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Abstract: This paper provides a long-run cycle perspective to explain the behavior of the annual flow

of inheritance as identified by Piketty [51] for France and Atkinson [3] for the UK. Using a two-sector

Barro-type [9] OLG model with non-separable preferences and bequests, we show that endogenous fluc-

tuations are likely to occur through period-2 cycles or Hopf bifurcations. Two key mechanisms, which

can generate independently or together quasi-periodic cycles, can be identified as long as agents are suffi-

ciently impatient. The first mechanism relies on the elasticity of intertemporal substitution or equivalently

the sign of the cross-derivative of the utility function whereas the second rests on sectoral technologies

through the sign of the capital intensity difference across two sectors. Furthermore, building on the

quasi-palindromic nature of the degree-4 characteristic equation, we derive some meaningful sufficient

conditions associated to the occurrence of complex roots in a two-sector OLG model. Finally, we show

that our theoretical results are consistent with some empirical evidence for medium- and long-run swings

in the inheritance flows as a fraction of national income in France over the period 1896-2008.

Keywords: Two-sector overlapping generations model, optimal growth, endogenous fluctuations,

quasi-palindromic polynomial, periodic and quasi-periodic cycles, altruism, bequest
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1 Introduction

In a very influential contribution, Piketty [51] shows that inherited wealth has again a

prominent role for life-cycle income, especially with respect to human capital and labor

income. Using a simple generic overlapping generations model of wealth accumulation,

growth, and inheritance, Piketty [51] argues that the gap between the (steady-state)

growth rate g and the rate of return on private wealth r is the core argument of this

resurgence. On the one hand, when g is large and g > r, the new wealth accumulated out

of current income, and thus human capital, contributes more to life-cycle income than

past inherited wealth, especially when it is grounded on low (past) income relative to

today’s income.1 In this respect, inheritance flows remains a small fraction of national

income. On the other hand, when growth is low such that r > g, inherited wealth is

capitalized at a faster (growth) rate than national income and becomes dominant with

respect to current income. Consequently, inheritance flows become a larger proportion

of national income. Accordingly, it turns out that the annual bequest flow relative to

national income in France would be now close to its steady-state 15%-20%, and will

slowly recover its level in the nineteenth century. Furthermore, it provides theoretical

foundations on the very pronounced U-shaped pattern of the French inheritance-related

variables.2

In fact, the dynamics of the inheritance flow can also be consistent with the predictions

of multiple equilibria models and long-run (stochastic) limit cycles.3 Notably the economy

can converge to a stable (long-run) cyclical path where some macroeconomic variables

oscillate indefinitely around the steady-state, and thus bequest flows can go back and forth

to a low, steady or high level. Moreover, when examined over long periods, historical

series of inheritance flows (Piketty, [51]) look part of a long cycle through its U-shapped

1For instance, such a pattern is observed in France during the period 1950-1970.
2A similar pattern is found by Atkinson [3] for the UK.
3Deterministic limit cycles have a long tradition in economics. Especially the seminal contributions

of Benhabib and Nishimura [15, 16] have shown that even in standard models featuring forward-looking
agents and a competitive equilibrium structure, the steady state or balanced growth path was inherently
unstable and thus deterministic (endogenous) fluctuations were easily obtained as soon as the fundamen-
tal nonlinear structure of the model was taken into account. More recently, Beaudry et al. [11, 12, 13]
have put forward the existence of endogenous stochastic limit cycles, i.e. a deterministic cycle where the
stochastic component is essentially an i.i.d. process, that can generate alternate periods of booms and
busts (see also Benhabib and Nishimura [17]). Recent strands of the literature that discuss the emergence
of limit cycles include contributions on innovation-cycles and growth (Matsuyama [42], Growiec et al.
[33]), on endogenous credit cycles in OLG models (Azariadis and Smith [4], Myerson [49], and Gu et al.
[34]), on endogenous learning- and bounded rationality-based business fluctuations (Hommes, [35]).
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pattern, especially when extracting its medium to long-run component.4 In a broader

perspective, this descriptive fact is to be reconciled with recent papers (e.g., Beaudry et al.

[11, 12, 13]; Growiec et al. [32, 33]) that challenge the seminal contributions of Granger

[31] and Sargent [56]: macroeconomic variables do not display (very) pronounced peaks

at business cycles frequencies and thus data are not supportive of strong internal boom-

bust cycles.5 For instance, Beaudry et al. [11, 13] show the existence of a recurrent peak

in several spectral densities of US trendless macroeconomic data suggesting the presence

of periodicities around 9 to 10 years irrespective of the exogenous cyclical forces. At least

their results run counter the empirical irrelevance of endogenous fluctuations.6 We build

on these results to reconcile the predictions of our model with empirical evidence.

In this paper, we view the existence of such limit cycles for the inheritance flow (in

level or a as share of national income) as a complementary interpretation of Piketty [51]

and thus model and rationalize it by formally characterizing the corresponding complex

dynamics, and providing some empirical evidence.

Capitalizing on Michel and Venditti [43], we do so through the lens of a two-sector

overlapping generation (henceforth, OLG) model with a pure consumption good and one

capital good, and a constant population of finitely-lived agents. We proceed in three

steps, starting successively with the central planner problem and the optimal growth

solution in the absence of legs. In the third and last step, we consider the decentralized

problem where altruistic agents must determine their life-cycle consumptions, savings

and inheritance to their children.7

The central planner problem and the corresponding growth solution lead to a dimension-

four dynamical system and allow us to first characterize the degree-4 characteristic poly-

nomial associated to the linearized dynamical system around the steady state. Building

on the quasi-palindromic nature of the characteristic equation, we solve it and provide a

complete assessment of its characteristic roots.8 In particular, we show that at least two

4For further evidence, see Section 6.
5Comin and Gertler [22] first provide evidence of medium-term cycles (with a periodicity between 8

and 50 years). See also Correa-López et al. [23] for an application to medium-term technology cycles.
6In the same vein, Growiec et al. [33] conclude that the labor’s share of GDP exhibits medium-run

swings. See also Charpe et al. [19].
7As shown by Weil [59], when bequests are strictly positive across generations, the solution of the

Barro model is equivalent to the solution of a Ramsey-type optimal growth model where a central planner
maximizes the total intertemporal welfare.

8If P (x) =
4∑
i=0

aix
i is a polynomial of degree 4 and ai = an−i for i = 0, · · · , 2, then P is palindromic

(or reciprocal). If P (x) = a0x
4 + a1x

3 + a2x
2 + a3mx+ a4m

2 for some constant m 6= 0, then P (mx) =
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roots or a pair of complex conjugate roots have a modulus larger than one. To the best

of our knowledge, it is the first available proposition that exploits the quasi-palindromic

property of the characteristic equation in the literature of macroeconomic dynamic mod-

els. This result is the cornerstone of our paper. First, it implies that the steady state can

be either saddle-point stable or (totally) unstable. In the latter case, endogenous cycles

can occur. Second, it is well-known that the existence of a Hopf bifurcation in mod-

els featuring forward-looking agents and a competitive equilibrium structure requires the

consideration of at least three sectors and thus of dimension-four dynamical systems. And

as shown in several contributions, e.g. Magill [38, 39, 40] and Magill and Scheinkman [41],

the curse of dimensionality prevents the derivation of meaningful sufficient conditions for

the existence of complex characteristic roots. Our paper shows that only two sectors are

sufficient in an OLG economy and it makes one step further to a better understanding of

the occurrence of complex roots. We provide indeed clear-cut sufficient conditions for the

existence of complex roots leading to a Hopf bifurcation, and as far as we know, this is

the first time such conditions are exhibited in the literature. Third, we can identify two

key mechanisms that lead to quasi-periodic cycles through a Hopf bifurcation as long as

agents are sufficiently impatient. The first one is based on the properties of preferences,

and especially the sign of the cross-derivative of the utility function or equivalently the

elasticity of intertemporal substitution. The second rests on sectoral technologies through

the sign of the capital intensity difference across sectors.9

Furthermore, these preference and technology-based mechanisms can either generate

endogenous fluctuations independently or self-sustain themselves and thus amplify or

mitigate (long-run) limit cycles. In the case of non-strictly concave preferences, mild

perturbations of either the capital intensity difference across sectors or of the elasticity

of intertemporal substitution lead to a flip bifurcation and thus to persistent period-

2 cycles.10 The global dynamics can then be described as the product of two cycles

implying complex properties of the optimal path.11 On the one hand, the elasticity of

x4

m2P
(
m
x

)
and P is quasi-palindromic. Importantly, using the change of variables z = x + m

x in P (x)
x2

produces a quadratic equation.
9The capital intensity difference across sectors has long been identified as a key driver of the dynamic

properties of two-sector optimal growth models.
10The consumption good is assumed to be more capital intensive than the investment good (see Ben-

habib and Nishimura [15]).
11The quasi-palindromic polynomial can be factored as the product of two order-2 polynomials where

one quadratic polynomial captures only the preference-based mechanism and the other only that based
on technology.
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intertemporal substitution must be large enough to allow a substitution effect between

the first and second period consumptions while satisfying the standard transversality

conditions and the convergence towards the period-two cycle, and, on the other hand,

the consumption good sector needs to be capital intensive to generate fluctuations of the

capital stock.

In contrast, these two mechanisms can no longer be separated in the case of strictly

concave preferences, and a Hopf bifurcation can occur with quasi-periodic cycles. On

top of the empirical implications discussed later on, this result is again drastically dif-

ferent from those in standard optimal growth models in which the existence of complex

roots does require at least three sectors (e.g., Benhabib and Nishimura [15]). This can

be explained by the fact that standard optimal growth models can only rely on the

technology-based mechanism and higher-order dynamical systems (i.e., more sectors in

the economy) are needed for quasi-periodic fluctuations. Here a two-sector optimal OLG

growth problem with non-separable and strictly concave preferences is able to generate a

Hopf bifurcation and quasi-periodic cycles taking some intermediate and plausible values

for the elasticity of current consumption, the elasticity of intertemporal substitution and

a upper threshold condition for the sectoral elasticities of capital-labor substitution.12

Turning to the decentralized problem in the presence of altruistic parents, we show

that the optimal conditions and thus the dynamical system characterizing the decen-

tralized equilibrium are equivalent to those associated with the central planner problem

described above as long as bequests are strictly positive. After providing conditions for

the existence of strictly stationary bequests, we argue that the (sufficient) conditions for

optimal periodic and quasi-periodic cycles derived for the central planner solution also

hold in the presence of positive bequests. This sharply contrasts with the predictions

of the standard Barro model in which the optimal path monotonically converges toward

the steady state if the life-cycle utility function of a representative generation living over

two periods is additively separable. Also our result goes further than that of Michel and

Venditti [43] in a one-sector model—endogenous period two-cycles can occur if the life-

cycle utility function is non-additively separable with a positive cross derivative across

periods. Finally, we show that both bequests and bequests as a share of GDP can be

12Kalra [36] and Reichlin [54] provide conditions for the existence of Hopf cycles in two-sector OLG
models but do not take into account bequests. See also Ghiglino and Tvede [30] for the analysis of
endogenous cycles in general OLG models, and Ghiglino [29] for the analysis of the link between wealth
inequality and endogenous fluctuations in a two-sector model.
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characterized by optimal periodic and quasi-periodic cycles. This result turns out to be

insightful for our empirical results.

Looking at long-date inheritance flows data for France (Piketty, [51]), we finally pro-

vide a quantitative assessment of the long-run cyclical behavior of bequests as a share of

national income. In so doing, we proceed in two steps. First, using the low-frequency

methodology of Müller and Watson ([47], [48]) and a band pass filter at low frequencies,

we extract the long-run component of the inheritance variable of interest and then we

discuss some statistical features of the remaining cyclical component. Notably, we pro-

vide confidence intervals for the long-run standard deviation (variability) and contrast

the filtered series with both a local-to-unit autoregressive model and a fractional model

to further assess the persistence and (weakly) stationary properties. Second, following

Beaudry et al. [11, 13], we make use of the spectral density to identify either a peak

at a given frequency or a peak range over a low frequency interval, and thus to provide

some support of recurrent (medium and long-run) cyclical fluctuations at that frequency

(interval). Moreover, we test the presence of a shape restriction on the spectral density,

i.e. the statistical significance of the ”peak range” of the spectral density at low frequency

interval with respect to a flat prior. Our results strongly support the view of medium-

term business fluctuations with periodicity between 24 and 40 years and the fact that the

corresponding peak range is statistically significant. While the presence of a peak range

does not necessarily imply strong endogenous cyclical forces and the empirical relevance

of a Hopf bifurcation, it says again that data can not, at least, contradict the existence

of endogenous (stochastic) limit cycles.13

The paper is organized as follows. Section 2 presents the two-sector model with

non-additively separable preferences, defines the optimal growth problem of the central

planner, proves the existence of a steady state, and derives the characteristic polynomial

from which the stability analysis is conducted. The existence of period-two cycles under

the assumption of a non-strictly concave utility function is discussed in Section 3 together

with the presentation of a simple example to illustrate the main conditions. Section 4

contains the extension to the case of a strictly concave utility function. We provide general

sufficient conditions that rule out the existence of complex characteristic roots and we

consider a specific class of utility functions to prove the possible existence of a Hopf

13See Dufourt et al. [26] where the Hopf bifurcation is also shown to be relevant from an empirical
perspective in two-sector infinite-horizon models with productive externalities and sunspot fluctuations.
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bifurcation and thus of quasi-periodic cycles. In Section 5 we show that all our previous

conditions are compatible with the decentralized equilibrium characterized by strictly

positive bequests. Section 6 discusses our empirical results regarding the inheritance

flows as a share of national using long-dated French annual data. Concluding comments

are provided in Section 7 and all the proofs are contained into a final Appendix.

2 The model

2.1 Production

We consider a two-sector economy with one pure consumption good y0 and one capital

good y. Each good is produced with a standard constant returns to scale technology:

y0 = f 0(k0, l0), y = f 1(k1, l1)

with k0 + k1 ≤ k, k being the total stock of capital, and l0 + l1 ≤ 1, the total amount of

labor being normalized to 1.

Assumption 1. Each production function f i : R2
+ → R+, i = 0, 1, is C2, increasing

in each argument, concave, homogeneous of degree one and such that for any x > 0,

f iki(0, x) = f ili(x, 0) = +∞, f iki(+∞, x) = f ili(x,+∞) = 0.

For any given (k, y), we define a temporary equilibrium by solving the following prob-

lem of optimal allocation of factors between the two sectors:

T (k, y) = max
k0,k1,l0,l1

f 0(k0, l0)

s.t. y ≤ f 1(k1, l1)

k0 + k1 ≤ k

l0 + l1 ≤ 1

k0, k1, l0, l1 ≥ 0.

(1)

The value function T (k, y) is called the social production function and describes the

frontier of the production possibility set. Constant returns to scale of technologies imply

that T (k, y) is concave non strictly. We will assume in the following that T (k, y) is at

least C2.14

14A proof of the differentiability of T (k, y) under Assumption 1 and non-joint production is provided
in Benhabib and Nishimura [15].

6



Let p denote the price of the investment good, r the rental rate of capital and w the

wage rate, all in terms of the price of the consumption good, it is straightforward to show

that:

Tk(k, y, ) = r(k, y), Ty(k, y) = −p(k, y) and w(k, y) = T (k, y)−r(k, y)k+p(k, y)y. (2)

We can also characterize the second derivatives of T (k, y). Using the concavity prop-

erty we have:

Tkk(k, y) = ∂r
∂k
≤ 0, Tyy(k, y) = −∂p

∂y
≤ 0.

As shown by Benhabib and Nishimura [16], the sign of the cross derivative Tky(k, y)

is given by the sign of the relative capital intensity difference between the two sectors.

Denoting a00 = l0/y0, a10 = k0/y0, a01 = l1/y and a11 = k1/y the capital and labor

coefficients in each sector, it is easy to derive from the constant returns to scale property

that:

dp
dr

= a01

(
a11
a01
− a10

a00

)
≡ b (3)

with b the relative capital intensity difference, and thus

Tky = Tyk = −∂p
∂r

∂r
∂k

= −Tkkb.

The sign of both b and Tky is positive if and only if the investment good is capital intensive.

Note also that Tyy(k, y) can be written as:

Tyy = −∂p
∂r

∂r
∂y

= Tkkb
2.

Remark 1 : The derivative dr/dp = b−1 is well-known in trade theory as the Stolper-

Samuelson effect. Similarly, at constant prices, we can derive the associated Rybczinsky

effect dy/dk = b−1. We therefore find the well-known duality between the Rybczinsky

and Stolper-Samuelson effects.

2.2 Preferences

The economy is populated by a constant population of finitely-lived agents.15 In each

period t, Nt = N persons are born, and they live for two periods: they work during the

first (with one unit of labor supplied) and they have preferences for consumption (ct,

when they are young, and dt+1, when they are old) which are summarized by the utility

15An increasing population could be considered without altering all our results.
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function u(ct, Bdt+1), with B > 0 a normalization constant, such that Assumption 2 is

satisfied.

Assumption 2. u(c, Bd) is increasing in both arguments (uc(c, Bd) > 0 and ud(c, Bd) >

0), concave and C2 over the interior of R2
+. Moreover, limX→0XuX(c,X)/uc(c,X) = 0

and limX→+∞XuX(c,X)/uc(c,X) = +∞, or limX→0XuX(c,X)/uc(c,X) = +∞ and

limX→+∞XuX(c,X)/uc(C,X) = 0.

We also introduce a standard normality assumption between the two consumption

levels.

Assumption 3. Consumptions c and d are normal goods.

We finally consider the following useful elasticities of consumptions:

εcc = −uc/uccc > 0, εcd = −uc/ucdBd, (4)

εdc = −ud/ucdc, εdd = −ud/uddBd > 0 (5)

It is worth noting that the normality Assumption 3 implies 1/εcc − 1/εdc ≥ 0 and

1/εdd − 1/εcd ≥ 0 and concavity in Assumption 2 implies 1/(εccεdd) − 1/(εdcεcd) ≥ 0.

Taking these elasticities, the elasticity of intertemporal substitution between ct and dt+1

writes:

ς(ct, dt+1) =
ud(ct,dt+1)/uc(ct,dt+1)

ct/dt+1
∂(ud(ct,dt+1)/uc(ct,dt+1))

∂(ct/dt+1)

= 1
1
εcc
− 1
εdc

≥ 0. (6)

This elasticity will be used as a parameter driving the existence of endogenous fluctua-

tions.

2.3 The optimal growth problem

Under complete depreciation within one period,16 the capital accumulation equation is:

kt+1 = yt. (7)

Since total labor is normalized to 1, we consider from now on that N = 1. At each time t,

total consumption is then given by the social production function, i.e. ct + dt = T (kt, yt).

The intertemporal objective function of the central planner combines utilities of successive

generations:

16Considering that in an OLG model one period is approximately 30 years, complete depreciation is a
realistic assumption.
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max
{ct,dt+1}

+∞∑
t=0

βtu(ct, Bdt+1) (8)

where β ∈ (0, 1] is the discount factor.17 Considering (7) and the fact that ct = T (kt, yt)−

dt, the optimization program (8) can be equivalently written as follows

max
{dt+1,kt+1}

+∞∑
t=0

βtu(T (kt, kt+1)− dt, Bdt+1) (9)

with d0 and k0 given. The first order conditions are given by the following two difference

equations of order two:

ud(T (kt, kt+1)− dt, Bdt+1)B − βuc(T (kt+1, kt+2)− dt+1, Bdt+2) = 0

uc(T (kt, kt+1)− dt, Bdt+1)Ty(kt, kt+1) +

βuc(T (kt+1, kt+2)− dt+1, Bdt+2)Tk(kt+1, kt+2) = 0.

(10)

Notably, taking some (given) initial conditions (d0, k0), any path that satisfies equations

(10) together with the following transversality conditions,

lim
t→+∞

βtud(ct, Bdt+1)pt+1kt+1 = 0 and lim
t→+∞

βtud(ct, Bdt+1)dt+1 = 0, (11)

is an optimal path.

2.4 Steady state

A steady state is defined as the stationary solution, kt = k∗, dt = d∗, for all t of the

following nonlinear system of equations:

ud(T (k,k)−d,Bd)B
uc(T (k,k)−d,Bd)

= β

−Ty(k,k)

Tk(k,k)
= β.

(12)

Beside discussing the existence and uniqueness of the steady state, note that we further

introduce the B parameter to normalize the stationary consumption d such that it remains

constant when the discount factor β is modified. As in the standard two-sector model,

we get the following result:

Proposition 1. Under Assumptions 1-3, there exists a unique steady state (k∗, d∗) solu-

tion of equations (12). Moreover, there exists a unique value B∗ such when B = B∗, the

stationary consumption d∗ can be normalized to any value d̄ ∈ (0, T (k∗, k∗)).

17In the case β = 1, the infinite sum into the optimization program (8) may not converge. In such a
case we may apply the definition of optimality as provided by Ramsey [54].
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Proof. See Appendix 8.1.

A pair (k∗, d∗) is then defined to be the Modified Golden Rule. Finally, the stationary

consumption of young agents is obtained from c∗ = T (k∗, k∗)− d∗.

2.5 Characteristic polynomial

We are now in a position to derive the characteristic polynomial from total differentiation

of equations (10). Denoting T (k∗, k∗) = T ∗, Tk(k
∗, k∗) = T ∗k and Tkk(k

∗, k∗) = T ∗kk, the

elasticities of the consumption good’s output and the rental rate with respect to the

capital stock, all evaluated at the steady state, can be written as:

εck = T ∗k k
∗/T ∗ > 0, εrk = −T ∗kkk∗/T ∗k > 0. (13)

Then Proposition 2 yields the degree-4 characteristic polynomial and discusses the

multiplicity order of the possible (characteristic) roots.

Proposition 2. Under Assumptions 1-3, the degree-4 characteristic polynomial is given

by

P(λ) = λ4 − λ3B + λ2C − λB
β

+ 1
β2

(14)

with

B = − β
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
+ β+b2

βb
+ εdc

βεcc
+ εcd

εdd

C = − (1+β)
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
+ β+b2

βb

(
εdc
βεcc

+ εcd
εdd

)
+ 2

β

(15)

or equivalently

P(λ) =
[
λ2 − λ

(
εdc
βεcc

+ εcd
εdd

)
+ 1

β

]
(λb−1)(λβ−b)

βb
+ λ(λ− 1)

(
λ− 1

β

)
β
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
(16)

If λ is a characteristic root of (16), then λ̄, (βλ)−1 and (βλ̄)−1 are also characteristic

roots of (16). Moreover, at least two roots or a pair of complex conjugate roots have a

modulus larger than one, and one of the following cases necessarily hold:

i) the four roots are real and distincts,

ii) the four roots are given by two pairs of non-real complex conjugates,

iii) there are two complex conjugates double roots or two real double roots.

Proof. See Appendix 8.2.
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Proposition 2 is of critical importance and several points are worth commenting. First,

it shows that if there exists a pair of complex characteristic roots (λ, λ̄) solutions of the

quartic polynomial (16), then a second pair of complex characteristic roots, (βλ)−1 and

(βλ̄)−1, are also solutions of (16). Therefore, Proposition 2 proves that the 4 characteristic

roots are either all real or all complex. Second, Proposition 2 also implies that at most two

characteristic roots can have a modulus lower than 1 and thus that the steady state can

be either saddle-point stable or totally unstable. Of course in this last case, endogenous

cycles can occur. Third, under Assumption 2, the sign of the expression εcc
εdc
− εcd

εdd
is given

by the sign of the cross derivative ucd, i.e. by the opposite of the sign of εcd, εdc, which is a

crucial ingredient to determine the local stability properties of the steady state. Fourth,

using Eq. (16), when the utility function is non-strictly concave, i.e. if εcc
εdc
− εcd

εdd
= 0,

then the degree-4 polynomial simplifies to a product of two degree-2 polynomials. In this

respect, we first focus on the simpler case of a non-strictly concave utility function (Section

4), and then consider the more general case of strictly concave preferences (Section 5).

Remark 2: The degree-4 characteristic polynomial (14) is a quasi-palindromic equa-

tion that can be solved explicitly, and its roots can be determined using only quadratic

equations (see Appendix 8.9 for details.). As far as we know, this is the first time this

type of methodology is applied to macroeconomic dynamic models. The existence of a

Hopf bifurcation in models featuring forward-looking agents and a competitive equilib-

rium structure has initially been emphasized in Benhabib and Nishimura [15]. However,

due to the dual structure of such models, the consideration of at least three sectors and of

dimension-four dynamical systems has been shown to be necessary to get such determin-

istic fluctuations based on the existence of complex characteristic roots. And as shown in

many contributions, i.e. Magill [38, 39, 40] and Magill and Scheinkman [41], due to the

high dimension of such systems, there is no obvious sufficient conditions for the existence

of complex characteristic roots. In this paper, using the quasi-palindromic structure of

the characteristic polynomial allows us to provide such sufficient conditions.

Remark 3: If b = 0, one gets the one-sector formulation with a two-dimensional dy-

namical system as considered in Michel and Venditti [43]. Indeed, the characteristic

polynomial can be simplified as follows

11



P(λ) = λ2 − λ
εdc
βεcc

+
εcd
εdd
− (1+β)

εcc

εck
εrk

(
εcc
εdc
− εcd
εdd

)
1− β

εcc

εck
εrk

(
εcc
εdc
− εcd
εdd

) + 1
β

The same conclusions as in Michel and Venditti [43] are obviously derived.

Similarly, if the utility function is additively separable, i.e. ucd = udc = 0, we get

the two-sector optimal growth formulation with a two-dimensional dynamical system as

considered in Benhabib and Nishimura [15]. The characteristic polynomial can indeed be

simplified as follows

P(λ) = λ2 − λ(1 + β)
β
εcc

εck
εrk

+(β+b2)

β
εcc

εck
εrk

+(1+β)b
+ 1

β

The same conclusions as in Benhabib and Nishimura [15] are then derived.

3 Period-two cycles under non-strictly concave pref-

erences

In this section we assume that the utility function is non-strictly concave.

Assumption 4. The utility function u(c, Bd) is concave non-strictly, i.e. εcc
εdc
− εcd

εdd
= 0.

In so doing, one can show that the characteristic roots cannot be complex.

Lemma 1. Under Assumptions 1-4, the characteristic roots are real.

Proof. See Appendix 8.3.

Following simultaneously the same methodologies as in the two-sector optimal growth

model and the optimal growth solution of the aggregate OLG model, we discuss the

local stability properties of equilibrium paths depending both on the sign of the capital

intensity difference across sectors b and the sign of the cross derivative ucd, i.e. of the two

elasticities εcd and εdc.

As a first step, Proposition 3 provides some simple conditions ensuring the saddle-

point property with monotone convergence.

Proposition 3. Under Assumptions 1-4, if b ≥ 0 and εcd, εdc ≥ 0, i.e. ucd ≤ 0, then the

equilibrium path is monotone and the steady-state (k∗, d∗) is a saddle-point.

Proof. See Appendix 8.4.
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3.1 A separated mechanism for period-two cycles

We now show that convergence with oscillations and persistent competitive equilibrium

cycles may occur under a quite large set of circumstances.

Proposition 4. Under Assumptions 1-4, the following results hold:

i) When the investment good is capital intensive, i.e. b ≥ 0, let εcd, εdc < 0, i.e.

ucd > 0. Then the steady state (k∗, d∗) is saddle-point stable with damped oscillations if

and only if the elasticity of intertemporal substitution satisfies ς ∈ (0, ς) ∪ (ς̄ ,+∞) with

ς ≡ εccβ
1+β

and ς̄ ≡ εcc
2

Moreover, when ς crosses the bifurcation values ς or ς̄, (k∗, d∗) undergoes a flip bifurcation

leading to persistent period-2 cycles.

ii) When εcd, εdc ≥ 0, i.e. ucd ≤ 0, let the consumption good be capital intensive, i.e.

b < 0. Then the steady state (k∗, d∗) is saddle-point stable with damped oscillations if

and only if b ∈ (−∞,−1) ∪ (−β, 0). Moreover, if there is some β∗ ∈ (0, 1) such that

b ∈ (−1,−β∗), then there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from above,

(k∗, d∗) undergoes a flip bifurcation leading to persistent period-2 cycles.

iii) When the consumption good is capital intensive, i.e. b < 0, and εcd, εdc < 0, i.e.

ucd > 0, the steady state (k∗, d∗) is saddle-point stable with damped oscillations if and

only if b ∈ (−∞,−1) ∪ (−β, 0) and ς ∈ (0, ς) ∪ (ς̄ ,+∞). Moreover, if there is some

β∗ ∈ (0, 1) such that b ∈ (−1,−β∗), then there exists β̄ ∈ (0, 1) such that, when β crosses

β̄ from above or ς crosses the bifurcation values ς or ς̄, (k∗, d∗) undergoes a flip bifurcation

leading to persistent period-2 cycles.

Proof. See Appendix 8.5.

Proposition 4 provides two independent mechanisms leading to the existence of endoge-

nous fluctuations. The first one is based on the properties of preferences through the sign

of the cross derivative ucd and is the most interesting in our context since it allows to

generate period-2 cycles in a two-sector model even under a capital intensive investment

good sector—a condition which is known since Benhabib and Nishimura [16] to ensure

monotone convergence in a standard two-sector optimal growth model.

To provide further economic insights, let us consider an instantaneous increase in the

capital stock kt. Using ct+dt = T (kt, yt) and Tk > 0, it follows that ct increases, and thus,

13



taking that the marginal utility of second period consumption ud is larger as udc > 0, a

constant utility level u(ct, dt+1) can be obtained from a decrease of dt+1. Using the first

equation in (10) and taking dt+1 as given,

∆ct+1

∆ct
= udc

uccβ
+ udd

uccβ
∆dt+1

∆ct
< 0.

Finally, since ct+1 +dt+1 = T (kt+1, yt+1), total consumption at time t+1 is lower, which in

turn implies that a lower capital stock kt+1 when yt+1 holds constant. Endogenous fluc-

tuations are thus generated from intertemporal consumption allocations based on some

substitution effects between the first and second period consumptions. The important

result is that the elasticity of intertemporal substitution needs to be large enough to

allow sufficient substitution between ct and dt+1 to generate aggregate oscillations, but

should not be too large to be compatible with the transversality conditions (11) and a

convergence process towards the period-two cycle.

The second mechanism is, as in the two-sector optimal growth model, based on the

properties of sectoral technologies through the sign of the capital intensity difference

across sectors. Following Benhabib and Nishimura [16], we can use the Rybczinski and

Stolper-Samuelson effects to provide a simple economic intuition for this result. Assume

indeed that the consumption good is capital intensive, i.e. b < 0, and consider an

instantaneous increase in the capital stock kt. This results in two opposing mechanisms:

- On the one hand, the trade-off in production becomes more favorable to the consump-

tion good, and the Rybczinsky effect implies a decrease of the output of the capital good

yt. This tends to lower both the investment and the capital stock in the next period kt+1.

- On the other hand, in the next period the decrease of kt+1 implies again through

the Rybczinsky effect an increase of the output of the capital good yt+1. Indeed the

decrease of kt+1 improves the trade-off in production in favor of the investment good

which is relatively less intensive in capital and this tends to increase the investment and

the capital stock in period t+ 2, kt+2.

Of course, under both mechanisms, the existence of persistent fluctuations require

that the oscillations in consumption and relative prices must not present intertemporal

arbitrage opportunities. Consequently, a minimum level of myopia, i.e. a low enough

value for the discount rate β, is thus necessary.

Note finally that in case iii) of Proposition 4, both mechanisms hold at the same time.

Interestingly, using both β and ς as two bifurcation parameters allows to consider a co-
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dimension 2 bifurcation which corresponds to the flip bifurcation with a 1:2 resonance

where two characteristic roots are equal to −1 simultaneously. As shown in Kuznetsov

[37], in such a configuration, under non-degeneracy conditions, the steady state is either

saddle-point stable or elliptic. This last case may give rise to the existence of quasi-

periodic cycles which are usually associated to a Hopf bifurcation.

3.2 A simple illustration with homogeneous preferences

To shed more light on Proposition 4, we provide an example for all cases. In doing so, we

consider the class of homogeneous of degree γ ≤ 1 utility functions with B = 1,18 which

obviously satisfies Assumptions 2 and 3. Then we introduce the share of first period

consumption within total utility φ(c, d) ∈ (0, γ) defined by:

φ(c, Bd) = uc(c,Bd)c
u(c,Bd)

. (17)

Accordingly, the share of second period consumption within total utility is defined as

γ−φ(c, Bd) ∈ (0, 1). Consequently, using (4)-(5), the elasticities of interest are given by

εcd = − εcc
1−εcc(1−γ)

, εdc = − (γ−φ)εcc
φ[1−εcc(1−γ)]

, εdd = (γ−φ)εcc
φ−εcc(1−γ)(2φ−γ)

. (18)

Furthermore, we impose a restriction on εcc to ensure concavity and the normality goods

assumption.

Assumption 5. εcc ≤ γ
φ(1−γ)

≡ ε̄cc

Therefore it is straightforward to get εdd > 0 while εcd, εcd < 0 if and only if εcc <

1/(1− γ) ≡ ε̃cc(< γ/φ(1− γ)). Moreover, the elasticity of substitution between the two

life-cycle consumption levels is now defined by:

ς(φ) = εcc(γ−φ)
γ−φεcc(1−γ)

∈ (0,+∞) (19)

Notably, if εcc < ε̃cc, then ς(φ) ∈ (0, εcc).

Finally, from the production side, as in Baierl et al. [8], we assume that the con-

sumption and investment goods are produced with Cobb-Douglas technologies as follows

y0 = kα0
0 l1−α0

0 , y = kα1
1 l1−α1

1 (20)

It can be shown that

b = β(α1−α0)
1−α0

(21)

18The normalization constant B is not required for this class of utility functions.
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Finally, for sake of simplicity, γ is set to one, which means that Assumptions 4 and 5

hold, and that ς = εcc(1− φ) < εcc.

We first discuss case iii) of Proposition 4 where a co-dimension 2 bifurcation can arise.

In that respect, we derive the following Corollary:19

Corollary 1. Let the utility function be homogeneous of degree 1 and the sectoral produc-

tion functions be given by (20), and assume that α0 > (1 + α1)/2. Then the steady state

(k∗, d∗) is saddle-point stable with damped oscillations if and only if ς ∈ (0, ς) ∪ (ς̄ , εcc)

and β > β, with

ς = εccβ
1+β

, ς̄ = εcc
2

and β = 1−α0

α0−α1

If β = β and ς = ς̄ or ς, then a co-dimension 2 flip bifurcation with a 1:2 resonance

generically occurs.

Proof. See Appendix 8.6.

While providing a precise dynamic analysis of this co-dimension 2 bifurcation goes far

beyond the objectives of this paper, it is worthwhile to mention that this case provides an

interesting possibility of smooth endogenous fluctuations for the main aggregate variables

which does not arise under a standard flip bifurcation. Indeed, while there does not

a priori exist complex characteristic roots under a linear homogenous utility function,

Kuznetsov [37] shows that under a 1:2 resonance, the steady state can be elliptic and a

stable limit cycle, similar to those that arise under a Hopf bifurcation, can occur. As

pointed out in the next section, a Hopf bifurcation provides another tool to describe the

long-run cyclical behavior of macroeconomic variables such as bequests.

Second, we focus on case (i) of Proposition 4 in which the investment good is capital

intensive. The occurrence of endogenous fluctuations is then characterized in Corollary

2. Note that the result does not depend on the sign of the capital intensity difference

and also holds if the consumption good is capital intensive.

Corollary 2. Let the utility function be homogeneous of degree 1 and the sectoral produc-

tion functions be given by (20). Then, for any of α0, α1 ∈ (0, 1), the steady state (k∗, d∗)

is saddle-point stable with damped oscillations if and only if ς ∈ (0, ς)∪(ς̄ , εcc). Moreover,

19Similar conclusions can be derived using instead CES technologies with non unitary sectoral elas-
ticities of capital-labor substitution. It can be shown indeed that our conclusions are robust to a wide
range of values for these parameters. A proof of this claim is available upon request.
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when ς crosses the bifurcation values ς or ς̄, (k∗, d∗) undergoes a flip bifurcation leading

to persistent period-2 cycles.

Finally, we focus on case (ii) of Proposition 4 where endogenous fluctuations arise for

any given value ς ∈ (0, ς)∪ (ς̄ , εcc) when the consumption good sector is capital intensive.

Corollary 3. Let the utility function be homogeneous of degree 1 and the sectoral produc-

tion functions be given by (20). Assume also that ς ∈ (0, ς)∪ (ς̄ , εcc) and α0 > (1 +α1)/2.

Then the steady state (k∗, d∗) is saddle-point stable with damped oscillations if and only

if β > β. Moreover, when β crosses the bifurcation value β, (k∗, d∗) undergoes a flip

bifurcation leading to persistent period-2 cycles.

This case is presented here for illustration as it corresponds to the main conclusions

of Benhabib and Nishimura [16] derived in a standard two-sector optimal growth model.

4 Quasi-periodic cycles under strictly concave pref-

erences

As explained above, using a non-strictly concave utility function is convenient in the

sense that it reduces the degree-4 characteristic polynomial to the product of two degree-

2 polynomials. In such a framework, we have shown that the characteristic roots are

necessarily real and that endogenous fluctuations can occur through the existence of

period-two cycles. Notably the preference and technology mechanisms are separated and

lead independently to the occurrence of endogenous fluctuations. Relaxing this sim-

plifying assumption, our objective here is to prove that the preference and technology

mechanisms can mix together, and then complexify and amplify the possible endogenous

fluctuations in the context of strictly concave preferences.

4.1 A mixed mechanism for the existence of quasi-periodic cy-

cles

We now need to focus on the existence of complex characteristic roots and quasi-periodic

cycles occurring through a Hopf bifurcation. Therefore we start by providing general

sufficient conditions allowing to rule out the existence of complex roots.
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Proposition 5. Under Assumptions 1-3, let the utility function u(c, Bd) be strictly con-

cave. Then the roots of the characteristic polynomial (16) are necessarily real in the

following cases:

i) for any sign of εcd, εcd if the investment good sector is capital intensive, i.e. b > 0,

ii) if εcd, εcd > 0 and the consumption good sector is capital intensive, i.e. b < 0.

Proof. See Appendix 8.7.

Necessary conditions for the existence of complex roots are therefore based on the

two mechanisms that generate endogenous fluctuations in the non-strictly concave case,

namely b < 0 and εcd, εcd < 0.

In order to study whether complex characteristic roots and a Hopf bifurcation with

quasi-periodic cycles can occur, we consider again a utility function homogeneous of

degree γ, but with γ < 1 to allow for strict concavity.

We first derive sufficient conditions to ensure saddle-point property of the steady state

with real characteristic roots.

Proposition 6. Let the utility function be homogeneous of degree γ < 1, and assume

that εcc < ε̃cc, b ∈ (−∞,−1) ∪ (−β, 0) and

− εck
bεrk

> 1 (22)

Then there exist 0 < ς ≤ ς̄ < εcc and ε̂cc ∈ (0, ε̃cc) such that when ς ∈ (0, ς) ∪ (ς̄ , εcc)

the characteristic roots are real and the steady-state is saddle-point stable. Moreover,

i) when ς ∈ (0, ς), the optimal path converges towards the steady state with oscillations

if εcc ∈ (0, ε̂cc) or monotonically if εcc ∈ (ε̂cc, ε̃cc),

ii) when ς ∈ (ς̄ , εcc), the optimal path converges towards the steady state with oscilla-

tions.

Proof. See Appendix 8.8.

Condition (22) allows to get the existence of the bound ε̂cc and thus the occurrence

of oscillations when the elasticity of intertemporal substitution is low, i.e. ς ∈ (0, ς).

This restriction can be easily interpreted. Denoting σi the elasticity of capital-labor

substitution in sector i = 0, 1 and using Drugeon [25], we can relate the ratio of elasticities

εck/εrk to an aggregate elasticity of substitution between capital and labor, denoted Σ,
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which is obtained as a weighted sum of the sectoral elasticities σi:
20

εck
εrk

=
(
T
l20

)
s

1−s
Σ

GDP
with Σ = GDP

pykT
(pyk0l0σ0 + Tk1l1σ1) , (23)

GDP = T + py and s = rk/GDP the share of capital income in GDP. Therefore, os-

cillations when φ ∈ (φ̄, γ) are associated with a large aggregate elasticity of substitution

between capital and labor i.e., large enough sectoral elasticities of capital-labor substitu-

tion.

Proposition 6 implies that the existence of complex roots, if any, requires to consider

intermediate values for the elasticity of intertemporal substitution ς between the first and

second period consumptions, i.e. ς ∈ (ς, ς̄). As mentioned previously, the degree-4 char-

acteristic polynomial (14) is a quasi-palindromic equation that can be solved explicitly,

and its roots can be determined using only quadratic equations. As shown in Appendix

8.9, we apply this methodology in order to provide sufficient conditions for the occurrence

of complex roots and a Hopf bifurcation. As far as we know, this is the first time this type

of sufficient conditions are exhibited in 4-dimensional optimal growth models. We there-

fore provide some positive issue to the previous contributions, i.e. Magill [38, 39, 40] and

Magill and Scheinkman [41], where it has been shown that no obvious sufficient conditions

for the existence of complex characteristic roots can be exhibited.

We can indeed derive the following result:

Proposition 7. Let the utility function be homogeneous of degree γ < 1, and assume

that εcc < ε̃cc and b ∈ (−β, 0). Then there exist b̄ ∈ (−β, 1), γ ∈ (0, 1), εcc, ε̄cc ∈ (0, ε̃cc),

ε̄ > 0 and four critical values (ς ≤)ςc < ςH < ς̄H < ς̄c(≤ ς̄) such that when b ∈ (−β, b̄),

γ ∈ (γ, 1), εcc ∈ (εcc, ε̄cc) and

− εck
bεrk

< ε̄ (24)

the following results hold:

i) the steady state (k∗, d∗) is saddle-point stable with damped oscillations if ς ∈

(ςc, ςH) ∪ (ς̄H , ς̄c),

ii) when ς crosses the bifurcation values ςH or ς̄H , (k∗, d∗) undergoes a Hopf bifurcation

leading to persistent quasi-periodic cycles.

Proof. See Appendix 8.9.

20The expression of Σ is derived from Proposition 2 in Drugeon [25].
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From a theoretical point of view, Proposition 7 provides a strong conclusion as it shows

that a Hopf bifurcation and quasi-periodic cycles can occur in a two-sector optimal growth

framework as long as it is based on an OLG structure with non-separable and strictly

concave preferences. More specifically, we need intermediate values for the elasticity εcc

and the elasticity of intertemporal substitution ς between the first and second period

consumptions, together with, using (23), a not too large value for the sectoral elasticities

of capital-labor substitution.

Such a result is drastically different from what can be obtained in standard optimal

growth models as the existence of complex roots requires to consider at least three sec-

tors.21 This can be explained by the fact that we can mix here two mechanisms based

on both preferences and technology, while in standard optimal growth models only the

technology mechanism arises and thus requires more than two sectors to generate quasi-

periodic fluctuations. In our case, the preference mechanism based on a substitutability

effect between first and second period consumptions, and the technology mechanism

based on a capital intensive consumption good sector feed each other when the utility

function is strictly concave and amplify the endogenous fluctuations of capital and con-

sumption. More complex quasi-periodic fluctuations can thus occur for adequate values

of the elasticity of intertemporal substitution in consumption.

4.2 A simple illustration

Let us now focus on a numerical illustration. Considering that the annual discount factor

is often estimated to be around 0.96 and that one period in an OLG model is about

30 years, we consider here that β = 0.9630 ≈ 0.294. Focusing on a slight deviation with

respect to the linear homogeneous case with γ = 0.98, let us then assume a standard value

εcc = 1 that satisfies εcc ∈ (εcc, ε̄cc). We also consider sectoral Cobb-Douglas technologies

as given by (20) with α0 = 0.6 and α1 = 0.21 so that the consumption good is capital

intensive with b ≈ −0.28665 close to −β.22 The bounds exhibited in Proposition 7 are

equal to ςc ≈ 0.1194 and ς̄c ≈ 0.6083. We then find that the characteristic polynomial

(60) admits four characteristic roots λ1, λ2, λ3, λ4 that are complex conjugate by pair

21See Benhabib and Nishimura [15], Cartigny and Venditti [18], Venditti [58].
22The existence of a Hopf bifurcation can also be obtained using instead CES technologies with non

unitary sectoral elasticities of capital-labor substitution. As in the case with period-two cycles, our
conclusions are robust to a wide range of values for these parameters. A proof of this claim is also
available upon request.
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with λ1λ2 > 1 and λ3λ4 < 1 if ς ∈ (ς, ςH) ∪ (ς̄H , ς̄) while λ3λ4 > 1 if ς ∈ (ςH , ς̄H), with

ςH ≡ 0.3193 and ς̄H ≡ 0.426. Moreover λ3λ4 = 1 when ς = ςH or ς̄H . As a result ςH and

ς̄H are Hopf bifurcation values giving rise to quasi-periodic cycles in their neighborhood.

5 The solution with altruistic agents and a bequest

motive

As a final step, we need to show that the existence of optimal endogenous cycles is com-

patible with strictly positive bequest transmissions across generations. We thus consider

a decentralized economy composed of overlapping generations of parents loving their

children. As in the Barro [9] formulation, each agent is altruistic towards his descendant

through a bequest motive.23 Parents indeed care about their child’s welfare by taking into

account their child’s utility into their own utility function. They are now price-takers,

considering as given the prices pt, wt and rt+1 as defined by (2), and determine their

optimal decisions with respect to their budget constraints

wt + ptxt = ct + ζt and Rt+1ζt = dt+1 + pt+1xt+1 (25)

with Rt+1 = rt+1/pt the gross rate of return, ζt the savings of young agents born in t

and xt the amount of bequest transmitted at time t by agents born in t − 1. Note that

bequest xt is expressed as an investment good and requires the relative price pt to enter

the budget constraints. In each period, bequests must be non-negative:

xt ≥ 0 for all t ≥ 0 (26)

An altruistic agent has a utility function given by the following Bellman equation

Vt(xt) = max
{ct,dt+1,st,xt+1}

{u(ct, Bdt+1) + βVt+1(xt+1)}

= max
{ct,dt+1,st,xt+1}

+∞∑
t=0

βtu(ct, Bdt+1)

(27)

subject to (25) and (26). Note that β is now interpreted as the intergenerational degree

of altruism.

23The co-existence of altruistic and non-altruistic agents as in Nourry and Venditti [50] could also be
considered.
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5.1 The decentralized equilibrium with positive bequests

It is well-known from the first welfare theorem that this altruistic problem is equivalent

to the central planner problem (8), and the equilibrium is the unique Pareto optimum

which coincides with the centralized solution. However, such an equivalence requires the

non-negativity constraints of bequests (26) to hold with a strict inequality in order to

preserve the link across generations. Substituting the expressions of ct and dt + 1 from

the budget constraints (25) into the optimization problem (27) we get

max
{ζt,xt+1}

+∞∑
t=0

βtu(wt + ptxt − ζt, B[Rt+1ζt − pt+1xt+1]) (28)

The first order conditions are given by

uc(ct, Bdt+1)− ud(ct, Bdt+1)BRt+1 = 0 (29)

βuc(ct+1, Bdt+2)− ud(ct, Bdt+1)B ≤ 0 with an equality if xt > 0 (30)

Consider now the two budget constraints in (25) evaluated at the steady state. Solving

with respect to ζt, and using the fact that ζt = ptyt = ptkt+1 and Rt+1 = rt+1/pt, we get

p∗x∗
(
1− 1

R∗

)
= c∗ + d∗

R∗ − w∗ = T (k∗, k∗)− w∗ − d∗
(
1− 1

R∗

)
= (r∗k∗ − d∗)

(
1− 1

R∗

)
.

(31)

If x∗ > 0, i.e. r∗k∗ > d∗, then we derive from the first order conditions that R∗ = r∗/p∗ =

β−1 and ud(c
∗, Bd∗) = βuc(c

∗, Bd∗), which are exactly the same conditions as (12). Then

Proposition 8. Under Assumptions 1-3, for any β ∈ (0, 1), there exists a unique value

B∗ such that when B = B∗, bequests are positive in the economy with a degree of altruism

equal to β.

Proof. See Appendix 8.10.

When bequests are positive at the steady state, then by continuity there are positive

in a neighborhood of the steady state and we may study the local stability properties of

the equilibrium path considering equation (30) with an equality. We need first to derive

the precise expression of the dynamical system. Plugging equation (29) into equation (30)

considered with an equality, and using the fact that Rt+1 = rt+1/pt, we get the following

dynamical system
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uc(ct, Bdt+1)pt − βrt+1uc(ct+1, Bdt+2) = 0 (32)

βuc(ct+1, Bdt+2)− ud(ct, Bdt+1)B = 0. (33)

Taking now that pt = −Ty(kt, kt+1), rt+1 = Tk(kt+1, kt+2) and ct = T (kt, kt+1) − dt, we

immediately conclude that these equations are identical to the two difference equations of

order two given by (10). Solving these two equations considering the transversality condi-

tions (11) yields the equilibrium paths for capital {kt}t≥0 and second period consump-tion

{dt}t≥0. The dynamics of bequests is then derived from the budget constraints (25) as

follows

ptxt = rtkt − dt (34)

whereas the dynamics of bequests as a proportion of GDP is

ptxt
GDPt

= ptxt
T (kt,kt+1)+ptyt

= s(kt, kt+1)− dt
T (kt,kt+1)−Ty(kt,kt+1)kt+1

.
(35)

with

s(kt, kt+1) = Tk(kt,kt+1)kt
T (kt,kt+1)−Ty(kt,kt+1)kt+1

the share of capital income in GDP. We can then derive the following Proposition:

Proposition 9. Under Assumptions 1-3, the local stability properties provided in Proposi-

tions 3, 4 and 7 hold for both bequests as defined by (34) and bequests as a proportion of

GDP as defined by (35). In particular, bequests and bequests as a proportion of GDP can

be characterized by optimal periodic and quasi-periodic cycles.

Proof. See Appendix 8.11.

This Proposition may explain long-run fluctuations of both bequests and bequests as a

proportion of GDP, and provides a theoretical basis to explain the empirical evidence

derived in Section 6 showing that the annual inheritance flow as a fraction of national

income displays medium- and long-run fluctuations.

5.2 An illustration with positive bequests and endogenous fluc-

tuations

We consider again our benchmark example in Section 3.2. with a linear homogeneous

utility function (γ = 1), and the Cobb-Douglas production structure described by (20).

Using the expression of the elasticity of substitution ς as given by (19) and the expression
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for the stationary capital stock (56) in Appendix 8.6, we derive that r∗k∗ > d∗ and thus

x∗ > 0 if and only if

α0β(εcc−ς)
ς

− (1− α0 − βα1) > 0

It follows immediately that if α1 > 1 − α0 and β > (1 − α0)/α1, then 1 − α0 − βα1 < 0

and x∗ > 0 for any ς ∈ (0, εcc). The existence of periodic cycles is thus compatible with

positive bequests. Similarly, when α1 < 1− α0, straightforward computations show that

x∗ > 0 if and only if

ς < α0βεcc
1−α0+β(α0−α1)

≡ ς̃1

Therefore the conditions of Corollary 2 for the existence of period-2 cycles can be satisfied

if ς̃1 > ς̄ = εcc/2. Sufficient conditions for this inequality to be satisfied are given by

α1 ∈ (1− 2α0, 1− α0) and β > (1− α0)/(α0 + α1) ≡ β with β < 1. This example clearly

shows that when the degree of altruism is large enough, endogenous optimal fluctuations

are compatible with positive bequests. Moreover, this result holds for any sign of the

capital intensity difference across sectors.

It is worth noticing that if, under α1 ∈ (1 − 2α0, 1 − α0), we assume that ς < ς̃1

with ς̃1 < ς, then bequests are positive but the conditions of Corollary 2 for the existence

of period-2 cycles cannot be satisfied and the steady state is saddle-point stable. This

inequality is satisfied if and only if α1 ∈ (1−2α0, 1−α0), α0 < 1/2 and β < (1−2α0)/α1.

Therefore, if the degree of altruism is not large enough, persistent endogenous fluctuations

cannot arise.

Let us finally illustrate the possible existence of quasi-periodic cycles under positive

bequests when the utility function is homogeneous of degree γ < 1 as in Section 4. Using

again the expression of the elasticity of substitution ς as given by (19) and the expression

for the stationary capital stock (56) in Appendix 8.6, we derive that r∗k∗ > d∗ and thus

x∗ > 0 if and only if

α0φβ − (γ − φ) (1− α0 − βα1) > 0

Consider then the particular illustration in Section 4 which is such that 1−α0−βα1 > 0

and α0 > α1. It follows that bequests are positive if and only if

ς < α0βεcc
1−α0+β(α0−α1)−εcc(1−γ)(1−α0−βα1)

≡ ς̃γ
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This condition can be satisfied only if

εcc <
1−α0+β(α0−α1)

(1−γ)(1−α0−βα1)

With γ = 0.98, εcc = 1, α0 = 0.6 and α1 = 0.21, we get ς̃γ ≈ 0.3566 ∈ (ςH , ς̄H). It follows

that positive bequests are compatible with quasi-periodic cycles. Indeed, the steady state,

which is characterized by strictly positive bequests if ς < ς̃γ, is saddle-point stable with

damped oscillations if and only if ς ∈ (ςc, ςH). Moreover, when ς crosses the bifurcation

values ςH from below, the steady state undergoes a Hopf bifurcation leading to persistent

quasi-periodic cycles and thus long-run fluctuations of bequests.

6 Long-run cycles and inheritance: an empirical as-

sessment

The objective of this section is to provide a qualitative assessment of the existence of limit

cycles of bequests (relative to national income) in the light of our results in Section 5.

Especially, we discuss indirect empirical evidence that is consistent with the emergence

of a period-2 cycle or of (quasi-) periodic (long-run) cycles.24

6.1 Empirical relevance of flip versus Hopf bifurcations

One critical issue is that the dynamics engendered by either a flip or a Hopf bifurcation

have different implications from an empirical point of view. The former leads to a period-2

cycle whereas the latter to a (limit) periodic or quasi-periodic cycle.

On the one hand, the flip bifurcation leads to a period-2 cycle that can be seen

as the stationary solution of the initial dynamic system iterated at order 2.25 This

24A more structural approach will require to simulate and estimate the OLG model in the presence of
stochastic limit cycles (i.e., a deterministic limit cycle where the stochastic component is essentially an
i.i.d. process). This could be done by determining the topological normal form for the flip (respectively,
Hopf) bifurcation using Taylor expansions (see Kuznetsov [37]) or perturbation methods (e.g., Galizia
([28])). Note that the addition of shocks to our 2-sector OLG model will eliminate the perfect pre-
dictability of the endogenous cyclical forces, but does not change the endogenous mechanisms explained
before. We leave this issue for further research.

25For sake of illustration, and without loss of generality, consider the following (univariate) discrete
dynamical system:

x 7→ f(x;α) ≡ fα(x) (36)

where the map fα is invertible for small |α| in the neighborhood of the origin and the system has the
fixed point x0 = 0 for all α. Consider now the second iterate f2α(x) of the map (36). The map f2α has
the trivial fixed point x0 = 0 but also two nontrivial fixed points for small α > 0
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iterated system usually leads to the resolution of a degree-2 polynomial that gives a

high steady-state (above the initial stationary state) and a low steady-state (below the

initial stationary state), i.e. the period-2 cycle.26 If we are in the period-2 cycle, every

two periods we return to one of the two steady-states of the second iterate of the initial

dynamical system. In this respect, it turns out that the flip bifurcation, and thus the

period-2 cycle, rests on the long-run component of the inheritance flows as a ratio of

national income (or flows). Therefore it is critical to extract this component and to

characterize its dynamics.

In the case of Hopf bifurcation the dynamics are different. Notably one obtains a

periodic orbit that corresponds to a ”circle”. If one is on this circle, the dynamics are

either periodic or quasi-periodic. It depends on the curvature coefficient (or stability

index) that is obtained through a tedious derivation of the (topological) normal form of

the Hopf bifurcation by means of smooth invertible coordinate and parameter changes.

In particular, if this coefficient is rational then the dynamics on the circle are periodic,

whereas if this coefficient is irrational, the dynamics on the circle are almost periodic,

i.e. dense on the circle. From an empirical point of view, in the same spirit as Beaudry

et al. [13], Charpe et al. [19], and Muck et al. [33], it means that one would expect a

significant contribution of the medium-term component of the inheritance variable (after

extracting the long-run component).27

xi = f2α(xi) i = 1, 2

that satisfy (period-2 cycle)

x2 = fα(x1) and x1 = fα(x2)

with x1 6= x2 and x1 and x2 are two stable or unstable equilibria depending on the sign of the coefficient
associated to the degree-3 term in a normal from expression of (36) (see footnote 26). For further
technical details, see Chapters 4 and 9 of Kuznetsov ([37]).

26Under suitable regularity conditions, starting from the map (36), one can show that there exists a
topological normal form for the flip bifurcation defined by:

η 7→ −(1 + β)η + sη3

where β = g(α) with g(0) = 0, and η is defined from successive changes of coordinates and parameters.
On top of the trivial stationary solution η = 0, this leads to the resolution of a degree-2 polynomial. The
equilibria x1 and x2 are stable (unstable) if s = −1(+1). For further technical details, see Theorem 4.3.
of Kuznetsov ([37]).

27While there is no consensus, it is generally considered that the high-frequency component captures
the periodicity below 8 years, i.e. business fluctuations and noise, the medium-frequency component the
periodicity between 8 and 30 to 50 years, and the low-frequency component the periodicity above 30 to
50 years.
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6.2 The long-run component of bequests

To assess some empirical relevance of period-2 cycles, we proceed in two steps. First,

we consider the (stochastic) long-run component of the inheritance flows as a fraction of

national income using the low-frequency approach initiated by Müller and Watson ([47],

[48]) and a bandpass filter. Second, as in Müller and Watson ([47],[45]), we make use

of some parametric models of persistence to characterize the dynamics of the long-run

component.

In this respect, Figure 1 depicts the inheritance flow as a fraction of national income

for France using annual data from 1897 through 2008, and three filter-based long-run

components. The inheritance variables displays medium- to long-run swings: it was

about 20–25% of national income between 1820 and 1910, down to less than 5% in 1950,

and back up to about 15% by 2010.28 Notably, Figure 1 suggests a long-run cyclical

behavior of inheritance flows.29. One key issue regards the stationarity of this series.

Standard stationary tests report mixed evidence, especially due to our sample size and

the corresponding low power of unit root tests to distinguish between non-stationary and

near-stationary stochastic processes.30 We further discuss this issue later on.

Using the structural breakpoint tests of Andrews ([1]) and Andrews and Ploberger

([2]) with a standard 15% sample trimming, both the exponential statistics and the

simple average of the individual F-statistics provide no empirical support for the existence

of a structural break over the period 1912-1991, when the data generating process of

the observed series is assumed to be an autoregressive process of order one, AR(1).31.

Furthermore, the (sequential) multibreak points test of Bai and Perron ([5], [6], and [7])

report no evidence against the null hypothesis of no break when using a 15% trimming, a

28Using Eq. (1) of Piketty [51], the inheritance flow as a ratio of national income is defined by:
Bt

Yt
= µt ×mt × Wt

Yt

where Bt, Yt, Wt, µt and mt denote respectively the aggregate inheritance flow, the aggregate national
income, the aggregate private wealth, the mortality rate and the ratio between average wealth of the
deceased and average wealth of the living. For further details, see Section 3 and the technical appendix
of Piketty [51], , and Piketty and Zucman [53].

29A similar pattern is observed with UK data as shown by Atkinson [3]
30Appendix 8.12 reports the spectral density of the inheritance variable, with a typical hump shape and

a peak at low frequency. As a robustness analysis, we also transform our data using the first difference
operator and apply the Baxter-King filter. This requires in turn to cumulate the filtered series. On the
other hand, using the appropriate asymptotic results, the low-frequency approach of Müller and Watson
([47], [48]) remains valid for I(1) models. Therefore we consider the level specification as a more plausible
way to extract the long-run component, possibly at the expense of a loss of efficiency for the Baxter-King
filter.

31Results are not reported here but available upon request
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upper bound of five structural breaks, and a 5% significance level: the scaled F-statistics,

which equals 5.53, is far below the critical value (11.47). In this respect, there is no

compelling evidence that the inheritance ratio displays structural breaks or even some

regime changes (e.g., a Markov switching model). However, the small sample size of our

annual data might be an issue, as well as the absence of an incomplete long-run cycle in

the observed variable.

Turning to the filtered series, the first long-run component is obtained from the ap-

proximate low bandpass filter of Baxter and King ([10]).32 We filter the high- and

medium-frequency with periodicity below 40 years.33 On the other hand, the second

trend is constructed using the methodology proposed by Müller and Watson ([47], [48]),

namely by extracting long-run sample information after isolating a small number of low-

frequency trigonometric weighted averages.34 In so doing, we project the series into a

constant and twelve (q) cosine functions with periods 2T
j

for j = 1, · · · , 12 in order to

capture the variability for periods longer than 20 years (2T/q). Importantly, one advan-

tage of the low-frequency approach of Müller and Watson ([47], [48]) relative to bandpass

or other moving average filters, is that it is applicable beyond the I(0) assumption.35

Finally, for sake of comparison, the third long-run component is obtained after adjusting

a quadratic trend.

A quick eye inspection suggest that the bandpass and projection-based (using q = 6)

trends contribute significantly to the total variability of the initial series, and display a

nonlinear pattern. One main difference between these two measures is that the cosine

transforms only use a limited number of points, which is consistent with the periodogram

of the inheritance variable and the number of periodogram ordinates that fall into the

low-frequency region. Intuitively, 112 years of data contain only limited information

about long-run components with periodicities of more than 30 or 40 years.

To further highlight some statistical features of the inheritance variable, we make long-

run inference regarding the mean, the standard deviation and conduct some persistence

32We also implement the asymmetric filter proposed by Christiano and Fitzgerald ([21], [20])
33Qualitative conclusions remain robust when considering other periodicities.
34Let {xt, t = 1, · · · , T} denote a (scalar) time series. Let Ψ(s) = [Ψ1(s), · · · ,Ψq(s)]

′
denote a Rq-

valued function with Ψj(s) =
√

2cos(jsπ), and let ΨT =
[
Ψ
(
1−0.5
T

)
,Ψ
(
2−0.5
T

)
, · · · ,Ψ

(
T−0.5
T

)]′
denote

the T × q matrix after evaluating Ψ(.) at s = t−0.5
T , for t = 1, · · · , T . The low-frequency projection is

the fitted series from the OLS regression of [x1, · · · , xT ] onto a constant and ΨT .
35For an extensive discussion about the relationship of this approach with spectral analysis, the scarcity

of low-frequency information, and the relevance of the approximation using a small q, see Müller and
Watson ([47])
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Figure 1: Inheritance and long-run components

tests (Müller and Watson, [48]). In doing so, we first suppose that the variable of interest,

xt, can be represented as xt = µ + ut , where µ is the mean of x and ut is a zero mean

(persistent) stochastic process. We first infer about the long-run variance (ω2) and mean

(µ) of the inheritance variable. Table 1 provides the relevant descriptive statistics and

the resulting confidence intervals.

Table 1: Descriptive statistics for the inheritance variable

Long-run mean µ 0.11

Long-run standard deviation ω 0.20

90% Confidence interval for µ [0.08; 0.14]

90% Confidence interval for ω [0.15; 0.30]

Note: (1) The 90% confidence interval for the mean is constructed as µ̂T ± 1.78 ω̂T√
T

where 1.78 is 95th

percentile of a Student distribution with twelve degrees of freedom. (2 ) The 90% confidence interval for

ω is constructed as [T
∑q

j=1 β̂
2
j,T

χ2
q,0.975

;T
∑q

j=1 β̂
2
j,T

χ2
q,0.025

] where q denotes the number of cosine functions, β̂j,T is the

OLS estimate of the parameter associated to the jth cosine function, and χ2
q,α is the αth quantile of the

Chi-squared distribution with q degrees of freedom.

Several points are worth commenting. First, the long-run mean is larger than the

unconditional mean of the inheritance variable (9%) as well as the values observed after
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the Second World War up to the last decade. It partly captures the largest values observed

at the beginning of the same and before the First World War when the inheritance ratio

was about 20–25% of national income. It also means that the inheritance variable is slowly

reverting and, due to the scarcity of yearly data in the nineteenth century, we can only

observe part of the dynamics.36 Second, the inheritance variable displays a substantial

long-run standard deviation (variability). Finally, as to be expected, the 90% confidence

interval for the long-run standard deviation (and thus the mean) is rather large. Indeed,

this uncertainty is explained by the fact that the long-run variance is computed using

only q observations, and thus ω̂2
T is not consistent.37

Moreover, these confidence intervals for ω and µ are based on the assumption that

the series is weakly stationary. In this respect, we contrast our specification with a local-

to-unit (LTU) AR model (e.g., Phillips [52]) in which xt = µ + ut, and ut = ρTut−1 + vt

for all t with an autoregressive coefficient ρT = 1 − c/T and vt is a weakly stationary

process.38 Notably, , we can assess the persistence of the long-run component, and

especially perform the low frequency version of the Neyman-Pearson point-optimal test

to assess the null of a stationary process—the so-called LFST test (see Müller and Watson,

[46]).39 Unsurprisingly, the results depend on the number of cosine functions q: there is

evidence against the null of stationary when q increases. In this respect, following the

approach of Müller and Watson ([45]), we determine the largest value of q such that the

low-frequency transformed data are consistent with the local-level I(0) model. Results

show that the null hypothesis of an I(0) model is rejected for values of q > 5 at 5%, i.e. a

95% confidence interval for periods for which the inheritance ratio variable behaves like

a weakly stationary process includes periods greater than 45 years. To provide further

evidence on the slowness of the mean reversion property, we estimate an autoregressive

model of order one, after demeaning the initial series with respect to the long-run mean

36Interestingly, reported data with a 10-year frequency (see Figure 1 in Piketty ([51]) are likely to
suggest a high and low persistent regime of the inheritance ratio with a potential structural break at the
beginning of the twentieth century.

37Note that the asymptotic theory requires that q is held fixed as T →∞. In addition, it is well-known
that consistent long-run variance estimators generally perform poorly in finite samples, and especially
as the sample size is small and the series is persistent (Müller, [44]).

38We also consider the ”local-level” model in which the initial series is the sum of I(0) and I(1) processes,
as well as a fractional model in which (1− L)dxt = vt where L is the lag operator, −0.5 < d < 1.5 and
vt is a weakly stationary process.

39We also conduct the low frequency version of the point-optimal unit root test of Elliott et al. ([27]),
the so-called LFUR test, to assess the null of non stationarity. Results are qualitatively similar. Results
are available upon request.
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x̃t = xt− µ̂ for t = 1, · · · , T , and determine the corresponding half-time, i.e. the time for

the expected value of the inheritance ratio to reach the middle value between the current

value and the long-run mean µ̂ (see Table 1). This leads to a statistically significant

autoregressive parameter estimate of 0.967, and thus an half-time around 20.5 years,

which is consistent with our result of the recursive low-frequency stationary (or unit

root) test—stationarity requires at least periods greater than 45 years. Both the half-

time and the minimal periodicity are in line with a two-period model in which each period

lasts approximately 35 to 40 years.

Assuming that this long-term component is captured by the balanced growth path or

deviations from a steady-state, the empirical evidence is not at odds with the existence

of a flip bifurcation. Nevertheless, we find no support for the presence of either structural

break points nor regimes switches, which would better characterized the implications of

a period-2 cycle.

6.3 The medium-term cyclical component of bequests

Capitalizing on the long-run component, we now consider the cyclical component defined

as the inheritance ration variable in deviation of the long-run (stochastic) trend. Figure

2 displays the three series using the low frequency approach of Müller and Watson ([45]),

the approximate Baxter-King filter and the quadratic trend.

Figure 2: Inheritance and short- to medium-run components
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We then focus on the spectral density, which can depicts the contribution of cycles of

different frequencies in explaining the data. Especially, when the spectral density displays

a substantial pick at a given frequency, this provides some support of recurrent (short-

or medium-run) cyclical fluctuations at that frequency.

Figure 3: Spectral density of the inheritance variable

Figure 3 displays the spectral density of the projection-based cyclical component (using

q = 6). We first report two nonparametric power spectral density estimates by applying

a Blackman-Tukey window (red line) and a Parzen window (blue line) to the covariogram

of the filtered series before using a fast Fourier transform algorithm. For comparison, we

also report on the same axes the spectra when first passing the series through various

high bandpass filters that remove some remaining low-frequency. We highlight in dark

grey the band of frequencies corresponding to periodicities from 24 to 40 (or 50) years.

Irrespective of the method used, one dominant feature is the distinct peak in the spectral

density around 32 years and the local hump in its neighborhood. This suggests that the

inheritance variable exhibits important recurrent cyclical phenomena at approximatively

30-year intervals, which is consistent with the occurrence of Hopf-based limit cycles.

Following Beaudry et al. [13], we formally test the presence of a shape restriction on the

spectral density. In so doing, we consider a ”peak range” for 24-40 years and test the

null hypothesis of a flat spectral density against a ”peak range”. We strongly reject at 5

percent level that the spectrum is flat in the ”peak range”. This result is robust when

considering a narrow ”peak range”.
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To summarize, while the presence of a peak range does not necessarily imply strong

endogenous cyclical forces and the empirical relevance of a Hopf bifurcation, it says again

that data can not, at least, contradict the existence of endogenous (stochastic) limit

cycles.

7 Concluding comments

This paper explores the existence of limit cycles to explain the behavior of the annual flow

of inheritance (in level or a as share of national income) as a complementary interpretation

of the results of Piketty [51].

Using a two-sector Barro-type [9] OLG model with non-separable preferences and

bequests, we show that two endogenous mechanisms, which can operate independently or

together, can be identified as long as agents are sufficiently patient. The first mechanism

relies on the elasticity of intertemporal substitution or equivalently the sign of the cross-

derivative of the utility function whereas the second rests on sectoral technologies through

the sign of the capital intensity difference across the two sectors. Accordingly, mild and

plausible perturbations of these parameters can lead to endogenous fluctuations through

period-2 cycles or Hopf bifurcations.

From a methodological point of view, we exploit the quasi-palindromic nature of

the characteristic equation associated to the optimal growth solution without bequest

to derive some meaningful sufficient conditions associated to the occurrence of complex

roots in a two-sector OLG model. We then show that the decentralized problem in

the presence of altruistic parents is equivalent to the central planner problem (without

bequest). Finally, our theoretical results are consistent with some empirical evidence for

medium- and long-run swings in the inheritance flows as a fraction of national income

in France over the period 1896-2008. Notably, the contribution of the medium term

component does not run counter the existence of Hopf bifurcations.

A first avenue of future research would be to consider a stochastic version of our

model and thus to characterize the existence of stochastic limit cycles. Another research

perspective would be to study more deeply the econometrics of long-run/endogenous

cycles.
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8 Appendix

8.1 Proof of Proposition 1

Consider in a first step the second equation in (12). Notice that the steady state value

for k only depends on the characteristics of the technologies and is independent from

the utility function. Moreover, this equation is equivalent to the equation which defines

the stationary capital stock of a standard two-sector optimal growth model. The proof

of Theorem 3.1 in Becker and Tsyganov [14] restricted to the case of one homogeneous

agent applies so that there exists one unique k∗ solution of this equation.

Consider now the first equation in (12) evaluated at k∗. We get:

ud(T (k∗,k∗)−d,Bd)B
uc(T (k∗,k∗)−d,Bd)

≡ h(d) = β (37)

The function h(d) is defined over (0, T (k∗, k∗)) and satisfies

h′(d) =
Budd
ud
−ucd
uc

+ucc
uc
−Bucd

ud

ucud
= −β

[
1
d

(
1
εdd
− 1

εcd

)
+ 1

c

(
1
εcc
− 1

εdc

)]
Assumption 3 implies that h′(d) < 0. This monotonicity property together with the

boundary conditions in Assumption 2 finally ensure the existence and uniqueness of a

solution d∗ ∈ (0, T (k∗, k∗)) of equation (37).

For a given k∗, consider a particular value d∗ = d̄ ∈ (0, T (k∗, k∗)). d̄ is a steady state

if

ud(T (k∗,k∗)−d̄,Bd̄)B

uc(T (k∗,k∗)−d̄,Bd̄)
≡ g(B) = β (38)

We easily get

g′(B) = −ud
uc

[
1
εdd
− 1

εcd
− 1
]

which is generically different from zero. Therefore, under the boundary conditions in

Assumption 2, there generically exists a unique value B∗ such that when B = B∗, d∗ = d̄

is a normalized steady state.

8.2 Proof of Proposition 2

Using (4)-(5) and the fact that at the steady state −T ∗y = βT ∗k , total differentiation of

the first order equations (10) gives after tedious but straightforward computations:
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−∆kt
βT ∗

k εcc
εdc

+ ∆kt+1βT
∗
k

(
1 + βεcc

εdc

)
+ ∆dt

βεcc
εdc
−∆dt+1β

(
1 + βεccεcd

εdcεdd

)
= ∆kt+2β

2T ∗k −∆dt+2
β2εcc
εdc

∆kt

(
βT ∗2

k

εccc∗T ∗
kk
− b
)
−∆kt+1

(
β(1+β)T ∗2

k

εccc∗T ∗
kk
−∆− b2

)
−∆dt

βT ∗
k

εccc∗T ∗
kk

+ ∆dt+1
βT ∗

k

εccc∗T ∗
kk

(
1 + βεcc

εdc

)
= −∆kt+2β

(
βT ∗2

k

εccc∗T ∗
kk
− b
)

+ ∆dt+2
β2T ∗

k

εccc∗T ∗
kk

Denoting ∆κt = ∆kt+1 and ∆δt = ∆dt+1, we get the following matrix expression of the

previous linear system:
1 0 0 0

0 1 0 0

0 0 β2T ∗k −β2εcc
εdc

0 0 −
(

βT ∗2
k

εccc∗T ∗
kk
− b
)

β2T ∗
k

εccc∗T ∗
kk




∆kt+1

∆dt+1

∆κt+1

∆δt+1



=


0 0 1 0

0 0 0 1

−βT ∗
k εcc
εdc

βεcc
εdc

βT ∗k

(
1 + βεcc

εdc

)
−β
(

1 + βεccεcd
εdcεdd

)
βT ∗2

k

εccc∗T ∗
kk
− b βT ∗

k

εccc∗T ∗
kk
−β(1+β)T ∗2

k

εccc∗T ∗
kk

+ β + b2 βT ∗
k

εccc∗T ∗
kk

(
1 + βεcc

εdc

)




∆kt

∆dt

∆κt

∆δt



⇔ A


∆kt+1

∆dt+1

∆κt+1

∆δt+1

 = B


∆kt

∆dt

∆κt

∆δt


with

A =

 I 0

0 A22

 and B =

 0 I

B21 B22


Matrix A is invertible as detA = detA22 = δ3bεcc/εdc, and we get

A−1 =

 I 0

0 A−1
22

 with A−1
22 =

 T ∗
k

βbεccc∗T ∗
kk

1
βb

εdc
β2εcc

(
βT ∗2

k

bεccc∗T ∗
kk
− 1
)

εdcT
∗
k

βbεcc


The linearized dynamical system can then be expressed as follows
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∆kt+1

∆dt+1

∆ξt+1

∆ζt+1

 = A−1B


∆kt

∆dt

∆ξt

∆ζt

 =

 0 I

A−1
22 B21 A−1

22 B22




∆kt

∆dt

∆ξt

∆ζt

 ≡ J


∆kt

∆dt

∆ξt

∆ζt


Using (13), tedious but straightforward computations give the characteristic polynomial

P(λ) = λ4 − λ3B + λ2C − λB
β

+ 1
β2

(39)

with

B = − β
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
+ β+b2

βb
+ εdc

βεcc
+ εcd

εdd

C = − (1+β)
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
+ β+b2

βb

(
εdc
βεcc

+ εcd
εdd

)
+ 2

β

(40)

After simplifications we get the expression (16).

Consider now that λ is a root of the characteristic polynomial (16), i.e. P(λ) = 0. It

follows obviously that if λ is complex then its conjugate λ̄ is also a characteristic root.

Let us then consider P((βλ)−1), namely

P
(

1
βλ

)
=

[
1

β2λ2
− 1

βλ

(
εdc
βεcc

+ εcd
εdd

)
+ 1

β

]
( b
βλ
−1)( 1

λ
−b))

βb

+ 1
βλ

(
1
βλ
− 1
)(

1
βλ
− 1

β

)
β
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
= 1

β4λ4

{[
λ2 − λ

(
εdc
βεcc

+ εcd
εdd

)
+ 1

β

]
(λb−1)(λβ−b)

βb

+ λ(λ− 1)
(
λ− 1

β

)
β
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)}
= 0

If follows that (βλ)−1 is also a characteristic root. The same argument applies for (βλ̄)−1.

It follows that the four characteristic roots are either all real, or given by two pairs of

complex conjugates. Moreover, at least two roots or a pair of complex conjugate roots

have a modulus larger than one.

The nature of the characteristic roots can be derived considering the following expres-

sions:

∆ = 256
β6 − 192B2

β5 − 128C2

β4 + 288B2C
β4 − 60B4

β4 − 80B2C2

β3 + 36B4C
β3

− 4B6

β3 + 16C4

β2 − 8B2C3

β2 + B4C2

β2

D = 64
β2 − 16C2 + 16B2C − 16B2

β
− 3B4

P = 8C − 3B2

R = B
[
B2 + 8

β
− 4C

]
(41)
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Since we already know that the characteristic roots are either all real, or all complex,

we immediately derive that ∆ ≥ 0. Tedious but straightforward computations also show

that

D = R
B

[
8
β
− 3B2 + 4C

]
∆ =

(β2C2−4βB2+4βC+4)R2

β4B2

(42)

It follows that if R = 0 then D = 0 and ∆ = 0. This implies the following characterization

of the roots:

i) when ∆ > 0 the characteristic roots are real and distincts if P < 0 and D < 0, and

given by two pairs of non-real complex conjugates if P > 0 or D > 0;

ii) when ∆ = R = D = 0, there are two complex conjugates double roots or two real

double roots depending on whether P > 0 or P < 0.

8.3 Proof of Lemma 1

Under Assumption 4, let us denote the two degree-2 polynomials as follows

P1(λ) = λ2 − λ
(
εdc
βεcc

+ εcd
εdd

)
+ 1

β
, P2(λ) = (λb−1)(λβ−b)

βb
(43)

The discriminant of P1(λ) is equal to:

∆1 =
(
εdc
βεcc

+ εcd
εdd

+ 2√
β

)(
εdc
βεcc

+ εcd
εdd
− 2√

β

)
Using (4)-(5) we get

∆1 =
(

1
ucd

)2 (
ucc + 2ucd√

β
+ udd

β

)(
ucc − 2ucd√

β
+ udd

β

)
=

(
1
ucd

)2 (
1 1√

β

) ucc ucd

udc udd

 1

1√
β


×

(
1 − 1√

β

) ucc ucd

udc udd

 1

− 1√
β


Under the concavity property in Assumption 2, the Hessian matrix of the utility function

u(c, d) is quasi-negative definite which implies ∆1 ≥ 0 and the associated characteristic

roots are necessarily real. From P2(λ) we obviously conclude that for any sign of the

capital intensity difference b the associated characteristic roots are also necessarily real.
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8.4 Proof of Proposition 3

Under Assumptions 1-4, let b ≥ 0 and εcd, εdc ≥ 0, i.e. ucd ≤ 0. Using the fact that

εcc
εdc

= εcd
εdd

, we derive the following expression

P1(λ) =
(
λ− εcc

εdc

)(
λ− εdc

βεcc

)
(44)

The associated characteristic roots λ1 and λ2 are therefore both positive. Moreover we

get:

P1(0) = 1
β
≥ 1

P1(1) = −εccεdc
(

1
εcc
− 1

εdc

)(
1

βεcc
− 1

εdc

)
The normality Assumption 3 implies P1(1) < 0 and we conclude that the associated

characteristic roots λ1 and λ2 are such that λ1 < 1 and λ2 > 1.

From P2(λ), the associated characteristic roots λ1 and λ2 are both positive. Moreover

we derive:

P2(0) = 1
β
≥ 1, P2(1) = − (β−b)(1−b)

βb

From constant returns to scale, we get wa01 + ra11 = p with a01 = l1/y and a11 = k1/y.

The second equation in (12) rewrites as p = βr. We then obtain after substitution in the

previous equation r(β − a11) = wa01 > 0 and thus

β − b = a00(β−a11)+a10a01
a00

> 0

When b ≥ 0 we then necessarily have b < β ≤ 1. It follows that P2(0) < 0 and we

conclude that the associated characteristic roots λ1 and λ2 are such that λ1 < 1 and

λ2 > 1. The steady state is therefore a saddle-point.

8.5 Proof of Proposition 4

i) Under Assumptions 1-4, let b ≥ 0 and εcd, εdc < 0, i.e. ucd > 0. As shown previously, we

derive from P2(λ) = 0 that there exist two positive characteristic roots, one being lower

than 1 and the other larger. From P1(λ) as given by (44), the associated characteristic

roots λ1 and λ2 are both negative. Moreover, we get:

P1(−1) =
(

1 + εcc
εdc

)(
1 + εdc

βεcc

)
= (εcc+εdc)(βεcc+εdc)

βεccεdc
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We conclude easily that

P1(−1) < 0 ⇔ εcc ∈ (0,−εdc) ∪ (−εdc/β,+∞)

P1(−1) > 0 ⇔ εcc ∈ (−εdc,−εdc/β)

It follows that the steady state is a saddle-point with damped oscillations when εcc ∈

(0,−εdc)∪(−εdc/β,+∞) and there exists a flip bifurcation with persistent period-2 cycles

when εcc crosses the bifurcation values −εdc or −εdc/β. Considering the expression of

the elasticity of intertemporal substitution in consumption (6), these conditions can be

equivalently stated in terms of ε. Namely, the steady state is a saddle-point with damped

oscillations when ς ∈ (0, ς) ∪ (ς̄ ,+∞) with ς = (εccβ)/(1 + β) and ς̄ = εcc/2, and there

exists a flip bifurcation with persistent period-2 cycles when ς crosses the bifurcation

values ς or ς̄.

ii) Under Assumptions 1-4, let εcd, εdc ≥ 0, i.e. ucd ≤ 0, and b < 0. As shown

previously, we derive from P1(λ) = 0 that there exist two positive characteristic roots,

one being lower than 1 and the other larger. From P2(λ), the associated characteristic

roots λ1 and λ2 are both negative. Moreover we get:

P2(−1) = (1+b)(b+β)
βb

We conclude easily that

P1(−1) < 0 ⇔ b ∈ (−∞,−1) ∪ (−β, 0)

P1(−1) > 0 ⇔ b ∈ (−1,−β)

It follows that the steady state is a saddle-point with damped oscillations when b ∈

(−∞,−1)∪ (−β, 0). Moreover, if there is some β∗ ∈ (0, 1) such that b ∈ (−1,−β∗), then

there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from above, (k∗, d∗) undergoes a flip

bifurcation leading to persistent period-2 cycles.

iii) The case where the consumption good is capital intensive, i.e. b < 0, and εcd, εdc <

0, i.e. ucd > 0, is obviously derived from the two previous cases.

8.6 Proof of Corollary 1

Under a linear homogeneous utility function, standard Euler equalities based on the

homogeneity of degree 1, namely u = ucc+udBd, 0 = uccc+ucdBd and 0 = udcc+uddBd,

lead to
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ucd = −ucc
Bd
, udc = −uddBd

c
and thus udd = ucc

(
c
Bd

)2

Moreover, we get from the first order condition udB = βuc and (17)

c
Bd

= βφ
1−φ

Substituting all this into (4)-(5) implies

εcd = −εcc, εdc = −εcc 1−φ
φ
, εdd = εcc

1−φ
φ

We consider now Cobb-Douglas technologies as given by (20). We follow the same

methodology as in Baierl et al. [8]. The Lagrangian associated with the optimization

program (1) is:

L = kα0
0 l1−α0

0 + w
(
1− l0 − l1

)
+ r
(
k − k0 − k1

)
+ p

[
kα1

1 l1−α1
1 − y

]
(45)

The first order conditions are:

r = α0k
α0−1
0 l1−α0

0 = pα1k
α1−1
1 l1−α1

1 (46)

w = (1− α0)kα0
0 l−α0

0 = p(1− α1)kα1
1 l−α1

1 (47)

Using k0 = k − k1, l0 = 1− l1, and merging the above equations gives:

l∗0 =
(1− α0)α1(k − k∗1)

(α0 − α1)k∗1 + (1− α0)α1k
(48)

l∗1 =
α0(1− α1)k∗1

(α0 − α1)k∗1 + (1− α0)α1k
(49)

K∗c = k − k∗1 (50)

k∗1 = g(k, y) ≡ g (51)

where

g(k, y) =
{
k1 ∈ [0, kα1 ] / y = [α0(1−α1)]1−α1k1

[(1−α0)α1k+(α0−α1)k1]1−α1

}
(52)

From (46), (48) and (50) we obtain:

Tk = r∗ = α0

[
(1−α0)α1

(1−α0)α1k+(α0−α1)g

]1−α0

(53)

and from (46), (49), (51) and (53):

Ty = p∗ = α0[(1−α0)α1]1−α0 [α0(1−α1)]−(1−α1)[(1−α0)α1k+(α0−α1)g]α0−α1

α1
(54)

By the derivation of g, we have, for any equilibrium path, the identity (1 − α0)α1k +

(α0 − α1)g = α0(1 − α1)(g/y)1/(1−α1). Substituting this into (53) and (54) gives after

simplifications:
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Tk(k, y) = α0

(
(1−α0)α1

α0(1−α1)

)1−α0 (
y
g

) 1−α0
1−α1

Ty(k, y) = −α1

β1

(
(1−α0)α1

α0(1−α1)

)1−α0 (
y
g

)α1−α0
1−α1

Tkk(k, y) = −Tk(k, y)g1
g

with g1 = ∂g(k, y)/∂k. A steady state k∗ is then defined as Tk(k
∗, k∗) + βTy(k

∗, k∗).

Denote g∗ = g(k∗, k∗) and y∗ = k∗. Using the derivatives of T in the definition of k∗

gives:

g∗ = βα1k
∗ (55)

Substituting (55) into the definition of g, we find

k∗ = α0(1−α1)(βα1)
1

1−α1

α1[1−α0+β(α0−α1)]
(56)

Considering (52), we easily derive

g1 = βα1(1−α0)(1−α1)
1−α0+β(α0−α1)

(57)

From all these results and (3), we get

c∗ = T (k∗, k∗) =
(
α0(1−α1)
(1−α0)α1

)α0 (1−α0)(1−βα1)(βα1)
α0

1−α1

1−α0+β(α0−α1)

r∗ = Tk(k
∗, k∗) = α0

(
(1−α0)α1

α0(1−α1)

)1−α0

(βα1)
− 1−α0

1−α1

Tkk(k
∗, k∗) = −Tk(k∗,k∗)

k∗
(1−α0)2

1−α0+βα1(α0−α1)

b = β(α1−α0)
1−α0

We then easily derive

εck = α0

1−βα1
and εrk = (1−α0)2

1−α0+βα1(α0−α1)

Considering (19) with γ = 1, the characteristic polynomial (16) becomes here

P(λ) =
(
λ+ εcc−ς

ς

) (
λ+ ς

β(εcc−ς)

)
(λb−1)(λβ−b)

βb
(58)

The characteristic roots are

λ1 = − εcc−ς
ς
, λ2 = − ς

β(εcc−ς) , λ3 = 1
b

and λ4 = b
β (59)

The critical values ς and ς̄ are given in Proposition 4. Assume that α0 > (1 + α1)/2.

We immediately derive from the expression of b that λ3 > −1 if and only if β > (1 −

α0)/(α0 − α1) ≡ β while λ4 < −1. The result follows from the fact that if β = β and

ς = ς̄ or ς then two characteristic roots are simultaneously equal to −1.
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8.7 Proof of Proposition 5

The characteristic polynomial (16) can be expressed as follows[
λ2 − λ

(
εdc
βεcc

+ εcd
εdd

)
+ 1

β

]
(λb−1)(λβ−b)

βb
= −λ(λ− 1)

(
λ− 1

β

)
β
bεcc

εck
εrk

(
εcc
εdc
− εcd

εdd

)
or equivalently, using the notations of Lemma 1,

P1(λ)P2(λ) = P3(λ)

with P3(λ) a degree-3 polynomial while P1(λ)P2(λ) is a degree-4 polynomial. If these two

polynomials intersect four times, then the four characteristic roots are real. To determine

the number of intersections of these polynomials, we can use informations derived from

the location of their respective roots. The roots of P3(λ) = 0 are quite obvious, namely

λ31 = 0, λ32 = 1 and λ33 = 1/β. Moreover, depending of the sign of εcd, εdc we get

- if εcd, εdc < 0, then εcc
εdc
− εcd

εdd
> 0 and limλ→+∞ P3(λ) = −∞ while limλ→−∞ P3(λ) =

+∞;

- if εcd, εdc > 0, then εcc
εdc
− εcd

εdd
< 0 and limλ→+∞ P3(λ) = +∞ while limλ→−∞ P3(λ) =

−∞;

The roots of P1(λ)P2(λ) = 0 are obviously given by the respective roots of P1(λ) = 0

and P2(λ) = 0.

i) Assume first that b > 0. We have shown in the proof of Proposition 3 that b < β ≤ 1.

The roots of P2(λ) = 0 are then quite obvious, namely λ21 = 1/b > 1 and λ22 = b/β < 1.

Finally, the roots of P1(λ) = 0 are necessarily real and negative if εcd, εdc < 0, or positive

if εcd, εdc > 0. Moreover, we have limλ→±∞ P1(λ)P2(λ) = +∞ and P1(0)P2(0) > 0.

If εcd, εdc < 0, we derive from the above informations that P1(b/β)P2(b/β) = 0 >

P3(b/β) while P1(1)P2(1 < P3(b/β) = 0 implying a first intersection between P1(λ)P2(λ)

and P3(λ) in the positive orthant. Moreover, since P1(1/β)P2(1/β) < P3(1/β) = 0 while

P1(1/b)P2(1/b) = 0 > P3(b/β), we get a second intersection P1(λ)P2(λ) and P3(λ) in

the positive orthant. Since P1(0)P2(0) > 0, P1(λ)P2(λ) = 0 admits two roots in the

negative horthant, P3(0) = 0 and P3(λ) is an increasing function in the negative hortant,

we conclude that there necessarily exists a third intersection between P1(λ)P2(λ) and

P3(λ) in the positive orthant. The last intersection, which also occurs in the negative

orthant, is obtained because limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ). Indeed P3(λ) a

degree-3 polynomial while P1(λ)P2(λ) is a degree-4 polynomial. We then get the following

graphical illustration
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It follows that the four roots of the characteristic polynomial (16) are real.

If εcd, εdc > 0, the roots of P3(λ) = 0 and P2(λ) = 0 are the same as before while the

roots of P1(λ) = 0 are now real and positive. Since P1(0)P2(0) > 0, P1(1/b)P2(1/b) = 0

and P1(1)P2(1) > 0, there necessarily exists a second root of P1(λ)P2(λ) = 0 between

0 and 1/b implying two intersections between P1(λ)P2(λ) and P3(λ). The two others

are obtained since P1(1/β)P2(1/β) > P3(1/β) = 0, P1(b/β)P2(b/β) = 0 < P3(b/β) and

limλ→+∞ P1(λ)P2(λ) > limλ→+∞ P3(λ). We then get the following graphical illustration

Here again, it follows that the four roots of the characteristic polynomial (16) are real.

ii) Assume now that b < 0 and εcd, εdc > 0. The roots of P2(λ) = 0 become negative,

namely λ21 = 1/b < λ22 = b/β < 0. We easily get P1(0)P2(0) > 0, P1(1)P2(1) < P3(1) =

0,P1(1/β)P2(1/β) < P3(1/β) = 0, limλ→+∞ P1(λ)P2(λ) = +∞ and limλ→+∞ P3(λ) =

−∞. It follows that there are three intersections between P1(λ)P2(λ) and P3(λ) in the

positive orthant. Moreover, we have limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ) implying the

existence of two additional intersections between P1(λ)P2(λ) and P3(λ) in the negative

orthant. We then get the following graphical illustration
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and it follows that the four roots of the characteristic polynomial (16) are real.

8.8 Proof of Proposition 6

Using a homogeneous of degree γ < 1 utility function, the degree-4 characteristic poly-

nomial as given by Proposition 2 becomes

P(λ) =
[
λ2 + λ

(
(γ−φ)2+βφ2−βφεcc(1−γ)(2φ−γ)

βφ(γ−φ)[1−εcc(1−γ]

)
+ 1

β

]
(λb−1)(λβ−b)

βb

+ λ(λ− 1)
(
λ− 1

β

)
β
b
εck
εrk

(1−γ)[γ−εccφ(1−γ)]
(γ−φ)[1−εcc(1−γ)]

(60)

and can be expressed as Q1(λ) = Q2(λ) with

Q1(λ) ≡ 1
γ−φ

[
λ2(γ − φ) + λ

(
(γ−φ)2+βφ2−βφεcc(1−γ)(2φ−γ)

βφ[1−εcc(1−γ]

)
+ (γ−φ)

β

]
(λb−1)(λβ−b)

βb

Q2(λ) ≡ − 1
γ−φλ(λ− 1)

(
λ− 1

β

)
β
b
εck
εrk

(1−γ)[γ−εccφ(1−γ)]
[1−εcc(1−γ)]

Considering the limit φ→ γ we immediately conclude that one root λ1 is necessarily real

and equal to ±∞ and we get

Q1(λ) = λγ (λb−1)(λβ−b)
βb

Q2(λ) = −λγ(λ− 1)
(
λ− 1

β

)
β
b
εck
εrk

(1− γ)

It follows that a second root λ2 is real and equal to 0. Computing now the derivatives

Q′1(λ) and Q′2(λ), and evaluating them at 0 gives

Q′1(0) = γ
β

Q′2(0) = −γ
b
εck
εrk

(1− γ)

It follows that Q′1(0) ≷ Q′2(0) if and only if εcc ≶ ε̂cc with
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ε̂cc ≡ − b
(1−γ)

εrk
εck
∈ (0, ε̃cc)

Note that ε̂cc ∈ (0, ε̃cc) if and only if

− εck
bεrk

> 1 (61)

We conclude therefore that under condition (61) there exist two additional intersections

between Q1(λ) and Q2(λ) implying that the two last characteristic roots λ3, λ4 are also

real. Let us then assume that b ∈ (−∞,−1) ∪ (−β, 0). We derive that

i) if εcc < ε̂cc then Q′1(0) > Q′2(0) with Q1(1/b) = Q1(b/β) = 0 which implies that

one intersection must occur between −1 and 0, say λ3 ∈ (−1, 0). Moreover we derive also

that λ1 = −∞ and λ4 < −1;

ii) if εcc ∈ (ε̂cc, ε̃cc) then Q′1(0) < Q′2(0) with Q2(1) = 0 which implies that one

intersection must occur between 0 and 1, say λ3 ∈ (0, 1). Moreover we derive λ1 = +∞

and λ4 > 1.

We then conclude by continuity that there exists 0 < φ̄ < γ such that when φ ∈ (φ̄, γ),

the above results hold with λ1 ∈ (−∞,−1) and λ2 ∈ (−1, 0) when εcc < ε̂cc or λ1 ∈ (1,∞)

and λ2 ∈ (0, 1) when εcc ∈ (ε̂cc, ε̃cc). Considering the expression of ς as given by (19) which

is a decreasing function of φ, we derive that there exists a corresponding value ς = ς(φ̄),

and it follows that the above results hold for ς ∈ (0, ς).

Note now that the characteristic polynomial (60) can be also expressed as Q1(λ) =

Q2(λ) with

Q1(λ) ≡ 1
φ

[
λ2φ+ λ

(
(γ−φ)2+βφ2−β(γ−φ)εcc(1−γ)(2φ−γ)

β(γ−φ)[1−εcc(1−γ]

)
+ φ

β

]
(λb−1)(λβ−b)

βb

Q2(λ) ≡ − 1
φ
λ(λ− 1)

(
λ− 1

β

)
β
b
εck
εrk

φ(1−γ)[γ−εccφ(1−γ)]
(γ−φ)[1−εcc(1−γ)]

Considering the limit φ→ 0 we immediately conclude that one root λ1 is necessarily real

and equal to −∞ as b < 0, and we get

Q1(λ) = λγ2

β[1−εcc(1−γ)]
(λb−1)(λβ−b)

βb

Q2(λ) = 0

It follows that λ2 = 0, λ3 = 1/b and λ4 = b/β with one larger than −1 and the other

lower than −1 as b ∈ (−∞,−1) ∪ (−β, 0). We then conclude by continuity that there

exists 0 < φ ≤ φ̄ such that when φ ∈ (0, φ), the above results hold with λ1 ∈ (−∞,−1)

and λ2 ∈ (−1, 0). Considering again the expression of ς as given by (19) which is a

decreasing function of φ, we derive that there exists a corresponding value ς̄ = ς(φ) ≥ ς,
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and it follows that the above results hold for ς ∈ (ς̄ , εcc).

8.9 Proof of Proposition 7

The expressions in (40) become here

B = −β
b
εck
εrk

(1−γ)[γ−εccφ(1−γ)]
(γ−φ)[1−εcc(1−γ)]

+ β+b2

βb
−
(

(γ−φ)2+βφ2−βφεcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−εcc(1−γ]

)
C = − (1+β)

b
εck
εrk

(1−γ)[γ−εccφ(1−γ)]
(γ−φ)[1−εcc(1−γ)]

− β+b2

βb

(
(γ−φ)2+βφ2−βφεcc(1−γ)(2φ−γ)

βφ(γ−φ)[1−εcc(1−γ]

)
+ 2

β

(62)

As εcc < ε̃cc and b ∈ (−∞,−1) ∪ (−β, 0), we immediately get C > 0 for any φ ∈ (0, γ).

Moreover, when εcc = 0, we get

B = β+b2

βb
− β

b
εck
εrk

γ(1−γ)
γ−φ −

(
(γ−φ)2+βφ2

βφ(γ−φ)

)
< 0

for any φ ∈ (0, γ) if and only if

− εck
bεrk

< γ−φ
βγ(1−γ)

[
(γ−φ)2+βφ2

βφ(γ−φ)
− β+b2

βb

]
(63)

As the right-hand-side of (63) is a decreasing function of φ, we conclude that it is always

satisfied if

− εck
bεrk

< 1
β(1−γ)

≡ ε1 (64)

with ε1 > 1. Therefore, under condition (64) there exists ε̄1cc ∈ (0, ε̃cc) such that B < 0

for any φ ∈ (0, γ) if εcc ∈ (0, ε̄1cc).

Let us consider now the expression P = 8C − 3B2. We derive from (62) that P is a

hump-shaped function of φ over (0, γ). When εcc = 0, we get

C = −1+β
b

εck
εrk

γ(1−γ)
γ−φ −

β+b2

βb

(
(γ−φ)2+βφ2

βφ(γ−φ)

)
+ 2

β

≡ −1+β
b
x− β+b2

βb
z + 2

β

B = β+b2

βb
− z − β

b
x

(65)

and

P < −8(1+β
b
x−

(
β+b2

βb
+ z
)2

− 2

[(
β+b2

βb

)2

− 8
β

+ z2

]
Straightforward computations yield z ≥ 2/

√
β and thus(

β+b2

βb

)2

− 8
β

+ z2 >
(
β+b2

βb

)2

− 4
β

=
(
β+b2

βb
− 2√

β

)(
β+b2

βb
+ 2√

β

)
= (b−

√
β)2

βb
(b+
√
β)2

βb
> 0

for any φ ∈ (0, γ). Therefore, P < 0 for any φ ∈ (0, γ) when εcc = 0 if and only if

46



− εck
bεrk

< γ−φ
8(1+β)γ(1−γ)

{(
β+b2

βb
+ z
)2

+ 2

[(
β+b2

βb

)2

− 8
β

+ z2

]}
(66)

We can show that the right-hand-side of (66) is a U-shaped function of φ over (0, γ) and

there exists a unique minimum value ε2 > 1 such that condition (66) holds if

− εck
bεrk

< ε2 (67)

It follows that under condition (67) there exists ε̄2cc ∈ (1, ε̄1cc) such that P < 0 for any

φ ∈ (0, γ) if εcc ∈ (0, ε̄2cc).

Let us consider finally R and D as given by (41) and (42). Straightforward computa-

tions yield:

lim
φ→0

B = −∞ and lim
φ→0

C = −∞ so that lim
φ→0

R = −∞ and lim
φ→0

D = −∞

and there exists γ1 ∈ (0, 1) such that when γ ∈ (γ1, 1)

lim
φ→γ

B = −∞ and lim
φ→γ

C = −∞ so that lim
φ→γ

R = −∞ and lim
φ→γ

D = −∞

We need now to show that there exists a subset of values of φ for which R and D can be

positive. Let us consider the particular values εcc = 0, and b = −β. It follows from (65)

that

B2 + 8
β
− 4C =

(
z(φ)− x− 1+β

β

)2

− 8(1+β)x
β
≡ F (φ)

with

z(φ) = (γ−φ)2+βφ2

βφ(γ−φ)
and x = εck

εrk

γ(1−γ)
γ−φ

Obviously, F (φ) = 0 can be solved through the degree two polynomial

z(φ)− x− 1+β
β

= 2
√

2(1+β)x
β

It follows therefore that there exists γ2 ∈ (0, 1) such that when γ ∈ (γ2, 1) the two roots

for which F (φ) = 0 satisfy φ1, φ2 ∈ (0, 1). In the particular case γ = 1, these roots are

indeed such that

φ1 = 1
2

and φ2 = 1
1+β

Moreover, there exists γ3 ∈ (0, 1) such that when γ ∈ (γ3, 1) there is a value φ3 ∈ (φ1, φ2)

such that F ′(z) = 0 when φ = φ1, φ2, φ3. Notice indeed that in the particular case γ = 1,

we have

φ3 = 1
1+
√
β
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Obviously, F (φ) > 0 when φ = φ3. Note also that limφ→0 F (φ) = limφ→1 F (φ) = +∞.

As a result, we conclude that F (φ) ≥ 0 for any φ ∈ (0, 1) with the following shape

Consider now γ < 1, εcc > 0 and the expressions of B and C as given by (62), and let

us define

B2 + 8
β
− 4C ≡ G(εcc, γ, φ) (68)

By continuity, there exists γ4 ∈ (0, 1) close to 1 and φ̃3 close to φ3 such that for any

given γ ∈ (γ4, 1), ∂G(εcc, γ, φ̃3)/∂φ = 0. Moreover, since G(εcc, γ, φ) is a decreasing

function of εcc with limεcc→ε̄2cc G(εcc, γ, φ̃3) < 0, we conclude that there exists εcc ∈ (0, ε̄2cc)

such that for any given γ ∈ (γ4, 1), when εcc = εcc and φ = φ̃3 we have G(εcc, γ, φ̃3) =

∂G(εcc, γ, φ̃3)/∂φ = 0 such that

We conclude therefore that there exist b̄ ∈ (−β, 0), φc ∈ (0, φ1) and φ̄c ∈ (φ2, γ)

such that if γ ∈ (max{γ1, γ2, γ3, γ4}, 1), b ∈ (−β, b̄) and εcc ∈ (εcc, ε̄
2
cc), then R > 0 when

φ ∈ (φc, φ̄c) and R < 0 when φ ∈ (0, φc)∪(φ̄c, γ). Considering the expression of ς as given

by (19) which is a decreasing function of φ, we derive that there exist a corresponding

values ς̄c = ς(φc) and ςc = ς(φ̄c), and it follows that R > 0 when ς ∈ (ςc, ς̄c) and R < 0

when ς ∈ (0, ςc) ∪ (ς̄c,+∞).

Let us consider now D. We have proved that for any given γ ∈ (γ4, 1), if εcc ∈ (0, ε̄2cc)

then P < 0 for any φ ∈ (0, γ). This implies that −3B2 < −8C and thus
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8
β
− 3B2 + 4C < 8

β
− 4C = −4

{
− (1+β)

b
εck
εrk

(1−γ)[γ−εccφ(1−γ)]
(γ−φ)[1−εcc(1−γ)]

− β+b2

βb

(
(γ−φ)2+βφ2−βφεcc(1−γ)(2φ−γ)

βφ(γ−φ)[1−εcc(1−γ]

)}
< 0

It follows that if γ ∈ (max{γ1, γ2, γ3, γ4}, 1), b ∈ (−β, b̄) and εcc ∈ (εcc, ε̄
2
cc), then D

has the same sign as R for any φ ∈ (0, γ), and the characteristic roots are complex when

φ ∈ (φc, φ̄c) and real when φ ∈ (0, φc)∪(φ̄c, γ). Moreover, when φ = φc or φ̄c, R = D = 0.

It follows therefore that the characteristic roots are complex when ς ∈ (ςc, ς̄c) and real

when ς ∈ (0, ςc) ∪ (ς̄c, εcc). Moreover, when ς = ςc or ς̄c, R = D = 0.

As explained in Remark 1, the polynomial (39) belongs to the class of quasi-palindromic

equation and the exact solutions can be computed. Dividing P(λ) by λ2 gives

P(λ) = λ2 +
(

1
λβ

)2

−B
(
λ+ 1

λβ

)
+ C = 0

and denoting z = λ+ 1/(λβ) yields to the following degree-2 polynomial in z

P(z) = z2 − zB + C − 2
β

The corresponding discriminant is then

∆z = B2 + 8
β
− 4C = R

B

and under the previous conditions we have ∆z < 0. The roots are then

z1 =
B+i
√
−R
B

2
and z2 =

B−i
√
−R
B

2

Plugging this into the definition of z gives the following two degree-2 polynomials in λ:

λ2β − λz1β + 1 = 0 and λ2β − λz2β + 1 = 0

Denoting ∆1 = (z1β)2 − 4β and ∆2 = (z2β)2 − 4β, straightforward computations give

√
∆1 =

β


√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2
+i

B

√
−R
B√√√√B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2


2

√
∆2 =

β


√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2
−i

B

√
−R
B√√√√B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2


2

and we finally derive the characteristic roots
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λ1 =

B+

√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2
+i
√

−R
B

1+ B√√√√B2+R
B

− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2


4

λ2 =

B+

√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2
−i
√

−R
B

1+ B√√√√B2+R
B

− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2


4

λ3 =

B−

√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2
+i
√

−R
B

1− B√√√√B2+R
B

− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2


4

λ4 =

B−

√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2
−i
√

−R
B

1− B√√√√B2+R
B

− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2


4

with λ3 = 1/(βλ1) and λ4 = 1/(βλ2). The existence of a Hopf bifurcation amounts to

show that the product λ1λ2 can cross the value 1 when the parameter φ is varied over

the interval (φc, φ̄c). Obviously we get

λ1λ2 =

B+

√
B2+R

B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

2

4


2

B2−R
B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

B2+R
B
− 16
β

+

√
(B2+R

B
− 16
β )

2
−4BR

By definition we know that if φ = φc or φ̄c, we get R = 0 and thus

λ1λ2 =

(
B+
√
B2− 16

β

4

)2

Considering that B < 0, we then derive that λ1λ2 < 1 if and only if

B < −2(1+β)
β

(69)

But since R = 0, B2 = 4C − 8/β and, using (62) and assuming b = −β, inequality (72)

becomes

εck
εrk

(1−γ)[γ−εccφ(1−γ)]
(γ−φ)[1−εcc(1−γ)]

+ (γ−φ)2+βφ2−βφεcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−εcc(1−γ]

> 1+β
β

(70)

When εcc = 0, this inequality becomes

εck
εrk

γ(1−γ)
(γ−φ)

+ γ−2φ
φ(1−φ)

γ−φ(1+β)
β

> 0 (71)

There exists γ5 ∈ (0, 1) such that when γ ∈ (γ5, 1), (71) is obviously satisfied when

φ = φc or φ̄c. Since the left-hand-side of inequality (70) is an increasing function of εcc, we

conclude that λ1λ2 < 1 when γ ∈ (max{γ1, γ2, γ3, γ4, γ5}, 1), b ∈ (−β, b̄), εcc ∈ (εcc, ε̄
2
cc)

and φ = φc or φ̄c.
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Tedious but straightforward computations also show that λ1λ2 is a hump-shaped

function of φ over (φc, φ̄c). Consider the critical values εc and φ̃3 previously defined such

that when εcc = εcc and φ = φ̃3 we have G(εcc, γ, φ̃3) = ∂G(εcc, γ, φ̃3)/∂φ = 0 with G(.)

as defined by (68). We know that φ̃3 is in a neighborhood of φ3 = 1/(1 +
√
β). It follows

that when εcc = εcc and φ = φ̃3 we get again R = 0 and following the same argument as

above we conclude that λ1λ2 > 1 if and only if

B > −2(1+β)
β

(72)

Assuming b = −β and φ = φ3, this inequality is approximated by

εck
εrk

(1−γ)[1+
√
β−εccφ(1−γ)]

1−εcc(1−γ)
+

2−εcc(1−γ)(1−
√
β)

1−εcc(1−γ)
< 1+β√

β
(73)

When γ = 1, this inequality is obviously satisfied. Therefore, there exists γ6 < 1 such

that λ1λ2 > 1 when γ ∈ (γ6, 1), εcc = εcc and φ = φ̃3. We conclude that there exists ε̄3cc ∈

(εcc, ε̄
2
cc], φ

H ∈ (φc, φ̃3) and φ̄H ∈ (φ̃3, φ̄
c) such that when γ ∈ (max{γ1, γ2, γ3, γ4, γ5, γ6}, 1),

b ∈ (−β, b̄), εcc ∈ (εcc, ε̄
3
cc) then λ1λ2 < 1 when φ ∈ (φc, φH)∪ (φ̄H , φ̄c) and λ1λ2 > 1 when

φ ∈ (φH , φ̄H). The result follows denoting γ = max{γ1, γ2, γ3, γ4, γ5, γ6}, ε̄ = min{ε1, ε2}

and ε̄cc = min{ε̄1cc, ε̄2cc, ε̄3cc}. Considering one more time the expression of ς as given by

(19) which is a decreasing function of φ, we derive that there exist a corresponding values

ς̄H = ς(φH) and ςH = ς(φ̄H), and it follows that λ1λ2 < 1 when ς ∈ (ςc, ςH)∪ (ς̄H , ς̄c) and

λ1λ2 > 1 when ς ∈ (ςH , ς̄H).

8.10 Proof of Proposition 8

As shown in the proof of Proposition 1, there exists a unique steady state (k∗, d∗) solution

of equations R∗ = r∗/p∗ = β−1 and ud(c
∗, Bd∗) = βuc(c

∗, Bd∗). Moreover, k∗ does

not depend on the utility function u(c, Bd). Since the stationary bequest x∗ is strictly

positive if and only if r∗k∗ = Tk(k
∗, k∗)k∗ > d∗, let us consider a particular value d∗ =

d̄ ∈ (0,min{Tk(k∗, k∗), Tk(k∗, k∗)k∗}). Then, for any β ∈ (0, 1), the same argument as

in the proof of Proposition 1 holds: there generically exists a unique value B∗ such that

when B = B∗, d∗ = d̄ is a normalized steady state such that x∗ > 0.
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8.11 Proof of Proposition 9

Considering that pt = −Ty(kt, kt+1), rt+1 = Tk(kt+1, kt+2) and ct = T (kt, kt+1)− dt, since

equations (32) and (33) are identical to the two difference equations of order two given

by (10), we derive that the local stability properties of the model with altruistic agents

and a bequest motive are equivalent to those of the optimal growth model as described

in Propositions 3, 4 and 7. From the equilibrium paths for capital {kt}t≥0 and second

period consumption {dt}t≥0, the budget constraints (25) allow to derive the dynamics of

bequests

ptxt = rtkt − dt (74)

and the dynamics of bequests as a proportion of GDP

ptxt
GDPt

= ptxt
T (kt,kt+1)+ptyt

= s(kt, kt+1)− dt
T (kt,kt+1)−Ty(kt,kt+1)kt+1

.
(75)

with

s(kt, kt+1) = Tk(kt,kt+1)kt
T (kt,kt+1)−Ty(kt,kt+1)kt+1

the share of capital income in GDP. If {kt}t≥0 and {dt}t≥0 are characterized by periodic

or quasi-periodic dynamics, this is also true for bequests. Indeed, consider first the case of

period-2 cycles which are characterized for {kt, dt}t≥0 by the existence of two pairs (k1, d1)

and (k2, d2) such that (kt, dt) = (k1, d1) and (kt+1, dt+1) = (k2, d2). It follows that a period-

2 cycle also exists for bequests as ptxt = Tk(k1, k2)k1−d1 and pt+1xt+1 = Tk(k2, k1)k2−d2.

A similar argument can be applied for quasi-periodic cycles.

Similarly, since the share of capital income in GDP, s(kt, kt+1), and the share of

consumption of old agents in GDP, dt/GDPt, are generically non-constant and non-

equal, if {kt}t≥0 and {dt}t≥0 are characterized by periodic or quasi-periodic dynamics,

this is also true for bequests as a proportion of GDP. Indeed, considering again the case

of period-2 cycles for {kt, dt}t≥0, it follows that a period-2 cycle also exists for bequests

as a proportion of GDP as

ptxt
GDPt

= s(k1, k2)− d1
T (k1,k2)−Ty(k1,k2)k2

and pt+1xt+1

GDPt+1
= s(k2, k1)− d2

T (k2,k1)−Ty(k2,k1)k1

A similar argument can be applied for quasi-periodic cycles.
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8.12 Spectral density of the inheritance as a ratio of national

income

Figure 4: Spectral density
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