists δ > 0 such that: |x0 − x∗| < δ implies that |fn(x0) − x∗| < ε
∀n > 0.

If x∗ is not stable, then it is called unstable.

2. x∗ is said to be attracting if there exists η > 0 such that:

|x0 − x∗| < η implies lim
t→∞

xt = x∗

x∗ is called global attracting if η =∞.

3. x∗ is said to be asymptotically stable equilibrium point if it is stable and attracting.

If η =∞, then x∗ is said to be globally asymptotically stable.

Definition 25. The equilibrium point x∗ is said to be hyperbolic if |f ′(x∗)| 6= 1.

Theorem 24. Let x∗ be an equilibrium point of the difference equation xt+1 = f(xt).
Assume that f is continuously differentiable at x∗. We have that:
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Figure 4: Monotonic convergence versus oscillatory convergence

1. If |f ′(x∗)| < 1, then x∗ is asymptotically stable.

2. If |f ′(x∗)| > 1, then x∗ is unstable.

Proof. (1) Suppose that |f ′(x∗)| < 1. We can choose M such that |f ′(x∗)| < M < 1. Since
f ′(x) is continuous, there exists an interval J = (x∗ − γ, x∗ + γ), where γ > 0, such that
|f ′(x)| < M < 1 ∀x ∈ J .

Let x0 ∈ J . We have

x1 − x∗ = f(x0)− x∗ = f(x0)− f(x∗) = f ′(ξ)(x0 − x∗)

where ξ is between x0 and x∗. (Recall that x0 may be lower or higher than x∗.) By
consequence, we have

|x1 − x∗| = |f ′(ξ)||x0 − x∗| ≤M |x0 − x∗| ≤ |x0 − x∗| < γ

This implies that x1 ∈ J . By induction we get that xn ∈ J ∀n and

|xn − x∗| ≤Mn|x0 − x∗|∀n.

Let ε > 0, choose δ < min(γ, ε), then we have

|xn − x∗| ≤Mn|x0 − x∗| ≤ |x0 − x∗| < δ < ε∀n.

So, x∗ is stable. x∗ is attracting because: |x0 − x∗| < δ implies that limt→∞ xt = x∗.
Therefore, x∗ is stable.

(2) We now suppose that |f ′(x∗)| > 1. Since f ′(x) is continuous and |f ′(x∗)| > 1, there
exist γ > 0 and M > 1 such that |f ′(x)| > M > 1 ∀x ∈ J ≡ (x∗ − γ, x∗ + γ).
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Suppose that x∗ is stable. Let ε be in the interval (0, γ). So, there exist δ > 0 such
that: |x0 − x∗| < δ implies that |fn(x0)− x∗| < ε ∀n > 0.

Take 0 < α < min(ε, δ). We have: |x0 − x∗| < α implies that |fn(x0)− x∗| < ε ∀n > 0.
Take x0 be such that 0 < |x0 − x∗| < α. We have |xn − x∗| < ε < γ ∀n > 0. Hence,

xn ∈ J ∀n. So, we get that

|xn − x∗| = |f ′(ξn)||xn−1 − x∗| ≥ · · · ≥Mn|x0 − x∗|

where ξn is between x0 and x∗ and hence belongs the interval J .
Since M > 1, |xn − x∗| must tend to infinity, a contradiction (because |xn − x∗| < ε).

Therefore, x∗ is not stable.

Example 9 (increasing return to scale and middle-income trap). Consider the system
kt+1 = f(kt) where f(x) = Ax0.5(1 + x), A > 0, and k0 > 0 is given. kt can be interpreted
as the physical capital stock of the economy at date t (see Section 5.2.6).

Solving the problem. The equation determining the steady states is x = Ax0.5(1 + x), or
equivalently Ax− x0.5 + A = 0.

Denote ∆ = 1− 4A2. There is no positive steady state if and only if ∆ < 0 or equiva-
lently A > 1/2. In this case, we can check that Ax0.5(1 +x) > x, ∀x > 0. By consequence,
kt is strictly increasing in t. Since there is no positive steady state, kt converges to infinity.

Economically, we can say that when the productivity A is high (in the sense that
A > 1/2), the economy grows without bound (kt converges to infinity).

There are 2 positive steady states if and only if ∆ > 0 or equivalently, 0 < A < 1/2.
We can easily compute these two steady state:16

xL =
(1−

√
1− 4A2

2A

)2
, xH =

(1 +
√

1− 4A2

2A

)2
.

We can see in the graph that f(x) > x, ∀x ∈ (0, xL) or x ∈ (xH ,∞), and f(x) < x, ∀x ∈
(xL, xH).

1. We can see that xL is asymptotically stable because |f ′(xL)| < 1. (Actually, f ′(xL) ∈
(0, 1).)

2. We now prove kt increasingly converges to ∞ if k0 > xH . Then, xH is not stable.

For k0 > xH , we can show that kt is strictly increasing in t (use the fact that
f(x) > x,∀x ∈ (xH ,∞)). By consequence, kt converges. It cannot converge to a
steady state because kt+1 > kt > xH , ∀t. So, it must converge to infinity.

The point xH is not stable because kt converges to infinity for any k0 > xH .

3. We now want to prove that: limt→∞ kt = xL ∀k0 ∈ (0, xH).

First, observe that f(x) ≥ x if x ∈ (0, xL) and f(x) < x if x ∈ (xL, xH).

(a) We prove that kt increasingly converges to xL if k0 ∈ (0, xL).

Proof: Let k0 ∈ (0, xL). By applying the above remark, we have f(k0) ≤ k0,
and hence, k1 ≤ k0.

16However, we can eventually provide analysis without computing xL, xH .
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Since f is increasing, we have f(k0) ≤ f(xL) = xL or equivalently k1 ≤ xL.

By using the induction argument, we can prove that kt+1 ≤ kt and kt ≤ xL for
any t. Since the sequence kt is increasing and bounded from above, it converges
to some value, say k∗, and f(k∗) = k∗. Since k∗ ≤ xL, we have k∗ = xL.

(b) By using a similar argument, we can prove that kt decreasingly converges to xL
if k0 ∈ (xL, xH).

4. We now look at the role of A and provide an economic interpretation.

Observe that xH is decreasing in A. The point xH can be viewed as a middle income
trap in the sense that kt converges to infinity for any k0 > xH while kt < xH , ∀t (this
means that we cannot overcome this threshold xH) if k0 ≤ xH .

The middle income trap is decreasing in the productivity A. This leads to an inter-
pretation: The higher the level of productivity A, the lower the middle income trap,
the higher possibility we can get the growth (kt converges to infinity).

Exercise 30. Consider the system xt+1 = xt
(
1 + r(1− xt)

)
.

1. Prove that a = 1 is a fixed point.

2. Prove that if r ∈ (0, 1), then a = 1 is asymptotically stable.

3. If r = 0, then a = 1 is not asymptotically stable.

4. Study the (asymptotically) stability of this fixed point in the case r = 2.

Exercise 31. Let us consider the system xt+1 = f(xt) with f(x) = x0.5 (0.5 + 0.4x). (1)
Find two positive steady states. (2) Prove that among these points, one steady state is
asymptotically stable while another one is unstable.17

17Readers may like to use https://www.desmos.com/calculator?lang=en to draw the graph of the func-
tion f .
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5.2.5 Nonhyperbolic fixed points

Proposition 19. Let x∗ be a fixed point and f ′(x∗) = 1. Assume that f is in C3. We
have

1. If f ′′(x∗) 6= 0, then x∗ is unstable.

2. If f ′′(x∗) = 0 and f ′′′(x∗) > 0 then x∗ is unstable.

3. If f ′′(x∗) = 0, and f ′′′(x∗) < 0 then x∗ is asymptotically stable.

Proof. By using the Taylor theorem and f ′(x∗) = 1, we have

f(x) =f(x∗) + f ′(x∗)(x− x∗) +
1

2
f ′′(x∗)(x− x∗)2 +R2(x, x∗)‖x− x∗‖2 (39)

=f(x∗) + (x− x∗) +
1

2
f ′′(x∗)(x− x∗)2 +R2(x, x∗)‖x− x∗‖2 (40)

f(x) =f(x∗) + f ′(x∗)(x− x∗) +
1

2
f ′′(x∗)(x− x∗)2 +

1

6
f ′′′(x∗)(x− x∗)3 +R3(x, x∗)‖x− x∗‖3

=f(x∗) + (x− x∗) +
1

2
f ′′(x∗)(x− x∗)2 +

1

6
f ′′′(x∗)(x− x∗)3 +R3(x, x∗)‖x− x∗‖3

(41)

1. If f ′′(x∗) 6= 0, then we consider two cases.

(a) f ′′(x∗) > 0. In this case, f ′(x) is increasing in a neighborhood (x∗− δ, x∗+ δ) of
x∗. Since f ′(x∗) = 1, we have f ′(x) > 1 = f ′(x∗) ∀x ∈ (x∗, x∗+ δ). By adopting
the argument in the proof of part 2 of Theorem 24, we can prove that x∗ is
unstable.

(b) f ′′(x∗) < 0. Using the same argument, we have that x∗ is unstable.

2. If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then we have

f(x)− f(x∗) = (x− x∗)
(

1 +
1

6
f ′′′(x∗)(x− x∗)2

)
+R3(x, x∗)‖x− x∗‖3.

By adopting the argument in the proof of part 2 of Theorem 24, we can prove that
x∗ is unstable.

3. If f ′′(x∗) = 0, and f ′′′(x∗) < 0, then (41) implies that

f(x)− f(x∗) = (x− x∗)
(

1 +
1

6
f ′′′(x∗)(x− x∗)2

)
+R3(x, x∗)‖x− x∗‖3

By adopting the argument in the proof of part 1 of Theorem 24, we can prove that
x∗ is asymptotically stable.
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5.2.6 Application: Solow growth models

We consider a model à la Solow.

Solow Model: ct + St = Yt

It = St

kt+1 = kt(1− δ) + It

St = sYt

Yt = Atk
α
t L

1−α
t , α ∈ (0, 1)

At = A

Lt = 1

where ct, St, It are consumption, saving, investment at date t (t = 0, 1, . . . ,+∞), s ∈ (0, 1)
is the exogenous saving rate, kt is the physical capital stock at date t (k0 > 0 is given),
δ ∈ [0, 1] is the capital depreciation rate, Yt is the output.

Proposition 20. Consider the above Solow model.

1. Prove that, for any t ≥ 0,

Yt = Akαt
Yt+1

Yt
=
(kt+1

kt

)α
kt+1 = kt(1− δ) + sAkαt

2. Prove that kt and Yt converge. Find k∗ ≡ limt→∞ kt and Y ∗ ≡ limt→∞ Yt. How k∗

and Y ∗ depend on A, s?

3. Is k∗ asymptotically stable? Why? Illustrate your arguments by diagrams.

The long-term rate of growth g of the output depends strongly on the rate of growth of the
TFP A. The higher A, the higher the rate of growth g.

Proof. Left to the readers.

We now consider a more general model à la Solow.

Solow Model: ct + St = Yt

It = St

kt+1 = kt(1− δ) + It

St = sYt

Yt = Atk
α
t L

1−α
t , α ∈ (0, 1)

At = a(1 + γ)t

Lt = L0(1 + n)t

Here γ > −1 is the rate of growth of the TFP At, n > −1 is the rate of growth of the
labor force. Both of them are assumed to be exogenous.
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Proposition 21. Consider the above Solow model.

1. Prove that, for any t ≥ 0,

Yt = a(1 + γ)tkαt L
1−α
t

Yt+1

Yt
= (1 + γ)(1 + n)1−α

(kt+1

kt

)α
kt+1 = kt(1− δ) + sa(1 + γ)tkαt L

1−α
t

2. Prove that ∆Yt
Yt
→ g where ∆Yt ≡ Yt+1 − Yt and g satisfies

1 + g = (1 + n)(1 + γ)
1

1−α

The long-term rate of growth g of the output depends strongly on the rate of growth
of the TFP At. The higher γ, the higher the rate of growth g.

Proof. Left to the readers.

5.2.7 Application: a Malthusian growth model

In 1798, Thomas Malthus wrote: ”Through the animal and vegetable kingdoms, nature
has scattered the seeds of life abroad with the most profuse and liberal hand. ... The
germs of existence contained in this spot of earth, with ample food, and ample room to
expand in, would fill millions of worlds in the course of a few thousand years. Necessity,
that imperious all pervading law of nature, restrains them within the prescribed bounds.
The race of plants, and the race of animals shrink under this great restrictive law. And the
race of man cannot, by any efforts of reason, escape from it. Among plants and animals
its effects are waste of seed, sickness, and premature death. Among mankind, misery and
vice.”18

Thomas Malthus hypothesized that population growth is an inverse function of income
per capita. Inspired by this idea, we assume that

Nt+1 −Nt

Nt

= n− b

wt

where wt is income per capita, Nt is population in period t while a, b are positive constants.
Assume that wt is given by

wt =
Yt
Nt

where Yt is aggregate output in the economy. Assume that

Yt = Nα
t

where α ∈ (0, 1).

18See Thomas Malthus, 1798. An Essay on the Principle of Population. Chapter I.
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From this, we get that

wt = Nα−1
t .

Hence, the income is a decreasing function of the population. Rearranging equations, we
obtain a nonlinear, first-order difference equation:

Nt+1 = Nt(1 + n− bN1−α
t )

Exercise 32. 1. Find the positive steady states of this dynamical system.

2. Are they asymptotically stable or unstable? Why?

5.3 Multiple-dimensional, first-order systems

We now consider a multiple-dimensional, first-order system: xt+1 = f(xt) where f : Rn →
Rn. Explicitly, we write that

x1,t+1 = f1(x1,t, · · · , xn,t)
· · ·

xn,t+1 = fn(x1,t, · · · , xn,t).

In general, it is difficult to deal with this system.
Let us look at a steady states x∗ determined by f(x∗) = x∗. Notice that it is not easy

to compute x∗.
Assume that, for any i, the function fi is in C1 (continuously differentiable). Applying

the Taylor’s theorem, in a neighborhood of x∗, we can approximate fi by an affine function

fi(x1,t, . . . , xn,t) =fi(x
∗
1, . . . , x

∗
n) +

n∑
k=1

∂fi(x
∗)

∂xk
(xk,t − x∗k)

+Ri(xt, x
∗)‖xt − x∗‖

where Ri(x
∗, x∗) = 0 and R1(xt, x

∗)→ 0 as xt → x∗.
This can be rewritten in a matrix formx1,t+1

...
xn,t+1

 =


∂f1

∂x1

(x∗) · · · ∂f1

∂xn
(x∗)

...
. . .

...
∂fn
∂x1

(x∗) · · · ∂fn
∂xn

(x∗)


x1,t

...
xn,t

+

b
∗
1
...
b∗n

+

R1(xt, x
∗)‖xt − x∗‖

...
Rn(xt, x

∗)‖xt − x∗‖


where b∗i ≡ fi(x

∗
1, . . . , x

∗
n)−

∑n
k=1

∂fi(x
∗)

∂xk
x∗k.

So, in the following we focus on a linear dynamical system given by xt+1 = Axt + b,
i.e., x1,t+1

...
xn,t+1

 =

A11 · · · A1n
...

. . .
...

An1 · · · Ann


x1,t

...
xn,t

+

b1
...
bn


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when b = 0, the system is said to be homogeneous.
Let x∗ be a fixed point x∗ = Ax∗+b. x∗ exists and equals (I−A)−1b if the determinant

det(I − A) 6= 0 where I is the n× n identity matrix. We have that

xt+1 − x∗ = A(xt − x∗)
hence xt − x∗ = At(x0 − x∗)∀t ≥ 0

It remains to compute At. This task is not easy. Linear Algebra helps us to deal with this
problem. Assume that we can diagonalize the matrix A in the sense that

A = V DV −1

where the matrix V is convertible and D is a diagonal matrix

D =

λ1 · · · 0
...

. . .
...

0 · · · λn


and λi ∈ R, λi 6= λj ∀i, j. This happens if the characteristic polynomial det(A− λI) has n
different real roots. So, under this condition, we obtain At = V DtV −1 ∀t and hence

xt − x∗ = V DtV −1(x0 − x∗)∀t ≥ 0

Dt =

λ
t
1 · · · 0
...

. . .
...

0 · · · λtn


To sump up, xt converges to the steady state x∗ if the polynomial det(A − λI) has n
different real roots (λi)

n
i=1 and |λi| < 1 ∀i.19

19See Simon and Blume (1994) among others for more details.
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