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Abstract

We study competition in the U.S. airline industry relaxing the Nash equilibrium

assumption that airlines are able to predict perfectly the behavior of their competi-

tors. We assess empirically whether an equilibrium is more likely to occur if it is

the unique rationalizable outcome. We find that equilibria of short distance routes

with high traffic and low concentration are the most fragile, and low-cost companies

appear detrimental to their occurrence. Our analysis is applied to the measurement

of welfare gains from firms’ entry, and to the characterization of the relevant market

when some products are unobserved.

JEL classification numbers: C51, D21, L13, L40, L93.

Keywords: Rationalizability, Nash equilibrium, Cournot competition, structural

model, airline industry, welfare analysis, relevant market.

∗The authors thank the Agence Nationale pour la Recherche for its financial support. They are grateful
to Philippe Jehiel, Philipp Ketz, David Martimort, Otto Toivanen, seminar participants at Universidad
Autonoma de Barcelona, Ecole Nationale de l’Aviation Civile, Paris School of Economics, Université Paris
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1 Introduction

Economic analysis often refers to the Nash equilibrium concept at the moment of describing

strategic interactions between agents. In this situation, every agent is assumed to be able

to forecast correctly the behavior of the other agents. The recent literature in Industrial

Organization shows that such an assumption is more likely to hold in a stable environ-

ment where firms operate in markets that are geographically close to the market of their

competitors (Aguirregabiria and Magesan (2020)) or if agents can accumulate experience

and gradually learn how the others behave. However, it also suggests that beliefs can

loose accuracy in more disturbed environments where participants often change. Then the

equilibrium reference is potentially less relevant (Doraszelski et al. (2018)).

While agents may not be able to forecast the behavior of their competitors, it is usually

assumed that they are rational in the sense that they maximize their objective given their

expectations on what the others do. An important lesson from the concept of rational-

izability is that rationality, even pushed at a high degree of sophistication, is not always

enough to reach a Nash equilibrium. A player is rational at level k = 1 if she plays a

best-response given her beliefs; at level k = 2 she’s rational and believes that the other

players are rational; at level k = 3 she also believes that the others believe that the others

are rational. Reproducing inductively at any level k ≥ 1 this process of higher-order beliefs

about rationality eventually yields the set of rationalizable outcomes which always includes

but does not necessarily reduce to Nash equilibria (Bernheim (1984), Pearce (1984), Moulin

(1979)).

In this paper we build an empirical index for the likelihood that an equilibrium occurs,

based on the postulate that an equilibrium is more likely to occur when it is the only

rationalizable outcome (Guesnerie (1992)). The index uses the characterization of rational-

izable outcomes as being those surviving an iterative process of elimination of dominated

strategies. The process eliminates every outcome close to an equilibrium, but not the equi-

librium itself, if it is locally contracting around this equilibrium. Contraction obtains when

the spectral radius of the Jacobian matrix governing locally the process is less than 1. We

estimate a proxy for the spectral radius and use it as an index for the likelihood that the

observed market will reach an equilibrium: the theory predicts that the market should be

in equilibrium if the index is lower than 1.

The value of the index depends on sufficient statistics for supply and demand character-
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istics. To recover these statistics we construct a structural model applied to the case of the

U.S. air transportation industry. Our model generalizes Desgranges and Gauthier (2016)

to the case of heterogeneous production facilities, which is known to be a crucial ingredient

in the airline industry. We merge several Department of Transportation databases for the

period 2003:2016 to estimate supply and demand functions for a large number of air routes.

This information provides us with the sufficient statistics that enter the value of the index

on every route. It also allows us to calculate the hypothetical volume of transported pas-

sengers by each airline at the equilibrium, and so the difference between the actual observed

production levels and those that would prevail in the equilibrium.

Our main result is that our index is a reliable indicator of this difference: we find that

a 10% increase of the index is associated with a 7% increase in the difference between

observed and Nash quantities. Descriptive statistics show that the Nash equilibrium is less

likely to occur on short distance and intense traffic routes linking populated cities. Low

cost companies also complicate the convergence toward the equilibrium whereas greater

concentration tends to yield a lower value of the index. At this stage of the analysis, we

conclude that an equilibrium would be reached on approximately 90% of the markets in

our dataset.

We then extend our main analysis into three directions. First, we note that adaptive

learning in a dynamic horizon can also explain convergence toward the equilibrium. We

propose a simple test that allows us to shed light on whether convergence toward the

equilibrium is also facilitated when airlines use past observations to form their anticipations

on the decisions that their competitors will take. We find that, on top of rationalizability-

based deductive arguments, adaptive learning is also potentially relevant as the current

observed/Nash spread is significantly reduced by those two and three quarters before.

Our second extension of the baseline analysis illustrates how nonequilibrium outcomes in

a particular market may affect consumer surplus. The empirical studies on firms’ entry and

exit usually assume that the market is in equilibrium both before and after entry/exit and

so refer to the corresponding prices and quantities in each period. Here, we view entry/exit

as potential perturbations that may lead to a multiplicity of rationalizable outcomes. In

an illustration based on the New York-Tampa route, we show how firms may over-estimate

other airlines’ fares and schedule too many seats following entry: consumer surplus is in

this case higher than what one would get in equilibrium.

3



Our third extension relates to the debate on what competition authorities call the

relevant market (Davis and Garcés (2009)). In practice, there are in our data markets

where the observed quantity produced differs from Nash even though the index is below 1.

We argue that the relevant threshold should in fact be lower than 1 when the econometrician

does not observe the full set of services supplied by the competing airlines due to missing

data issues. The higher the share of missing observations, the smaller the value of the

relevant threshold. We propose a method based on machine learning to identify the relevant

threshold for each market. We obtain an average threshold of 0.80, which implies that

almost one-third of the markets in our database could fail to reach an equilibrium. We

confront our methodology whith a natural experiment, namely the Wright amendment,

which restricted flights from the Dallas Love airport in order to promote the development of

the Dallas/Fort Worth airport (Ciliberto et Tamer (2009)). We suggest that the estimated

relevant threshold in routes from Dallas/Fort Worth is sharply reduced after the repeal of

the amendment, as the relevant market that includes the airline services of this airport

expands over the period.

The rest of the paper is organized as follows. We build the theoretical model applied

to the airline industry in Section 2 and Section 3 discusses the details of the estimation

strategy, including data cleaning and descriptive statistics. Section 4 reports the estimation

results of the cost and demand functions and uses this information to compute the index

that governs the plausibility of the equilibrium. This section shows how the index correlates

with observed departures from Nash behavior. In section 5 we introduce adaptive learning

and we also compute both the actual and equilibrium welfare difference following a change

in the set of competing airlines in a given route. Section 6 extends our analysis to the

identification of the relevant market. Finally section 7 concludes.

2 Theoretical benchmark

2.1 General framework

In the airline industry a market is defined as the set of air services offered by different

carriers in a route linking a pair of origin and destination airports or cities. The airlines

compete in the route for carrying freight and passengers. They all face the same demand

function for transportation services but they typically differ according to their technolog-
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ical and organizational characteristics summarized by their cost structure. Some airlines

may use a few large capacity aircraft to spread the cost of booking airport slots, boarding

passengers and operating flights on few departures, whereas others rely on lower capacity

aircraft but schedule more departures. Such choices result from medium-run intermittent

contractual negotiations between airlines and airports and long-run airlines capacity in-

vestment policies. Over a shorter horizon, the fact that Delta Airlines in the route linking

Chicago and Atlanta allocates a A320 Airbus to a booked slot at O’Hara airport from 8h00

to 8h30am every Monday is essentially given.

Over this shorter horizon, airlines instead rely on yield management to control prices

and quantities of transported passengers given the available aircraft allocated to the route

(Borenstein and Rose, 1994). Following Ciliberto and Tamer (2009), we allow for a firm f

specific cost function caf (q) for transporting q passengers using a type a aircraft that varies

with aircraft type as well as additional firm characteristics, e.g., negotiated input (fuel and

employees) prices. We assume that the cost function is twice differentiable, increasing and

convex with the number of transported passengers. A polar case obtains if the marginal

cost for transporting one additional passenger is low except when the total number of

passengers approaches the aircraft capacity.

Let Af be the given set of aircraft used by airlines f in the route and naf be the given

number of flights operated by the airlines using type a aircraft. The total cost of firm f

for transporting qf passengers is

Cf (qf ) = min
(qaf )

∑
a∈Af

nafcaf (qaf ) |
∑
a∈Af

nafqaf ≥ qf

 , (1)

which is also an increasing and convex C2-function with the number qf of passengers.

Assuming Cournot-Nash behavior, as in e.g., Brander and Zhang (1990), Brueckner (2002)

or Basso (2008), firm f takes as given the number Q−f of passengers transported by the

other airlines and produces

qf ∈ arg max
q
P (Q−f + q)q − Cf (q),

where P (Q) is the inverse demand function, and Q = Q−f + qf is the total number of

passengers transported in the route. Assuming that the marginal revenue P (Q−f + q)q
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is decreasing in q, the best choice for firm f is qf = Rf (Q−f ), where the best-response

function Rf (·) is decreasing.

A Cournot-Nash equilibrium is a F component vector q∗ = (q∗f ) such that q∗f = Rf (Q
∗
−f )

for all f , with Q∗−f being the aggregate production of others in the equilibrium. Thus, in an

equilibrium, every airline f is assumed to predict correctly the number Q∗−f of passengers

transported by its competitors.

Our paper provides an empirical assessment of this assumption appealing to rationaliz-

ability. Rationalizable outcomes can be characterized by referring to an iterative process of

elimination of dominated strategies (see, e.g., Osborne and Rubinstein, 1994). The process

starts from the assumption of common knowledge among airlines that at some initial step

τ = 0 production satisfies

qf ∈ [qinff (0), qsupf (0)] (2)

for every f , with qinff (0) ≤ q∗f ≤ qsupf (0). Assuming the equilibrium amounts to require

qinff (0) = q∗f = qsupf (0) for all f . In the sequel we assume that firms restrict attention

to a neighborhood of the equilibrium, with (qinff (0), qsupf (0)) is close to, but different from

(q∗f , q
∗
f ).

By individual rationality airlines only select volumes of transported passengers that are

best-response to decisions consistent with (2). Airlines f thus chooses some production in

a new interval [qinff (1), qsupf (1)] at step τ = 1 of the process, with1

qinff (1) = Rf

(∑
k 6=f

qsupk (0)

)
, qsupf (1) = Rf

(∑
k 6=f

qinfk (0)

)
.

This reasoning applies to every airlines. Thus, in the immediate vicinity of an equilibrium,

we have

qinff (1)− q∗f = R′f (Q
∗
−f )
∑
k 6=f

[qsupk (0)− q∗k] (3)

and

qsupf (1)− q∗f = R′f (Q
∗
−f )
∑
k 6=f

[
qinfk (0)− q∗k

]
(4)

1If qinff (1) ≤ qinff (0) then we set qinff (1) = qinff (0). Similarly, if qsupf (1) ≥ qsupf (0) then we set qsupf (1) =

qsupf (0). The process therefore remains at (2) if both qinff (1) ≤ qinff (0) and qsupf (1) ≥ qsupf (0). No strategy
is eliminated. The same procedure applies to every step τ ≥ 1 of elimination.
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for all f . Under common knowledge of rationality and the slopes R′f (Q
∗
−f ) of the firms’

best-response functions, one can iterate the above argument. The iterative process of

elimination of dominated strategies defined by (3) and (4) is governed by the F ×F matrix

B whose every entry in the f -th row equals R′f (Q
∗
−f ) except the diagonal entry (in the f -th

column) which is 0. It has the Cournot-Nash equilibrium q∗ is a fixed point.

Level-k thinking popularized by Crawford and Iriberri (2007) would iterate the process

k times, for some finite number k. If iterated ad infinitum, the process eventually pins

down the equilibrium if and only if the spectral radius of B is less than 1. If the Nash

equilibrium is locally the only rationalizable outcome, one can argue that firms should

eventually convince themselves that their competitors will behave according to Nash. In

this case we say that the equilibrium is locally ‘stable’. Otherwise, if the spectral radius

is greater than 1, there are multiple rationalizable outcomes and the iterative process can

no longer justify that firms eventually pin down their Nash productions. We say that the

equilibrium then is ‘unstable’. The following proposition gives a condition for local stability.

Proposition 1. The Nash equilibrium is locally stable if and only if

S(q∗) =
∑
f

R′f (Q
∗
−f )

R′f (Q
∗
−f )− 1

< 1 (5)

where

R′f (Q−f ) = − P ′′ (Q) qf + P ′ (Q)

P ′′ (Q) qf + 2P ′ (Q)− C ′′f (qf )
, (6)

and

C ′′f (qf )
∑
a∈Af

naf
c′′af (qaf )

= 1.

Proof. See Appendix A �

Proposition 1 forms the basis of our empirical illustration by providing us with a simple

criterion for the plausibility of the occurrence of the Nash equilibrium. It predicts that the

spread between the theoretical Nash equilibrium productions q∗ and the actual observed

productions should be magnified if the ‘stability index’ S(q∗) defined in (5) is greater than

a threshold of 1.

Condition (5) shows that local stability of the Nash equilibrium obtains if firms are not
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too sensitive to the production of others, i.e., R′f (Q
∗
−f ) is close to 0, which accords with

the early insights developed by Guesnerie (1992) for the competitive case. The intuition is

that firms find it difficult to understand the behavior of others when others are sensitive

to their beliefs.

2.2 Linear-quadratic specification

One can derive simple comparative static properties for the stability index S(q∗) in the

particular case where demand is linear and cost is quadratic. Then the slope of the best-

reaction function, and so the value of the stability index, no longer depends on the number

q∗ of transported passengers in the equilibrium. With a linear demand function,

P (Q) = δ0 − δQ, δ0 > 0, δ > 0, (7)

and a quadratic cost,

caf (q) =
q2

2σaf
,

where σaf > 0 is a technological parameter that is specific to aircraft × airlines, the cost

function solution to the program (1) is

Cf (q) =
q2

2σf
, σf =

∑
a∈Af

nafσaf . (8)

The parameter σf plays a central role in our model. It can be interpreted by noticing that

both the marginal cost C ′f (q) associated with (8) and its derivative C ′′f (q) are decreasing

with σf for any given production q. Since Cf (0) = 0 a higher value of σf implies a

production efficiency gain (a lower production cost), which is made possible thanks to an

increase in the individual σaf or because the capacity naf goes up. This efficiency gain

however comes with greater flexibility captured by dampened marginal costs. This makes

firms more sensitive to expected changes in the production of others: the slope of the

best-response function of firm f

R′f (Q
∗
−f ) = − δσf

2δσf + 1
(9)
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is decreasing with σf . This bundle of efficiency gains and greater flexibility drives a trade-

off between surplus maximization in the Nash equilibrium and stability of this equilibrium

illustrated by Proposition 2.

Proposition 2. The transfer of an additional aircraft to some airlines in the linear-

quadratic setup increases the aggregate equilibrium production Q∗ but it locally destabilizes

the equilibrium, i.e., it leads to an increase in the index S(q∗).

Proof. See Appendix B. �

An additional aircraft allocated to the route corresponds to a higher transportation

seat capacity, and so corresponds to an increase in the σf parameter. By Proposition 2

one should consequently observe in the data that routes with high traffic display a higher

spread between the theoretical Nash equilibrium and the actual production.

The next result controls for route size by considering a transfer of aircraft between two

airlines in the same route. This allows us to highlight the impact of the distribution of

transportation capacities across airlines.

Proposition 3. An aircraft reallocation from airlines f to airlines f ′ in the linear-quadratic

setup increases the aggregate equilibrium production Q∗ if and only if σf > σf ′. This

reallocation locally destabilizes the equilibrium, i.e., it leads to an increase in the index

S(q∗), if and only if σf > σf ′.

Proof. See Appendix C. �

The trade-off between efficiency and stability illustrated in Proposition 2 is still valid.

However, Proposition 2 would not allow us to discuss the impact of the transfer considered

in Proposition 3 since the contributing airlines f entails an efficiency loss and a stability

gain whereas airlines f ′, which enjoys the additional aircraft, is associated with an efficiency

gain and a stability loss. Proposition 3 actually obtains by comparing the magnitudes of

these two changes. It leads to the new testable prediction that some asymmetry in the

airlines capacity in a given route, with large seat capacity firms competing against smaller

ones, should be associated with a theoretical Nash equilibrium production closer to the

actual one.

9



3 Empirical illustration to the airline industry

Our theoretical analysis predicts that the Nash equilibrium production should stand far

from the observed production when the stability index S(q∗) is high (Proposition 1), the

total production capacity is high (Proposition 2), and the total production capacity is

distributed evenly across firms (Proposition 3). We assess these predictions in the U.S.

domestic airline industry over the period 2003:2016 using data from the Bureau of Trans-

portation Statistics to estimate the demand for airlines tickets and aircraft cost functions

fitting the linear-quadratic setup developed in Section 2.2. These data allow us to compute

the stability index S(q∗) and the volumes of transported passengers in the Nash equilib-

rium q∗ by each airline, which can then be compared to the actual observed number of

transported passengers.

3.1 Data

A market consists of all the flights between two endpoint cities, identified by their City

Market ID number assigned by the U.S. Department of Transportation (DOT). To estimate

market supply and demand functions, we combine demographic and climate information

with three publicly available databases released by the Bureau of Transportation Statistics

of the U.S. DOT: the Air Carrier Financial Reports, the Air Carrier Statistics and the

Airline Origin and Destination Survey (DB1B).

Our analysis of the supply side of transportation services exploits information contained

in schedule P-5.1 of the Air Carrier Financial Reports and the Air Carrier Statistics T-100

Domestic Segment. Schedule P-5.1 includes cost information, namely, data on input prices,

maintenance expenses, equipment depreciation, rental costs, and total operating expenses

disaggregated by airlines × aircraft type. Costs are available for each aircraft type, but the

data does not include cost broken out by airline route. This data limitation obliges us to

refer in the cost function to an output defined at the aircraft level as well. Since airlines

produce passenger transportation services on non-stop flights using a single aircraft, the

aircraft level coincides with the segment level, i.e., direct non-stop flights. A flight from

city A to city C that entails a stop at city B consists of the two segments AB and BC, and

we will estimate in section 3.2 separate costs for each of the two segments. At the segment

level we can ultimately recover the costs at airlines × segment × aircraft type level that
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appear in the theoretical model.

The financial information in Schedule P-5.1 is merged with Air Carrier Statistics T-100

Domestic Segment (U.S. Carriers) which contains domestic non-stop segment monthly data

reported by U.S. air carriers, including origin and destination points, number of passengers

carried, flight frequency, aircraft type and route length. The T-100 consists of more than

three million observations over the sample window 2003:2016. We select the segments

with distance above 100 miles, with more than 10 passengers per flight, with at least

eight departures and 600 passengers during every quarter2. This yields a database with

3, 575 observations at the carrier × segment level that contains 22 carriers operating on

1, 298 segments and carrying 80 percent of the passengers transported in the U.S. domestic

market. Some descriptive statistics for the average carrier are provided in Table 1.

Table 1: Carrier cost descriptive statistics

Mean Standard deviation Min Max

Aircraft costs (thousands of USD) 148,887 187,083 329 1,895,361
Passengers per carrier (in thousands) 1,931.1 2,657.2 16.242 26,000
Number of operated segments 196.41 112.96 17 604
Salary1 (in thousands of USD) 22.59 6.51 8.19 46.34
Average fuel price1 per 1000 gallons (in USD) 2,199.3 649.6 834.4 6,867.9

Number of observations: 3,575

1. Prices and costs are adjusted using the transportation sector price index of the Bureau of Labor Statistics, http://www.bls.gov/cpi/

Demand is estimated from the Airline Origin and Destination Survey (DB1B) database

over the 2003:2016 period. The DB1B sample contains more than 4 million observations at

the ticket level for every quarter. In order to match the segment perspective used on the

supply side, we restrict our attention to markets with a high enough proportion of direct

flights. We have chosen a threshold that eliminates routes with less than 60 percent of

direct non-stop flight tickets. As shown in Table 2 there remains 3, 337 routes in the DB1B

database. We disregard routes with one airlines in a monopoly situation, to which the

theoretical part does not apply, and we only keep routes matching a segment existing in

our final T-100 dataset. Then we use a cleaning process that mirrors the one applied to the

T-100 dataset: we remove routes with distance below 100 miles and get rid of the routes

with few passengers. We also discard tickets with extreme reported prices in the bottom

and top 5% quantiles of the price per mile distribution, and we remove routes observed

2The T-100 dataset has been frequently used in the economic literature interested in airline competition.
For further discussion on data selection, see for instance Ciliberto and Tamer (2009).
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during less than 12 years in our 14-year sample window. We are eventually left with 379

routes. Compared to the original sample, our dataset tends to be biased toward routes

with greater passenger traffic.

Table 2: Route sub-sample selection from DB1B dataset

Number of routes Mean Standard deviation Min Max

Original base 11141
Passengers per route (in thousands) 18.146 65.839 0.010 2986.0
Share of direct tickets per route 0.46 0.39 0 1

Direct routes (share of direct flights > 0.6) 3337
Passengers per route (in thousands) 38.118 95.359 0.050 2986.0
Share of direct tickets per route 0.87 0.12 0.60 1

Routes in the final sample 379
Passengers per route (in thousands) 265.9 263.8 9.9 2986.0
Share of direct tickets per route 0.90 0.09 0.60 1

To estimate demand we compute the average quarterly number of passengers booking

a flight on the selected segments and the corresponding average fare for each of these 379

routes. Fares are adjusted using the transportation sector price index of the Bureau of

Labor Statistics. The database is enlarged with temperature and population of origin and

destination cities.3 Descriptive statistics are presented in Table 3.

Table 3: Route descriptive statistics

Mean Standard deviation Min Max

Population in larger city (million) 6.419 4.552 0.928 18.663
Population in smaller city (million) 1.785 1.518 0.011 12.368
Average ticket price on the route* (USD) 182.8 74.6 23.9 586.8
Medium ticket price on the route* (USD) 161.7 54.2 8.2 467.1
Average price per mile (in USD) 0.286 0.108 0.079 0.654
Distance between two cities (thousand km) 0.783 0.557 0.013 2.918
Passengers per route (thousand) 265.9 263.8 9.9 2986.0
Number of airlines 3.084 2 7

Number of observations: 20,808

* Corrected by the consumer price index for transportation sector

3This information is obtained from ggweather.com and citypopulation.de.
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3.2 Costs

The estimation of an aircraft cost function is based on the quadratic specification

cafst =
q2afst

2σafst
, (10)

which applies to a given flight operated by airline f with a type a aircraft during period t

on segment s. The T-100 dataset provides information on the number of passengers qafst

transported on segment s by airlines f using aircraft type a during quarter t. However

we only observe in the schedule P-5.1 the aggregate cost over all the segments served by

airlines, namely

Caft =
∑
s

nafst cafst (11)

where nafst denotes a number of departures. In order to estimate the parameter σafst that

enters the stability index at the segment level using the aggregate cost in (11), we express

this parameter as
1

2σafst
= β0 ξft µs νa (12)

where β0 is a constant term, ξft varies across firms and time periods, while µs and νa are

segment and aircraft fixed effects, respectively. The variable ξft accounts for unobserved

characteristics of airlines productive efficiency, e.g., managerial effort or marketing strate-

gies, each of which plausibly varies over time. In (12), segment and aircraft fixed effects are

restricted to be time invariant, but our final cost specification includes time fixed effects

common to segments and aircraft. Using (10) and (12) the aggregate cost Caft given in

(11) becomes

Caft = β0 ξft νa
∑
s

µs nafst q
2
afst. (13)

We argue that unobserved managerial efforts and/or marketing strategies in ξft are

correlated with the input prices that airlines bargain with input providers. The contribution

ξft is modeled as a linear function of wages and fuel prices faced by each airline f during

period t; in other words,

log ξft = b log Wageft + (1− b) log PFuelft + ξf + Quartert + Yeart, (14)

13



where ξf is a carrier fixed effect, and Quartert and Yeart are quarter and year time dum-

mies. The property of linear homogeneity of degree one in input prices guarantees that the

corresponding coefficients sum to 1.

The 3, 575 observation data used to estimate cost only entails 1, 298 different segments

(see Table 1), which prevents us from estimating reliable individual segment fixed effects

µs for every segment. To circumvent this difficulty we assume that

µs = d0 + d1 Distances + d2 Temperatures, (15)

where Distances is the segment length measured as the geographical distance between two

cities, and Temperatures is the average temperature at the departure and arrival cities over

the whole sample window.

The cost function to be estimated obtains by reintroducing (14) and (15) into (13). The

final expression of this function is

logCaft = log b0 + b log Wageft + (1− b) log PFuelft

+ log

[∑
s

( 1 + d∗1 Distances + d∗2 Temperatures ) nafst q
2
afst

]
+ ξf + νg + Quartert + Yeart + εaft, (16)

where εaft is an error term. To get this expression, we have made three main simplifications.

First the constant log b0 replaces the sum of the two constants log β0 and log d0 that cannot

be estimated separately. Second, we normalize the coefficients d∗1 = d1/d0 and d∗2 = d2/d0.

Third, in the data airlines have preferences for specific aircraft types that gives rise to a

high correlation between the airlines and aircraft fixed effects ξf and νa. This prevents us

to keep track of both airlines and aircraft unobserved heterogeneity at the detailed level of

the aircraft type. We therefore work with a more aggregated aircraft group by clustering

the 29 different aircraft types into 12 groups referring to model characteristics and carrier4.

This provides us with an aircraft group g fixed effect νg that replaces the original aircraft

fixed effect νa.

4Aircraft in the same cluster belong to the same generation of models and have similar size. For example,
Boeing 737-300, Boeing 737-400 and Boeing 737-500 are allocated to the same cluster while next generation
larger Boeing 737-800 and Boeing 737-900 are in another cluster. There remain small clusters with rare
aircraft types like Aerospatiale/Aeritalia ATR-72 or Saab-Fairchild 340/B.
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Table 4: Estimated cost function Caft

logCaft

(1) (2) (3)

Constant (log b0) 2.513*** 1.127*** 2.182***
(0.34) (0.31) (0.45)

log Wage (b) 0.558*** 0.597*** 0.602***
(0.08) (0.07) (0.07)

Distance (d∗1) 0.025 0.709*** 0.205*
(0.02) (0.37) (0.11)

Temperature (d∗2) -0.006*** -0.006***

(0.00) (0.00)

Quarter 2 -0.170*** -0.157*** -0.164***

(0.01) (0.01) (0.01)

Quarter 3 -0.199*** -0.180*** -0.193***

(0.01) (0.01) (0.01)

Quarter 4 -0.096*** -0.086*** -0.089***

(0.01) (0.01) (0.01)

Aircraft group f.e. (νg) No Yes Yes

Airlines f.e. (ξf ) Yes Yes Yes

Year f.e. (Yeart) Yes Yes Yes

Number of observations 3,575 3,575 3,575

Log-Likelihood -1010 -453 -407

Note: ∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.

Table 4 reports the maximum likelihood estimates of the parameters of the cost function

(16) for three variants. The results are very similar in each case, except from the impact

of distance between the two cities located at the endpoints of the segment. Costs increase

with input prices; they are also higher on cold weather segments and during the colder first

and fourth quarters. There is a positive significant correlation between route distance and

temperature in our data that makes the impact of distance on cost in variant (2) magnified

when temperature is omitted. The likelihood of the variant (1), which only differs from the

one in (3) by excluding aircraft group fixed effects on the segment, shows the importance

of taking into account the aircraft type in airline costs. In the absence of control for the

aircraft type, we find that a greater distance does not involve higher costs for the operating

airlines. The expected positive impact is recovered once the control is introduced, which

reflects the fact that airlines allocate specific aircraft types conditionally on the length of

each segment.
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3.3 Demand

We start from the linear demand specification (7),

Qst = γ0st + γstPst + ζs + Quartert + Yeart + νst, (17)

where Pst and Qst are respectively the average price level and the aggregate quantity of

passengers transported in segment s during period t. Both are computed from the DB1B

dataset. We have added segment fixed effects ζs and quarter and year fixed effects, Quartert

and Yeart. The intercept γ0st and the slope γst are two parameters to be estimated. We

assume that they depend on route distance and population size of endpoint cities, Pop1st

and Pop2st (with Pop1st ≤ Pop2st). We also assume that the slope γst may directly depend on

time. The expressions of the intercept and the slope rewrite as

γ0st = α0 + α1Pop1
st + α2Pop2

st, (18)

and

γst = α3 + α4Distances + α5Pop
1
st + α6Pop

2
st + Quartert + Yeart. (19)

The demand equation that we estimate is (17) with intercept and slope given by (18) and

(19), respectively.

The (one quarter) lagged price or input prices are two potential candidates that can

be used to deal with the joint determination of the price Pst and the quantity Qst. As

the input prices also enter the cost expression (16), we prefer to use lagged prices in what

follows. Table 5 presents the demand function estimated from the 379 selected routes. The

price variable is the route average ticket price in columns 1 and 2 and the median price in

columns 3 and 4. The specification in columns 2 and 4 fits the specification described in

(7), (18) and (19). For comparison purposes, we report in columns 1 and 3 the results in

the case where the slope of the demand function is assumed to be independent from route

characteristics.

We observe a higher demand for routes linking densely populated cities. In such markets

demand displays lower price sensitivity. The greater distance between origin and destination

points makes substitution with alternative transport facilities more difficult as α4 is positive.

Moreover, α5 and α6 are both positive, which suggests that consumers departing from or
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Table 5: Estimated demand function

Number of passengers

(1) (2) (3) (4)

Intercept γ0st – eq. (18)

Constant α0 133.646*** 207.210*** 126.531*** 196.328***
(16.24) (16.58) (16.26) (16.62)

Pop1 (α1) 18.116*** 19.037*** 18.829*** 18.518***
(2.45) (2.45) (2.46) (2.46)

Pop2 (α2) 47.003*** 22.234*** 46.288*** 17.078***
(3.02) (3.70) (3.03) (3.82)

Slope γst – eq. (19)

Constant (α3) -0.505*** -0.986*** -0.583*** -1.060***
(0.02) (0.04) (0.02) (0.04)

Distance (α4) 0.168*** 0.148***
(0.02) (0.053)

Pop1 (α5) 0.004** 0.013***
(0.00) (0.00)

Pop2 (α6) 0.051*** 0.078***
(0.01) (0.01)

Year f.e. Yes Yes Yes Yes
Quarter f.e. Yes Yes Yes Yes

R2 0.176 0.204 0.170 0.198

Obs. 20808 20808 20808 20808

F test (route f.e.) 1003.8 982.9 1008.7 978.1

Note: fixed-effects (within) IV regression
∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.

(1), (2) - mean price is employed, (3), (4) - median price is employed



arriving to cities with a larger population (i.e., hubs) are less sensitive to price fluctuations.

The contribution of demand to market stability captured by the index S(q∗) for route

s at time t only relies on the slope δ = δst = −1/γst in Table 5. The results are very

similar when we use average and median lagged prices as instruments. In the sequel we

shall use the specification in column 2 referring to the average price. To provide the

reader with an order of magnitude for this slope from this specification, we obtain γst =

−0.986 + 0.168 × 0.783 + 0.004 × 1.785 + 0.051 × 6.419 ' −0.519 plus quarter and year

fixed effects in the average segment in Table 3. Including the time fixed effects one gets

γst = −0.621: a 10 USD increase in the fare yields 6, 210 passengers less in the route (see

Oum et al., 1992, for an overview of transport demand elasticity estimates).

4 Empirical results

The cost estimation procedure is based on 1, 298 segments of the T-100 dataset while we

estimate demand from 379 routes of the DB1B dataset. In order to match supply and

demand information, all the subsequent results are based on the 301 common segments

that appear in the two samples.

4.1 Stability index

The cost efficiency parameter σ̂afst obtains by replacing the parameters that appear in

(12) with their estimated values reported in Table 4. The constant term β0 is set to the

estimate b̂0 = β0 + d0 and the statistics σ̂afst can only be recovered at the coarse level of

aggregation of the aircraft group g rather than the fine level of the aircraft type a. We

use (8) to aggregate σ̂afst over aircraft groups to get the sufficient statistics σ̂fst for the

contribution of market supply to the stability of the Nash equilibrium. On the demand

side, the results in Table 5 give the estimated slopes of the demand function γ̂st = −1/δst

that provide us with the relevant summary statistics for the contribution of market demand

to stability. We therefore have all the information that is needed to compute the slope of

the best-response function (9) in the linear-quadratic specification of the theoretical model,

and so the stability index S(q∗) in (22). Figure 2 in Appendix D depicts the distribution

of σ̂fst, δ̂st, and the best-response slope.

We use formula (5) to recover the stability index S(q∗) at each segment × period level
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Table 6: Sufficient statistics for stability

Min. 1st Qu. Median Mean 3rd Qu. Max.

Cost efficiency σfst 0.002 0.28 0.515 0.762 0.965 5.935
Inverse demand slope δst 0.915 1.28 1.495 1.609 1.816 5.113
Best-response slope R′(q∗) -0.482 -0.375 -0.309 -0.299 -0.231 -0.002
Stability index S(q∗) 0.167 0.458 0.568 0.629 0.774 1.794

from the estimated slopes R′fst(q
∗). Table 6 shows that S(q∗) is lower than 1 for most

segments: it exceeds 1 for only 9 percent of the segment × quarter observations. Our

theoretical model thus predicts successful coordination in most markets, conditional on the

fact that the set of the observed services × airlines coincides with the complete set of the

services × airlines that constitute the relevant market.

The variability in the stability index comes from within and between segment hetero-

geneity. Although our sample window includes the 2007 crisis and the Great Recession we

find that time only explains 5 percent of the variance of the stability index whereas segments

contribute to 81 percent of this variance. Table 7 provides us with a more detailed picture

of the stability index by reporting the results of the regression log(Sst) = X ′β+periodt+εst

where the right-hand side variables in X consist of exogenous route characteristics as well

as potentially endogenous competition indicators.

Higher values of the stability index apply to segments linking two distant and densely

populated cities. Population matters even after controlling for the number of passengers. In

accordance with Proposition 2, routes with high traffic display a higher stability index. Such

segments are likely to involve high competition intensity. We have looked at two measures

of competition. A higher number of competitors does not influence the value of the stability

index. However we find that a lower Herfindahl index, which reflects greater similarity of

passenger transportation market shares among the competing airlines, is associated with

higher values of the stability index. This fits Proposition 3, using market shares as proxies

for airlines seat capacity.

The bottom of Table 7 delineates the types of interactions among airlines that give rise

to higher indexes by clustering routes based on the operating airlines. Unlike the clustering

relying on exogenous route characteristics that was used to estimate the cost function, the

decision to enter is probably correlated with components of the stability index. We apply
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Table 7: A picture of the stability index

log(Sst)

Constant −2.958∗∗∗

(0.069)

Market structure

log(Distances) −0.031∗∗∗

(0.004)
log(Lowest population1st) 0.022∗∗∗

(0.003)
log(Highest population2st) 0.019∗∗

(0.008)
log(Nb of airlinesst) 0.060

(0.044)
log(Herfindahl indexst) −0.685∗∗∗

(0.017)
log(Share of direct flightsst) 0.097∗∗∗

(0.032)
log(Nb of passengersst) 0.251∗∗∗

(0.017)

Airlines cluster

Cluster 3 (AA) −0.044∗∗∗

(0.006)
Cluster 6 (UA-AA) −0.036∗∗∗

(0.008)
Cluster 4 (UA) −0.034∗∗∗

(0.003)

Cluster 2 (No high market share airlines) −0.033∗∗∗

(0.006)
Cluster 8 (WN-AA) −0.031∗∗∗

(0.003)
Cluster 7 (WN-UA-AA) −0.012

(0.010)
Cluster 9 (WN-UA) −0.002

(0.009)

Cluster 1 (WN) reference

Cluster 5 (DL) 0.007
(0.005)

Cluster 10 (WN-DL) 0.015∗∗

(0.006)

Number of observations 7,422
R2 0.897
Adjusted R2 0.896
Residual Std. Error 0.123 (df = 7350)
F Statistic 899.472∗∗∗ (df = 71; 7350)

Note: robust standard errors clustered by route.
∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.



the Fanny clustering by Kaufman and Rousseeuw (1990) to the four airlines with the

greatest market share in our whole sample: American Airlines (AA), Delta Airlines (DL),

United Airlines (UA) and Southwest Airlines (WN). The clusters and an associated measure

of within cluster similarity are reported in Table 8 (the highest within cluster similarity,

which is normalized to 1, obtains when all the observations in the cluster are identical).

Table 8: Airlines network from the main airlines

cluster WN UA AA DL Within homogeneity Nb of segments Nb of observations

1 100 0 0 0 1 83 1, 448
2 0 0 0 0 1 71 631
5 0 0 0 100 1 62 1, 071
8 100 0 100 0 1 57 738
10 100 17 8 100 0.580 57 719
9 100 100 0 0 1 56 957
4 0 100 0 15 0.740 50 486
7 100 100 100 5 0.920 43 614
3 0 0 100 32 0.570 30 490
6 0 100 100 36 0.590 21 268

Columns 2 to 5 of Table 8 give the percentage of observations classified in the clusters

where the four main airlines is active. In cluster 1 the low-cost airlines WN is present

in every segment and quarter, occupying a quasi-monopoly position by competing against

airlines with low market shares in the whole sample. Cluster 2 only consists of segments

× quarter operated by low market share airlines. In cluster 10, UA appears in 17% of

observations, and it always compete against WN and DL. The lower within cluster similarity

found for cluster 10 shows that the competition structure changes over segments and time:

some observations correspond to a duopoly with WN and DL possibly competing against

smallest airlines, while other observations in cluster 10 involve WN and DL competing

against UA and/or AA as well as smaller airlines.

Table 7 delineates three groups of airlines clusters. A first group with low stability

indexes is formed by routes where UA and AA hold a dominant position and routes where

they compete against each other. This group also includes routes where no major airlines

is active. There is a second set of routes with intermediate values of the index, where WN

compete against AA and UA. The presence of the low-cost company WN thus tends to

be associated with higher values of the stability index. In the last group, with the highest

values of the index, we find routes where WN and the major airlines DL interact.
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4.2 Assessing the Nash equilibrium

We are now in a position to assess whether the spread between the actual and the theoretical

Nash numbers of transported passengers is positively correlated with the indexes Sst over

segments s and quarters t. We start from the squared spread between actual and Nash

productions as

‖qst − q∗st‖
2 =

∑
f∈Fst

(
qfst − q∗fst

)2
,

where Fst represents the set of airlines active in segment s during quarter t. However, in

order to avoid a mechanical bias with a higher spread in segments with intense traffic, the

above spread is normalized by the squared number of passengers

‖q∗st‖
2 =

∑
f∈Fst

q∗2fst.

Our normalized measure for the spread between Nash and actual production (at the segment

× period level) is therefore

∆st =
‖qst − q∗st‖
‖q∗st‖

.

We refer to the linear-quadratic specification to get the equilibrium production q∗f of

airlines f ,

q∗f = σf
δ0 − δQ∗

1 + σδ
,

where the aggregate equilibrium production Q∗ obtains by summation over airlines. The

estimate of q∗f in segment s during quarter t obtains by replacing δ with the estimate of

−1/γst and σf with the estimate of σfst used in Section 4.1, and by using the results in

Table 5 to replace δ0 with the estimate of −γ0st/γst satisfying (18). Some details about the

resulting spread density distribution are given in Appendix E.

Figure 1 shows the high positive correlation between the stability index Sst and the

spread ∆st. The figure displays a smooth rise in the spread from 0 (where actual and Nash

number of transported passengers coincide) when the index increases. The spread reaches

its highest level around 0.8: the departure from Nash then represents 80% of the Nash

production. The density of Sst × ∆st observations depicted in dotted red shows that this

pattern applies to most observations, with a stability index between exp(−1.5) ' 0.2 and

exp(−0.25) ' 0.8. Unlike the theoretical prediction of Proposition 1, the spread is not
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Figure 1: Density and average spread per range 2e-02 stability indexes

close to 0 when the index is below 1. In section 6 we will argue that the consideration of

unobserved competition within the relevant market may contribute to account for a positive

spread for stability indexes below 1. Here we abstract from such features and focus on the

econometric relationship

log ∆st = b0 + b1 logSst + Segments + Quartert + εst.

The results of this regression are reported in Table 9.

All the three variants reported in Table 9 display a positive high significant relation

between the theoretical stability index and departures from Nash outcomes. We conclude

that the stability index can be considered as a reliable predictor of the occurrence of the

Nash equilibrium.

The variants differ according to fixed effects that are controlled for. The inclusion of

time fixed effects does not yield substantial changes in the results. Instead, unobserved

heterogeneity across segments explains an important large part of Nash departures. Our

preferred specification in the third column includes both segments and quarter fixed effects:
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Table 9: Nash departure and stability index

Nash spread log ∆st

(1) (2) (3)

Stability index logSst (b1) 0.539∗∗∗ 0.574∗∗∗ 0.713∗∗∗

(0.131) (0.145) (0.089)

Constant (b0) −0.829∗∗∗ −0.731∗∗∗ −0.560∗∗∗

(0.077) (0.117) (0.085)

Quarter fixed effect No Yes Yes
Segment fixed effect No No Yes

Number of observations 7,422 7,422 7,422
R2 0.096 0.117 0.596
Adjusted R2 0.096 0.110 0.575
Residual Standard Error 0.632 (df = 7420) 0.627 (df = 7365) 0.433 (df = 7065)
F -statistic 788.090∗∗∗ (df = 1; 7420) 17.459∗∗∗ (df = 56; 7365) 29.230∗∗∗ (df = 356; 7065)

Notes: ∗∗∗ (resp., ∗∗ and ∗), significant at the 1 (resp., 5 and 10) percent level
We report robust standard errors at the segment level.

a 1 percent increase in the stability index is associated with a 0.713 percent rise in the spread

between actual and Nash numbers of transported passengers.

The recent literature provides mixed evidence about whether firm size asymmetry helps

stability by facilitating equilibrium coordination. In Kumar et al. (2015), competitive

pressure improves firms’ attention to global macroeconomic indicators and so makes fore-

casts about current market outcomes more accurate. In Byrne and de Roos (2019), the

dominant firm BP in the retail gasoline industry is able to orient price strategies of the

smaller retailers toward some focal point. The results reported in Tables 8 and 9 show that

coordination failures on Nash outcomes are more likely in competitive markets with high

traffic where competitors have similar market shares. The presence of Delta Airlines (DL),

which completed its merger with Northwest (NW) from 2010, favors non-Nash behavior

whereas Southwest (WN) complicates convergence toward a Nash equilibrium. This echoes

the empirical literature that documents the ability of Southwest to trigger fierce reactions

by its competitors (see Morrison (2001) and Goolsbee and Syverson (2008)).

24



5 Time and welfare

In this section we first depart from the strictly static perspective we took so far and test

whether firms accumulate any experience over time. In a second step, we shed light on

potential welfare biases in the analysis of the effect of changes in competition, in situations

where the entry and exit of firms creates instability and impedes firms from reaching a

Nash equilibrium.

5.1 Adaptive learning

The stability index governs a process where airlines iteratively eliminate dominated choices

of volumes of passenger-carrying services that can be viewed as taking place within every

period t. Empirical evidence from surveys about expectations documents an extrapolative

nature of expectations based on past observations and forecasts (see Ma, Sraer and Thesmar

(2018) for recent examples). In our context, it seems plausible that airlines also process

past information, e.g., past capacity choices of their competitors, to form/revise their beliefs

about period t choices of their competitors. The existing literature has actually shown close

links between the two approaches (Nachbar (1990)): a unique rationalizable outcome often

implies convergence of adaptive learning toward the Nash equilibrium. One can therefore

interpret the results reported in Table 9 as a signal that airlines process past information

using some ad hoc myopic learning rule which eventually yields the equilibrium if the

stability index is below 1.

Here we test whether the role of the stability index only transits through adaptive

learning. We restrict our attention to the special case where airlines hold identical beliefs

over the individual productions of their competitors. Then, a reduced form for the actual

realization of the spread ∆st that fits the local stability properties of our theoretical setup

is ∆st = Sst∆
e
st where ∆e

st stands for the common forecast about the (normalized) spread

between the actual and Nash volume of passengers in segment s during quarter t. We

introduce adaptive learning by assuming that the belief ∆e
st is determined by a log-linear

function of past forecast errors,

∆e
st =

∏
i>0

∆γi
s(t−i),

where γi is a parameter that weights the realized error i quarters before the formation of
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the forecast ∆e
st. With this rule, the actual dynamics of the spread writes

∆st = Sst
∏
i>0

∆γi
s(t−i),

or equivalently

log ∆st = logSst +
∑
i>0

γi log ∆s(t−i).

This specification highlights that log ∆st should be in the same proportion as logSst if the

role played by the stability index Sst only transits through adaptive learning. Hence we

consider the following econometric specification:

log ∆st = b1 logSst +
∑
i>0

γi log ∆s(t−i) + Segments + Quartert + εst.

If the estimated parameter b̂1 differs from 1, we can reject the null hypothesis that only

adaptive learning matters in the determination of the current departure from Nash.

The model is estimated using the extended linear GMM estimator based upon lagged

differences of ∆st in addition to lagged levels of ∆st as instruments (Blundell and Bond,

1998). The results are provided in Table 10 together with several specification tests. The

Sargan test is not completely convincing as the statistic shown presents significant evi-

dence against the null hypothesis that the overidentifying restrictions are valid. The latter

implies that we need in principle to reconsider our model or our instruments, unless we

attribute the rejection to heteroskedasticity in the data-generating process. The presence

of heteroskedasticity is a realistic assumption, as suggested by Arellano and Bond (1991).

Another important assumption is that, when the errors ε are independently and identically

distributed, the first difference errors are first-order serially correlated, which is confirmed

here: first, the test statistic presents strong evidence against the null hypothesis of zero

autocorrelation in the first-differenced errors at order 1; second, it presents no significant

evidence of serial correlation in the first-differenced errors at order 2, which strengthens

the validity of our results.

The results reported in Table 10 show that past forecasting errors do indeed matter.

The estimate b̂1 is usually significantly different from 1. One can thus reject the null

hypothesis that the role played by the stability index is only adaptive learning based. The

specification used in Column 1 shows that errors made by airlines two and three quarters
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Table 10: Adaptive versus rationalizability-based justifications of the Nash equilibrium

log ∆st

(1) (2) (3) (4)

log ∆s(t−1) 0.258
(0.577)

log ∆s(t−2) −0.382∗∗∗ −0.320∗∗∗ −0.348∗∗∗ −0.301∗∗∗

(0.142) (0.057) (0.074) (0.080)
log ∆s(t−3) −0.175 −0.227∗∗∗ −0.247∗∗∗ −0.221∗∗∗

(0.137) (0.033) (0.050) (0.038)
logSst 0.705∗∗∗ 0.774∗∗∗ 0.705∗∗∗ 0.799∗∗∗

(0.200) (0.089) (0.123) (0.125)

Nb of segments 301 301 178 123
Quarters used (over 56) 1-51 1-51 1-47 2-51
Nb of observations 7422 7422 3510 3912
Sargan test (p-value) 0.01 0.05 0.151 0.331
Autocorrelation test (1) (p-value) 0.287 1.77e-07 1.71e-04 5.92e-05
Autocorrelation test (2) (p-value) 0.519 0.676 0.241 0.320
Wald test for coefficients (p-value) ≤ 2.22e-16 ≤ 2.22e-16 5.01e-12 ≤ 2.22e-16
Wald test for time dummies (p-value) 4.55e-11 5.54e-09 1.44e-05 ≤ 2.22e-16

Notes: ∗∗∗ (resp., ∗∗ and ∗), significant at the 1 (resp., 5 and 10) percent level
We use the robust covariance matrix proposed by Windmeijer (2005).

earlier have a significant impact on the current Nash spread, but not the errors made in the

last quarter; the short-run stickiness of seat capacity adjustments makes the last quarter

seat capacity the best proxy for the current one, but this information may not be publicly

available when airlines form their forecasts. In every specification airlines put less weight

on far distance past errors, |γ̂2| > |γ̂3|.
The full sample of observations is used in the first two columns of Table 10. The

impact b̂1 of the stability index on the current departure from Nash remains very similar

to the one found when neglecting the effect of past departures from Nash (in Column 3

of Table 9). The results in the last two columns apply to sub-samples that only consist

of segments where there is no major airlines among the four companies selected in the

clustering made in Table 8 (Column 3), or segments where only these airlines are active

(Column 4). The specifications in these last two columns suggest that large airlines display

a greater confidence in past strategic choices of their competitors than small airlines to

form their current forecasts as the difference between b̂1 and 1 seems to loose significance

in column 4.
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5.2 Welfare impact of entry

A frequent exercise proposed by competition authorities consists in assessing the impact

of a new firm entry (or exit) on the consumer surplus. The empirical framework usually

assumes that a Nash equilibrium is obtained before and after entry (Scenario 1). Hence,

the change in consumers’ surplus is

∆∗Surplus = −1

2
(p∗1Q

∗
1 − p∗0Q∗0) ,

where Q∗0 and Q∗1 are the equilibrium productions before and after entry, respectively.

Here, we relax this hypothesis and assume instead that higher competition following

entry possibly entails instability so that firms may not be able to play Nash quantities. We

are thus interested in a scenario where airlines play a Nash equilibrium before entry while

the equilibrium becomes unstable after entry and entails a production level Q1 which is

different from the Nash quantity and is directly observed in our sample (Scenario 2). The

change in consumers’ surplus after entry can then be computed as

∆Surplus = −1

2
(p1Q1 − p∗0Q∗0) .

To evaluate the difference between ∆∗Surplus and ∆Surplus, we pick up a specific market,

namely New-York/Tampa, where a change in the number of the competitors makes the

value of the stability index jump above 1. In this market, Continental (CO), Southwest

(WN), Delta (DL), and Jetblue (B6) compete against each other in 2011:4, while the next

quarter witnesses the exit of Continental, and the simultaneous entry of American Airlines

and United Airlines. We compute the equilibrium productions Q∗0 and Q∗1 as suggested in

Section 4.2. As shown in Table 11, the corresponding prices p∗0 and p∗1 obtain using the

estimated demand slope and intercept on segment s at time t from δ̂0st and δ̂st in Table

5. We find that the Nash quantity Q∗1 is greater than Q∗0 while the Nash price decreases

from 336.2 USD to 321.2 USD. Thus, the increase in total surplus ∆∗Surplus per passenger

in Scenario 1 is equal to 19.5 USD. In Scenario 2, where carriers make prediction mistakes

in 2012:1, the increase in total surplus ∆Surplus per passenger is equal to 34.2 USD. Hence

assuming Nash behavior after entry in this particular market leads to an under-evaluation

of the surplus gain.

The change in total production from one period to another can be decomposed at the
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Table 11: Welfare in the New-York/Tampa segment

Period 2011:4 2012:1

Competing careers CO, WN, DL, B6 UA, WN, DL, B6, AA

Stability index Sst 0.974 1.055
Nash Quantity (thousands) 405.5 417.1
Observed Quantity (thousands) 405.5 426,5
Nash price (in USD) 336.2 321.2
Observed price (in USD) 336.2 305.9

Nash Surplus (in USD) 133,498.6 141,640.4
∆∗Surplus (in USD) +8,141.8
∆∗Surplus per passenger (in USD) +19.5

Real Surplus (in USD) 133,498.6 148,088.9
∆Surplus (in USD) +14,590.3
∆Surplus per passenger (in USD) +34.2

airline level, as illustrated in Table 12. We find that Delta (DL) behaves very much in line

with Nash while JetBlue (B6) and American Airlines (AA) produce much more than what

the Nash equilibrium would predict.

Table 12: Actual and Nash passengers in the New-York/Tampa segment

Airlines Nash Quantity 2011:4 Nash Quantity 2012:1 Observed Quantity 2012:1

CO 105,9 - -
NW 58.6 51.6 36.9
DL 101.8 94.9 89.7
B6 118.8 104.6 141.7
AA - 28.5 19.7
UA - 109.4 138.2

6 Nash departures and the relevant market

The theoretical prediction derived from Proposition 1 is that large departures from Nash

equilibria should occur in routes with a stability index above 1. This prediction does not

always fit the actual pattern reproduced in Figure 1 where the spread is sometimes positive

for values of the stability index falling below 1. We now explore a potential explanation for

this particular feature. We show that a greater scope for unobserved competition translates

into a lower value of the stability index threshold S∗s above which large departures from
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Nash equilibria can occur. That is, S∗s = 1 if the full set of products which constitute

the relevant market is accounted for by the econometrician. Otherwise, the stability index

threshold S∗s should fall below 1. In this section, we assess the relevant threshold in every

route of our dataset and comment upon the size of the relevant market.

6.1 Stability from sub-market observations

There are many circumstances in which the relevant market, i.e., the market that includes

all the services that are relevant substitutes, cannot be considered in isolation. One may

think of multimarket contacts through common endpoints or transportation services as

a composite good that consists of differentiated items, e.g., economy versus business class

services, or non-stop direct versus indirect flights. Also, on short distance routes, alternative

products could entail other modes of transportation such as car or railway. Neglecting part

of the potential goods or services in the relevant market leads to underestimate the overall

transportation capacity that the airlines observed in our sample have actually to predict.

In order to highlight the possible biases associated with missing competition, we first

examine a simple variant of our theoretical setup where the relevant market consists of two

substitutable items. The demand for item m (m = 1, 2) is Pm(Qm, Q−m), where Qm and

Q−m stand for the aggregate demands for the two items. On the supply side we assume

that the set of firms producing the two items are disjoint. This is a strong assumption

if the missing information about the relevant market mostly consists of indirect flights

since traditional carriers often offer both direct and indirect flights. The assumption could

be better suited on short distance routes which involve few alternatives to direct flights,

with airline services competing against rail transportation or other inland transport modes

for instance. In addition, we simplify the exposition by working under two symmetry

assumptions:

Assumption A1. Symmetry of demand: P−m(Q−m, Qm) = Pm(Q−m, Qm) for all (Q−m, Qm)

and all m.

Assumption A2. Symmetry of supply: every firm f producing item 1 has a mirror firm

F + f producing item 2, i.e., σf = σF+f for every f = 1, . . . , F , with F being the total

number of airlines producing any given item.
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Firm f in marketm produces qf that maximizes its profit given the aggregate production

Qm
−f of the other firms in market m and the aggregate production Q−m in the other market.

Its best-response can be written qf = Rm
f (Qm

−f , Q
−m), which is decreasing with its two

arguments if the two items are substitutes. In view of Assumptions A1 and A2, we focus

attention on a symmetric Nash equilibrium where q∗f = q∗F+f for every f ≤ F . In equilibrium

the aggregate output is Q∗ in each sub-market. The iterated process of elimination of

dominated strategies in the neighborhood of such an equilibrium is now driven by the

partial derivatives

R′f1(q
∗) =

∂Rm
f

∂Qm
−f

(
Q∗−f , Q

∗) , and R′f2(q
∗) =

∂Rm
f

∂Q−m
(
Q∗−f , Q

∗)
of the best-response function of firms f and F + f with respect to its first and second

argument, respectively. In this setup the stability condition given in Proposition 1 becomes:

Proposition 4. A symmetric Nash equilibrium is locally the unique rationalizable outcome

if and only if ∑
f≤F

R′f1(q
∗) +R′f2(q

∗)

R′f1(q
∗)− 1

<
1

2
. (20)

Proof. See Appendix F. �

Proposition 4 departs from Proposition 1 in two respects. First, the new stability index

that appears in the left-hand side of (20), computed using information from sub-market m

only, now accounts for the cross derivative R′f2(q
∗) since firms active in sub-market m need

to predict the behavior of firms in the other sub-market. With two substitutable items,

R′f2(q
∗) ≤ 0 and so the new index tends to be higher than the one derived in Proposition 1.

The need of predicting the behavior of competitors in the other sub-market makes stability

more difficult to achieve.

Second, in the right-hand side, there is a reduction from 1 to 1/2 in the route threshold

S∗s above which stability is lost. In a route s where S∗s < Ss < 1, the equilibrium is unstable

even though the stability index Ss computed in Proposition 1 is below 1. A threshold S∗s

below 1 can be used as a signal that the relevant market of route s is larger than the

observed one.

In practice, in the situation where the econometrician has no a priori knowledge about
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how far the relevant market goes beyond the observed one, the derivative R′f2(q
∗) cannot

be computed. In the empirical illustration below we will neglect this derivative by setting

R′f2(q
∗) equal to 0, and continue to refer to the stability index given in Proposition 1.

Rewriting (20) as ∑
f≤F

R′f1(q
∗)

R′f1(q
∗)− 1

<
1

2
−
∑
f≤F

R′f2(q
∗)

R′f1(q
∗)− 1

(21)

shows that we underestimate the true right-hand side of (20) when we set R′f2(q
∗) to 0.

6.2 Stability index threshold

To identify the S∗s threshold, we exploit the fact that a route s with a high spread ∆st

is more likely to originate from a high spread regime, i.e., a regime where Sst ≥ S∗s .

Instead a low spread is more likely to be associated with a low spread regime where Sst <

S∗s . Our estimation strategy works as follows. In a first step, we compute the empirical

probability πst that route s falls in the low spread regime during quarter t using the machine

learning EM algorithm developed by Dempster, Laird and Rubin (1977). The details of the

estimation procedure are provided in Appendix G. In a second step, we obtain individual

estimates of the threshold Ŝ∗st by matching πst to the probability Pr(Sst ≤ Ŝ∗st) referring to

the empirical distribution of the estimated stability index, where the stability index Sst for

all s and t is estimated from (5).

To switch from Ŝ∗st to one single statistic Ŝ∗s for each segment s, we set Ŝ∗s = max
t
Ŝ∗st.

This should be seen as a conservative choice that classifies segment s as in equilibrium if

it is in equilibrium during at least one period t. In most routes this choice is without loss

of great generality since the time dispersion of Ŝ∗st within routes is low (see Figure 5 in

Appendix).5

Table 13: Estimated stability index threshold distribution

Ŝ∗s

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1862 0.8360 0.8698 0.8097 0.8714 0.8715

Number of routes: 301

5Our illustration on the Wright amendment in Section 6.3 weakens this criterion by considering several
sub-periods in a given route.

32



Table 13 provides summary statistics about the estimated Ŝ∗s at the route level. All

values fall below 1, ranging from 0.18 to 0.87, which suggests that all routes in our dataset

suffer to a certain extend from unobserved competition. The scope of unobserved com-

petition is however limited since most routes involve a threshold above 0.8. With these

new estimates we find that one-third of the routes can be regarded as falling in the high

spread regime, while our initial threshold equal to 1 led to significantly more optimistic

conclusions (less than 10% of the markets were supposed to be out of an equilibrium).

Table 14 illustrates how the estimated statistics Ŝ∗s interacts with several explanatory

variables. In column 1 we regress Ŝ∗s on variables that can be considered as exogenous.

A high value of the threshold (a narrower scope for unobserved competition) is associated

with routes linking less populated cities, which probably indicates that the share of indirect

services supplied by competing airlines is lower in this case. The second column, which

introduces additional regressors, sheds light on the fact that more concentrated markets

are associated with lower Ŝ∗s , which is not completely surprising given that these markets

are generally operated by big traditional airlines supplying large menus of indirect services

in addition to direct flights.

The effect of the observed market size when one accounts for unobserved competition

can be put in perspective with our previous results in Table 7. We report in Table 15

information about the 10 routes with respectively the largest and smallest average number

of passengers per quarter. The 10 largest routes display a larger average spread ∆s and these

departures from Nash behavior appear to reflect the combination of both higher stability

index Ss and lower route threshold Ŝ∗s . No largest route in our sample eventually reaches

equilibrium (Ss > Ŝ∗s ) and instability here comes with high share of unobserved products

(Ŝ∗s is further away from 1); the two routes Atlanta–Miami and Boston–Washington are

detected to be especially subject to high unobserved competition.

6.3 The Wright amendment repeal

The Wright amendment (WA) investigated in Ciliberto and Tamer (2009) serves as an in-

teresting natural experiment which can be exploited in order to provide additional feedback

about the validity of our methodology. The aim of the WA was to restrict airline services

out of the Dallas Love airport (DAL) in order to stimulate the activity of the Dallas/Fort

Worth airport (DFW).
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Table 14: Stability index thresholds

Ŝ∗s

(1) (2)

Route distance 7.515e-05∗∗∗ 6.186e-05∗∗∗

(1.618e-05) (1.842e-01)

Least population endpoint -2.789e-08∗∗∗ -1.080e-08
(5.947e-09) (7.549e-09)

Highest population endpoint -4.314e-09∗∗ -1.984e-09
(2.063e-09) (2.288e-09)

Least temperature endpoint -1.845e-03 -5.621e-04
(1.373e-03) (1.358e-03)

Least temperature endpoint -1.410e-04 -1.384e-04
(1.188e-03) (1.152e-03)

Passenger per quarter -2.743e-04∗∗∗

(5.819e-05)

Share of direct flights 2.089e-02
(1.313e-01)

Nb of airlines -1.224e-02
(2.038e-02)

Herfindahl index -3.222e-01∗∗

(1.312e-01)

Constant 0.933∗∗∗ 1.055∗∗∗

(6.872e-02) (1.842e-01)

Nb of (route) observations 301 301
R2 0.135 0.219
Adjusted R2 0.120 0.195
Residual Std. Error 0.126 (df = 295) 0.121 (df = 291)
F Statistic 9.197∗∗∗ (df = 5; 295) 9.052∗∗∗ (df = 9; 291)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 15: Relevant market for 20 airlines routes

Origin Destination Passengers Distance Spread Stability index Threshold S∗s

(US DOT city market) (US DOT city market) (per quarter – thousand) (km) (within route average) (within route average) (upper bound)

10 routes with the greatest average traffic per quarter

Boston, MA Washington, DC 1117 358 0.70 1.52 0.45
Orlando, FL New York City, NY 1029 937 0.58 1.29 0.54
San Francisco, CA Los Angeles, CA 948 332 0.46 1.40 0.60
Atlanta, GA New York City, NY 924 748 0.81 1.02 0.54
Atlanta, GA Miami, FL 905 584 0.90 0.95 0.31
Washington, DC Chicago, IL 854 596 0.65 1.03 0.79
Atlanta, GA Washington, DC 839 551 0.65 0.62 0.58
Las Vegas, NV San Francisco, CA 761 399 0.59 1.06 0.84
Denver, CO Los Angeles, CA 740 846 0.56 1.01 0.73
Phoenix, AZ Los Angeles, CA 739 350 0.50 0.76 0.65

10 routes with the least average traffic per quarter

Burlington, VT Philadelphia, PA 44 335 0.27 0.29 0.87
Chicago, IL Fort Wayne, IN 41 157 0.49 0.35 0.79
Denver, CO Sioux Falls, SD 40 483 0.20 0.27 0.87
Jackson, WY Salt Lake City, UT 39 205 0.79 0.25 0.85
Philadelphia, PA Syracuse, NY 36 228 0.54 0.26 0.35
Philadelphia, PA Richmond, VA 36 198 0.64 0.26 0.30
Chicago, IL Sioux Falls, SD 34 462 0.35 0.25 0.82
Philadelphia, PA Rochester, NY 33 257 0.35 0.24 0.84
Greensboro/High Point, NC Philadelphia, PA 32 365 0.44 0.26 0.64
Denver, CO Jackson, WY 32 406 0.16 0.21 0.87
Denver, CO Rapid City, SD 32 300 0.23 0.19 0.85

In 1980, the WA gets effective and states that airline services in DAL using large aircraft

could be provided only to airports within Texas and its four neighboring U.S. states, namely

Arkansas, Louisiana, New Mexico and Oklahoma (Allen (1989)). Flights to other states are

allowed only on small aircraft. Airlines could not offer connecting flights, through service

on another airline, or through ticketing beyond the five-state region. In October 2006 a

partial repeal is decided and the full repeal gets effective in 2014.

The abrogation of airline service restrictions from DAL in a Southwest stronghold area

implies greater competitive pressure on DFW, where American Airlines operates direct

non-stop long-haul flights. The abrogation of service restrictions affects the expansion of

the size of the relevant market of services including the Dallas/Fort Worth area as an origin

or destination point, depending on whether the point of destination of origin belongs to the

so-called five-state region or not. Consider the case of the Dallas-Washington market for

instance: under the WA, all flights had to go through DFW since no services were allowed

from/to DAL; all of the airline services of the relevant market Dallas-Washington would

therefore be products operated from/to DFW. After the abrogation of the WA, the same

relevant market would typically include all airline services from both DAL and DFW. If

the econometrician has only data on airline services from/to DFW, she does not suffer from

any missing information as long as the WA is effective (in which case the stability index
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threshold should be close to 1); after the abrogation of the WA however, a significant share

of information would be missing, and this should be reflected in a fall in the stability index

threshold. The results reported in Table 17 are largely consistent with these predictions.

We propose to test empirically this prediction with our data, using only information

on services from/to DFW. We consider three sub-periods, namely 2003:1-2006:2 (before

the announcement of the repeal of the WA), 2006:3-2014:2 (from the announcement to the

repeal of the WA) and 2014:2-2016:4 (after the repeal of the WA). Our subsample contains

18 routes that include DFW at some endpoints. Table 17 in the Appendix shows that the

stability index threshold is stable across the three periods in every market that makes a

connection between the Dallas/Fort Worth area and a city market in the WA zone (i.e., a

city market located in Texas, Arkansas, Louisiana, New Mexico or Oklahoma). We do not

detect any systematic change in the stability index or the spread between actual and Nash

volumes of transported passengers in these routes.

The situation is however quite different for markets connecting the Dallas/Fort Worth

area to cities outside the Wright zone. Indeed we find that the threshold is sharply reduced

after the repeal of the amendment (i.e., from 2006:3-2014:2 to 2014:2-2016:4), while the

announcement effect seems to be not significant (there is no significant difference between

2003:1-2006:2 and 2006:3-2014:2). We also find a larger spread after the repeal as we observe

higher stability indexes. This probably suggests that the repeal of the WA introduced some

instability in each market from/to the Dallas/Fort Worth area.

7 Conclusion

Greater competition is often viewed as driving welfare gains from lower equilibrium prices;

our paper shows that it may also compromise the occurrence of an equilibrium. Thus,

in markets where the usual indicators of high competitive pressure are present, i.e., those

where several airlines with similar market shares or competitive low cost companies are

present, the traditional equilibrium welfare analysis has to be worked out carefully. Even-

tually the equilibrium would be a reliable reference in only 70− 90% of the routes.

Our analysis is subject to a number of potential limitations that could be analyzed in

future work.

1. Data from the U.S. Department of Transportation provide us with information about
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airlines costs at the non-stop flight segment level. We therefore estimate demand at

the same level, i.e., we restrict ourselves to routes where the share of direct flights

is high enough. Our identification procedure for the scope of the relevant market

however suggests that indirect flights matter, especially in routes with large flows of

passengers, and so should be explicitly taken into account. Any initiative that could

ease the combination of the two types of information is obviously welcome.

2. Our analysis abstracts from dynamic aspects that are certainly important in shaping

the regular interactions between the airline companies that compete in a route. The

insights from our robustness check suggest that firms certainly retrieve valuable in-

formation from bad prediction in the past. Brandenburger, Danieli and Friedenberg

(2019) makes progress toward identification of the level of rationality in this context.

An empirical application on the airline industry may be more challenging to imple-

ment as medium and long-run strategies also encompass both slot portfolios, which

requires introducing airports into the analysis, as well as capacity choices.

3. A relevant choice for the measure of the discrepancy between the actual and equi-

librium strategies regarding volumes of transported passengers needs a suitable equi-

librium reference. Our paper refers to a version of a non-cooperative Cournot game

with linear passengers demand and quadratic airline costs, but a positive spread could

also come from an inadequate reference. There are two main sources of model mis-

specification in our context. The first one relates to the restrictive linear-quadratic

modeling of market fundamentals that precludes multiplicity of Nash equilibria. In

the presence of multiple Nash equilibria, local rationalizability can still be employed

as a selection device to eliminate unstable equilibria from the set of empirically rele-

vant outcomes. Still multiplicity of locally stable equilibria is possible, in which case

there is no longer any obvious equilibrium reference. The second source of misspeci-

fication relates to the short-run strategies assigned to airlines. Volumes of passengers

is only part of yield management strategies: individual price setting certainly also

enters the airlines choice set; and explicit alliances or collusive behaviors weaken the

status of the non-cooperative equilibrium reference.

We hope to investigate some of those issues in future research.
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For online publication

A Proof Proposition 1

By Lemma 3 in Desgranges and Gauthier (2016) the matrix B has a spectral radius less

than 1 if and only if (5) is satisfied. The slope in (6) obtains by differentiating the first-order

condition for firm f profit maximization. The expression of C ′′f (q∗f ) obtains by applying the

generalized envelope theorem to the cost minimization program (1). This yields C ′f (qf ) = λ,

where λ is the non-negative Lagrange multiplier associated with the production constraint

in (1). Therefore,

C ′′f (qf ) =
dλ

dqf
.

The first-order conditions for the cost minimization problem (1) are

λ = c′af (qaf ) for all a ∈ Af and
∑
a∈Af

nafqaf = qf

for every f . Differentiating these first-order conditions yields

dλ = c′′af (qaf )dqaf for all a ∈ Af and
∑
a∈Af

nafdqaf = dqf

for every f . Reintroducing the expression of dqaf into the last equality we finally obtain

dλ
∑
a∈Af

naf
c′′af (qaf )

= dqf .

This completes the proof.

B Proof Proposition 2

In the linear-quadratic specification, the stability index

S(q∗) =
∑
f

δσf
1 + 3δσf

. (22)
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does not depend on production. The equilibrium production of firm f satisfies

q∗f =
σf

1 + σfδ
(δ0 − δQ∗), (23)

Summing gives the aggregate equilibrium production

Q∗ =

∑
f

δ0 σf
1 + δσf

1 +
∑
f

δ σf
1 + δσf

. (24)

Both the index S(q∗) and the production Q∗ are increasing with σf (which itself increases

with σaf ). An additional marginal aircraft transfer corresponds to dσf > 0. The result

follows.

C Proof Proposition 3

It is similar to the proof of proposition 2 but now exploits second-order derivatives of S(q∗)

and Q∗. In the linear-quadratic specification, S(q∗) and Q∗ are increasing concave functions

of σf (which is itself increasing linear in σaf ). A marginal aircraft transfer dnaf = −dnaf ′ =

−1 yields dσf = −σaf < 0 and dσf ′ = −dσf > 0. The result follows.

D Stability index estimate

The left-panel of Figure 2 depicts the density of σ̂fst at the airlines × segment × quarter

level. Its distribution is positively skewed with a long right tail (Table 6 shows that the

median estimated value of this parameter is 0.515 while its average of 0.762). The statistics

σ̂fst is inversely related to the marginal cost. Hence Figure 2 shows that the marginal

cost for transporting one additional passenger quickly increases with the total number of

transported passengers. The small subset succeeding to contain marginal costs consists of

the largest airlines: we find that the average number of transported passengers is 3.6 times

higher for observations in the last quartile of the σ̂fst distribution (σfst ≥ 0.965).

The shape of the density of δ̂st shown in the middle panel in Figure 2 is quite different.
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Figure 2: Probability density functions

Price sensitivity of demand indeed appears symmetrically distributed and displays a high

concentration around an average sensitivity of 1/0.621 = 1.609.

The homogeneity of demand behavior (the low variability of δ̂st) across segments makes

the distribution of the slope of the best-response R′fst(q
∗) in (9) at the airlines × segment

× quarter level to be mostly driven by cost heterogeneity (the high variability of σ̂fst). It

is reported in the right panel in Figure 2. Airlines are found to display significant inertia

in how they react to the production of others. The average slope equals −0.299, i.e., an

average airlines would only transport 30 passengers less when its competitors are expected

to transport 100 additional passengers. Short-run inertia is plausible in the airline industry

since the number of passengers can be adjusted within the limit of the route transportation

seat capacity, which is mostly fixed over a quarter. The theory predicts that this inertia

favors stability of the Nash equilibrium, but we know from (5) that stability relies on the

sum of all the slopes of the best-response functions of the airlines active on the segment.

Despite individual inertia, stability would be lost with more than 4 identical competing

airlines characterized by a −0.299 average best-response slope.
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E Spread density distribution

Figure 3 depicts in solid black the density of the spread between actual and Nash pro-

duction at the more disaggregated segment × airlines × period level. This distribution

combines situations where airlines produce below the equilibrium number of passengers

and situations where they instead produce above it. The first (resp. last) type of situa-

tions reflects an underestimated (resp., overestimated) expected price. Figure 3 highlights

some symmetry between under and overestimated prices when forecast errors are small (the

spread stands below 0.25). For larger values of the spread, the density corresponding to an

overestimated production of others / an underestimated price is depicted in dashed blue.

Figure 3 clearly shows limited errors in this case, compared to the case where airlines un-

derestimate the production of others / overestimate prices (depicted in dashed red). If one

considers a predicted low price as a symptom of firms’ pessimism, Figure 3 suggests limited

forecasting errors from pessimistic airlines. This would accord with the recent findings

based on surveys about financial analysts, CEO or Chief Financial Officers expectations or

proxies for managerial expectations that errors relate to overconfidence and optimism (see,

e.g., Ma, Sraer and Thesmar (2018)).

F Proof Proposition 4

The new B matrix that governs the iterated process of elimination of dominated strategies

is a 2F×2F matrix whose f -th row, f ≤ F , is 0 at f -th column, is R′f2(q
∗) in every column

j > F and R′f1(q
∗) otherwise. Similarly, its (F + f)-th row is 0 at F + f -th column, is

R′f2(q
∗) in every column j ≤ F and R′f1(q

∗) otherwise. Matrix B is contracting if and only

if the spectral radius of the positive matrix −B is lower than 1. Let e some eigenvalue e of

−B and v be the associated 2F -eigenvector (v1, . . . , v2F ). From ev = −Bv, we have: for

all f ≤ F ,

evf −R′f1vf = −
∑
k≤F

R′f1vk −
∑

F<k≤2F

R′f2vk

⇔ vf = −
R′f1

e−R′f1

∑
k≤F

vk −
R′f2

e−R′f1

∑
F<k≤2F

vk

45



46

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = air$norm.spreadq[air$NegSpread == 0], bw = 0.01)

N = 11354   Bandwidth = 0.01

D
en

si
ty

Whole observations

Below equilibrium output

Above equilibrium output

Figure 3: Spread density distribution



and

vF+f = −
R′f2

e−R′f1

∑
k≤F

vk −
R′f1

e−R′f1

∑
F<k≤2F

vk.

All the derivatives of the best-response functions are evaluated at q∗. Summing over firms

yields ∑
f≤F

vf = −
∑
f≤F

R′f1
e−R′f1

∑
k≤F

vk −
∑
f≤F

R′f2
e−R′f1

∑
F<k≤2F

vk

and ∑
F<f≤2F

vF+f = −
∑

F<f≤2F

R′f2
e−R′f1

∑
k≤F

vk −
∑

F<f≤2F

R′f1
e−R′f1

∑
F<k≤2F

vk.

The symmetry properties of B imply that the eigenvectors are such that vf = vF+f for all

f ≤ F . Hence the two previous equations reduce to

∑
f≤2F

vf = −
∑
f≤2F

R′f1 +R′f2
e−R′f1

∑
k≤2F

vk.

Eigenvalues e of −B thus are solutions to

G(e) ≡ −
∑
f≤2F

R′f1 +R′f2
e−R′f1

− 1 = 0

The function G is continuous decreasing for all e ≥ 0, with G(0) > 0 > −1 = G(+∞).

There is consequently a unique e ≥ 0 solution to G(e) = 0. This is the spectral radius.

Since G is decreasing, this eigenvalue is lower than 1 if and only if G(1) < 0, or equivalently,

−
∑
f≤2F

R′f1 +R′f2
1−R′f1

− 1 < 0.

The result follows from R′fm = R′(F+f)m for every f ≤ F and m = 1, 2.

G Spread regimes from the EM algorithm

The EM algorithm is unsupervised as it is designed to cluster points (the various spreads

in our setup) that do not come with any specific label (a low or high spread regime). We

assume that the distribution of the spread ∆st reproduced in plain black in Figure 4 arises
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from a mixture of two Gaussian distributions: the first distribution is associated with a

low spread, in which case the Nash equilibrium is a plausible outcome of competition; the

second distribution is associated with a high spread, which corresponds to a more unstable

regime. The EM algorithm aims at generating the probability that a spread point originates

from any of the two regimes. This probability is then used to derive the individual market

threshold we are interested in.
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Nash spread
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Figure 4: Spread Gaussian mixture from the EM algorithm

In order to initialize the EM algorithm, we compute a preliminary allocation of all

the spread points to two different sets with the help of a standard k-means clustering

technique. The average spread in the preliminary low spread group G1 is 0.26 (standard

deviation is 0.108). The density of the corresponding Gaussian distribution is depicted in

dotted red in Figure 4. Similarly, the average spread in the high spread regime G2 is 0.64

(standard deviation is 0.169), and the density of the corresponding Gaussian distribution

is depicted in dotted blue in Figure 4. Hence, in the low (resp., high) spread regime the

mean to standard deviation ratio of the spread equals 2.4 (resp., 3.79), which highlights a

much greater concentration of the departures from the Nash equilibrium in the low spread
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regime.

The k-means clustering yields an average probability of πst(0) = 0.65 that a specific

spread drawn randomly in the sample originates from the low spread regime. Given this

probability and the mean and standard error in each regime, we can compute from Bayes’s

rule the probability πst(1) that ∆st is actually drawn from the low spread regime for all s and

t. Then, given these a posteriori probabilities, we can compute the maximum likelihood

estimators for the means and standard errors of the two regimes. The new Gaussian

distributions are used to revise πst(1) into πst(2) for every s and t according to Bayes’s

rule, which allows us to initiate another step of estimation for the two moments of the two

Gaussian distributions. The EM algorithm repeats these steps until convergence.6

In Table 16 we report the moments of the two Gaussian distributions for two variants.7

In both cases, the spread distribution for the subsample of routes with a stability index

above 1, that we know are part of the high spread regime, is the same as the spread

distribution in the high spread regime. The mean spread in the low spread regime is 0.25;

it is twice as high in the high spread regime. The dispersion of the spread is also twice

as high in the high spread regime (0.11 versus 0.22). The low spread regime thus will be

characterized by dampened fare and volume of transported passengers fluctuations. The

two Gaussian distributions are depicted in red (for the low spread regime) and blue (for

the high spread regime) in Figure 4. It is clear from this figure that observations with a

very low (resp. high) spread are almost surely allocated to the low (resp. high) spread

regime. However the algorithm fails to identify clearly the regime of observations with an

intermediate spread located around 0.4.

The final probability πst that ∆st is drawn from the low spread regime distribution

ranges from 0 to 0.83. In Figure 5 we plot the within route average probability and its

standard error for each of our 301 route sample. In the horizontal axis routes are ranked

in the order of increasing within route average probabilities. The routes with low or high

6The EM algorithm stabilizes in a local maximum for the likelihood. In our setup it always converges
to the same outcome.

7In the first variant, we a priori require that the spread mean and standard error in the high spread
regime are respectively equal to the empirical mean and standard error of the spread among the subset of
points ∆st with a stability index Sst above 1. That is, we only apply the EM algorithm to estimate the
first two moments of the Gaussian distribution of the spread in the low spread regime. This variant thus
a priori imposes the theoretical consistency requirement that observations with a stability index above 1
are drawn from the same probability distribution as those falling in the high spread regime, even though
the associated stability index is below 1. In the second variant, we impose no constraint on the moments
of the Gaussian distribution of the spread in the high spread regime.
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Table 16: Nash spread Gaussian mixture

Low spread regime High spread regime

Variant of the EM algorithm Mean Standard error Mean Standard error

Constrained 0.2615397 0.1162918 0.5156821 0.2419057
Unconstrained 0.2546883 0.1135389 0.5286944 0.2248107

Number of observations: 7422

probabilities display the greatest spread concentration over time. The uncertainty about

the relevant regime of airline routes with an average probability around 0.4 translates into

quarters where the probability of a ruling low spread regime varies a lot over time.
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Figure 5: Probability of the low spread regime
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H The Wright amendment repeal

Table 17: The relevant market of Dallas/Fort Worth

Origin Destination Sub-period Passengers Distance Spread Stability index Threshold S∗s

(US DOT city market) (US DOT city market) (per quarter – thousand) (km) (within route average) (within route average) (upper bound)

Area unrestricted by Wright amendment1

Dallas/Fort Worth, TX Lubbock, TX 2003:1-2006:2 161 282 0.29 0.45 0.86
Dallas/Fort Worth, TX Lubbock, TX 2006:3-2014:2 164 282 0.35 0.47 0.87
Dallas/Fort Worth, TX Lubbock, TX 2014:3-2016:4 138 282 0.12 0.50 0.86

Dallas/Fort Worth, TX San Antonio, TX 2003:1-2006:2 480 247 0.45 0.58 0.61
Dallas/Fort Worth, TX San Antonio, TX 2006:3-2014:2 502 247 0.51 0.59 0.79
Dallas/Fort Worth, TX San Antonio, TX 2014:3-2016:4 472 247 0.36 0.60 0.80

Dallas/Fort Worth, TX New Orleans, LA 2003:1-2006:2 196 437 0.30 0.45 0.83
Dallas/Fort Worth, TX New Orleans, LA 2006:3-2014:2 243 437 0.34 0.54 0.87
Dallas/Fort Worth, TX New Orleans, LA 2014:3-2016:4 299 436 0.47 0.71 0.79

Dallas/Fort Worth, TX Tulsa, OK 2003:1-2006:2 209 237 0.19 0.66 0.87
Dallas/Fort Worth, TX Tulsa, OK 2006:3-2014:2 222 237 0.45 0.58 0.86
Dallas/Fort Worth, TX Tulsa, OK 2014:3-2016:4 199 237 0.37 0.53 0.82

Albuquerque, NM Dallas/Fort Worth, TX 2003:1-2006:2 221 569 0.35 0.63 0.73
Albuquerque, NM Dallas/Fort Worth, TX 2006:3-2014:2 276 569 0.38 0.54 0.87
Albuquerque, NM Dallas/Fort Worth, TX 2014:3-2016:4 231 569 0.18 0.52 0.87

Dallas/Fort Worth, TX Kansas City, MO 2003:1-2006:2 221 460 0.48 0.49 0.64
Dallas/Fort Worth, TX Kansas City, MO 2006:3-2014:2 285 460 0.40 0.56 0.84
Dallas/Fort Worth, TX Kansas City, MO 2014:3-2016:4 285 460 0.27 0.61 0.87

Dallas/Fort Worth, TX Austin, TX 2003:1-2006:2 454 189 0.50 0.58 0.51
Dallas/Fort Worth, TX Austin, TX 2006:3-2014:2 480 189 0.57 0.59 0.60
Dallas/Fort Worth, TX Austin, TX 2014:3-2016:4 487 189 0.48 0.60 0.59

Area restricted by Wright amendment

Dallas/Fort Worth, TX Philadelphia, PA 2003:1-2006:2 155 1302 0.30 0.45 0.85
Dallas/Fort Worth, TX Philadelphia, PA 2006:3-2014:2 207 1302 0.41 0.51 0.86
Dallas/Fort Worth, TX Philadelphia, PA 2014:3-2016:4 274 1300 0.66 0.68 0.65

Dallas/Fort Worth, TX Denver, CO 2003:1-2006:2 373 641 0.42 0.76 0.79
Dallas/Fort Worth, TX Denver, CO 2006:3-2014:2 406 641 0.51 0.86 0.78
Dallas/Fort Worth, TX Denver, CO 2014:3-2016:4 512 641 0.61 1.08 0.27

Dallas/Fort Worth, TX Atlanta, GA 2003:1-2006:2 513 732 0.35 0.83 0.84
Dallas/Fort Worth, TX Atlanta, GA 2006:3-2014:2 516 730 0.36 0.88 0.87
Dallas/Fort Worth, TX Atlanta, GA 2014:3-2016:4 584 725 0.55 0.95 0.42

Dallas/Fort Worth, TX Phoenix, AZ 2003:1-2006:2 335 868 0.43 0.60 0.83
Dallas/Fort Worth, TX Phoenix, AZ 2006:3-2014:2 319 866 0.41 0.59 0.87
Dallas/Fort Worth, TX Phoenix, AZ 2014:3-2016:4 422 868 0.71 0.78 0.67

Dallas/Fort Worth, TX Seattle, WA 2003:1-2006:2 236 1660 0.50 0.46 0.77
Dallas/Fort Worth, TX Seattle, WA 2006:3-2014:2 250 1660 0.53 0.49 0.69
Dallas/Fort Worth, TX Seattle, WA 2014:3-2016:4 294 1660 0.54 0.54 0.49

Dallas/Fort Worth, TX Salt Lake City, UT 2003:1-2006:2 178 988 0.27 0.48 0.82
Dallas/Fort Worth, TX Salt Lake City, UT 2006:3-2014:2 162 988 0.30 0.51 0.87
Dallas/Fort Worth, TX Salt Lake City, UT 2014:3-2016:4 204 988 0.30 0.62 0.86

Dallas/Fort Worth, TX Chicago, IL 2003:1-2006:2 426 802 0.49 0.54 0.41
Dallas/Fort Worth, TX Chicago, IL 2006:3-2014:2 443 800 0.67 0.76 0.41
Dallas/Fort Worth, TX Chicago, IL 2014:3-2016:4 588 795 0.80 1.03 0.22

Dallas/Fort Worth, TX Charlotte, NC 2003:1-2006:2 147 936 0.28 0.47 0.86
Dallas/Fort Worth, TX Charlotte, NC 2006:3-2014:2 248 935 0.30 0.49 0.87
Dallas/Fort Worth, TX Charlotte, NC 2014:3-2016:4 320 931 0.57 0.50 0.69

Dallas/Fort Worth, TX Orlando, FL 2003:1-2006:2 305 984 0.63 0.49 0.81
Dallas/Fort Worth, TX Orlando, FL 2006:3-2014:2 277 983 0.60 0.45 0.74
Dallas/Fort Worth, TX Orlando, FL 2014:3-2016:4 344 977 0.71 0.68 0.24

Dallas/Fort Worth, TX Las Vegas, NV 2003:1-2006:2 382 1055 0.65 0.66 0.42
Dallas/Fort Worth, TX Las Vegas, NV 2006:3-2014:2 352 1055 0.62 0.58 0.52
Dallas/Fort Worth, TX Las Vegas, NV 2014:3-2016:4 445 1055 0.72 0.80 0.26

Dallas/Fort Worth, TX San Francisco, CA 2003:1-2006:2 436 1456 0.71 0.56 0.30
Dallas/Fort Worth, TX San Francisco, CA 2006:3-2014:2 427 1458 0.75 0.53 0.45
Dallas/Fort Worth, TX San Francisco, CA 2014:3-2016:4 498 1455 0.91 0.80 0.17

The amendment initially restricted service from Dallas Love outside Texas, Arkansas, Louisiana, New Mexico and Oklahoma; and Missouri from 2005.
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