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1 Introduction

Regime-switching (RS thereafter) models have become increasingly popu-
lar in macroeconomic modelling. They encompass models with occasionally
binding constraints (financial constraints, default risks, zero lower bound),
structural changes, rare disasters, changes in monetary and fiscal policies, etc.
The RS is triggered exogenously (Markov process) or endogenously when
some variables cross threshold conditions. In the latter case the common
practice is to consider that the condition according to which the economy
changes regime is the same than the one governing the switch back, implying
a symmetry. However, the switching condition may be asymmetric. For in-
stance, a fiscal policy may be triggered when output falls below a threshold
value but may be offset, or prolonged, as output reaches a different, higher
or lower, threshold. In that case, the RS is asymmetric, and the threshold
condition depends on the regime in which the economy stands. The symmet-
ric RS is, in fact, a special case of the asymmetric RS. The major problem
with asymmetric RS is that not only the policy rules are non-differentiable
but they are also discontinuous. This feature may strongly distort agents’
expectations as well as their decision rules. Solving DSGE models with
this asymmetric RS is challenging. Indeed, the switching condition being
regime-dependent, the regime becomes a discrete state variable. This pa-
per provides a general representation of endogenous and threshold-based RS
(TBRS) models and develops an efficient numerical solution method, that
takes into account all the aforementioned non-linearities when computing
the expectations and the decision rules.

The expansion of RS models can be explained by their ability to cover
a broad variety of issues. Models with occasionally binding constraints like
the borrowing constraint or the ZLB constraint in the New Keynesian model
are two prominent examples. RS models also belong to models with time-
varying parameters. A first branch of this literature uses Markov processes
to generate changes in parameters’ value like Leeper & Zha (2003), Sims &
Zha (2006), Chung et al. (2007), Svensson & Williams (2009), Farmer et al.
(2009), Liu et al. (2011), Bianchi (2013). These studies take advantage of the
Markovian representation which allows to produce infrequent and long-lived
changes in parameters or in the policy rules. The process being exogenous,
linear approximation methods can be used to solve and simulate the model.

A second branch of this literature uses endogenous transition probabilities
to describe the RS like in Barthélemy & Marx (2017, 2019), Binning & Maih
(2017), Boneva et al. (2018) and Benigno et al. (2020). The probabilities are
state-dependent and time-varying involving that the RS is determined by
the variables of the model. It provides an appealing framework to study (but
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not limited to) monetary policy and financial crisis regimes. In addition,
perturbation methods can be applied to derive an approximated solution,
provided that the model and the transition probabilities are smooth enough1.
An alternative modelling of endogenous time-varying parameters is proposed
by Canova et al. (2020). They consider DSGE models with smoothly evolving
parameters according to a differentiable function of the state variables. They
show that models with such time-varying parameters improve the fit of the
models and overcome important identification issues implied by constant
parameters.

The contribution of our paper is threefold. First, we consider threshold-
based RS where the switch occurs exactly when the threshold condition is
satisfied without any need for transition probabilities. The RS generates
strong non-linear dynamics as it occurs abruptly. This aspect is important
because RS affects agents’ expectations in a non-smooth manner, thereby
affecting the model’s outcome. We then further generalize our approach to
encompass many other form of RS models featuring smoother transitions.
More precisely, we relax the assumption of a clear cutoff by introducing un-
certainty in the threshold condition. This allows to deal with uncertainty and
credibility issues of economic policies. Also, controlling for the degree and
persistence of uncertainty surrounding the threshold condition can provide
a flexible way to capture various, more or less smooth, RS dynamics. In a
recent paper, Chang et al. (2019) also study TBRS models, aiming at devel-
oping an efficient estimation algorithm. They build on the piecewise linear
modelling approach of Chang et al. (2017). Closer to us is the important
early contribution of Davig et al. (2006). They modeled and studied, using
a nonlinear projection solution approach, an endogenous TBRS monetary
policy rule, where the latter parameters change as inflation crosses a certain
threshold.

As our second major contribution, we extend these approaches by also
considering asymmetric, potentially multiple, TBRS. This characteristic may
help studying various policy instruments, monetary, fiscal, or macropruden-
tial, that are triggered following a specific set of threshold conditions but are
muted according to a different one. Our study is then closely related to Bi
et al. (2013) who consider regime-dependent fiscal consolidation policies. In
their model, when the government debt crosses the fiscal limit, fiscal authori-
ties implement a fiscal consolidation. The effective fiscal limit, which governs
the RS, is drawn from a distribution. As all endogenous variables are for-
wards, it turns out that the distribution of fiscal limits can be pre-computed
from a Markov Chain Monte Carlo simulation. Consequently, the fiscal limit

1Barthélemy & Marx (2017) discuss such conditions.
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is time-varying but not regime-dependent which is precisely what we tackle
in our study.

Third, we provide an efficient numerical solution for solving this class of
DSGE model based on a global approximation2.

Solving this class of models is challenging due to the non linearities and
the discontinuities in the policy rules. While perturbation methods are fast,
they are clearly not appropriate for solving asymetric threshold-based RS
models. We then use a projection method that consists in approximating
the policy rules by orthogonal polynomials. These methods are known to
delivers substantial accuracy in the solution but have often been blamed for
their computational costs. We take advantage of the recent improvement
from Maliar & Maliar (2015) to speed up the numerical solution. Their tech-
nique called generalized stochastic simulation algorithm (GSSA henceforth)
consists in approximating the policy rules on a representative set of points
obtained from stochastic simulations. The model is solved only in the area
of the state-space visited in equilibrium and it drastically reduces the costly
evaluation of the expectation functions thanks to a grid reduction technique
(ε-distinguishable set, or EDS thereafter). We adapt their solution method
to RS models. In particular, we consider regime-dependent policy rules which
are evaluated on an adaptive grid defined as a collection of regime-clustered
points. Each policy rule is evaluated on the area of the state-space that be-
longs to the corresponding regime. The GSSA produces an accurate and fast
solution in all different specifications of the models including kinks, discon-
tinuities, large shocks and multiples regimes.

The paper is organized as follows. We present a general formulation for
the RS model and the numerical solution method in Section 2. An application
to a RBC model with a regime-dependent government spending policy is then
presented in Section 3. Section 4, is devoted to the alternative specifications
of the model or of the solution method. Section 5 concludes. We provide
a supplementary appendix with an alternative representation of the RS, a
detailed description of the algorithms and additional simulations.

2Methods for solving deterministic models are fast, easy to implement (like for instance
with Dynare software package), and are able to manage accurately strong non-linearities.
In models that are fairly linear and under the assumption that the shocks are relatively
small in magnitude the outcomes from deterministic solution methods is often similar to
the ones from stochastic solution methods. In non-linear model however, the deterministic
solution may be dramatically different from the stochastic one (see Nakata (2017) for an
example with the ZLB in New Keynesian models). Here we are interested in the stochastic
method in models characterized by RS which involves important non-linearities.
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2 The RS model

We consider the standard problem of an agent deciding on the path of a set of
control variables, to maximize the discount sum of its future payoffs, subject
to a set of constraints. Before deriving the optimization problem we describe
the RS rule.

2.1 Regime-switching rule

In the RS model some parameters are regime-dependent and regimes evolve
endogenously according to a specific rule. To begin, we denote by st the
regime at time t. st has a finite discrete support st = {1, ..., N} where N
stands for the number of regimes in the economy. p is the set of parameters
characterizing the model. Parameters are regime-dependent. We use the
formulation p(st) = p1(st), p2(st), ..., pN(st) to define the set of parameters
when the regime st applies. The regimes change according to threshold-based
rules i.e. when a variable is below or above a threshold. When the number
of regimes is higher than two, we consider that the changes in regime are
triggered when the endogenous variable lies in a specific interval. The nov-
elty of our approach is that the thresholds are themselves regime-dependent.
The thresholds governing the switch from one regime to another may differ
depending on the initial regime. Furthermore, there can be several threshold-
based rule, meaning that the changes in the regime are triggered by multiple
conditions. For the sake of exposition, we first present the case where the
changes in regime only depend on one endogenous variable and later gener-
alize the results to multiple variables.

2.1.1 One-variable condition

Denote by vt the variable on which the threshold condition depends. There is
no restriction on the variable governing the regime switch. It can be a state,
a control, an exogenous variable or a combination of several. We defined by
v(st) = {v1(st), ..., vN+1(st)} a set of N + 1 threshold parameters conditional
to the initial regime st, and make two assumptions:

(i) The extremas of v encompasse all feasible decisions vt, that is vt ∈
]v1(st), vN+1(st)[, ∀ t

(ii) Conditional on an initial regime st, the thresholds are ordered

v1(st) < ... < vN+1(st)
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Assumption (i) implies that the regime is always defined as long as vt lies
within the interval [v1(s), vN+1(s)], ∀s or is in the ergodic set. Assumption
(ii) simplifies the representation of the law of motion for the regime st. It
is worth mentioning that the ordering of the thresholds does not imply any
ordering for the value of the parameter p(1), p(2), ..., p(N). The law of motion
of the regime writes:

st =
N∑
n=1

n × 1{vt∈[vn(st−1), vn+1(st−1)[} (1)

The thresholds are themselves regime-dependent. We label this setup as the
asymmetric RS, as the cutoff that governs the RS depends on the initial
regime. By contrast, the case when the thresholds governing the changes in
the regime are independent from the previous regime is labelled as Symmetric
RS. In the latter, the entry and the exit from the regime are based on the
same cutoff. It is worth mentioning that the asymmetric RS is a general
formulation of threshold-based RS (TBRS) as it nests the symmetric case.
An important implication is that in the asymmetric RS st is a state variable.
In the symmetric RS it is not.

We draw the readers’ attention on the timing of event. It must be rig-
orously defined to avoid time inconsistency between variables and regime-
dependent parameters. For instance, the variable vt which serves to deter-
mine today’s regime st, can not be calculated if it depends on some parame-
ters p(st) that are themselves regime-dependent. In our timing of events the
variable vt is determined at the very beginning of the period and its value is
not conditional on the regime st (or on the parameters p(st)). It can however
depends on st−1. An alternative could be that the parameters in period t are
based on the regime of the previous period.

2.1.2 Multiple variables condition

We now consider the case where several endogenous variables govern the RS.
We denote {v1

t , ..., v
L
t } the set of variables on which a threshold condition

applies and N1, ..., NL the number of regime for each variable ` = 1, ..., L.
v`(st) = {v`n`(st), ..., v`N`+1(st)} corresponds to the set of ordered threshold

parameters that belongs to the variable v`t , conditional on the initial regime
st−1. The law of motion for st writes:

st =

N1∑
n1=1

...

NL∑
nL=1

ξ(n1, ..., nL;N1, ..., NL) ×

(
L∏
`=1

1{v`t∈]v`n`
(st−1), v`n`+1(st−1)[}

)
(2)
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where ξ is the function that sorts the regime number given the elements
of the combination and the number of regime per variable `. Formally it
writes:

ξ(n1, ..., nL;N1, ..., NL) = nL +
L−1∑
i=1

[
(nL−i − 1) ×

L∏
`=L−i+1

(N`)

]
(3)

For instance, if there are two regimes based on a threshold condition on
variable 1 and three regimes based on a threshold condition on variable 2,
the total number of regime is 6. ξ gives the regime number associated to the
element n1 and n2.

2.2 TBRS-DSGE models

The problem of an agent is to choose a sequence of controls {yt}∞t=0 maxi-
mizing the expected discount sum of instantaneous payoffs subject to a set
of constraints. In a stochastic environment, decisions are taken given the
evolution of aggregate shocks. We denote by zt a vector of stationary and
exogenous shocks. It satisfies the following representation:

zt = Φ(zt−1, εt) with z0 given and εt ∼ N (µ,
∑

) (4)

where εt is a vector of i.i.d. structural disturbances with mean vector µ
and covariance matrix

∑
. Let xt be a vector of endogenous state variables

(including the regimes) evolving as follows:

xt = h(xt−1, zt−1, yt) with x0 given (5)

The agent’s problem takes the following recursive form:

V (xt−1, zt−1) = max
yt∈D(xt−1,zt−1)

{
u(xt−1, zt−1, yt) + βEtV (xt, zt)

}
(6)

s.t. 0 = (xt − h(xt−1, zt−1, yt)) (λt) (7)

where V (.) is the optimal value the agent can derive from the maximization
problem and u(.) is the instantaneous payoff function. D corresponds to the
set of feasible decisions. λt are the Lagrange multipliers associated to the
constraints and β is the discount factor. The agent chooses a set of processes
{yt}∞t=0 maximizing the value function (6) subject to the law of motion of xt
and taking as given the set of processes {zt}∞t=0. The first-order conditions
of this problem write:

u′yt(xt−1, zt−1, yt) = λth
′
yt(xt−1, zt−1, yt)

λt = βEt

[
λt+1h

′
xt(xt, zt, yt+1)− u′xt(xt, zt, yt+1)

]
(8)
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2.3 Numerical method

2.3.1 General formulation of the solution

The general solution of this family of discrete-time rational expectations
models with RS writes:

Et(R(xxxt−1, yt,xxxt, yt+1)) = 0 (9)

where xxxt = {xt, zt} is the vector of state variables. R(.) is the residual
function defined by the FOC (8) and the evolution of the state variables. It
is defined as follow:

R(.) =


u′yt(xxxt−1, yt) = λth

′
yt(xxxt−1, yt)

λt − βEt+1

Et −
[
λth

′
xt−1

(xxxt−1, yt)− u′xt−1
(xxxt−1, yt)

]
xt − h(xxxt−1, yt)
zt − Φ(zt−1, εt)

 (10)

The solution of the above problem consists in expressing the set of control
variables yt as a function of the state variables xxxt and st.

yt ≡ g(xxxt−1; p(st)) (11)

In most DSGE models, the function g(.) can not be computed analytically,
so does the residual function R(.). The projection method consists in us-
ing Chebyshev polynomials as approximation functions. However, (1) has a
discrete support {1, 2, ..., N} which involves non-differentiable policy rules.
Spectral methods based on smooth approximation functions are likely to
generate inaccuracy of the approximation at the kinks and when the regime
switches. In order to circumvent this difficulty, we consider regime-dependent
decision rules. We denote by Θ(s) = {θ1(s), ..., θm(s)} the set of coefficients
of the approximation function in regime s. The approximation function for
(11) is:

yt = P (xxxt; Θ(st)) (12)

The general idea of the projection method is to find the set of coefficients
Θ(.) minimizing (10). We make this step through OLS regression. Formally
it writes:

Θ̂(st) = arg min
Θ(st)

∫
xxxt

R(xxxt; Θ(st))
2dxxxt (13)
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where R(xxxt; Θ(st)) is the residual equation (10) given that yt is approximated
by a polynomial function of the state variables.

In our numerical approach, there are as many approximation functions as
we have regimes in the economy. In the spirit of Christiano & Fisher (2000),
the global solution is a piecewise interpolation of approximation functions.
The connections between approximation functions are endogenously deter-
mined by the RS conditions.

2.3.2 Algorithm

Following Maliar & Maliar (2015), we extend the generalized stochastic
simulation algorithm (GSSA) which combines deterministic integration and
stochastic simulations. The general idea consists in simulating the model
and projecting the polynomials on a set of representative simulated points.
Integrals are evaluated using Gauss Hermite quadratures only on the repre-
sentative points to reduce the computational burden.

As mentioned by the authors, this hybrid method is fast and accurate
for two reasons. First, thanks to the simulation techniques, the solution is
only evaluated on a set of points that are visited in equilibrium. It contrasts
with standard projection methods in which the polynomial is projected on
a multidimensional fixed grid of points which resembles a hypercube (or
hyperrectangle). In most DSGE models with normally distributed shocks
the ergodic set resembles a hyper-sphere or a hyper-ellipsoid. The fixed grid
then cover a larger fraction of the ergodic set. Consequently, many grid
points are never visited in equilibrium. Judd et al. (2011) show in a two
dimensional case that the ergodic set is at least 21% smaller than the square.
This “useless” area is all the more larger than the dimension of the state space
increases. Contrary to standard fixed grid method3, simulation techniques
belongs to endogenous and adaptive grid methods. The major advantage
is that they precisely focus on the relevant area of the state-space, thereby
increasing the accuracy.

The second reason that motivate the use of this method is that it is
relatively fast. Indeed, we borrow from Maliar & Maliar (2015) the state-
of-the-art techniques of representative points using the ε- distinguishable
set (EDS) method. Their strategy consists in eliminating points that are
redundant i.e. simulated points that are not useful for evaluating the policy
rule as they are in the neighbor of other points. One important advantage of
the representative points technique is that the costly evaluation of integrals

3With the exception of Judd et al. (2014) where a Smolyak hypercube is adapted to
a solution domain of a given economic model and Brumm & Scheidegger (2017) who use
adaptive sparse grid methods.
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is alleviated. The computation of expectations using quadratures techniques
is only made on the EDS and not on the whole simulated points. Since a very
small number of representative points is needed to obtain a decent accuracy,
the algorithm is thus relatively fast.

The novelty of our approach is that we consider piecewise interpolated
polynomials projected on regime-clustered points obtained by stochastic sim-
ulations. More precisely, we consider one policy rule per regime. The state-
space on which the policy rules are projected is simulated and partitioned
according to the regime. The policy rules are interpolated when calculating
expectation functions. This strategy saves computational times and greatly
improves accuracy because we evaluate the polynomial coefficients only in
the state-space that is visited in simulations and that belongs to the regime.
Consequently, a collection of smooth approximation function can handle the
extreme non linearities imposed by the RS specification. We describe be-
low the steps of the general algorithm and advise the reader to refer to the
supplementary appendix for a detailed version applied to the RBC model.

Algorithm

Step 1 - Initialization. Set i = 0 the i-th iteration. Choose d, the Chebyshev
polynomial order and the simulation length T . Initialize the coefficients
Θ(n)i, n = 1, ...N using OLS regression on a stochastic simulation of
T periods computed from the solution of a perturbation method4.

Step 2 - Stochastic simulations. Draw {εt}Tt=0 and compute a stochastic
simulation to get {xxxt}Tt=0 using Equation (4) and (5) and to get {yt}Tt=0

using Equation (12).

Step 3 - Representative points. [Maliar & Maliar (2015), section 2.2.2]. Set
the parameter εn, n = 1, ..., N . Define Xn = {xxxt | st = n}, n = 1, ..., N
a partition of the simulated series for which the regime is equal to
n. Denote by Pn an empty set such that Pn = {∅}. Compute the
Euclidian distance between the principal component of Xn. Eliminate
from Xn all points for which the distance is < εEDS (the maximal
distance between points) and add them to Pn.

Step 4 - Expectation. Set Gauss-Hermite quadratures nodes eee and weights
ωωω. For each representative points of Pn, compute the integral βEtEt+1 of
the Euler equation. Given the evaluation of the expectation functions,

4As the perturbation method can not handle the RS, we simply assume that st is
constant and equal to one over the whole simulation.
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pin down the estimated value of the control variables (λ̂t, ŷt) at each
representative points from Equation (8) using a root finding procedure.

Step 5 - Estimate coefficients. Construct the residual function R(.) and
find the coefficient that minimize this function, in line with objective
from Equation (13). Iterate on Step 2 to 5 until achieving the target
minimum of the residual function.

3 Application to a RBC model

We present the canonical RBC model and introduce non-separable govern-
ment spending. The value of the government spending switches between two
regimes according to a threshold-based rule defined by the level of output.

3.1 The model

The representative household chooses a consumption path to maximize its
intertemporal utility:

max
{ct, kt+1}∞t=0

Et

∞∑
t=1

(ct + ρgt(st))
1−σ − 1

1− σ
(14)

s.t. ct + kt = (1− δ)kt−1 − gt(st) (15)

yt = exp(zt)k
α
t−1 (16)

k0 is given

where δ is the depreciation rate of capital, yt is output and gt is the regime-
dependent government spending level5. Furthermore, zt is a stochastic pro-
cess:

zt = ρzzt−1 + εt with εt ∼ N (0, σ2
z) (17)

5In this model agents take as given the law of motion of st and the underlying param-
eter variations. One could assume that agents internalize the effects their decisions on
the regime st by considering explicitly Equation (1) as a constraint in the program. This
internalization effects is studied in Canova et al. (2020) where some parameters of their
model are state-dependent. They use smooth polynomial functions to express the param-
eters as a function of the state variables. They show that there is a second (endogenous)
effect that results from the derivative of the parameters with respect to the state variables.
However, in a RS setup, the law of motion for st is non differentiable and discontinuous,
making such derivations difficult. While those aspects may be of a great importance we
leave them open for future research and restrain our analysis to tractable problems that
takes the form of (14).
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The first-order conditions of the above program are:

λt = (ct + ρgt(st))
−σ (18)

λt = βEtλt+1

(
α exp(zt+1)kα−1

t + 1− δ
)

(19)

λt is the Lagrange multiplier associated to the budget constraint. In our
setup the regime evolves according the threshold-based rule on output. Let
y(st−1) be the output threshold governing the regime switching which can be
asymmetric. The set of ordered threshold for output is:

y(st−1) =
{
y

1
(st−1), y

2
(st−1), y

3
(st−1)

}
(20)

Denote by Ny = 2 the number of regimes from the condition on output, the
law of motion for the regime is:

st =

Ny∑
n1=1

n1 × 1{yt∈]y
n1

(st−1), y
n1+1

(st−1)[} (21)

For the sake of simplicity we assume that y
1
(.) = −∞, y

3
(.) = +∞. The law

of motion of the regime can be simplified to:

st =

{
1 if yt > y(st−1)
2 if yt ≤ y(st−1)

(22)

In the RS environment gt is linked to the regime st and there exist two
regimes:

gt(st) =

{
g1 if st = 1
g2 if st = 2

(23)

The equilibrium is a 6-tuple {kt, zt, st, ct, yt, gt} given by the system of six
equations (15)-(23).

3.2 Quantitative evaluation

3.2.1 Calibration

The model is calibrated to quarterly frequencies. From the RBC literature we
consider fairly standard value for the parameters (Table 1). We make a very
stylized approximation to parameterize the change in government spending.
We aim at reproducing the increase in government spending similar to the
American Reinvestment and Recovery Act. Recall that this is more an il-
lustrative example than a precise representation of how the fiscal regimes
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are actually implemented. We target the ratio of government spending on
output at 20% in regime 1. We consider that in regime 2 g(2)/y = 22%. The
fiscal expansion program has been triggered when output felt by 4% and
stopped when output was around 2% point higher than its potential level.
We thus consider y(1) = 0.96y and y(2) = 1.02y. From Fève et al. (2013), the
parameter ρ that controls for the substitutability/complementarity between
private consumption and public spending is estimated to be around −0.6 on
average across the different specification considered. The size of the techno-
logical shock is set to 0.025, a value that is higher than conventional AR(1)
estimates but that allows for sizeable fluctuations of output and persistent
regime-switching.

Table 1: Calibration

Variables Symbol Value

Discount factor β 0.99
Capital share α 0.33
Depreciation rate δ 0.025
Risk aversion σ 2
Persistence shock ρz 0.90
Substitutability of private

ρ -0.60
consumption for spending
Government spending R1 g(1) 0.20y
Government spending R2 g(2) 0.22y
Threshold R1 → R2 y(1) 0.96y

Threshold R2 → R1 y(2) 1.02y

R1: Regime 1, R2: Regime 2. y is the deterministic steady state of output

3.2.2 Solution implementation

In this section, we show how the solution method is implemented and how
accurate is the algorithm.

Simulated grid Figure 1 shows the implementation of the GSSA with
regime-clustered points. Panel (a) displays all points from the stochastic
simulations. Panel (b) shows which points are kept when the simulated
state variables are passed through the EDS procedure. The EDS technique
consists in selecting only representative points by calculating the distance
between the points using principal components. The criterion (εEDS = 0.4)
used for eliminating points that are to close to each other is chosen to get a
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minimal number of representative points. The points displayed in Panel (c)
correspond to those used to compute the expectation functions. The number
of points in each regime is nearly identical, around 200 grid points in each
regime. As expected we observe an overlap between the two regimes. Due
to the asymmetries in the regime-switch, this area of the state space can
belongs to regime 1 or regime 2.

Figure 1: State-space
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Grid points are computed on a stochastic simulation with 20000 draws from εzt .

Accuracy and speed When it comes to solution methods, accuracy and
speed are two critical issues. For smooth and linear models, linearization and
perturbation methods are often preferred since they are extremely fast and

14



sufficiently accurate. For nonlinear models, these methods may suffer from
spurious approximation. Global approximation methods like projections, Pa-
rameterized expectation algorithm, finite elements and value function itera-
tion can handle non-linear models accurately. However, despite considerable
improvement in computer chips, these methods are still time-consuming in
models characterized by several state variables.

In this section we investigate how accurate and fast is our projection
method. We borrow from Judd (1992, 1998) the accuracy test that con-
sists in the evaluation of the residuals of the Euler equations calculated on
a stochastic simulation. It examines if the policy functions are accurately
approximated over two consecutive periods. The idea is to compute the one-
period optimization error in relation to current consumption. We define the
two sides of the Euler equation as:

ct = P (kt−1, zt−1; Θc) (24)

ĉt =

[
βEtc

−σ
t+1(exp(zt+1)αkα−1

t + 1− δ)
]− 1

σ

(25)

Formally, the Euler Equation Errors (EEE thereafter) writes:

EEE = log10

(
1

T

T∑
t=2

∣∣∣∣1− ct
ĉt

∣∣∣∣) (26)

The EEE is normalized by the level of consumption in such a way that
it furnishes the loss in terms of consumption agents would suffer from us-
ing the approximate solution rather than the true solution. As mentioned
by Judd (1992), an EEE (in log10 unit) of -3 involves that a person with
$1,000 of consumption makes at most a one dollar error in current consump-
tion each period. With a value of -4 the error is one dollar per $10,000 of
consumption. The value -3 is often considered as small and acceptable for
a solution method to be accurate. The expectation term is evaluated using
Monte Carlo simulations with 10000 draws on each simulated points (not
just on EDS points).

Benchmark specification We consider fourth order Chebyshev Polyno-
mials to approximate the consumption function. With two state variables (zt
and kt−1) we then have 15 basis functions for each of the two regimes. In or-
der to evaluate the expectation function we use Gauss-Hermite quadratures
with 10 nodes.
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Figure 14 shows how EEE are distributed over the visited state-space ob-
tained by simulations. It is shown that the maximum EEE obtained is -3.22
and the average EEE is -4.43. These values indicate that the consumption
error is bellow one dollar per $1000 dollar of consumption. The overall accu-
racy level of our approximation method is then fairly good given the highly
non-linear nature of the model. Figure 14 makes it clear that the highest
EEE are located at the boarder of the RS cutoff in each regime. When the
value of output is close to the threshold governing the RS, the calculation
of the expectation functions takes into account this potential switch. This
aspect breaks the smoothness of the expectation functions

Figure 2: Euler Equation Errors
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Euler equation errors (in log10 units) are computed on a stochastic simulation with 20000
draws from εzt . Bivariate smooth Kernel density estimate are displayed for each regime.
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Alternative integration techniques So far we apply the Gauss Her-
mite quadrature to evaluate the integrals. As they usually apply to smooth
function, one may wonder whether this technique is relevant for computing
non-smooth function. To do so, we use the Monte Carlo method and the
quasi Monte Carlo method when computing the integrals in Step 4 of the
algorithm. Let Ξ(εzt+1) be the expectation function. The numerical integra-
tion then writes:∫ ∞

−∞
Ξ(εzt+1)f(εzt+1)dεzt+1 ≈

1

H

H∑
h=1

Ξ(ẽh)

where f(.) is a density function of a Normal distribution. In the Monte
Carlo algorithm we simply draw each ẽh from a Normal distributionN (0, σ2

z).
For the quasi Monte Carlo integration, we use low-discrepancy sequences to
generate points in space in a highly uniform manner. In particular, we use
Halton sequences (Halton, 1964) to generate quasi-random point set object.

Table 2 shows that Gauss Hermite quadratures may perform as well as the
two types of Monte Carlo method. However, while few nodes are necessary
in linear models (Maliar & Maliar, 2015), our model requires a minimum of
10 nodes to be efficient. The computational time for solving the model with
10 nodes remains largely acceptable as compared to Monte Carlo methods.
From a computational time/accuracy ratio the quadratures seem a better
option.
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Table 2: Euler Residuals

Method
Euler residuals Time
L1 Linf (in sec)

GH quad.
3 nodes -4.17 -2.66 8.5
5 nodes -4.19 -2.96 8.1
10 nodes -4.43 -3.22 9.6

MC
102 draws -3.51 -3.00 13.7
103 draws -4.14 -3.43 19.6
104 draws -4.21 -3.50 105.2

Quasi MC
102 draws -3.69 -3.04 11.4
103 draws -3.68 -3.15 24.1
104 draws -3.69 -3.16 140.4

GH quad. stands for Gauss-Hermite quadratures. MC stands for Monte Carlo methods.
In the Quasi MC, we use Halton sequences to generate quasi-random point set object and
apply inverse transform sampling to get normally distributed shocks. L1: mean Euler
residuals. Linf : maximum Euler residuals. Residuals are computed on each of the 20000
observations (No EDS) from a stochastic simulation with draw on εzt .

EDS points How many EDS points are necessary to compute the solution
accurately? What is the computational time gain? Figure 3 shows how the
maximum EEE decreases as the number of EDS grid points increases. The
results do not involve a relation between average EEE and the number of EDS
points. All in all, it is shown that even with few points the accuracy remains
fairly good. EEE are lower than -3 with only 276 points. Not surprisingly, the
computational time increases exponentially with the number of EDS points.
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Figure 3: EDS grid point
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L1 mean Euler residuals. Linf maximum Euler residuals. Residuals are computed on each
of the 20000 observations (No EDS) from a stochastic simulation with draw on εzt and
using Monte Carlo integration with 10000 draw at each time t. The abscise scale is not
linear.

Polynomial order The regime-clustered GSSA method splits the policy
rule into two regimes. Are the policy rules in each regime non-linear? In
other words, do we need high order polynomial? In the benchmark speci-
fication, the order of the Chebyshev polynomial is 4, achieving the highest
accuracy. Table 3 displays the EEE and the computational time for different
order of the polynomial. A polynomial of order two is actually sufficient to
achieve a maximum EEE lower than -3. On the contrary a piecewise linear
approximation is not accurate enough. In general, low polynomial order are
generally faster to compute because there are few basis functions to eval-
uate which reduces the size of matrices that are inverted in the OLS step
to estimate Chebyshev coefficients. In our model, each pieces are not very
non-linear but the combination of the two gives rise to a very non-linear
model.

If the policy rule in each regime is non-linear one should consider higher-
order Chebyshev polynomials. Another possibility from the spectral element
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method (Patera (1984)) is to consider refinement of either, the order of the
polynomials, or the number of regime (or elements). The former, known as
the p-refinement, consists in increasing the order of the approximation. There
is no need to choose an order similar for each element. The idea is to consider
different polynomial order for each element, depending on the accuracy. The
latter method, know as the h-refinement, consists in increasing the number
of elements. The idea is to divide the regimes into sub-regime even those
regimes are not linked to a specific rule like the one we have on government
spending. By doing so, we end up with more policy rules to evaluate but
with lower order of the approximation. Lastly, the hp-refinement method
(Demkowicz et al., 2002; Demkowicz, 2006) combine both and search for the
optimal approximation order and the number of elements.

Table 3: Euler Residuals

Method
Euler residuals Time
L1 Linf (in sec)

Order 1 -3.47 -2.48 6.1
Order 2 -3.87 -3.08 7.8
Order 3 -4.26 -3.29 6.7
Order 4 -4.43 -3.22 10.0
Order 5 -4.27 -3.14 13.2

L1: mean Euler residuals. Linf : maximum Euler residuals. Residuals are computed on
each of the 20000 observations (No EDS) from a stochastic simulation with draw on εzt .

3.2.3 Simulations of the model

Policy rule We now investigate the model’s properties. Figure 4 displays
the policy rule for consumption as a function of capital (Panel a) and the
productivity shock (Panel b). There are two policy rules, one for each regime.
As mentioned previously, the policy rules are not extremely non linear in
each regime as it is the case for the standard RBC model without RS. The
asymmetric aspect of the RS model involves an overlap of the policy rule
in some area fo the state-space. For a given value of capital kt−1 and the
productivity shock zt it is possible to have different level of consumption,
depending on the initial regime. This creates discontinuities in the policy
rules.
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Figure 4: Policy rules
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Policy rule c(kt−1, zt).

Figure 5 shows the simulated path of output and the regime. The econ-
omy moves from regime one to regime 2 when output crosses the threshold
z(1). It switches back only when output increases above z(2). This aspect
also involves that there exist two stochastic steady states and the economy
can move from one another depending on the size of the shock. We further
investigate this aspect through impulse response functions.
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Figure 5: Simulated path
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Impulse response functions To investigate the RS along the business
cycle, we consider various negative productivity shocks, from -1% to -10%.
The initial regime is s0 = 1. The economy remains in regime one when
the shock is not large enough to drive output below 4% of its initial value.
In that case the economy come back to its long-run value after the shock.
The regime changes from 1 to 2 when the shock is larger. In that case,
consumption declines further and so does capital and output. As output
does not overcome the threshold that sends the economy back to regime 1,
the temporary shock has permanent effects. As long as no new shock occurs
or if a shock occurs with small amplitude, the economy remains in regime 2
where consumption, capital and output are all lower. Our model illustrates
the possibility of two different, stable, stochastic steady states around which
the economy fluctuates.
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Figure 6: Impulse response functions
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εzt takes value between -0.01 and -0.1. The initial regime s0 = 1. In Panel (b), red dashed
line: output threshold below which regime switches from st−1 = 1 to st = 2. Blue dotted
line: output threshold above which regime switches from st−1 = 2 to st = 1. Panels (a)
and (b): IRF in level. Panels (c) and (d): IRF in percentage deviation from long-run
value.

4 Alternative specifications

In this section we study alternative specifications of the solution method, the
RS rule and the number of regimes.
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4.1 Alternative projection methods

The GSSA offers an accurate solution to our model characterized by RS. How-
ever, there are alternative specification to the projection method based on
fixed grid6. We consider two general specifications of the fixed grid method:

1 Complete bases Chebyshev polynomial

2 Smolyak’s Polynomial

In the complete base approach, polynomials of the state variables are
built to approximate the decision rules. The polynomials are then projected
on a multidimensional grid that covers the ergodic distribution of the state
variables. Like for the complete base, the Smolyak method imposes to work
with a grid that is held constant throughout the algorithm. The major
difference lies in the use of sparse grid in which the number of grid points
does not grow exponentially with the number of state variable. Some points
of the multidimensional grid are removed as well as some basis function from
the polynomials.

Figure 7 shows the fix grids used to compute the solution against the
simulation points involved by these method. The fixed grid covers a large
area of the state space. As mentioned previously, the ergodic set resembles an
ellipsoid, involving that several nodes -especially those located at the corners-
are away from the simulated points.

6The labeling of the different methods may be sometimes confusing in the literature.
In fact, the term “projection method” could apply to the stochastic simulations since it
consists in the projection of a polynomial as well. In the original definition of the projection
method, labeled “minimum weighted residual method”, the grid of the state variables is
fixed throughout the algorithm and integrals are evaluated with deterministic integration
techniques (quadratures-style). In stochastic simulations the grid is endogenous (simulated
points) and Monte Carlo techniques are used for integration by mean of OLS regression.
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Figure 7: Grid coverage
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Simulations (black points) are obtained after solving the model with fix grid methods (red
marker stars). Chebyshev polynomials in the complete basis are of order 4, as for the
GSSA. For Smolyak, q = 4.

Figure 8 compares the speed and accuracy of the different implementation
of the projection method. From an accuracy perspective, the GSSA beats
the fixed grid method in our example. The less accurate is the Smolyak’s
algorithm with maximum EEE well above -3. The complete base Chebyshev
polynomial does a decent job in this dimension but remains not as precise as
the GSSA.

From a computational time perspective, grid methods are extremely fast
compared to the GSSA. The time needed to find the policy rule coefficients
is around 26 to 60 times lower for the complete base and the Smolyak’s
algorithm. The reason is that in this small model with two state variable,
the number of nodes in the fixed grid is lower than that of simulated points,
even after applying the EDS algorithm. Consequently, the time necessary to
evaluate the policy rule is larger in the GSSA than in the fixed grid. However,
the grid can increase exponentially with the number of state variables while
this is not necessarily the case with the GSSA. In addition, fixed grid compute
solution on area of the state space that are never visited in equilibrium. The
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relative good accuracy of the GSSA specification compared to the fixed grid
methods comes from the evaluation of the polynomial coefficients on the
relevant domain. The points belong to a particular regime for which a policy
rule is associated to. In each regime the policy rule is evaluated only on the
set of representative points of the corresponding regime, making the precision
extremely good. In contrast, in the fixed grid methods, each policy rule is
evaluated on the same initial grid. In addition, the grid is extremely large
to cover the wide ergodic set that results from the large shock considered
in the model. As a consequence, only few grid points cover the area of a
given regime that is actually visited in equilibrium. We argue that for small
models, up to 5 or 6 state variables, fixed grid methods can be a better choice
if the model is not strongly non-linear7.

Overall, fix grid methods, albeit fast in our small RBC framework, pro-
duce higher EER. Our major recommendation is then to use the GSSA spec-
ification for this class of model. However, it would be unfair to reject the
fix grid methods on the grounds that they produce larger approximation er-
rors since they do not benefits from the same improvement as the GSSA.
For instance, Judd et al. (2014) propose an adaptive Smolyak sparse grid
based on stochastic simulations. While they show that it enhances the per-
formance of the Smolyak method fairly well, we rather see it as a refinement
of the GSSA since it nests on stochastic simulations and still fits into the
representative points scheme. In addition, such a method prevents the use
of regime-clustered points as it relies on the minimal number of points con-
sistent with the polynomial basis. It is then impossible to split the grid and
to allocate the pieces to the appropriate regime. An alternative could be
to use as many adaptive Smolyak sparse grids as there are regime. Each
grid would cover the representative points of a particular regime and not the
entire ergodic set. Brumm & Scheidegger (2017) also propose an adaptive
sparse grid algorithm but use hierarchical basis functions. They show that
their method is accurate and fully parallel which involves significant compu-
tational gains. While these option may be a valuable candidate for TBRS,
it is beyond the scope of this paper and we leave their implementation open
for future research.

7We also obtain this result with different order of polynomial and different number of
quadratures nodes.
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Figure 8: Euler Residuals
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GSSA: Generalized Stochastic Simulation Algorithm. CP: Complete basis polynomial. SP:
Smolyak Polynomial. Residuals are computed on each of the 20000 observations (No EDS)
from a stochastic simulation with draw on εzt . Density is displayed. CPU time (in second)
for finding the solution.

4.2 Extension: Stochastic regime switch

The model studied so far implies that the economy switches regime at a
given threshold. The fiscal authorities have full commitment to change the
regime when the threshold is reached. There are no possible deviation from
the rule set by the authorities. One might assume that the threshold-based
government spending rule may be uncertain and this uncertainty may affect
agents’ expectations. We consider that the regime switching rule now writes:

st =

{
1 if yt > y(st−1) exp(xt)
2 if yt ≤ y(st−1) exp(xt)

(27)

xt = ρxxt−1 + εxt with εxt ∼ N (0, σ2
x) (28)

We refer to xt as an uncertainty shock to the threshold level. The higher
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the volatility of the shock the higher the uncertainty surrounding the regime
switch. We set ρx to 0.9 and σx to 0.1 We solve the model with the GSSA
and study the impulse response functions.

Impulse response function. We consider a shock to the threshold that
does not cause a RS. This case illustrate pure expectation effects. We assume
that the economy is initially (s0) in regime 1 or 2. Results are displayed in
Figure 9. When s0 = 1, a positive shock xt reduces the distance between yt
and y

t
(st−1) which increases the probability of switch to regime 2. This effect

crowds out consumption immediately, even if the regime does not change. It
leads to more saving, investment and increases the capital stock. This, in
turn, raises output. When s0 = 2 a positive shock to xt increases the distance
between yt and y

t
(st−1) which lowers the chances of moving to regime 1

in which government spending are lower gt(1) < gt(2). Similarly, such a
shock leads to a crowd out in consumption immediately, increase capital and
output.
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Figure 9: Impulse response functions
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(blue dashed line). The uncertainty RS shock does not cause a regime switch.

4.3 More regimes

We extend the model to allow for additional regimes. The basic RBC model
naturally encompasses a regime for investment. When the productivity shock
is highly volatile, investment can hit the zero constraint, also known as “irre-
versible investment”. It is a symmetric regime in the sense that the threshold
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value that governs the entry in the zero-investment regime is the same as the
one governing the exit.

The extended model consists in introducing in the program (14) the fol-
lowing constraint on investment:

kt − (1− δ)kt−1 ≥ 0 (29)

The first-order conditions become:

λt = (ct + ρgt(st))
−σ (30)

λt − µt = βEt

[
λt+1

(
α exp(zt+1)kα−1

t + 1− δ
)
− µt+1(1− δ)

]
(31)

0 = (kt − (1− δ)kt−1)µt (32)

where µt is the Lagrange multiplier associated to the positive investment
constraint 32. There are now four potential regimes. The law of motion for
the regime writes:

st =


1 if yt > y(st−1) and it > 0
2 if yt ≤ y(st−1) and it > 0
3 if yt > y(st−1) and it ≤ 0
4 if yt ≤ y(st−1) and it ≤ 0

(33)

We solve the model with the GSSA and compare the different models
in term of accuracy and speed8. Figure 10 shows that the accuracy of the
solution method remains fairly good. The distribution of the EEE rarely
exceed -3 with an average below -4 in all models. The irreversible investment
case (model B) involves on average lower EEE. The major reason is that the
regime switch is symmetric, thereby avoiding discontinuities in the policy
rules. Consequently, the expectations are smoother than in model A and B,
which makes it more easy to approximate the solution. When the two types of
regime are combined (model C) the accuracy is lower and the computational
time may increase substantially.

8Annexe C of the supplementary appendix provides further information regarding the
algorithm and the solution implementation.
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Figure 10: Euler residuals
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sity estimate is displayed. Model A: benchmark model, two asymmetric regimes based on
government spending. Model B: Irreversible investment, two symmetric regimes based on
the investment constraint. Model C: Benchmark + Irreversible investment, four potential
regimes

5 Conclusion

In this paper we introduce TBRS in the canonical RBC framework. We
propose a general representation of the RS that encompasses occasionally
binding constraints (symmetric RS) and regime-dependent parameters. Our
modeling of RS contrasts with existing papers that only consider smooth
functions or smooth transition probabilities. In our setup, RS are threshold-
based and may be asymmetric i.e. the thresholds are themselves regime-
dependent. This class of model is a promising avenue for future research due
to their ability to produce infrequent events, persistent regimes and strong
non-linearities. Indeed, an important contribution of regime-switching mod-
els is that temporary shocks may have very persistent effects. The solution
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algorithm is also well suited for solving model with uncertainty in the regime
switching.

Solving this class of model is challenging due to the existence of the
aforementioned non-linearities and the discontinuity in the policy rules. To
account for RS, we develop an efficient projection method. Our strategy
is to consider a specific policy rule associated to each regime and to use a
piecewise Chebyshev interpolation. The novelty of the solution method lies
in the evaluation of the regime-dependent policy rules in the GSSA approach.
Through stochastic simulations, the policy rules are evaluated on an adaptive
grid only on the relevant domain: regime-clustered points. This relevant
domain is not only a set of representative points but is specific to the regime.
In turn, each policy rule is evaluated on an area of the state space that belongs
to the corresponding regime, thereby avoiding burdensome and unnecessary
calculations. The GSSA produces an accurate and fast solution in all different
specifications of the TBRS models which include, kinks, discontinuities and
large shocks.

Throughout the paper we solely focus on a very stylized RBC model.
The TBRS would fit perfectly into the New Keynesian DSGE models with
zero lower bound on the nominal interest rate or with occasional binding
financial constraints. Introducing TBRS in medium-to-large scale DSGE
models is certainly an important challenge to undertake, especially in terms
of computational time. Nonetheless, in a simple example Maliar & Maliar
(2015) already demonstrated the powerfulness of the GSSA in a model of high
dimensionality (hundreds of state variables). Furthermore, parallel comput-
ing is getting more and more popular in economics (Fernandez-Villaverde &
Valencia (2018)). Another direction in which the solution method can be
extended for is parallel computing.
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Online Appendix
(not for publication)

A Hamilton’s representation of RS

We provide an alternative formulation of the RS. We follow Hamilton (1994,
2016) and adopt a relatively standard exposition that encompasses the pop-
ular MS case as well as the symmetric RS case. The major difference is the
use of a matrix representation for the law of motion of the regime. Denote
by ξξξt a [N × 1] vector summarizing the regime at date t whose ith element
is unity when st = i and is zero otherwise:

ξξξt =


1{st=1}
1{st=2}

...
1{st=N}

 (34)

As shown in Hamilton (1994), the vector ξξξt has the following AR(1) repre-
sentation:

ξξξt = Qξξξt−1 + ut (35)

ut is a (N×1) vector corresponding to a discrete-valued martingale difference
sequence whose elements always sum to zero, that is Et−1ut = 0. Q is a
(N ×N) transition matrix:

Q =


q11 q21 ... qN1

q12 q22 ... qN2
...

...
. . .

...
q1N q2N ... qNN

 (36)

qij is the probability that the regime switch to state i when the initial regime
st−1 = j. When the probabilities qij are constant, the above representation
is a typical MS process. In a TBRS environment, pij are endogenous and
ut = 0 ∀ t. From Equation 36 we still impose that columns of Q sum to unity
such that ξξξt is a stationary process. The transition probabilities pij are given
by:

qij = 1{vt∈[vi(j),vi+1(j)[} (37)
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It is straightforward to see that
∑

j pij = 1 as vt can not be in two regimes
at the same time by definition. With a condition on L variables, one has:

qij =
L∏
`=1

1{v`t∈]v`i`
(j), v`i`+1(j)[} (38)

Finally the parameter value can be written in matrix form as:

p(st) = [p(1), p(2), ..., p(N)] ξξξt (39)

B Solution method

An overview of the approximation methods in the literature can be found in
Fernandez-Villaverde et al. (2016) and Hirose & Sunakawa (2019). The solu-
tion method considered in this paper lies at the intersection of several other
method. First, it is a global approximation method. The solution of the dy-
namic system is evaluated over the ergodic distribution and not only around
a deterministic steady state like for local approximation. There are differ-
ent method of global approximation: value function iteration, time iteration,
parameterized expectation algorithm, finite element, projection method, etc.
Our algorithm is based on the projection method but shares some similarities
with the finite element methods. Indeed, the algorithm consists in estimating
coefficients of a set of orthogonal polynomials to approximate the decision
rules. However, the grid on which these polynomials are projected is (1)
simulated (simulation methods), (2) reduced (with EDS techniques) and (3)
partitioned according to the regime. The last aspect belongs to Spectral
Element Method (SEM) originally developed by Patera (1984) in fluid me-
chanics which combines the finite element method and the spectral method.
In finite element low-order finite element expansions are considered while the
spectral method uses higher order of the approximation in each element or,
equivalently more basis functions. In our case the element are determined
by the regime switching conditions. They allow to split the state-space and
to apply high-order approximation on each sub-domain.

B.1 Some useful notations and operators

Throughout the algorithm we will use the following notations and operators.

• x
[l×c]

defines x as a matrix with l lines and c columns.

• xxxt = {zt, kt−1} defines the state vector (excluding the regime).
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• st defines the regime.

• n = 1, ..., N denote the regime number.

• Im is [m× 1] column vector whose elements are each equal to one.

• 1{cond} is an indicator variable taking the value 1 if the condition is satisfied
and zero otherwise.

• d = 1, ...,DDD is the approximation order of the Chebyshev polynomial.

• q is the parameter controlling the degree of approximation in the Smolyak
method.

• m = 1, ...,MMM is the m-th nodes for each individual state variable in the
fixed grid approach.

• k = 1, ...,KKK is the index of continuous state variables.

• h = 1, ..., H is the h-th quadrature nodes and weight used for integra-
tion.

• ⊗ stands for the Kronecker product.

• ◦ stands for the Hadamar product (or Schur product). It is an element
by element product.

• P (xxxt; Θ(s)) the approximation function of the decision rule (control vari-
able) that depends on the vector of state variables xxxt and a set of regime-
dependent polynomial coefficients Θ(s).

• xxx′ = Γ(xxx, ε′; Θ(s)) the law motion for the state variables given that the
control variables are approximated by the function P (.).

B.2 Preliminary results on Chebyshev functions

In order to approximate the unknown functions (the policy rules) we use
Chebyshev polynomials.
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B.2.1 One-dimensional approximation

Consider first that xxxt is a one-dimensional state vector. The function ϕ(xxxt)
ensures that xxxt fits into the Chebyshev domain [−1, 1]:

ϕ(xxxt) = 2
xxxt − a
b− a

− 1

Chebyshev polynomial basis of order d ∈ [2,DDD] are built according to the
following recursion:

Td+1(SSSt) = xxxt Td(xxxt)− Td−1(xxxt)

with T0(xxxt) = 1 and T1(xxxt) = xxxt. Applying the trigonometric identities, the
d-th member of the polynomial is:

Td(xxxt) = cos(d arccos(xxxt))

Let P (.) be an approximation function of a one-dimensional state variable
xxxt. It writes:

P (xxxt; Θ) =
DDD∑
d=0

θdTd(ϕ(xxxt))

where Θ = {θ1, ..., θDDD} are the parameters of the Chebyshev function.

B.2.2 Multidimensional approximation

When the number of state variables is higher than one (KKK > 1), we have to
build a multidimensional Chebyshev polynomial basis. The KKK−fold tensor
product basis for the function with KKK variables (xxxt = {x1

t , ..., x
KKK
t }) is built

by taking all possible KKK−term products of Tdk . The tensor product basis BT
is defined as:

BT
[1×(1+d KKK)d]

=

{ KKK∏
k=1

Tdk(ϕ(xkt ))

∣∣∣∣dk = 0, ...,DDD; k = 1, ...,KKK

}
The problem of the tensor product basis is that some of the basis have an
order higher than DDD which increase the number of elements. In the complete
base approach, all products of polynomial terms must have an order not
higher than DDD. Denote by BC the complete polynomial basis with BC ⊆ BT .
It is given by:

BC
[1×bbb]

=

{ KKK∏
k=1

Tdk(ϕ(xkt ))

∣∣∣∣ DDD∑
d1=0

...

DDD∑
dKKK=0

( KKK∑
j=1

dj

)
≤DDD

}
dk = 0, ...,DDD

k = 1, ...,KKK

40



where bbb is the number polynomial basis such that:

bbb =
DDD∑

d1=0

...

DDD∑
dKKK=0

1{
∑KKK
j=1 dj≤DDD}

for k = 1, ...,KKK

The multidimensional approximation function writes:

P (xxxt; Θ) = BC ◦ Θ

where Θ = {θ1, ..., θbbb}> is a [bbb× 1] vector of Chebyshev coefficients.

B.2.3 Piecewise approximation

In the algorithm described latter we use piecewise approximation. The gen-
eral idea is that the decision rule (consumption) is approximated by a collec-
tion of approximation functions, each of them belongs to a particular regime.
Consequently, they are as many polynomials as there are regimes9. We adopt
simplified notations. We denote by P (xxxt; Θ(s)) the approximation function
of the control variable when the regime is s with Θ(s) = {θ1(s), ..., θm(s)}>
the vector of coefficients that belongs to the regime s. This notation mean
that the decisions rules, summarized by the coefficient Θ(s), are actually
time-varying. Since the regime s is a dummy state variable, it can not be
treated as capital or the productivity shock. Therefore it is excluded from
the state vector xxxt. The “Aggregate” policy rule is defined as:

P (SSSt; Θ) =


P (xxxt; Θ(1)) if st = 1
P (xxxt; Θ(2)) if st = 2

...
...

P (xxxt; Θ(N)) if st = N

(40)

with Θ = {Θ(1), ...,Θ(N)} being a set of Chebyshev coefficients.

B.3 Grid of the state variables with complete basis

For the sake of clarity subscripts will correspond to the nodes of the grid in
place of the time. The grid defines the state-space over which the Chebyshev
polynomials will be projected. Because the number of state variables is higher

9This method approximates the solution more accurately than if we use a single Cheby-
shev polynomial. It allows to manage the kink or RS in the policy rules. It is important
to note that the two policy rules are linked when the expectations are computed. It means
that agents take into account the endogenous RS process when they take their decisions.
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than one, we need to construct a multidimensional grid. Under the complete
product basis the number of knots for each state variable must be equal or
higher than the order of the polynomial plus one: MMM ≥ DDD + 1. We simply
assume that MMM = DDD + 1. We use the extrema of Chebychev polynomials as
the basis for the grid points. RMMM = {r1, ..., rMMM} ⊂ [−1, 1] is the set of the
extrema of the Chebychev polynomials knots. The roots of the Chebyshev
polynomial are given by:

rm = − cos

(
2m− 1

2MMM
π

)
for m = 1, ...,MMM

The grid for each state variable k at each node n is defined by:

gggkm = xkmin + (rm + 1)
xkmax − xkmin

2
for m = 1, ...,MMM ; k = 1, ...,KKK

where xkmin and xkmax denote the lower and the upper bound of the domain of
the state variable xk respectively. The multidimensional grid G is obtained
through a tensor product over each individual grid:

G
[MMMKKK×KKK]

= {G1, ...,GKKK}

where,

Gk
[MMMKKK×1]

= IMMMk−1

[MMMk−1×1]

⊗ ϕ(gggk)
[MMM×1]

⊗ IMMMKKK−k

[MMMKKK−k×1]

Policy rule approximations Let P (G; Θ(s)) be the policy rule of a control
variable when the regime is s projected on the multidimensional grid G. As
before, Θ(s) stands for the vector of coefficients of the approximation function
in regime s. The approximation function writes:

P (G; Θ(s)) = BC(G) ◦ Θ(s)

B.4 The Smolyak method

B.4.1 Overview

Like the complete basis, the Smolyak method belongs to fixed grid meth-
ods. The major difference is that in the Smolyak method the grid is sparse
and several polynomial basis are eliminated. We summarize below how the
Smolyak method works and advise the readers to refer to Smolyak (1963),
Barthelmann et al. (2000), Krueger & Kubler (2004), Malin et al. (2011) and
Judd et al. (2014) for an implementation of the method in macroeconomics.
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The ideas is to build a sparse grid of points covering the ergodic distribu-
tion of the variable. This grid labeled by G(q,KKK) is a function of the number
of state variables and a parameter q controlling for the size of the grid and
the approximation level. Let P (G; Θ(s)) be an approximation function. The
idea behind the Smolyak method is that for each grid point gggm, m = 1, ...,MMM ,
gggm ∈ G(q,KKK) we have:

g(gggm; p(s)) = P (gggm; Θ(s))

where g(.) is the “true” policy rule but is unknown. At the grid point of
G(q,KKK) the approximation is exact, outside it is close.

B.4.2 Grid

Let first investigate the built of the grid. As before the grid encompasses as
many elements as we have state variables: {G1, ...,GKKK} where each element
is a set of Clenshaw-Curtis points that are based on the extrema of the
Chebyshev polynomials:

Gk = {gggk1, ..., gggkmk}
and

gggkj = − cos

(
j − 1

mk

)
, j = 1, ...,mk

The sparse grid is calculated as the cartesian product of individual grid:

G(q,KKK) =
⋃

q−KKK+1≤|i|≤q

(Gi1 × ... × GiKKK )

where

|i| =
KKK∑
k

ik

B.4.3 Function approximation

The Smolyak method consists in interpolating a polynomial function on the
grid G(q,KKK). Denote by P̃ |i|(xxx; Θ(s)) = BT (xxx) ◦ Θ(s) the multivariate
polynomial with tensor product base (see section A.2.2 for calculation) of
degree |i|. The Smolyak polynomial, based on the tensor product basis, is
defined as follow:

P (xxx; Θ(s), q,KKK) =
∑

q−KKK+1≤|i|≤q

(−1)q−|i|
(
KKK − 1
q − |i|

)
P̃ |i|(xxx; Θ(s))

43



B.5 Numerical integration

Euler equations involve two important difficulties: (1) the presence of the
aggregate shock and (2) the RS that may occur in the next period. Since
the regime changes according to the aggregate shock the evaluation of the
expectation functions must take into account potential RS. To simplify no-
tation, we drop time subscript t from present variable and use x′ to define
the next period state variables. Consider the Euler equation :(

P (xxx; Θ(s)) + ρg(s)
)−σ

= βEE(xxx′, P (xxx′; Θ(s′)))

where E(.) stands for the expectation function and E the expectation op-
erator. The solution of Next period state variables are obtained using the
following law of motion:

xxx′ = Γ(xxx, ε′; Θ(s))

Note that, contrary to the main paper, here the function Γ(.) governs the
evolution of the state vector xxx = {kt−1, zt}, not the evolution of the regime s.
The next period regime s depends on output which is composed of today’s
productivity shock and the last period capital stock. We use the following
evolution for the regime:

s′ = ψ(s,xxx′) ≡ ψ(s,Γ(xxx, ε′; Θ(s)))

The Euler equation can then be rewritten as:(
P (xxx; Θ(s)) + ρg(s)

)−σ
= β

∫
ε′
E
(

Γ(xxx, ε′; Θ(s)), P (Γ(xxx, ε′; Θ(s)); Θ(ψ(s,Γ(xxx, ε′; Θ(s)))))

)
In order to solve the numerical integration problem, we use Gauss-Hermite

quadratures. It consists in evaluating the integral at different nodes and
summing the evaluations using particular weights. Let eeeh be the h-th nodes
and ωωωh the h-th weights of the Gauss-Hermite quadratures with h = 1, ..., H,
H being the number of quadrature nodes10.
Let Ξ be an approximation function of the integral (the right-hand-side of
the previous equation). With Gauss-Hermite quadratures, one has:

Ξ =
β√
π

H∑
h=1

ωωωh E
(

Γ(xxx, σz
√

2eeeh; Θ(s)), P (Γ(xxx, σz
√

2eeeh; Θ(s)); Θ(ψ(s,xxx, σz
√

2eeeh; Θ(s))))

)
We then obtain an estimate of the decision rule:

ĉ(s) = Ξ−
1
σ − ρg(s)

10With multiple shock, one must use a tensor product.
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B.6 Overview of the algorithms

Variable Number of
approximated regime

A ct 2
Model B ct, µt 4

C ct, µt 4

GSSA &
Smolyak method

Complete base

Number d = 1 3 -
of basis d = 2/q = 3 6 5
functions d = 3 10 -
when the d = 4/q = 4 15 13
order is d = 5 21 -

Table 4: Characteristics of the algorithms The number of regime is the
theoretical one. It may differ from the number of regime that are effectively
visited in equilibrium. For the Smolyak method, we report the value that are
comparable to the complete basis i.e. the highest basis order is the same in
the two cases. With order 2 in the complete base, q = 3 and with order 4 in
the complete base q = 4.

B.7 General algorithm - complete base

We illustrate the algorithm with the benchmark model A (two government
spending regime), 4-th order chebyshev polynomial and 10 Hermite quadra-
ture nodes. The algorithm then consist in finding the coefficients Θ(1),Θ(2).
The Smolyak method involves the same steps as in the complete base except
that the size of the grid and the number of polynomial basis are different.

B.7.1 Algorithm

Step 1 - Initialization Choose the order of the Chebyshev polynomial DDD.
Denote by i the i-th iteration. At this stage, i = 0. Set a convergence
criteria b. Initialize the coefficients Θ(1)i,Θ(2)i using OLS regression on a
stochastic simulation computed from the solution of a perturbation method11.
We consider DDD = 4, MMM = DDD + 1 = 5 and KKK = 2.

11This step is achieve thanks to the Dynare software. We consider a perturbation method
of order 2 and assume that government expenditure are constant and equal to g1.
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Step 2 - Multidimensional grid Compute the multidimensional grid G of
the two continuous state variables, imposing the deterministic steady state to
be equidistant from the upper bound and the lower bound of the grid in each
dimension. G = [Gz Gk] is then a [25× 2] matrix.

Step 3 - Today’s regime Compute period t regime, given last period regime
n = 1, ..., N . Then for j = 1, ...,MMMKKK and n = 1, ..., N :

a. Output: yj = Gkj exp(Gzj )

b. Regime: sjn = 1 × 1{yj>y(n)} + 2 × 1{yj≤y(n)}

Step 4 - Today’s policy rules For j = 1, ...,MMMKKK and n = 1, ..., N get:

a. Consumption: cjn = P (Gzj ,Gkj ,Θ(sjn))

b. Capital: kjn = yj + (1− δ)Gkj − cjn − g(sjn)

Step 5 - Expectation Set Gauss-Hermite quadratures nodes eee and weights
ωωω. We consider H = 10 quadrature nodes. Denote by v′jnh the j-th elements
of the next period variable v = z, k, s, y, c in regime n at quadrature node h.
The quadrature rule expends variables to account for potential future values
of the shock. Then, for n = 1, ..., N , j = 1, ..., J and h = 1, ..., H:

a. Compute next period variables:

z′jnh = ρzGzj + σz eeeh
√

2

y′jnh = exp(z′jnh)k
α
jn

s′jnh = 1 × 1{y′jnh>y(n)} + 2 × 1{y′jnh≤y(n)}

c′jnh = P (z′jnh, kjn,Θ(s′jnh))

b. Compute the expectation:

Ejnh = β (c′jnh)
σ

(
exp(z′jnh)αk

α−1
jn + 1− δ

)
Ξjn =

1√
π

H∑
h=1

ωωωh Ejnh

Step 6 - Estimate coefficients The new value of the coefficients is calcu-
lated using OLS. The dependent variables is pined down by the expectation
terms and the explanatory variables is calculated from the basis function of
the Chebyshev Polynomial. For n = 1, ..., N
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a. Pined down the estimate of today’s consumption:

ĉjn = (Ξi
jn)−

1
σ − ρ g(sjn)

b. Regress the estimate of consumption on the basis functions to get a new
value for the coefficients:

Θi+1(n) =

(
BC(G)>BC(G)

)−1(
BC(G)>ĉn

)

Step 7 - Euler residuals Compute the average Euler residuals in each
regime (cjn is defined in Step 4.a.):

EERi+1
n = log10

(
1

J

J∑
j=1

∣∣∣∣1− cjn
ĉjn

∣∣∣∣)

Step 8 - Criteria We consider two convergence criteria:

a. Policy rule convergence

bn =
||Θ(n)i+1 −Θ(n)i||

||Θ(n)i||

b. EER convergence. Denote by τ the number of last iterations over which
we calculate the mean of the EER. The criterion is defined as the differ-
ence between the mean of EER over the last τ iterations and the EER
of iteration i− τ .

bn =

{ ∣∣EERi−τ
n − 1

τ

∑τ
u=1EER

i+1−u
n

∣∣ if i < τ
b Otherwise

The final convergence criteria is

bi = max(b1, ..., bN)

Step 9 - Convergence

a. Check if bi < b. If it is the case, stop the algorithm.

47



b. Otherwise, if bi ≥ b, set i = i+ 1 and go back to Step 4.

c. To achieve a convergence in the algorithm we use a smoothing param-
eter for the update of the policy rules:

Θ(n)i+1 = γiΘ(n)i + (1− γi)Θ(n)i+1

where γi depends on the iteration with the following values:

γi =


γ1 if i < imin

γ2 if imin ≤ i < imax

γ3 if i ≥ imax

B.7.2 Remarks

• Step 1-3 are computed just once. The regime in period t (Step 3) is
based on capital and the productivity shock, both of them being given
by the grid G. If st was function of ct it would have been necessary to
recompute (Step 3) at each iteration i.

B.8 GSSA

In the GSSA approach, the major difference is the build of the endogenous
grid. The function approximation is the same as in the complete base ap-
proach. We borrow from Maliar & Maliar (2015) the EDS technique to select
the representative points. The detailed step of the algorithm are as follow:

B.8.1 Algorithm

Step 1 - Initialization Choose the order of the Chebyshev polynomial DDD.
Denote by i the i-th iteration. At this stage, i = 0. Set a convergence criteria
b. Initialize the coefficients Θ(1)i,Θ(2)i using OLS regression on a stochastic
simulation computed from the solution of a perturbation method12.

Step 2 - Stochastic simulations Compute a stochastic simulation over
T=20000 periods using the same sequence of shock {εzt}Tt=0 as in Step 1.
Given initial condition of k0, z0 (deterministic steady state) and s0 = 1, the
steps for the stochastic simulation are as follow. For t = 1, ...T do:

a. Output: yt = kt−1 exp(zt)

12This step is achieve thanks to the Dynare software. We consider a perturbation method
of order 2 and assume that government expenditure are constant and equal to g1.
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b. Regime: st = 1 × 1{yt>y(st−1)} + 2 × 1{yt≤y(st−1)}

c. Consumption: ct = P (zt, kt−1,Θ(st))

d. Capital: kt = yt + (1− δ)kt − ct − g(st)

Step 3 - Representative points [Maliar & Maliar (2015), section 2.2.2].
Set the parameter εn, n = 1, ..., N . Given the time series previously calcu-
lated, define Xn = {zt, kt−1 | st = n}Tt=0, n = 1, ..., N as a set of points
for which the regime is equal to n. Denote by Pn an empty set such that
Pn = {∅}. For n = 1, ..., N , do:

a. Select xj ∈ Xn. Compute ∆(xj, x`), j 6= ` to all xj in Xn with the
following formula

∆(xj, x`) =

√√√√ KKK∑
k=1

(PCk
j − PCk

` )2

∆(xj, x`) is the euclidian distance between principal components (PC)
of Xn normalized to unit variance.

b. Eliminate from Xn all xj for which ∆(xj, x`) < εi

c. Add xj to Pn and eliminate it from Xn

d. Go back to step a. until Xn = {∅}

Step 4 - Expectation Set Gauss-Hermite quadratures nodes eee and weights
ωωω. We consider H = 10 quadrature nodes. Denote by xzjn ∈ Pn and xkjn ∈ Pn
the j-th elements (productivity shock and capital respectively) of the set Pn in
regime n. Furthermore, denote by v′njh the j-th elements of the next period
variable v = z, k, s, y, c in regime n at quadrature node h. The quadrature rule
expends variables to account for potential future values of the shock. Then,
for n = 1, ..., N , j = 1, ..., J and h = 1, ..., H:

a. Compute next period variables:

z′jnh = ρzx
z
jn + σz eeeh

√
2

y′jnh = exp(z′jnh)(x
k
jn)α

s′jnh = 1 × 1{y′jnh>y(n)} + 2 × 1{y′jnh≤y(n)}

c′jnh = P (z′njh, x
k
jn,Θ(s′njh))
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b. Compute the expectation:

Ejnh = β (c′jnh)
σ

(
exp(z′jnh)α(xkjn)α−1 + 1− δ

)
Ξjn =

1√
π

H∑
h=1

ωωωh Ejnh

Step 5 - Estimate coefficients The new value of the coefficients is calcu-
lated using OLS. The dependent variables is pined down by the expectation
terms and the explanatory variables is calculated from the basis function of
the Chebyshev Polynomial. For n = 1, ..., N

a. Pined down the estimate of today’s consumption:

ĉjn = Ξ
− 1
σ

jn − ρ g(n)

b. Regress the estimate of consumption on the basis functions to get a new
value for the coefficients:

Θ(n)i+1 =

(
BC(Pn)>BC(Pn)

)−1(
BC(Pn)>ĉn

)

Step 6 - Euler residuals Compute the average Euler residuals in each
regime:

EERi+1
n = log10

(
1

J

J∑
j=1

∣∣∣∣1− cjn
ĉjn

∣∣∣∣)
cjn = P (xzjn, x

k
jn,Θ(n))

Step 7 - Criteria We consider two convergence criteria:

a. Policy rule convergence

bn =
||Θ(n)i+1 −Θ(n)i||

||Θ(n)i||

50



b. EER convergence. Denote by τ the number of last iterations over which
we calculate the mean of the EER. We calculate the criterion by eval-
uating the stability of the EER over the last τ iterations.

bn =

{ ∣∣EERi−τ
n − 1

τ

∑τ
u=1EER

i+1−u
n

∣∣ if i < τ
b Otherwise

The final convergence criteria is

bi = max(b1, ..., bN)

Step 8 - Convergence

a. Check if bi < b. If it is the case, stop the algorithm.

b. Otherwise, if bi ≥ b, set i = i+ 1 and go back to Step 2.

c. To achieve a convergence in the algorithm we use a smoothing param-
eter for the update of the policy rules:

Θ(n)i+1 = γiΘ(n)i + (1− γi)Θ(n)i+1

where γi depends on the iteration with the following values:

γi =


γ1 if i < imin

γ2 if imin ≤ i < imax

γ3 if i ≥ imax

B.8.2 Remarks

• While in most cases the algorithm converges without any need for per-
turbation methods for initializing the coefficients (Step 1), we found
this strategy more efficient even if there are no RS when running the
perturbation. An alternative could be the use of low order polynomial
(e.g. order 2) to initialize the algorithm with higher order polynomials.

• Maliar & Maliar (2015) raised an important question: How often do we
need to reconstruct the EDS grid in a given application? The construc-
tion of the EDS grid is very fast in our model but can be computation-
ally expensive in models with several state variables or if the model is
solved several times e.g. for estimation. They suggest that the EDS
grid can actually be computed just once. By “once” we understand
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that the set Pn has not the same values but the same elements from
Xn. Said differently, the j-th element of the stochastic simulations are
always picked whatever the value of the state variables13. Their idea
is that the set of representative points remains representative from one
iteration to another. In their example, they show that the EDS grid is
able to autocorrect itself.

While this strategy works well in their setup, there is no guarantee that
it works in every model. In our model characterized by RS some repre-
sentative points of a regime n may switch regime from one iteration to
another. The policy rules can be either evaluated on a part of the state
space that is never visited by regime n, or not evaluated on a part of
the state space that would have been relevant to the decision rules if
the EDS grid was recalculated. For this reason we recalculate the EDS
grid at each iteration. An alternative could be the update of the EDS
grid only every 5 or 10 iterations.

B.9 Accuracy

We borrow from Judd (1992, 1998) the accuracy test that consists in the
evaluation of the residuals of the Euler equations calculated on a stochastic
simulation. It examines if the policy functions are accurately approximated
over two consecutive periods. The ideas is to compute the one-period opti-
mization error in relation to current consumption. For the GSSA the Euler
equation errors are evaluated on all simulated points, not just the point inside
the EDS. We define the two hand-side of the Euler equation as (dropping
time subscript):

c = P (xxx; Θ(s)) (41)

ĉ =

[
βEP (xxx′; Θ(s′))−σ(exp(z′)αk

′α−1 + 1− δ)
]− 1

σ

(42)

ĉ is evaluated thanks to Monte Carlo integration techniques. Formally, the
integral writes

13In Matlab, the EDS procedure gives the representative points of the state variables
and the line numbers associated to the stochastic simulations. When EDS are computed
once, the line numbers are held constant, not the value of the state variables.
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[
β

∫ ∞
−∞

P (k′, zρ+ ε′; Θ(ψ(s,Γ(xxx, ε′; Θ(s)))))−σ(exp(zρ+ ε′)αk′α−1 + 1− δ)f(ε′)dε′
]− 1

σ

[
β
∑
ε′

P (k′, zρ+ ε′; Θ(ψ(s,Γ(xxx, ε′; Θ(s)))))−σ(exp(zρ+ ε′)αk′α−1 + 1− δ)dε′
]− 1

σ

For each period t we draw 10000 value of ε′ from a normal distribution
N (0, σ2

z). The Euler Equation Errors writes:

EEEt = log10

(
1

T

T∑
t=2

∣∣∣∣1− ct
ĉt

∣∣∣∣) (43)

B.10 Convergence

Convergence is controlled through the value of the parameter γi and the iter-
ation step by which the convergence parameter changes value. As described
in the algorithm, we consider thee step which amount of setting imin and
imax.

Convergence is displayed in Figure 12 and the value of the convergence
parameter are given by table 5.

Table 5: Convergence parameters

Model
GSSA Complete base Smolyak method

γ1 γ2 γ3 γ1 γ2 γ3 γ1 γ2 γ3

A 0.1 0.5 1 0.05 0.5 0.7 0.05 0.5 0.8
B 0.1 0.5 1 0.05 0.5 0.8 0.1 0.4 0.6
C 0.1 0.5 1 0.05 0.5 0.8 0.1 0.4 0.6

imin imax imin imax imin imax

A 30 60 100 200 100 200
B 30 60 100 200 100 500
C 30 60 100 200 100 200

53



Figure 12: Convergence of the GSSA algorithm
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For the sake of exposition, we present log(bi) instead of bi from Step 7 of the GSSA
algorithm and Step 7 of the complete base approach. Left scale is the log10 basis. EER
(black solid line) are the Euler equation errors (L1) calculated on the representative points
for the GSSA. There are not calculated on the full stochastic simulations (contrary to the
ones presented in Table 3 of the main paper).

• The GSSA algorithm converges in 150 iterations in the model A and
C and it converges in 236 iterations in model B. When the smoothing
parameter changes value at iteration 30 there is a bump in the conver-
gence of the policy rule as well as in the EER stability. Except in Model
C, the EER declines monotonically with the number of iterations.
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• Over the three models, the computational time of the projection method
is low but the convergence is not as stable as the GSSA. The algorithms
require some fine tuning to ensure convergence. The number of itera-
tions in the Smolyak method is several time higher than the GSSA for
Model A and B.

B.11 Hardware and parallelization

• All the programs are run on Matlab R2017b. This last version is faster
for loop of type for than previous versions. The computer used is a
laptop with processor i9-8950HK (6 cores + hyper threading, 2.9Ghz on
all core and 5Ghz in turbo mode on a single core), 32Gb RAM, GeForce
GTX 1080max-Q and SSD Samsung 970 pro M.2 PCIe, Windows 10.

• Throughout the algorithms, no parallel computing are made for the
sake of clarity. However, the GSSA can easily be parallelized either on
the CPU or on the Graphical Processing Unit (GPU). See for instance
Aldrich (2014) and Fernandez-Villaverde & Valencia (2018). There are
several way for using parallel computation14. We list two potential
candidates that could reduce significantly the computational time in
larger models.

1. It is easy to parallelize Step 2 by running multiple stochastic
simulations together (with shorter horizon for each), gather them
and go to Step 3.

2. An obvious trick is to evaluate in parallel the expectations (Step
4) for each regime since they can be computed separately. In-
deed, the computation of the quadrature in one regime is made
on a representative set of points that belongs to the regime. Con-
sequently, we can use parallel computation over each regime. It
is worth noting that in Step 4 we can also calculate in parallel
each Ξjn since we are dealing with representative points j and we
do not need to know j to compute Ξ`n, j 6= `.

14Since the best choice for TBRS model is the GSSA, we will only discuss parallel
computing for GSSA.
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C Supplementary simulations

C.1 EDS grid in models with irreversible investment

Figure 13: EDS grid

Grid points are computed on a stochastic simulation of 20000 observations under the three
different models. Simulated points from the stochastic methods are the ones from the
last iteration. Chebyshev polynomials are of order 4. Model A: benchmark model, two
asymmetric regimes based on government spending. Model B: Irreversible investment, two
symmetric regimes based on the investment constraint. Model C: Benchmark + Irreversible
investment, four potential regimes
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C.2 Model with uncertain RS rule

Figure 14: Euler Equation Errors
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Euler equation errors (in log10 units) are computed on a stochastic simulation with 20000
draws from εzt . Bivariate smooth Kernel density estimate are displayed for each regime.
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