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And yet it rocks!

Vincent Carret∗

Université Lyon II - Triangle

October 16, 2020

Abstract

This article provides an analytical solution to Frisch’s 1933 model. The Laplace

transform and its inverse prove valuable to obtain an expression for the different

components that make up Frisch’s original solution. It also sheds a new light on

the argument in Zambelli (2007), where the author argues that this model does not

fluctuate. Unlike Zambelli, we show that we can obtain cyclical solutions. This

work provides new insights on the vision contained in the model. It turns out that

this vision was much larger than what is often remembered, in particular, we can

show that Frisch tried to construct a model that would intertwine both cycles and

growth. In addition, we are able to reconsider the link between Frisch’s early work

in statistics and the birth of macrodynamic models.

∗I wish to thank my advisor, Michaël Assous, for his help and advice on this paper, as well as the
participants to the workshop of PhD students in economics at Triangle for their questions and comments.
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1 Introduction: A reluctant horse

In 1969, Ragnar Frisch received the first "Nobel Prize" in economics (conjointly with

Jan Tinbergen), "for having developed and applied dynamic models for the analysis of

economic processes." One of his pioneering contribution in this respect was his 1933 article

on "Propagation Problems and Impulse Problems in Dynamic Economics" (Frisch, 1933).

Today, this article is still remembered and celebrated for his approach to macroeconomic

phenomena. In particular, the way Frisch illustrated the separation between a propagation

mechanism and an impulse mechanism has been one of the most enduring contribution

of his article.

Frisch’s idea was that the cycle in the data was not only the result of a periodic force

acting from the exterior, as was often advanced during the 1920s (most famously by Moore,

see for instance Moore (1921)). It is well known that to him, it was necessary to explain the

fluctuations of the economy with a propagation mechanism, and the "impulses" ensured

that the stationary equilibrium was never attained1. This embodied the idea that if you

hit a rocking horse, or a pendulum, it will oscillate toward its resting position2. One does

not need to push the horse continuously back and forth to obtain the oscillation: a new

hit is only necessary from time to time to reinject some energy into the swaying of the

toy. It was thus necessary to build a model that would produce fluctuations once it was

hit, that is, removed from its equilibrium position. Frisch viewed the whole mechanism of

impulses and propagation as a way to explain fluctuations without using a periodic source

of energy, as did Moore and others with the rainfall cycle, the position of Venus or even the

simple succession of seasons. This is still different from our modern understanding of the
1Boianovsky and Trautwein (2007) show that Frisch also introduced this distinction through his debate

with Johan Åkerman.
2On the pendulum metaphor, and the way it was used in discussions between Frisch and Schumpeter,

see Louçã (2001), who used an original correspondance between Frisch and Schumpeter to show their
different opinions on the validity of the metaphor. On the definition of shocks by Frisch, and the role he
played into establishing a modern understanding of them, see Duarte and Hoover (2012), who examine
how the notion of shocks was transformed afterward, and "rediscovered" by the New Classicals, who
insisted regularly on the necessity to find propagation mechanisms and to differentiate them from the
impulses (see for instance Lucas and Sargent [1978] or Prescott [2006]). Legrand and Hagemann (2019)
argue that the role of propagation mechanisms progressively lost importance afterward.
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opposition between endogenous and exogenous, and can be linked to the idea of free and

forced oscillations that was used at the same time by other econometricians3. It should

also be noted that the equilibrium of Frisch’s model, as in other early macrodynamic

models, was a kind of systemic equilibrium, the market behind his economy being always

in equilibrium4.

Frisch set out to building his model following a tour of American universities in 1930-

315. Following his debate with John Maurice Clark on the role of the accelerator, he

built a determinate model with enough relationships to solve for all endogenous variables,

dynamic relations between them and strong stability properties, to ensure that his horse

would return to its equilibrium.

His model did not have a lasting impact on macroeconomics, in large part because

it completely missed the future development on the importance of employment and ag-

gregate demand. However, it is an important step in the construction of macrodynamic

models, if only because it was one of the first fully worked out model of the economy.

Within this model, Frisch captured his vision of the economy, made of different "compo-

nent cycles" and of a "secular trend", and saw the analytical output as a guide for what to

search for in the economic data. This contribution of Frisch has not often been underlined,

and sometimes misunderstood, mainly because of the intractability of his model.

Among those who have gone further than a restatement of Frisch’s solutions of his

model, two contributions stand out. Björn Thalberg (1990) presented a computer recon-

struction of the model based on Frisch’s own solution. He apparently saw that for Frisch’s

original parameters and initial conditions the model was not fluctuating, and found other
3See for instance Tinbergen ([1931], 1959), or in a different context Le Corbeiller (1933). Frisch had

already written on this idea in 1931, in an article published in Norwegian and partly translated in Andvig
(1981): "The bundle of phenomena we call business cycle is ... a complex we have to attack as composed
of free oscillations if we as economists are ever to be able to understand it. The explanation of the cyclical
character of the oscillations must be sought in the inner structure of the system." (Frisch, 1931 quoted
in Andvig, 1981: 709).

4On this point and for a discussion of the different model building approaches in the 1930s, see our
forthcoming book Assous and Carret (2021).

5On Frisch himself, particularly during the interwar, see the works of Andvig (1981) and Olav Bjerkholt
(1995); Bjerkholt and Dupont-Kieffer (2010). Ariane Dupont-Kieffer (2003) showed in particular in her
thesis the opposition of approaches between Frisch and Mitchell. On the origins of Frisch’s model and for
a detailed anaysis of the hypotheses of his model, see Dupont-Kieffer (2012). For a more general context
of the work of Frisch in the econometric movement, see Louçã (2007).
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initial conditions for which this cycle was clearly visible. He went on to change the pa-

rameters "to reduce the dampening effect and thus make the picture clearer" (Thalberg,

1990: 101). But Thalberg remained mainly interested in the "primary cycle" identified

by Frisch, and did not explain why Frisch’s initial parameters did not work, when they

were aggregated with other components.

Recognizing this problem, Stefano Zambelli claimed that Frisch’s model was unable

to fluctuate (Zambelli, 2007). Zambelli goes very far in his argument that Frisch’s model

was not oscillating, and draws some strong conclusions on this assumption. This is in

spite of the fact that he does not offer a convincing explanation for the reasons behind

the absence of oscillations: after explaining that Frisch’s model was made up of the

sum of an infinity of solutions of a sinusoidal type, Zambelli remarks that Frisch only

presented the trajectories of the first four components of this series. If he had aggregated

them with all other solutions, according to Zambelli, he would have seen a "straight

line" instead of an oscillation (Zambelli, 2007: 153)6. Zambelli was then led to dub the

cyclical solutions obtained by Frisch an "illusion", that would have completely undermined

his approach, had it been seen by his contemporaries. However, we believe that the

contentious conclusions drawn by Zambelli are not well-founded. While it may be possible

that some components "cancel out" when they are aggregated, it would be quite amazing

that an infinity of components would all cancel out for as wide a range of parameters as

given by Zambelli in his appendix. There must be some other cause at work behind the

absence of fluctuations, and we argue that we can only understand it by going back to

Frisch’s original approach.

Thus, in the following sections, we wish to underline the vision carried by Frisch’s

model by going back to his original approach to solve his equations. Although he was

deprived of our modern tools of analysis, Frisch showed clearly that he understood well

the behavior of the model. The algorithms he and his assistants7 developed to obtain
6The only interpretation advanced by Zambelli to explain the disappearance of the cycles is that: "In

summing harmonics it is well known that the result of the summation might not be cyclical at all, a
trivial example being represented by two sinusoidal functions having the same amplitude and being out
of phase for 180 degrees: the sum of the two harmonics is a constant function, a straight line." (Zambelli,
2007: 153).

7Frisch mentioned the help of two of his assistants in 1933, H. Holme and C. Thorbjörnsen, who
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solutions were very clever; our approach only pays hommage to his by simplifying it.

Doing so, we observe where exactly he strayed away from a complete understanding of

his solutions.

2 New insights on Frisch’s model

We propose an analytical solution to Frisch’s model in the appendix. In this section, we

explain the tools we use and where they came from, and give a general overview of the

main points of this analysis to show how this solution throws light on Frisch’s original

intent. To apply our tools to Frisch’s model, we start by reducing his system of three

equations to one integro-differential equation with one unknown variable, the consumption

x. Doing this, we obtain the following form, an integro-differential equation with a lag in

the state variable and the integrand:

ẋ(t) + λ(r +
sµ

ε
) · x(t)− λsµ

ε
· x(t− ε) +

λsm

ε

∫ t

t−ε
x(τ)dτ = c (1)

In dealing with differential equations, a usual starting point is to pose a certain form

of the solution, an ansatz. This often takes the form of an exponential function accepting

a real or complex argument: real arguments will give a purely exponential explosion or

return toward an equilibrium, while complex arguments will give rise to oscillations. In

the early 1930s, the first econometricians built models that relied on mixed difference-

differential equations8 (see for instance Tinbergen ([1931] 1959) and Kalecki (1935)), that

necessitated more developed tools of analysis. To solve his model, Frisch generalized the

idea of an exponential solution, and posed that the general solution was made up of an

infinite sum of exponential components.

We will follow him into this idea, because it is the only way to understand his thought

process and the behavior of his model. But his process of solution although efficient, is

worked at the University Institute of Economics (Frisch, 1933: 16).
8These equations and their more general forms are now known as delay differential equations (DDE),

and are still an ongoing area of research in mathematics and engineering.
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particular to his equation and rather ad hoc. There are however some analytical tools

that can give us the same infinite sum of components in a much more systematic way. It

is notable that not long after the first macrodynamic models were built by Frisch, Kalecki

and Tinbergen, those tools were introduced in Econometrica and the meetings of the

Econometric Society by James and Belz (1938), who used a Fourier transform to obtain

an infinite sum of solutions to a simple type of DDE9. The idea of Fourier decomposition

and its numerous application in engineering and physics was well known in the interwar,

and it may have to some extent inspired Frisch’s own approach to his model. Their work

however did not made an important impact, in part because of its difficulty. Shortly after,

several mathematicians started working on the solution of those equations, most notably

Richard Bellman, Kenneth Cooke, Edward Wright and N. D. Hayes.

The outcome of this research was a sort of textbook published by Bellman and Cooke

at the Rand Corporation in 1963 (Bellman and Cooke, 1963), still a reference today.

While Bellman is mostly remembered today among economists for inventing dynamic

programming, he had been working on difference-differential equations since the 1940s.

At the Rand, his early reports on difference-differential equations mentioned in particular

the models of Kalecki (1935), Tinbergen ([1931] 1959) and the solutions worked out by

Frisch and Holme (1935) and James and Belz (1938) as exemples of economic applications

for those equations. The 1963 book also ended with a study of the stability of Kalecki’s

model, but its core was the analytical resolution of different classes of DDE via different

approaches. One such approach developped by the authors, and the most important for

our purpose, is the Laplace transform and its inverse.

This analytical tool, a staple of modern engineering, allows one to solve very efficiently

and simply a wide range of differential equations. Its true power is unleashed when applied

more formally to intricate equations such as those involving differentials and delays. At

its core, the transformation transports us into a new domain where differentials and

integrals are transformed into operations of multiplication and division, making it much

easier to find a solution. The difficulty then lies in going back to the original domain, the
9See Erreygers (2019) for an examination of their impact on the early work of the Econometric Society.
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temporal domain where the solutions can describe their trajectories as a function of time.

This transform is very close to the Fourier transform, but more adapted for the study

of difference-differential equations. In particular, once applied to this type of equations,

it gives a similar infinite sum of components, that can be expressed as a function of the

parameters of the system, the roots of a characteristic equation, and the initial conditions

determined by the model-builder.

The appendix gives the computation needed to obtain from equation (1), at the be-

ginning of this section, via the Laplace transform and its inverse, the following solution

for t ≥ ε (where ε is the production lag):

x(t− ε) =
c

λ(r + sm)
+ k1e

r1t +
∞∑
i=2

Aie
αitcos(βit+ φi) (2)

There are three distinct terms in the right hand side of this equation, that make up

the total solution of Frisch’s system. On the left is an equilibrium level, determined as

a function only of the parameters of the system. In the middle, we find an exponential

function that will be stable or unstable, according to the parameters of the system, and

that was dubbed by Frisch a "secular trend". On the right, we have an infinite sum of

sinusoidal solutions, each with its own frequency and damping exponent. Both the trend

and each of the cycles have their own amplitude determined by the initial conditions,

and each cycle has its own phase, determined by the initial conditions as well. The

appendix also presents our methodology to estimate the roots that give us the frequency

and damping of each cycle, and it is with this equation that we are able to rebuild Frisch’s

solution and discuss the different trajectories of his model.
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3 The Taming of the Horse: Cyclical solutions in Frisch’s

model

If we assume, as does Zambelli, that the model is initially in a state of equilibrium and that

there is a shock on x, the consumption of 10%, above the equilibrium, after some time,

we can trace the return to equilibrium with our equation. The difference with Zambelli

is that we do not compute it step-by-step with an approximation of the integral, but

we compute the sum of the first one thousand components of equation (2)10. Focusing

on the first four components, we can give a decomposition that shows precisely what

the problem was: the first component, the "trend" component that takes the form of a

monotonic return to equilibrium, dominates largely the cycles, both in amplitude and in

damping.

Figure 1: Solution of x(t) with the orig-
inal parameters and 1000 components

Figure 2: Decomposition with compo-
nents 1 to 4 of equation (2)

Thus we are able to explain why Zambelli obtained a monotonic return to equilibrium:

the huge damping exponents, as well as the small amplitude of the cycles, once they

are aggregated, produces the result in figure 2. But why did it not bother Frisch? In

the appendix, we compute a solution for x as a function of the initial conditions, the

parameters of the system, and the roots of a characteristic polynomial. Doing so, we

see clearly (see in particular equation (15)) that all the components will depend on the
10Using more components does not change significatively the solution; in fact using only one hundred

components would have given us essentially the same picture, because their amplitude goes very quickly
to zero.
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same initial conditions. But Frisch poses two different initial conditions: one for the

trend "x0 shall be unity at origin" (Frisch, 1933: 18), and one for all the cycles "[w]e

may, for instance, require that x1(0) = 0 and ẋ1(0) = 1
2
." (Frisch, 1933: 20)11. Hence it

appears that Frisch did as if the first component (the trend) was independent of the other

components (the cycles), and that he could impose different initial conditions on them,

thereby artificially lowering the amplitude of the trend and making the cycles much more

apparent. This was perceived by Thalberg (1990), who, as we noted, recognized that he

had to change the initial conditions to show the cycles. If we use his initial condition of

1.25 (Thalberg, 1990: 115), we obtain the following figures showing the total solution and

the decomposition of the "trend" and the first cycle.

Figure 3: Solution of x(t) with Thalberg
(1990) initial conditions

Figure 4: Decomposition with compo-
nents 1 and 2 of equation (2)

We see clearly that the "trend" has all but disappeared, while the cycles become clearly

visible, and their initial offset (phase) provides the "lift" toward the equilibrium level. This

explains that Thalberg did not have the same conclusions as Zambelli. However, the latter

argues that his result, the absence of fluctuations, will hold for a wide range of parameters.

Going back to his methodology of displacing our variable from its equilibrium, and looking

at its return towards this equilibrium position, does this result really hold? We find that

this is not the case. Indeed we can find parameters so that i) the first component will

have a small enough amplitude, such that the cycles underneath will appear, and ii)

the damping exponent of the first component, that is, the quickness of the return to

equilibrium, will be lower for the first component than for the first few cycles.
11He then repeats the same condition for x2, thus implying that he used it for all cycles.
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One such combination of parameters, that remains within the somewhat arbitrary

bounds given by Zambelli in his appendix, can be obtained just by increasing λ, for

instance to 0.3.

Figure 5: Solution of x(t) with λ = 0.3,

1000 components

Figure 6: Components 1 and 2 (trend

and major cycle)

In figure 5 and 6, we see that the amplitude of the first cycle has grown relatively to

the "trend" component, such that the return to equilibrium is clearly of a cyclical form,

with v-shaped recoveries ever so smaller. Still within the bounds given by Zambelli, we

can change more parameters to obtain an even clearer cycle, where the damping out of the

"trend" is quicker than the damping of the first cycle; for instance, with m = 1, λ = 0.3,

r = 1, s = 2 and µ = 15, we obtain the following figures.

Figure 7: Solution of x(t), see parame-

ters in the text, 1000 components

Figure 8: Components 1 and 2 (trend

and major cycle)
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This result is very important, because it means that Frisch’s model can output a

trend component which will leave room for some cycles. This is only possible because of

the complexity of equation (1), and this result is hardly possible in a simpler difference-

differential model such as that of Kalecki (1935) or Tinbergen (1931)12. As a final example,

to underline Frisch’s original vision of trend and cycles, we can give a solution showing the

type of "transitory growth" that was present in his original model. To do this, we need

to abandon the framework adopted by Zambelli of supposing that the economy starts at

the equilibrium, and that a shock displaces it away from this equilibrium, that was used

to observe the shape of the return to equilibrium.

Let’s suppose that the economy was artificially maintained at a lower level than its

equilibrium level for some time (at least a time equal to θ). In the following two figures,

we kept the same parameters as in the previous plots:

Figure 9: Solution of x(t), see parame-

ters in the text, 1000 components

Figure 10: Components 1, 2 and 3 (trend

and two cycles)

Figures 9 and 10 are the closest one to the vision originally exposed by Frisch in his

article: there is a trend component that brings us toward the equilibrium level of the

economy from the level where the economy was stuck, a primary cycle with a period of

about 6.5 years, and a secondary cycle with a period of about 3.2 years. The primary
12The shared visions as well as differences of those models is detailed in the forthcoming book (Assous

and Carret, 2021), where we apply the type of analysis made here to the models built in the 1930s and
1940s by Hamburger, Tinbergen and others in Europe, as well as Samuelson and Lange in the United
States (see Assous and Carret (2020) on the latter).
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cycle is clearly when it is superposed on the trend component, because it has a relatively

high magnitude (compared to the trend and other cyclical components), and because it

is less damped than the trend component.

4 Final remarks: Frisch’s achievements in their context

Frisch’s approach is somewhat peculiar for a modern reader, and can only be under-

stood in the context of what was being done before the econometricians began building

macrodynamic models. During the 1920s, the study of the business cycle was essentially

empirical, and was driven by several methodologies dealing with the explosion in avail-

ability of economic data. One of the big ideas of the 1920s was that the business cycle

could be disaggregated into several components and that it was possible to analyze the

structure of lags, relative importance and frequencies of those cycles to make predictions

on the future phase of the cycle. This idea stemmed largely from the discovery during the

second part of the 19th century of cycles of different length, and it was built upon and ap-

plied in particular by Warren Persons, who established the famous tool of the "economic

barometer" and the ABC curves13.

While Persons’ method relied on the elimination of seasonal variation and trend and

the computations of correlations between time series, another related method relied on

the frequency domain decomposition of economic time series into components of varying

phase, amplitude and period14. The techniques employed date back from the ground-

breaking work of Joseph Fourier in the early 19th century, who explained how almost any

curve could be synthesized as the sum of a number of simple periodic curves (sinusoidal

curves), giving birth to Fourier analysis (and a host of related tools), a central branch of

modern mathematics and physics. The periodogram analysis as it was then called was

first employed in economics by Moore and Beveridge in the 1910s and 1920s, and one
13See in particular the first chapters of Morgan (1995) on the developments of the empirical approach

to the business cycle.
14On the development of the periodogram analysis see in particular Davis (1941, chapter 1), and

(Cargill, 1974)
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of its main advocate well into the 1940s was Harold T. Davis, one of the founder of the

Cowles Commission.

Frisch himself worked on this idea in the late 1920s, and tried to devise a new method of

component estimation where the amplitude and phase of each frequency could be varying

(Frisch, 1928). His ideas on this subject, while acknowledged by Davis, did not have an im-

portant impact on the development of spectral analysis, in part because other advances

were made at the same time, and also because interest was already shifting under the

critiques of Schumpeter and Mitchell. Morgan also argues convincingly that it was aban-

doned because it could not represent in any way the relationships between the variables,

something that Frisch was very much conscious of (Morgan, 1990: 38). Nevertheless, the

periodogram analysis influenced undubitably the way that the first macrodynamic models

were built, something that Morgan hints at in her book where the description of Frisch’s

famous model follows the explanation of his statistical decomposition method15.

Indeed, Frisch took advantage of the fact that models mixing difference and differential

equations gave rise to an infinity of components to decompose the solution of his models

into a trend components and cyclical components featuring different periods, dampings,

phases and amplitudes. This analytical approach mirrored the statistical approach of the

1920s: instead of estimating the cycles’ features directly from the data, a theoretical model

was built and (loosely) calibrated, and it was solved such that the different components of

the general solution would be apparent, and could be compared to the cycles periodicty

already well studied.

In this context, Frisch’s approach to his model becomes a lot more understandable. He

viewed the output of his model as symmetric to what was done on economic series via the

periodogram analysis, and he pushed this idea a bit too far when he came to consider that

the components he obtained could depend on different initial conditions. After Frisch,

the idea of using the components of the model never really gained any traction. Tin-

bergen and Kalecki, using simpler versions of difference-differential equations, kept only
15This continuity between Frisch’s statistical decomposition techniques and the components of his

model has also been noted by Boumans (1995), who underlined that Frisch sought to explain how the
different components of the business cycle were aggregated together.
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the first component and looked for parameters that would make it oscillate. They were

(mostly) justified in doing so, because of the simpler form of their equations. After them,

Allen (1959: 302) called these higher terms “spurious”, “arising because of the rigid and

unrealistic assumption of a fixed time-delay”, and, reflecting on this period, Samuelson

himself acknowledged that he was stumped by the meaning of this components: “As a

young student, what I found mystifying was the meaning of the infinite number of sinu-

soidal components of Frisch’s more transcendental mixed difference-differential equation”

(Samuelson, 1974: 9). James and Belz (1938), proposed to interpret them as the overtone

or harmonics of a fundamental note, drawing a justified analogy with physical processes.

But while we can interpret the different solutions arising, for instance, from a system of

springs and masses (via the concept of normal modes), such an interpretation has never

been given in economics, and the idea was largely abandoned.

It remains that, in 1933, Frisch saw in mixed difference and differential equation a

way to represent both growth and fluctuations. Only by going back to this process of

thought are we able to understand the author’s intention, and where it could fail. Thus

the analytical approach adopted here to find Frisch’s original solution helped us avoid the

pitfalls of numerical computations of the type used by Zambelli, and brought us back to

the original spirit of Frisch’s 1933 contribution. This allowed us to show the richness and

complexity of his model, and whip his reluctant horse into rocking again.
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5 Appendix - Solving the model with a shifted Laplace

transform

The equations of Frisch’s model are the following16:

ẋt = c− λ(r · xt + s · zt) (3)

yt = m · xt + µ · ẋt (4)

zt =
1

ε

∫ t

t−ε
y(τ)dτ (5)

As a preliminary, we can compute the equilibrium of the system, which will help us

verify later on that our computations are right. After at least ε time at the equilibrium,

we know that the rate of change will be zero, and the past values will be the same as

the equilibrium values. We have thus three equations to determine the three unknown

equilibrium values:

c = λ(r · x̄+ sz̄) (6)

ȳ = m · x̄ (7)

z̄ = ȳ (8)

Solving for the equilibrium values, we get that

x̄ =
c

λ(r + sm)
(9)

ȳ = z̄ =
mc

λ(r + sm)
(10)

To find solutions satisfying this system, we reduce it to one equation by successive

replacements: first, we replace y in zt and we obtain zt = 1
ε

∫ t
t−εm ·x(τ) +µ · ẋ(τ)dτ . This

can be simplified as zt = m
ε

∫ t
t−ε x(τ)dτ + µ

ε
· (x(t)− x(t− ε)).

16Frisch’s notation of zt is rather confusing. This form makes clear that we want the integral of y over
the interval t− ε to t, and computations yield the same result as Frisch.
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Putting this into (3), we obtain ẋt = c−λ
[
r · xt + s ·

(
m
ε

∫ t
t−ε x(τ)dτ + µ

ε
· (x(t)− x(t− ε))

)]
Combining and rearranging terms, we obtain equation (1), an integro-differential equa-

tion with a delay in the state variable and the integral:

ẋt + λ(r +
sµ

ε
) · xt −

λsµ

ε
· x(t− ε) +

λsm

ε

∫ t

t−ε
x(τ)dτ = c

We can easily check that the equilibrium value of this equation is the same as x in

the system above. If we manage to find a solution for this equation, it will then just be

a matter of differentiating it and replacing into the system (3)-(5) to obtain the other

variables.

To simplify computations, we pose that a = λ(r + sµ
ε

), b = −λsµ
ε

and d = λsm
ε
.

This equation needs two type of initial conditions: an initial condition on the state

variable, and an initial condition for its evolution during the time 0 ≤ t < ε. The

importance of the two initial conditions is clear in the numerator of equation (12). In fact

it was from in the treatment of those initial conditions that Frisch committed his error in

solving the model, as we show in the text.

The definition of the Laplace transform is L {f(t)} =
∫∞
0
f(t)e−stdt = F (s), and in

order to have a solution to our equation in terms of the initial conditions from 0 to ε, we

shift this definition by ε to obtain
∫∞
ε
f(t)e−stdt (this follows Bellman and Cooke (1963)

approach and avoids expressing our solution as a function of a negative time from −ε to

0). The integral in equation (1) has to be slightly modified to simplify the application of

our transform. We separate it in two parts from 0 to t and from t − ε to 0, invert the

second part and change variables to obtain:

ẋ(t) + a · x(t) + b · x(t− ε) + d

∫ t

0

x(τ)dτ − d
∫ t

ε

x(τ − ε)dτ = c (11)

Applying our transform to this equation term by term is a rather straightforward, if

unwieldy, computation. ẋ(t) will give us an initial condition on x(ε) as can be expected.
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For b · x(t− ε) we use a change of variable to make apparent the initial condition:

b

∫ ∞
ε

x(t− ε)e−stdt = be−sε
∫ ∞
0

x(t)e−stdt = be−sε
[∫ ε

0

x(t)e−stdt+

∫ ∞
ε

x(t)e−stdt

]

The first integral in the brackets is our initial condition on the development of x(t)

during the period 0 to ε. The second is the definition of the transform, which we will call

X(s).

We integrate our two integrals using integration by parts. For the first one, we have:

d

∫ ∞
ε

∫ t

0

x(τ)dτ e−stdt = d

[
−1

s
e−st

∫ t

0

x(τ)dτ
∣∣∣∞
ε

+
1

s

∫ ∞
ε

x(t)e−stdt

]
=
d

s

[
e−sε

∫ ε

0

x(τ)dτ +

∫ ∞
ε

x(t)e−stdt

]

Where the evaluation on the first line of the left term in the brackets is 0 when t =∞.

For the second one, we obtain a rather similar expression, with the lag:

d

∫ ∞
ε

∫ t

ε

x(τ − ε)dτ e−stdt = −d
[
−1

s
e−st

∫ t

ε

x(τ − ε)dτ
∣∣∣∞
ε

+
1

s

∫ ∞
ε

x(t− ε)e−stdt
]

= −d
s
e−sε

[∫ ε

0

x(t)e−stdt+

∫ ∞
ε

x(t)e−stdt

]

This time the left term inside the bracket will vanish once evaluated, and we are left

with the right term which is similar to the third term of equation (11), which we computed

above, giving us the solution on the second line.

With X(s) =
∫∞
ε
x(t)e−stdt and p0(s) =

∫ ε
0
x(t)e−stdt, we can replace our computa-

tions in equation (11) to obtain:

sX − x(ε)e−sε + aX + be−sε(p0 +X) +
d

s
(e−sεp0 +X)− d

s
e−sε(p0 +X) =

c

s
e−sε

Grouping terms we have that:

X(s+ a+ be−eε +
d

s
− d

s
e−sε) + p0e

−sε(b+
d

s
− d

s
)− x(ε)e−sε =

c

s
e−sε
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Which gives us our final expression:

X(s) =
e−εs (c− b · s · p0 + s · x(ε))

s2 + as+ bse−εs + d− de−εs
(12)

where we have multiplied both x(ε) and p0 by s
s
.

The formula for the inverse Laplace transform is f(t) = 1
2πi
limT→∞

∫ γ+T i
γ−T i F (s)estds.

Following Bellman and Cooke17, we compute this contour by shifting it to the left and

taking into account the singularities we meet. We start by defining our contour integral:

x(t) =
1

2πi

∫
(b)

e−εs
(
c− b · s ·

∫ ε
0
x(t)e−s·tdt+ s · x(ε)

)
s2 + as+ bse−εs + d− de−εs

estds (13)

where (b) is our vertical contour.

Our contour will be equal to the sum of residue times 2πi, which will cancel the 1
2πi

of the inverse formula, so that we are just left with the sum of residues. Because the last

expression can be written in the form x(t) = 1
2πi

∫
(b)

g(s)
h(s)

ds, where

f(s) =
g(s)

h(s)
=

(
c− b · s ·

∫ ε
0
x(t)e−s·tdt+ s · x(ε)

)
es(t−ε)

s2 + as+ bse−εs + d− de−εs
(14)

and because all poles arising from the denominator will be simple, we have that at a

simple pole c, Res(f, c) = limz→c(z − c)f(z) = g(c)
h′(c)

. Thus our sum of residues will rise

from this expression, once we are able to compute the zeros of our denominator18.

This allows us to give a final expression for x(t) as a sum of components, each one with

its own amplitude (and phase for cyclical components) arising from the initial conditions:

x(t) =
∞∑
0

c− brip0(t) + rix(ε)

2ri + a+ be−εri − bεrie−εri + dεe−εri
eritu(t− ε) =

∞∑
0

kie
ritu(t− ε) (15)

17See Chapter 1 in Bellman and Cooke (1963) for a discussion of the inversion algorithm, and Chapter
3, section 7 for a detailed application.

18Bellman and Cooke show that to the left of any vertical line in the left-half plane, the residues will
always give rise to ever smaller components (in amplitude and damping), at least for retarded and neutral
DDE (our equation is a transformation of a neutral DDE). This result does not hold for forward DDE,
that is, when the lag is negative.

18



Where u(t) is the Heaviside step function and the ri are zeros of the characteristic

polynomial h(s). We take the sum from 0 to ∞, but the conjugate of each complex root

is also a solution, and its coefficient is k̄i.

All that remains to do now is to find a procedure to obtain the zeros of our character-

istic polynomial19. First of, we can remark that our polynomial always has a trivial root

at r0 = 0. This root will give us an equilibrium level for this system, and the reader will

not be surprised to see that this level is equal to c
a+b+dε

= c
λ(r+sm)

, the same equilibrium

we previously computed.

To find other roots of this polynomial, we can remark that lims→∞h(s) = s2 + as(1 +

θ1(s)) + bse−εs(1 − θ2(s)), where both θ1 and θ2 will tend to zero as s grows to infinity.

This means that for large s, the simpler expression s + a + be−εs = 0 will be a good

approximation of our roots. Because this is a transcendental equation, we will have an

infinity of solutions to this equation, but we can give a closed form solution with the

Lambert W function20. We first change variables and pose s = w
ε
− a. Replacing, we

have that w
ε

= −be−w+aε and rearranging to have the Lambert form wew = −εbeaε, which

means that w = Wk(−εbeaε) and finally s = Wk(−εbeaε)
ε

− a, where k = 0, 1, 2...∞ is the

branch of the Lambert function giving us an approximation of the value of w for this

branch. Because ε is positive and b is negative, the expression inside Wk will always be

positive. We know that in this case there will always be one nontrivial real root (this is the

"trend" identified by Frisch in 1933), and an infinity of complex roots that will give us an

infinity of cyclical solution. The general solution of x will be the sum (superposition) of all

these solutions. This gives us an initial guess that is improved with Newton’s algorithm,

giving us the same results as Frisch (and his assistants) for the roots of the four first

components21.

Inserting those solutions in equation (15), we obtain the complete solution given in
19The reader will note that h is indeed the characteristic polynomial, that we could have obtained for

instance by inserting a solution of the form Aeλt in equation (1).
20See Corless et al. for the definition of this function and an algorithm to obtain its solutions.
21Note that our approximation is working well for cyclical components, but can fail for the lowest

component, a real root. In this case we broaden our search sequentially.
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the text as equation (2) (expressed here with the Heaviside step function):

x(t) =
c

λ(r + sm)
u(t− ε) + k1e

r1tu(t− ε) +
∞∑
i=2

Aie
αitcos(βit+ φi)u(t− ε)

Where r1 is a real root, and the terms in the sum are all sinusoidal functions, with

damping and period given by ri = αi+βij. The roots and the initial conditions determine

together all the ki, giving the amplitude of the sinusoidal Ai = 2 · |ki| and its phase

φi = arg(2 · ki) (we get a factor of two because of the complex conjugate). In the case of

the pure exponential, the amplitude is simply k1.
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The code used to make the figures is available at https://gist.github.com/placardo/

2c0832e815dcf1f7918fbfd140d57ba5
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