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Abstract

Family history is usually seen as a significant factor insurance companies
look at when applying for a life insurance policy. Where it is used, family
history of cardiovascular diseases, death by cancer, or family history of high
blood pressure and diabetes could result in higher premiums or no coverage
at all. In this article, we use massive (historical) data to study dependencies
between life length within families. If joint life contracts (between a husband
and a wife) have been long studied in actuarial literature, little is known about
child and parents dependencies. We illustrate those dependencies using
19th century family trees in France, and quantify implications in annuities
computations. For parents and children, we observe a modest but significant
positive association between life lengths. It yields different estimates for
remaining life expectancy, present values of annuities, or whole life insurance
guarantee, given information about the parents (such as the number of parents
alive). A similar but weaker pattern is observed when using information on
grandparents.

JEL: C13; C18; C46; C55;J11; J12; G22; G32

Keywords: annuities; collaborative data; dependence; family history; geneal-
ogy; grandparents-grandchildren; information; joint life insurance; parents-
children; whole life insurance
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1 Introduction

Family history is usually seen as a significant factor insurance companies look at
when applying for a life insurance policy.! As shown in Figure 1, family history of
cardiovascular diseases, cancers (ovarian, breast, colon, lung, etc), or family history
of high blood pressure and diabetes are usually asked in medical forms. Family can
include parents (father and mother), siblings, spouse, children, and if deceased, the
age at death can be asked. As discussed in Cutler and Zeckhauser (1998) or Pardo
and Schott (2013), the information provided can yield higher insurance premiums,
or no coverage at all.

Assuming that family history should have an impact on premiums means that the
risk of the policyholder is correlated with information related to siblings, parents,
etc. Frees et al. (1996) considered the case of insurance products with depen-
dent mortality, on spouses, showing that life lenghts with a married couple are
(positively) correlated, and that this correlation should reflect in standard joint life
annuities. The literature has not limited itself to looking at life course relationships
within couples. The idea of the existence of a “longevity inheritance”, as Pearl
(1931) named it, has given rise to a considerable body of work to study longevity
ties within families. However, most studies have relied on modest sample sizes.

In this article, we use a massive dataset of family trees to study correlations
between life lengths between relatives. This dataset concerns individuals born in
metropolitan France at the beginning of the 19th century and their descendants.
Due to the historical nature of the data, and in contrast with the individuals on
which Frees et al. (1996) focused, the grandchildren of individuals born at the
beginning of the 19th century have all died by now. Their age at the time of death
is de facto observable. We therefore avoid dealing with incomplete and partial data
when studying mortality.> In a first step, we use this rich data to explore joint
mortality within couples. The analysis is based on 135,128 pairs of individuals
born in the 19th century. It focuses solely on demographic characteristics. In a
second and third steps, knowledge of the descendants makes it possible not only to
investigate the links between children and parents, but also between children and
their grandparents. To this end, we use 174,318 observations linking individuals
to their parents where information about both parents is available, and 59,463
individuals for whom the birth and death dates of the 4 grandparents are known. In
each of the three cases, we begin by studying the correlation of life spans. Then we

!'Where it is allowed, e.g., in North America or in the United Kingdom, for instance. Some data
privacy regulation may, however, restrict access to those data. It should also be noted that such
practice is not allowed in most European countries, as discussed in Schmitz and Wiesing (2000).

2For example, since we face complete data regarding age at death, a convenient way to approximate
life expectancy is to simply use the average age at death, no modeling assumption is required here.



move from demographics to life insurance actuarial present values.

In line with what is reported in the literature, a positive association in mortality
within couples is observed with our data. This dependence has a significant impact
on joint life insurance product, consistent with results already obtained in previous
literature (but usually with smaller datasets). Similarly, we also find a small but
significant relationship between children and parents life lengths. With both parents
still alive when twenty years old, life expectancy is relatively higher than when one
or neither parent is still alive. Similar results are observed at older ages (30 and 40
years). Simulations based on historical data show that knowing whether a person’s
parents are still alive at any age has significant effects from an insurer’s perspective.
For example, for a young male individual (about 30 years old), knowing that both
parents are still alive translates into an increase of about 2 years in his life expectancy
relative to a person whose both parents are deceased. And at the same age, annuities
should be 4% higher than the average population when both parents are alive, and
4% lower when both parents deceased. For a whole life insurance, the order of
magnitude is almost the same (but opposite as insurance premiums are decreasing
with life expectancy). Finally, the links are much less important between a person’s
mortality and that of their grandparents. As a result, the implications in terms of
insurance are weaker and more questionable, with +1%, at best.

The remainder of the article is structured as follows. Section 2 concisely
describes the datasets. Section 3 first recalls classical notations and concepts
used when modeling (univariate and then joint) mortality and then presents various
insurance products. In Section 4, based on 19th century data, joint life dependencies
between husbands and wives is investigated. Section 5 discusses inter-generational
dependencies for life lengths. More specifically, the links between an individual’s
remaining lifetime and information about his or her parents are first studied (these
include, for example, determining the remaining life span of a 40 years old person,
given that both his or her parents are either still alive, or dead). Then, a similar
analysis is conducted to study the relationship between an individual’s remaining
lifetime and the characteristics of his or her grandparents. Section 6 concludes.

2 Description of the Data

The data used in this paper come from a genealogy website, Geneanet.> On this
website, each user is invited to build their own family tree and can decide to
share it with the rest of the community. We rely on these shared trees. Each
user’s tree contains, with varying degrees of completeness, information about the
family members who make up the tree. This information concerns the events

3https://www.geneanet.org/.
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Figure 1. Excerpts of medical history classical forms, with the family medical
history section (source: https:/printabletemplates.com/)

Family History: (Please Note The Family Member & Maternal (M) OR Paternal (P) When Appropriate):

Breast Cancer: Colon Cancer:

Diab: Genetic Disorders:
Heart Disease: High Blood Pressure:
Kidney Disease: Lung Cancer:
Osteoporosis: Other Cancer:
Ovarian Cancer: Ovarian Cancer:
Stroke/DVT/Clotting/Bleeding Disorder:

Thyroid Disease: Uterine Cancer:
Other:

Family History (family hisfory is a consideration for rate class):

To your knowledge, is there any family history (parent or siblings), prior to age 60, of cardiovascular disease,
cerebrovascular disease, heart disease, stroke, diabetes, or cancer? Yes[d No O

If yes, provide full details:

O Father: Impairment Age at Onset Age at Death (if deceased)
O Mother: Impairment Age at Onset Age at Death (if deceased)
O Siblings: Impairment Age at Onset Age at Death (if deceased)
FaMiLy HISTORY: Please check the box if has o of: 1
Diabetes High Blood Pressure Heart Attack, Heart Disease Blood Clots or Stroke Tuberculosis
Cancer Alzheimer's Family History Unknown Mental Hiness Epilepsy/Seizure

Any other major conditions?

lf;\'nu' answered Yes 1o un}. of the above, pl’ﬁﬂf’npl’ain:’

Are you currently being treated for medical conditions? ~ Yes - No  Ifyes, please list:

Family Medical History
Age Disenses If Deceased, Cause of Death

Father
Mother
Siblings

Spouse
Children

that can be found on civil and religious registers, i.e., birth, marriage, if any,
and death. More specifically, we are interested in the dates of birth and death of
individuals, as well as their family relationships. The sample we have contains
individuals born in metropolitan France between 1800 and 1804, their descendants
(and their parents) — keeping only those born before 1900.# It is well established that
information regarding parents is quite well represented, as long as the information
exists, but information related to other first-degree relatives (siblings, children) —
not to say second-degree relatives (cousins, grand-children) is more sparse. Thus,
the extraction we have can have possible bias, as discussed in Charpentier and

4The scope of Geneanet’s data mainly concerns European countries, and more particularly France.
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Gallic (2020a).

As the data focus on individuals born before 1900, all of them are dead by now.
We do not face any censored-observation problem. However, some challenges arise
with these data. Since each user creates their own family tree, an ancestor common
to the trees of multiple users may be present several times in the raw data. To avoid
redundancy, we refer to Charpentier and Gallic (2020a,b) for more explanations
about the methodology. In a nutshell, an important challenge was to deal with
natural overlap of various family trees, and to identity an ancestor appearing in
several trees as a unique individual.> In Charpentier and Gallic (2020a), we proved
that while there were bias in collaborative genealogical data (compared with official
demographic data), more specifically on infant and young age mortality, these data
provided very accurate mortality information (on force of mortality or remaining
life expectancy, for ages higher than 20). In Charpentier and Gallic (2020b), the
goal was to study family migration, from a starting ancestor, and the challenge
was to get a forward genealogical analysis (from ancestor to descendants) from
backward genealogical data (from descendant to ancestors).

Once the trees have been matched and the data cleaned, a reference dataset is
obtained containing, for each individual in the trees, information about: their birth
and death dates, and a link to their parents’ identifier. Two databases can then be
created to study: (7) the dependencies within couples (in Section 4) , and (ii) the
inter-generational dependencies for life lengths (in Section 5). The remainder of
this section focuses on providing more detail on these two datasets.

2.1 Husband and Wife Dependencies

There is an intensive literature about the positive association of life spans between
couples, and more specifically on bereavement. Riley (1983) suggests several
sociological explanation of the positive association among life lengths, reinforced
by mortality excess following the death of the first one. Some articles also focus on
medical (mainly psychological) aspects. For example, 4,486 widowers of 55 years
old (and older) have been followed up for nine years since the death of their wives
in 1957 in Parkes et al. (1969). In the first six months about 25% of the deaths
were from the same diagnostic group as the wife’s death, and a higher mortality
was observed. The authors concluded that there is no evidence suggesting that the
proportion is any different among widows and widowers who have been bereaved
for more than six months. Parkes et al. (1969) coined broken heart syndrom to
describe that short term (positive) correlation. This was confirmed in Jagger and
Sutton (1991), but on a smaller dataset (with 344 elderly persons who were living

SThat process of merging trees had to take into account typos in names, and (partially) missing
information about dates.



with a spouse and who were part of a survey of a population of people aged 75
years and over). Nevertheless, Kastenbaum and Costa (1977) claims that a large
part of the excess of mortality following the death of the first one can be related to
common health problems, rather than psychological trauma following the loss (see
also more recently Espinosa and Evans (2008) that reached a similar conclusion).

We create a first set of data from family trees to see if the same type of
associations that have been described in the literature between the lifespan of the
members of a couple can be observed with our data. It is important to note that the
term couple used in this study refers to a very specific definition. We do not rely on
the definition of married couple (from census types of datasets), as in Glick (1955)
for example. Like studies based on genealogical data, such as Beeton and Pearson
(1901), we study here mothers and fathers. This comes from the structure of the
data. Couples are observed as parents, and it is rather uncommon with genealogy
data to have couples without children. We thus make two assumptions: (i) two
people are defined here as a couple when they had a child together, and (ii), we
further assume that parents were living together. Consequently, two persons who
lived in a union but did not have a child (or without information on possible children
available in the data) are not present in the dataset. This could lead to potential
biases, but the main purpose of the section devoted to the study of joint mortality
within couples is to see if the dataset in our hands provides similar results than
previous studies.

Before going any further, it seems important to provide more details on the
structure of the data. For individuals observed as parents, a table in which each
row corresponds to a couple can be created. Each row contains the dates of birth
and death of a father and a mother, as shown in the example provided in Table 1
(with only 6 random observations). It should be noted that information for all
four dates may not be fully available. Two situations arise. First, the date of birth
or death of one or both members of the couple may simply be missing. When
such a case occurs, we remove the couple from the data. Secondly, some dates
may be incomplete: the month and day may not be stated. In such a case, the
date is converted into July 1st of that year, which corresponds to the average date
assuming uniform birth over the calendar year®. Finally, we end up with a dataset
of n = 135,128 couples, where husbands and wives were born between 1800 and
1870.

When this dataset is created, it is straightforward to calculate the ages at death
of each member of the couple, that are denoted # and #,, for the father and the

°In that dataset, 14.3% of dates for men and 16.1% of dates for women were incomplete, usually
more for death than birth (6.6% and 7.5% for birth dates for men and women respectively, and
10.2% and 11.3% of death dates). We assume here that the impact on various quantities (including
correlation) would be rather small



Table 1. Dataset for the joint life model, father/husband and mother/wife.

Father/Husband Mother/Wife

birth death age birth death age

1804-03-18  1880-09-21 76.5 | 1804-02-29 1854-08-26 50.5
1836-12-27 1902-04-06 65.3 | 1832-02-06 1901-09-11 69.6
1804-03-30  1870-01-17 65.8 | 1800-07-10 1868-07-12 68.0
1804-02-22  1876-01-06 71.9 | 1803-05-04 1881-05-16 78.0
1800-09-11  1837-08-15 36.9 | 1800-00-00 1836-08-11 36.1
1800-00-00  1843-03-08 42.7 | 1800-00-00 1865-03-15 64.7

AN AW

Note: Random extraction of 6 rows of our entire dataset. In the case where only the year is mentioned, the date
is eventually converted into July 1st of that year (mid-year, average date assuming uniform birth over the calendar
year).

mother, respectively. As shown in Table 2, husbands and wives have a very similar
life expectancy. (about 62 years old). As confirmed in Beltrdn-Sanchez et al.
(2015) the differences between men and women’s life expectancies (admitted as a
fact, nowadays) began to emerge only in the late 1800s, in most modern countries.
It may be noted that the average ages at death we observe are relatively high for
the period; it should be remembered that the individuals studied do not concern the
entire population, but only those who have had children. Hence, the average is not
driven down by the high infant mortality observed in 19th century France. The age
difference in the couples studied shows that men are, on average, slightly older than
their wives by two years, albeit with a significant standard deviation. In fact, in a
majority of couples (58%), the man is older than his wife.

Table 2. Descriptive statistics for husbands and wives.

Variable Mean SD Min Max 0 0> 03
Husband age at death ¢y  63.2 15.5 15 105 525 654 750
Wife age at death #, 624 173 15 105 50.1 652 759
Age difference 22 121 -80 80 -50 -1.0 1.0

Note: Husbands and wives were born between 1800 and 1870 (n = 135, 128). SD stands for standard deviation,
Q1, O, and Q3 stand for the first, second, and third empirical quartiles. The age difference indicates the number
of years separating the man and the woman. Negative values indicate that the man is older than the woman.




2.2 Ancestors and Children Dependencies

We explained in the introduction that family history can be important in insurance.
Almost a century ago, Pearl (1931) mentioned that “even a business so precise in
some particulars as life insurance, which has, from its beginnings, acted on the
assumption that the duration of life of an individual’s near kinsfolk is of importance
in estimating the nature of its risk accepted in insuring him, has made singularly
little effort to determine exactly the weight of this factor.”

We explore family history in two parts, by analysing the relationship between
an individual’s lifespan and that of: (i) his or her parents, and (ii) his or her
grandparents.

2.2.1 Parents and Children Dependencies

The historical reference on dependencies between life lengths of parents and chil-
dren is probably Beeton and Pearson (1901) (with also a lot of concern about
brothers and sisters - we refer to Bandeen Roche and Liang (1996) for a modern
perspective on that issue). In that study, they also use 19th century genealogical
data (which would give us an order of comparison, even if most computations were
performed on about 1,000 pairs).

The idea of “inheritance of longevity” (as Pearl, 1931 named it) received a lot
of attention, and has been intensively discussed in the literature over the years, with
various types of data. For example, Gudmundsson et al. (2000) based on Icelandic
population, concluded that longevity was inherited within families, in their view
probably because of shared genes. Hjelmborg et al. (2006) looking at twin data,
concluded that genetic influences on the lifespan were minimal before age 60 and
only increase after that age. Kowald and Kirkwood (2016), on the other hand,
rejected any idea that mortality in old age is genetically programmed. Consistent
with that view, a Swedish study of men born in 1913, found that a number of social
and behavioural factors measured at age 50 were better predictors of longevity than
their parents’ survivorship, predicted longevity Wilhelmsen et al. (2011). Caution
must be exercised when advancing the idea of genetic transmission, especially
when relying on genealogical data that provide no evidence of the veracity of the
relationship between individuals. Indeed, as pointed out in Bellis et al. (2005),
the median rates of paternal divergence as measured in studies conducted mainly
during the second half of the 20th century amount to 3.7%, with some studies
even advancing values as high as 30% (considering tests performed on selected
populations for reasons other than disputed paternity).

Mayer (1991) studied up to six family pedigrees, from 1650 to 1874. An im-
portant issue in the literature is to understand if that correlation (or transmission)



is due to genetics, or associated life styles, or social class. For example, Ruby et al.
(2018) explains that “the majority of that correlation was also captured by correla-
tions among non genetic (in-law) relatives, suggestive of highly assortative mating
around life span-influencing factors (genetic and/or environmental)”. Philippe and
Opitz (1978) mentions that spouse life spans “correlate as much or more than those
of genetic relatives”. See also Garibotti et al. (2006), Piraino et al. (2014) or Temby
and Smith (2014), who try to distinguish genetic effects to socioeconomic status
in family history. Philippe (1980) suggests that there could be an overestimation
of the possible positive correlation, presents a feature of some elite sub-class, but
not of the general population of a community. Almost all studies are based on
rather small sample. For example, Abbott et al. (1978) studied 7,103 progeny, sons
and daughters of 1,766 men or women, who were alive in 1922-1930. Matroos
et al. (1984) had 2,370 middle-aged children, while Vaillant (1991) used a cohort
of (only) 184 men.

Nevertheless, most studies confirm a significant but weak association within
families. Bocquet-Appel and Jakobi (1990) analyzed familial correlations of
longevity at Arthez d’Asson, for individuals born between 1686 and 1899. At
birth, the correlation is rather small (0.103), but it increases with the age of the
son. For example, at 20 years old, the correlation is larger (0.167). As Vaupel
(1988) wrote it “the life spans of parents and children appear only weakly related,
even though parents affect their children’s longevity through both genetic and en-
vironmental influences” (see also Vaupel et al. (1979) or Vaupel et al. (1998), with
similar conclusions).

To address the issues developed in this literature, a second set of data was created
from the genealogy data. By using the parents’ identifiers, and then those of the
parents’ parents, it is possible to create a table in which each observation provides
the dates of birth and death of individuals, their parents, and their grandparents. As
in the case of couples, dates may be missing or incomplete. If the treatment is the
exact same for the case of incomplete dates, the treatment of missing dates differs
depending on whether the focus is on parents or grandparents. For parents, as for
couples, if one of the dates of birth or death is not available, then the individual is
removed from the observations. For grandparents, if both dates of birth and death of
all grandparents are missing, then the individual is removed from the observations.
It should therefore be noted that if the information needed to calculate the age at
death of at least one of the grandparents is available, the individual is kept.

The sample thus allows us to focus on the relationship between the age at death
of an individual, 7., and that of his or her parents, # and fy,, for the father and the
mother, respectively. As reported in Table 3 the sample is composed of 174,318
observations for which full information on ages at death is available. It consists
of two parts of 90,828 men and 83,490 women. The average age at death of

10



individuals is 44.5 years (43.4 for men and 45.7 for women). We wish to compare
this measure with that of the parents. This can be done by looking separately at
the age at death of each parent, i.e., t; and 7. It is also possible to construct
indicators to represent the age at death of parents in the household. Three are under
consideration. First, average age at death of the parents, mean{t,#y,}, which is
equal to 64.5. It can be noted that it is relatively higher than that of the children.
This can be explained by the fact that individuals who died at a young age are not
taken into account: if parents are present in the data, they have necessarily had
children (survivor bias). The sample of parents and children is constructed starting
from children born between 1800 and 1900. Second, we look at the age at death
of the first to die, min{#;, 71, }, which quite a bit lower, 56.4 years on average. And
third, we consider the age at death of the last survivor, max{#, ¢, }, which is equal
to 72.2 on average.

Table 3. Age at death of the individuals and that of their parents, according to the
gender of the children.

Mean SD  Min Max 01 03

Men (n = 90, 828)

Individual (z.) 434 30.1 0 1044 102 70.0
Father (¢f) 64.7 146 15 1040 548 75.7
Mother () 642 164 15 1048 53.1 76.8
First to die (min{#, tm }) 56.6 147 15 100.0 456 682
Last survivor (max {#, tm }) 723 12.0 15 1048 657 80.8

Average parents (mean{#, fm }) 644 11.8 15 1009 565 733

Women (n = 83, 490)

Individual (¢.) 457 320 0 1047 9.9 747
Father (¢;) 643 14.8 15 1040 542 756
Mother (#y,) 64.0 16.6 15 1044 525 76.7
First to die (min{#, ty }) 56.2  14.8 15 100.8 451 679
Last survivor (max {, fm }) 721 122 15 1044 653 80.8

Average parents (mean{#, fm }) 642 119 15 1014 56.1 73.0
Men & Women (n = 174, 318)

Individual (¢.) 445  31.1 0 1047 100 722
Father (¢f) 64.5 147 15 1040 545 756
Mother (#y,) 64.1 16.5 15 1048 528 76.7
First to die (min{#, tym }) 56.4 147 15 100.8 453 68.0
Last survivor (max {, fmm }) 722 121 15 1048 655 80.8

Average parents (mean{f¢, ty }) 643 11.8 15 1014 563 732

Note: this table provides descriptive statistics of the ages contained in the dataset of children and parents. n stands
for the number of observations, SD is the standard deviation, QO and Q3 are the first and third empirical quartiles,
respectively.

11



Table 4 shows the distribution of the number of individuals by decade. Because
of the way in which the sample was constructed, starting with individuals born
in France between 1800 and 1804, a relatively high proportion of individuals in
the raw data belong to the cohorts (1790 — 1800] and (1800 — 1810].” However,
incomplete information on the dates of birth and death of both parents for these
people is only rarely available. As a result, the data used in the analysis contain
few individuals from these cohorts. Also due to the constitution of the sample, the
number of individuals in the (1810, 1820) cohort is very small, since we must wait
until individuals born between 1800 and 1804 have had children before they can
take on the role of parents in the database. For subsequent cohorts the observed
average values of the ages at death of the children or their parents remain within
the same orders of magnitude as for the rest of the sample.

Table 4. Information about individuals per cohort.

Cohort n  Ageindividual ¢,  Age father tf  Age mother ¢,  Prop. Women (%)
(1790,1800] 476 42.5 62.0 59.4 47.7
(1800,1810] 3,332 39.9 62.8 59.9 47.8
(1810,1820] 250 47.4 58.7 58.4 42.8
(1820,1830] 30,445 423 63.4 62.3 46.5
(1830,1840] 41,345 38.8 65.2 64.4 46.9
(1840,1850] 12,492 36.9 66.4 66.1 474
(1850,1860] 11,409 40.6 62.7 61.4 48.7
(1860,1870] 19,311 42.8 63.1 62.1 49.2
(1870,1880] 14,813 48.8 64.2 63.2 50.0
(1880,1890] 15,862 53.2 64.8 65.4 48.8
(1890,1900] 24,583 56.2 66.0 68.3 48.4

Note: This table reports some key descriptive statistics for the individuals contained in the dataset used to study
the dependence between children and parents. n stands for the number of observations, Prop. Women gives the
proportion of women among the individuals, for each cohort.

2.2.2 Grandparents and Children Dependencies

As mentioned recently in Choi (2020), “little is known about whether and how
intergenerational relationships influence older adult mortality”, especially between
children and their grandparents. Our sample makes it possible to investigate this
question. We adopt the following notations: fgf and feys for the grandfather
and grandmother on the father’s side, and 74y and fgmm for the grandfather and
grandmother on the mother’s side.

As with the relationship between parents and children, Table 5 reports some
descriptive statistics on the age at death of the grand parents, keeping only the

7The 1790-1800 cohort is composed of individuals born in 1800 only.
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individuals for whom birth and death dates are known for at least one grandparent
(which does not necessarily imply that the birth and death dates of both parents
are complete).® As can be seen, the distribution of males is higher than that of
females (831,479 versus 740,461). The average age at death of grandchildren is
43.7 (41.9 for men and 45.8 for women). As is the case for what is observed
with parents, the age at death of grandparents is much higher in our data, ranging
from 62.8 to 64.6 years on average. This difference is mainly explained by some
survivor bias: grandparents have been parents, so at least, they reach the 20’s, while
their grandchildren include a lot of individuals who died very early. For instance,
25% of the grand children did not live beyond 6 years old. The three indicators that
make it possible to subsequently synthesize the relationship between an individual’s
lifespan and that of his or her grandparents (i.e., last survivor, first to die and average
age at death) provide the same orders of magnitude as those for parents.

8]t should be noted that the number of individuals for whom information on all four grandparents
is available is small relative to the sample size: 31,096 men and 28,367 women. See Table C3 in the
Appendix. On average, the raw data provide information only on 1.6 grandparents (1st quartile is 1
and 3rd quartile is 2).

13



Table 5. Age at death of the individuals and age at death of their grandparents,
according to the gender of the grandchildren.

Mean SD  Min Max (o] [0} Q3  No. Missing

Men (n = 831, 479)

Individual (z.) 419 31.0 0 1047 54 453 704 0
Maternal grandfather 64.1 14.6 15 104.7 54.1 66.1 752 526,191
Maternal grandmother 62.8 16.0 15 1044 51.8 653 75.1 511,685
Paternal grandfather 64.6 14.3 15 104.7  55.1 66.7 754 492,622
Paternal grandmother 63.3 15.7 15 1044 528 658 752 489,805
Last survivor 67.6 144 15 1047 593 703 78.1 0
First to die 59.6 155 15 1047 482 610 714 0
Average grandparents 63.6 13.6 15 1047 551 651 735 0

Women (n = 740, 461)

Individual (z) 458  33.1 0 1049 70 525 764 0
Maternal grandfather 64.1 14.6 15 1047 542 66.1 75.1 461,575
Maternal grandmother 62.8 16.0 15 104.8 519 653 75.1 446,549
Paternal grandfather 64.6 14.4 15 1047 550 66.6 755 444,459
Paternal grandmother 633 15.7 15 1049 529 658 752 439,981
Last survivor 67.7 144 15 1049 594 703 782 0
First to die 59.5 155 15 1049 481 609 713 0
Average grandparents 63.6 13.6 15 1049 551 651 735 0

Men & Women (n = 1,571, 940)

Individual (z.) 437 320 0 1049 6.1 484 733 0
Maternal grandfather 64.1 14.6 15 1047 542 66.1 752 987,766
Maternal grandmother 62.8 16.0 15 1048 518 653 75.1 958,234
Paternal grandfather 64.6 144 15 1047 550 667 754 937,081
Paternal grandmother 63.3 15.7 15 1049 528 658 752 929,786
Last survivor 67.6 144 15 1049 594 703 782 0
First to die 59.5 15.5 15 1049 48.1 610 714 0
Average grandparents 63.6 13.6 15 1049 551 651 735 0

Note: this table provides descriptive statistics of the ages contained in the dataset of grandchildren and their
grandparents. n stands for the number of observations, SD is the standard deviation, Q1, Q» and Q3 are the first,
second, and third empirical quartiles, respectively, and No. Missing refers to the number of missing values.

Table 6 gives a better idea of the distribution of the data according to the birth
cohort of individuals for whom relationships with their grandparents are studied.
The table gives the number of observations for each cohort as well as the average age
at death of grandchildren (regardless of gender) and each grandparent. The upper
part gives, the information for grandchildren for whom the birth and death dates of
at least one grandparent are known. The lower part is restricted to grandchildren
whose birth and death dates of all four grandparents are known. Again, due to
the initial sample design, very few people are present for the first three cohorts
(however, there are still a substantial number of individuals in the sample, with
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n = 59,463 individuals for whom full detailed information about the four grand-
parents is available).

Table 6. Information about individuals per cohort for the dependencies between
individuals and their grandparents when partial information is known on
grandparents (top) and when all the grand parents are known (bottom).

Cohort n te Imgf  Imgm fpef  tpgm  Prop. Women (%)

All individuals with information on at least one grandparent

(1790,1800] 1,277 457 667 656 668 650 46.9
(1800,1810] 6,375 428 669 663 674 665 48.2
(1810,1820] 5,611 428 616 603 629 614 47.7
(1820,1830] 178,975 405 638 622 63.8 623 46.8
(1830,1840] 252,818 37.1 646 629 648 63.0 46.6
(1840,1850] 119,729 355 64.1 623 652 632 46.9
(1850,1860] 145,099 369 633 625 638 624 46.8
(1860,1870] 216,136 403 648 639 648 63.8 46.8
(1870,1880] 201,357 47.6 651 640 656 64.7 47.6
(1880,1890] 202,352 515 634 624 645 63.6 47.8
(1890,1900] 242,211 547 633 626 63.8 634 47.4

All four grandparents known

(1790,1800] 1 524 592 725 568 46.6 0.0
(1800,1810] 9 474 692 568 669 64.6 44.4
(1810,1820] 128 458 614 60.0 606 61.6 383
(1820,1830] 19,468 409 64.1 630 638 62.7 47.1
(1830,1840] 26,651 377 648 634 648 63.1 47.2
(1840,1850] 7,093 352 651 634 651 633 48.1
(1850,1860] 1,229 367 657 638 635 62.6 51.3
(1860,1870] 2,090 385 651 643 638 63.1 51.0
(1870,1880] 1,294 464 653 641 645 63.0 529
(1880,1890] 610 499 635 621 63.6 616 51.6
(1890,1900] 890 545 631 621 625 618 50.6

Note: This table reports some key descriptive statistics for the individuals contained in the dataset used to study the
dependence between children and grandparents. n stands for the number of observations, fc, fgfm, fgmm, Zgff, and
tymf stand for the age at death of individuals, maternal grandfather, maternal grandmother, paternal grandfather,
paternal grandmother, respectively. Prop. Women gives the proportion of women among the individuals, for each
cohort.
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3 From Mortality Models to Insurance Premiums

In this section, we introduce general notation that we will use when discussing the
impact of joint life dependencies, withing families. We start with general notations
to model univariate mortality, and then introduce copulas which describe the joint
distribution. Inference is also discussed in that first part. Then, we present various
insurance products, that we will price in various contexts, such as a life insurance
and pension annuities (as well as joint life related guarantees). We might stress
here that we focus on contemporary insurance guarantees: the goal is not to discuss
historical insurance prices in the early 19th century, but to understand the impact
of possible dependencies between family relatives on insurance prices based on the
massive (historical) data we have.®

3.1 Univariate Mortality

The lifetime of a newborn is modelled by a positive variable 7', with cumulative
distribution function F (with F(t) = P[T < t] for any positive ¢) and survival
function S (with S(#) = P[T > t]). Let Ty denote the remaining lifetime of the
person at age x, in the sense that 7y = (T — x)|T > x. Conditional cumulative
distribution function is Fyx (with Fy(¢) = P[T, < t] = P[T — x < ¢|T > x]) which
is also denoted , g, in actuarial literature, while the survival distribution function is
Sy (with Sy (¢) = P[T, > t] = P[T — x > t|T > x]) which is also denoted ;p,. One
can write, fort > 0

P[T>t+x]  Skx+1)

P[T >x]  Sx) ’
with the convention that gp, = 1. Assuming that 7 is an absolutely continuous
random variable allows us to consider the density of T'(x), denoted f, which satisfies

tPx =P[T —x>t|T > x| =

fx(t) = tDPx ,u(x + t),

where u is the hazard rate, also called force of mortality in demographic and
actuarial applications. In the life table terminology, L, denotes the size of a
cohort-type group, at age x, with Ly = 100,000. Note that L, = Lg - xpo.

And finally, curtate life expectancy for individual (x) is defined as

ex =E([Tx]) = EB(IT — xJIT > x) = thl?x “Gx+t = thx’
=0

t=1

9Due to recent regulation on personal data in most countries, running such a study on contemporary
data would be much more difficult. If mortality per se changed a lot, we study the impact of
dependencies on insurance prices based on order of magnitudes of correlations obtained on historical
data.
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for some integer x € N, using notations from Bowers et al. (1997), where we
count here the expected number of future years completed by (x) prior to death (to
contrast, the complete expectation of life, E(T}), is denoted é).

In the context of small amount of data, it is natural to use parametric models to
compute complex quantities. This will be the case with joint life models, to derive
more robust estimates (but probably more model sensitive). Classical parametric
models for mortality are Gompertz distribution, with u(x) = AeB* (from Gompertz,
1825) or Beard with u(x) = AeB” /(1+K AeB”) (from Beard, 1971). Carriere (1992)
suggested to use mixtures of distribution, with S(x) = ¢ 1S1(x)+ Y252 (x)+ ¥353 (x)
from standard survival families (that will be the Carriere model). Finally, the
Heligman-Pollard with g(x)/p(x) = AG+B)S 4 peEllogx —logF ! | G (from
Heligman and Pollard, 1980). The later was initially fitted on Australian mortality
and performed fairly well at all age. That is also what we observe on our data.
The first part AC+BS g g rapidly declining exponential, that reflects the fall in
mortality during the early childhood years (this component of mortality has three
parameters, A, which is nearly equal to 1 — go, B which is a location factor, and C
which measures the rate of mortality decline in childhood). The third term GH*
is the Gompertz model, that reflects the near geometric rise in mortality at the
adult ages. And finally, the second term De~E(logx —logF ” reminds of a lognormal
model, that reflects accident mortality (as discussed in Heligman and Pollard, 1980,
F indicates location, E the spread, and D the severity). The adjustment of these four
distributions on male mortality based on our data can be visualized graphically. In
Figure 2, we can compare the parametric models to raw values (force of mortality
u(x) and survival probabilities xpo or Ly/Lg). The mixed distribution suggested
in Carriere (1992) provides a very good fit (and not the other standard models).
Computations were performed using the MortalityLaws R package (see Pascariu,
2020)

3.2 Modeling the Dependence Structure

A classical model to describe the joint distribution of a pair of lifetimes (71,73), —
for remaining lifetimes of two individuals, which could be either (T, T;,) for the
father and the mother, or (7,,,T,) for the mother and a child of hers — is to use a
copula function, so that the joint survival function

S(t1,12) = P[Ty > 11,T» > 1] = C(S1(11), S2(12)),

where C : [0,1]> — [0,1] is a copula function (see Joe, 1997 or Nelsen, 1999,
but in the context of survival lifetimes, using the survival copula makes more
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Figure 2. Marginal mortality, with force of mortality for males on the left, u, and
the survival function on the right.
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sense.).'9 Some parametric family can be considered for C. The independent and
the comonotonic copulas are defined as C, (u,v) = uv and C,(u,v) = min{u,v}. In
Appendix A, popular parametric copulas are mentioned. In a nutshell, for inference,
we use here pseudo observations based on ranks, (i;,v;) where

n

SR ~ 1
fi = Si(01.1) where $i(1) = PR (CRED)
j=1

for the first type of individuals (say father for joint life in a couple), and a similar
expression for the second type!'!. R

We define the empirical copula C, as the cumulative distribution function of
(7, vi)’s

n
Cu(u,v) = %Z 1(; < u,v; <v),
i=1
or some smooth version En(u, v) using some probit transformation, as in Geenens
et al. (2017). In the case where copulas are non-symmetric, remember that since we
look at the survival copula, the lower corner (0, 0) corresponds to small probabilities
(and therefore large ages).

10Note that C is usually called the survival copula of the pair (77, 75).
!'Here we assume that data consist in pairs (¢1 ;, 7 ;) of ages at dead, but actually, we have the dates
of deaths, so a dynamic model could be considered, this point will be addressed in the next section.
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3.3 Impact on Annuities and Life Insurance Premiums

In the section, we present various insurance products and their notations. These
products will allow us to compute various quantities at time ¢, when the insurance
contract is signed. In the case of a single life guarantee, we consider an individual
age x (at time ¢), while for multiple lives (here father and mother), both have
age xy and x,, respectively. As discussed in the next section, most quantities
are rather stable over time, so notation ¢ will not be used here. Furthermore,
as mentioned at the beginning of that section, we consider here ‘contemporary’
insurance guarantees, even if we use historical data.

3.3.1 Notations for Single Life Guarantees

For financial application, let v denote the discount factor associated with the (con-
stant) annual rate i, in the sense that v = (1 +i)~'. Formally, we compute the
expected present value, of future cash flow, for a sequence ci,...,c,, at time
t,...,t,, where the expected value is computed related to probabilities of paying,
denoted generally p1,...,pn,

n

Z vicp;.

k=1
For example, whole life insurance are contractual guarantees that promise a
fixed amount (a normalized cash flow of $1) at the time of death. The expected
present value of such a contract is

o0

A k

Ay = Z V' kPxYx+k>
k=0

or, when payment is made at the end of the year of the death

(o]
k+1
Ay = Z 14 kPxYx+k-
k=0

The n-year term insurance provides a fixed amount only if the death occurs in the
next n years, and the expected present value

n—1
1 k+1
Ay = Z 14 kPxqx+ks
k=0

again, with a payment at the time of death. A mn-year endowment guarantees a
payment at the end of the n years if the person survives. The expected present value
is here

WEx = Ax:ml =v" .Px.

19



For example, annuities are contractual guarantees that promise a periodic in-
come (usually annually, with a normalized cash flow of $1) over the lifetimes of
individuals. The actuarial present value of the annuity of an individual age (x) is

[se]
k+1
ax = Z v kpx’
k=0

where payment is made at the end of the year if individual is still alive (as in Bowers
et al. (1997), d, is used for payments done at the beginning of the year — also called
annuity-due). Such a contract pays $1 at the end of the years 1, 2, 3, ... as long as
the individuals is alive. As previously, an n-year temporary life annuity guarantees
yearly unit cash flows, until year n, over the lifetimes of individual (x)

-1

k+1
Axm = V' kPx-
k=0

S

We refer to Bowers et al. (1997) for technical distinctions among the various
subtleties. Here, we simply compare life insurance expected present values, and
annuities, in various scenarios. To that end, use numerical tools developed for the
lifecontingencies R package, presented in Spedicato (2013).

3.3.2 Notations for Conditional Single Life Guarantees

In Section 5, we will consider single life guarantees, using family history as con-
ditional information, at the time of signature. For instance, we can consider the
actuarial present value of the annuity of an individual age (x), given some informa-
tion % about parents or grand-parents, is

o0
* _ k+1 *
ar=
k=0

where * could mean that both parents are still alive when the child has age x, for
example, or that only one of them is alive.

3.3.3 Notations for Multiple Life Guarantees

In section 4, we will also consider joint and survivor annuities options on two live
contracts. More precisely, as discussed earlier, we consider the case of married
couples, where the two lives are the one of the father (denoted f) and the one of the
mother (denoted m). Let T'(xy, x,,,) denote the joint life status and T'(x 7, X,,,) the last
survivor, defined as

T(xf,xpm) = min{T,,,(x), Tr(x,n)} and T (X, X,,) = max{Ty(xz), Tpn(xm)}.
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Survival probabilities are

tpr,xm = P[T(xf9XWL) > t] and l‘pff,fm = P[T(Efvyn’J > t]’

while curtate life expectancies are
exsoom = B(LTCr xm)]) = D 1Py v, and €5, 5, = BTG %)l = D115, 5,00
=1 =1
A joint-life annuity pays benefits until the death of the first of the two annuitants,
T(xf, x), for a husband/father (x7) and a wife/mother (x,,). The standard joint-life
annuity pays $1 at the end of the years 1, 2, 3, ... as long as both spouses survive.
Its actuarial present value is

(o)
k
Axs,xm = Z V kPxg,xm+
k=1

A last-survivor annuity pays a certain amount until the second (and last) death,
T(Xf,Xp). The standard joint-life annuity pays $1 at the end of the years 1, 2, 3,
. as long as long as either spouses survives. Its actuarial present value is
00
Axp Xm = kapff,fm-
k=1
A reversion annuity starts after the first death T(x,,,xs) until the last one
T(xf,Xx,). Some one-way reversion can be considered, for instance from the
husband to the wife, also called widow’s pension: payments start at the death of
(x7) until the death of (x,,), and no payment is made if (x,,) dies before (xy).
The actuarial present value of the reversion annuity is ay Foxm — A% T while the
actuarial present value of the widow’s pension is ax,,|x, = dx,, = dx;,x,,-

4 Husband and Wife Dependencies

This section highlights, as observed in the literature, the positive links between
the life expectancy of the members of a couple, and then examines the impacts on
annuities and life insurance premiums.

4.1 Empirical Relationship Between Lifespans Within Couples

The nonparametric'? estimation of the (survival) copula of remaining lifetimes
(Tx;,Tx,,), can be seen in Figure 3. The nonparametric estimator suggest very

12Estimated parametric densities — Gaussian, Clayton and Gumbel — are mentioned in the Appen-
dices.
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similar behavior in the lower and in the upper tails, which would disqualify Gumbel
and Clayton copula. Based on almost 15,000 individuals (but unfortunately most
were censored data since a lot of people were still alive), Frees etal. (1996) suggested
to use Frank copula (exhibiting symmetric dependence between the lower and the
upper tail), with 6 = 3.367, corresponding to a 0.5 Spearman correlation. Denuit
et al. (2001) selected at random two cemeteries in Brussels (Koekelberg and Ixelles
/ Elsene) and they collected the ages at death of 533 couples buried there. Those
data are very close to the ones we have, and they observed a 0.139 Spearman
correlation, and they used Gumbel copula, with parameter 6 = 0.104. In our data
— see Figure 4 — Spearman correlation was 0.156, with a 95% confidence interval
(0.151;0,161).

The link between the age at death of a person and that of their spouse can be
visualized in a simple way through several methods. Figure 5 shows a woman’s age
at death as a function of her husband’s age at death as well as the relationship in
the other direction. The positive correlation between these two quantities can thus
be seen graphically, as in Beeton and Pearson (1901).

4.2 Annuities and Life Insurance Premiums Within Couples

As mentioned previously, the positive relationship exhibited between the lifetime of
the members of a couple can be used to derive bounds for most actuarial quantities.
To that end, we consider an annuity and a life insurance signed by a man. We
compare their present value according to the age of the annuitant and distinguishing
between cases where the policyholder’s wife is alive or deceased at the time of
signature. The results are shown in Figure 6, for an annuity (on the left) and
for a life insurance (on the right). The values are expressed relative to the case
where information on the wife’s status is not taken into account, represented by the
blue dashed line. This reference situation is compared to those where the current
values of the two types of contracts are calculated by separating the men whose
wives are still alive when the contract is signed (black solid line) from those whose
wives are deceased (pink dashed line). In Figure 6 (and all figures where relative
differences are computed), the baseline is the entire population. For a male, age 60,
the expected value of the pension should be 2% larger if his wife is still alive, for
example, but the premium of a life insurance is only 5%o lower.

Figure 7 compares the cost of a standard widow’s annuity a, ¢ relative to the cost
of the annuity under the assumption of (statistically) independence. As explained
in the appendix, since we have a positive relationship between joint lives, widow’s
pension should be lower than under the assumption that joint lives are independent.
For a mother in her 30’s, the value of the widow’s pension should be about 10%
lower (than the independent case), while it should be 7% lower if she is in her 60’s.
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Figure 3. Nonparametric estimate of the copula density for (7, Tr, ), given some

restrictions on x.
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Note: On top, nonparametric estimate of the (survical) copula density for (7;, Try). Below, on top, copulas of
(Tt, Tin) given T; > x (and that both are still alive), for x = 25, 35, 45. At the bottom, copulas of (7¢, Trn) given
Tm > x (and that both are still alive), for x = 25, 35,45. The z-axis for copula density graphs is always [0, 5],

which allows us to compare all distributions.



Figure 4. Spearman correlation between age at death of the spouses, by year of
birth of the husband.
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Note: The dots represent the estimated Spearman correlation between the age at death of spouses for each cohort,
using the birth year of the father to define the cohorts. The bars correspond to 95% bootstrap confidence interval
(based on 1, 000 resamples).

Figure 5. Age at death of women as a function of age at death of their husband
(left) and age at death of men as a function of the age at death of their wife (right).
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Note: The blue and purple dashed lines correspond to the first and ninth deciles of quantile regression of age at
death of an individual as a function of the age at death of their spouse.
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Figure 6. Relative difference to the average (in %) of present value of an annuity
(left) and expected present value for a life insurance (right) depending on the age
of the annuitant and on the death status of the wife at the time of the contract.
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Note: the horizontal blue dashed line corresponds to the average value calculated on all individuals, regardless of
the death status of the spouse. The annuities are calculated for 100 terms and the expected present value for life
insurance are calculated for 100-year coverage. The interest rate is assumed to be 3%.

Figure 7. Widow’s pension, ans (relative to independent case alt | ¢)» as a function
of xp.
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Parents and Children Dependencies

This section first presents the results of the analysis of the links between the lifespan
of an individual and that of his or her parents, and then considers the links with the
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lifespan of grandparents.

5.1 Children Conditional on Parents

As noted in Section 2, several parametric models were fitted to estimate individual
mortality. The adjustments of the Gompertz, Beard, Carriere and Hellingman-
Pollard distributions on the force of mortality and survival probabilty, respectively,
for men, women, fathers and mothers are displayed in the Appendix, in Figures B1
and B2. The graphs also report the observed values. The Carriere model is the one
that best fits the data.

5.1.1 Empirical Evidence of the Relationship Between an Individual’s Lifes-
pan and that of his or her Parents

As was done in the case of couples, a first way to visualize the relationship between
the age at death of children and their parent’s age at death is to look at the correlation
between 7, and various variables: the age at death of the father #, the age at death of
the mother f,, the age at death of the first to die min{t, #, }, the age at death of the
last survivor max{f, ,}, and the average age at death of the parents mean{t, t,, }.
As can be seen in Figure 8, this correlation is positive, albeit relatively weak
and appears to be constant over cohorts. Overall, regardless of the cohorts, the
Spearman correlation between ¢, and mean{#;, t, } is 0.125, with a 95% bootstrap
confidence interval of [0.121;0.130].

These small links between parents and children are also seen in Figure 9, which
shows the relationships between ¢, and the same age at death variables as previously,
this time using the copula estimation results. Regardless of the variable selected
for the parents, the surfaces look the same.

The evolution of the residual life expectancy e, of men given some information
about their parents can be visualized in Figure 10. Various situations are compared
concerning the death’s status of the parents at a given age of their son (at 20 years
of age for the graphs on the left, 30 years of age for those in the middle and 40 years
of age for those on the right): information not accounted for (baseline situation),
both parents still alive, the father deceased and the mother still alive, the mother
deceased and the father still alive, one of the two parents still alive regardless
of gender, and both parents deceased. The upper graphs show the residual life
expectancy expressed in years, while the lower graphs allow an easier comparison
with the reference situation by showing the difference in years on the residual life
expectancy of sons compared to the reference situation in which the information on
the death of the parents is not taken into account.

Irrespective of the age at which the information regarding parent’s death is
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Figure 8. Spearman correlation between age at death of individuals . and age at
death of their parents.

Age at death of the father #¢ Age at death of the mather #,,,

Age at death of the first to die min{z, #r, } Age at death of the last survivor max{z, fn, }

Cohort of Individuals

Note: The dots represent the estimated Spearman correlation between the age at death of a child 7. and that of
their parents. The bars correspond to 95% bootstrap confidence interval. The red horizontal line corresponds to a
value of 0. The correlations for the (1790, 1800] and (1810, 1820] cohorts are calculated on 476 and 250 couples
of parents only. For the other cohorts, the correlations are calculated from a much larger number of observations,
ranging from 3, 332 (for the (1800, 1810] cohort) to 41, 345 (for the (1830, 1840] cohort).

looked upon, i.e., 20, 30 or 40 years old, it can be noted that the residual life
expectancy curve for males whose parents are both still alive is systematically above
the other curves, while the curve for children with both parents dead is systematically
below the other curves. The difference in life expectancy is, however, relatively
small and lessens over the years. As reported in Table B2, a male child whose both
parents were still alive when he was 20 years old had a life expectancy of 39.7 years,
compared to only 37.0 if both parents were deceased. In comparison, the residual
life expectancy of a 20 years old man, without taking into account information about
his parents, is 39.1 years. At age 30, the difference was much smaller: compared
to the baseline value of 33.3, a male individual whose parents were both alive at
that time was expected to live an additional 0.8 year while a man whose parents
were both deceased was expected to live 1.6 year less. Lastly, at age 40, an man
was expected to live another 26.7 years, a bit more (1.3 year) if his parents were
still both alive at that age and slightly less if both parents were deceased (about one
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Figure 9. Nonparametric estimation of the copula densities.

(a) Age at death of the (b) Age at death of the (c) Age at death of the first
father #¢ mother t,, to die min{#, 1, }

(d) Age at death of the last (e) Mean Age at death of
survivor max{#, r, } the parents mean{z, t, }

Note: these graphs show the dependence between the age at death of a children (z.) and the age at death of a
parent, considering different possible measures for the parent: the age at death of the father #, the age at death of
the mother #,,, the age at death of the first to die min{#, #;, } and the age at death of the last survivor max{#, f, }.

year). Similar patterns are observed for female children.

5.1.2 Annuities and Life Insurance Premiums Accounting for the Status of
Parents

In Figure 11, we observe the evolution of the present value of an annuity and
the life insurance, as a function of the age of the insured, x, given information
about his or her parents when buying the insurance contract. It can be noted that
(empirical) monotonicity is consistent with theoretical results (decreasing with x
for the pension and increasing for the life insurance), and the ordering of the three
cases (both parents deceased, one parent still alive and both parents still alive) is
consistent with the positive dependence between all lifespans. Figure 12 displays
the relative difference (to the average baseline, as previously). It shows that present
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Figure 10. Residuals life expectancy depending on the death status of the parents,
at different times in the lives of men.

(a) Residual life expectancy of sons (in years)

20 years old 30 years old 40 years old
40-

RN AN .
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Age of the son

(b) Deviation from baseline (in years)

20 years old 30 years old 40 years old

T 8

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Age of the son
— Reference -+ Only mother still alive Only one parent still alive
Both parents still alive - Only father still alive Both parents deceased

Note: each panel reports the residual life expectancy of individuals (only men) according to their parents’ death
status (information not accounted for — reference —, both still alive, only the father still alive, only the mother still
alive, both deceased), at different times in the life of the individuals (at 20, 30, and 40 years old). Left panels thus
indicates the residual life expectancy of men when both parents are still alive when they are 20 years old, when
only one of them is alive, and so on. Top panels show the residuals life expectancy expressed in years. Bottom
panels show the relative difference to the reference, expressed in years.

value of the annuity is consistently 3% lower when both parents are deceased,
whatever the age. If both parents are alive, the difference of the present value of
that annuity is increasing with x, and is 3.7% higher for an insured age 40.

5.2 Children Conditional on Grand-Parents

We now extend our previous work to grandparents, where insured provide informa-
tion about his or her four grandparents.

5.2.1 Empirical Evidence of the Relationship Between an Individual’s Lifes-

pan and that of his or her Grandparents

Spearman’s correlation between the age at death of individuals #. and the average
age at death of their grandparents mean{Zgfm, femm, feff> femf } iS €ven weaker than with
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Figure 11. Present value of an annuity (left) and expected present value for a life
insurance (right) depending on the age of the annuitant and on how many parents
are still alive at the time of the contract. The interest rate is assumed to be 3%.

Ay Ax

0.55-
0.50-
0.45-

0.40-

035- L

20 30 40 50 20 30 40 50
Age

Both parents deceased Only one parent still alive =~ —— Both parents still alive Reference

Note: the annuities are calculated for 100 terms, the expected present value for life insurance are calculated for
100-year coverage.

the average age at death of their parents mean{z, y,}: 0.0251, with a 95% bootstrap
confidence interval equal to [0.0235,0.0266]. However, this confidence interval
stresses that this correlation, although tenuous, is sinigicatively different from zero.
In addition, as shown in Figure 13, this correlation appears to be relatively stable
over time. The same Figure also shows that the correlation between the age at
death of an individual and that of grandparents is stable over time when the latter
is measured by using only the age at death of the first or last to die.

In a similar way to what was presented for the parents, the relationship between
t. and mean{tgfm, tomms Lgffs tgmf} can be studied using the results of copula estimates.
These are graphed in Figure 14.

A comparison of the remaining life expectancy of an individual (male) according
to the number of his grandparents still alive when he is 10, 15 or 20 years old is
shown in Figure 15, taking as a reference the situation in which knowledge of this
information is not taken into account.!> When all four grandparents of a person
(male) are still alive when he is 10 years old, the figure shows that his remaining
life expectancy (grey dot-dashed line) is relatively higher than average (black solid

13Because of the relatively low life expectancy in the 19th century, it is unfortunately not possible
to form groups of individuals with 3 or 4 grandparents when the first ones are 30 or 40 years old.
This is why the ages of interest here (10, 15 and 20 years) are lower than in the previous comparison
with information on parents (20, 30 and 40 years).
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Figure 12. Relative difference to the average (in %) of present value of an annuity
(left) and expected present value for a life insurance (right) depending on the age
of the annuitant and on how many parents are still alive at the time of the contract.

Ay Ay
8.0%-

4.0%-

0.0%~

Relative difference to the average

-4.0% -

20 30 40 50 20 30 40 50
Age

Both parents deceased Only one parent still alive =~ —— Both parents still alive
Note: the horizontal blue dashed line corresponds to the average value calculated on all individuals, regardless of

the death status of the parents. The annuities are calculated for 100 terms and the expected present value for life
insurance are calculated for 100-year coverage. The interest rate is assumed to be 3%.

Figure 13. Spearman correlation between age at death of individuals #. and age at
death of their grandparents.

First to die Last survivor Mean of grandparents
min{Zgfim, fomms foffs fomf } max{tgfm, Lomms Loff> Lemf } mean{fgfm, fgmms fgfts femf}
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Note: The dots represent the estimated Spearman correlation between the age at death of a child 7. and that of
their grandparents. The bars correspond to 95% bootstrap confidence interval.

line). On the contrary, when all four grandparents are dead, then the remaining life
of the grandson (pink dashed line) is lower than the average, although the absolute
difference is not as large. For both cases, the absolute deviation from the average
decreases over the years. This difference between the two groups is much less
marked if the number of grandparents still alive when the children are 15 years old
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Figure 14. Nonparametric estimation of the copula densities for the grandparents.

(a) Age at death of the first (b) Age at death of the last (c) Mean Age at death of the
to die survivor grandparents
min{tgfm, fomm Lgffs tgmf} max{tgfma tamm Lgffs tgmf} mean{tgfma tgmms lgffs tgmf}

Note: these graphs show the dependence between the age at death of a children (#.) and the age at death of their
grandparents, considering different possible measures for the grandparents: the age at death of the first to die
min {Zgfim, Zgmm Zgff> Lemf }» the age at death of the last survivor max{Zgfm, fgmm> fgff» fgmf } OF the average age at
death of the grandparents mean {Zgfm, fgmm. feff> Lemf }-

is considered, but it should be noted that those who still have their four grandparents
at that age still have a relatively higher remaining life expectancy than the average.

5.2.2 Annuities and Life Insurance Premiums Accounting for the Status of
Grandparents

In this section, computations are based on a (much) smaller dataset, where we kept
individuals for whom information about the four grand-parents was available.

Figure 16 is the analogous of Figure 11, where the evolution of the present
value of an annuity and the life insurance is represented as a function of the age of
the insured, x, given information about his or her grandparents when buying the in-
surance contract. Again, the (empirical) monotonicity is consistent with theoretical
results (decreasing with x for the pension and increasing for the life insurance), and
the ordering of the three cases (all grandparents deceased, one or two still alive and
three or four still alive) is consistent with the overall positive dependence between
all lifespans. But here, as seen in Figure 17, the relative difference is much smaller,
(at most) 2%, except perhaps when three or four grands parents are still alive and
when x is ‘large’ (but in that case, the number of observations is much smaller, and
the difference probably not significant).
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Figure 15. Residual life expectancy depending on the death status of the
grandparents, at different times in the lives of men.

(a) Residual life expectancy of grandsons (in years)
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(b) Deviation from baseline (in years)
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Age of the grandson
— Reference - Only 1 grandparent still alive Only 3 grandparents still alive
All grandparents deceases = Only 2 grandparents still alive All grandparents still alive

Note: each panel reports the residual life expectancy of individuals (only men) according to their grandparents’
death status (information not accounted for — reference —, all four still alive, only one still alive, two still alive,
three still alive, all four deceased), at different times in the life of the grandsons (at 10, 15, and 20 years old). Left
panels thus indicates the residual life expectancy of grandsons when all four grandparents are still alive when they
are 10 years old, when only one of the grandparents is still alive, and so on. Top panels show the residuals life
expectancy expressed in years. Bottom panels show the relative difference to the reference, expressed in years.

6 Conclusion

In this article, we use collaborative genealogy data to study joint mortality within
families. Using 135, 128 observations of couples from people born during the 19th
Century in France, we observe well-known results from the literature on dependency
in mortality. Then we look at the potential links between individuals and their
parents regarding mortality. To do this, contrary to what is usually observed in the
literature, we rely on a substantial volume of data: 174,318 observations. We find
results similar to those obtained in studies with smaller samples, i.e., a very weak
but significant association between an individual’s lifespan and that of his or her
parents. Our data also allow us to take the study a step further by looking at the
relationship between an individual’s longevity and that of his or her grandparents.
As with the parents, a very weak but significant positive association is observed.
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Figure 16. Present value of an annuity (left), expected present value for a life
insurance (middle) and for an endowment (right) depending on the age of the
annuitant and on how many grandparents are still alive at the time of the contract.
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— Three or four grandparents still alive Reference

Note: the annuities are calculated for 100 terms, the expected present value for life insurance and for endowment
are calculated for 100-year coverage. The interest rate is assumed to be 3%.

We then look at the potential implications for annuities and life insurance.

Here, we consider family history only through the prism of the age at death of
ancestors. Furthermore, we do not try to explain the nature of the correlation, and it
is rather difficult to understand what is due to genetics and heredity on the one side,
and environmental factors on the other. This is all the more difficult since the reason
for death is not stated in such a dataset. We can still wonder if family history (about
the age at death of ancestors) is an important information: since it has a rather
small impact (as we proved in this article), if the cause is mainly environmental,
the correlation can be substantially captured by other common variables (such as
the wealth).
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Figure 17. Relative difference to the average (in %) of present value of an annuity
(left), expected present value for a life insurance (middle) and for an endowment
(right) depending on the age of the annuitant and on how many grandparents are
still alive at the time of the contract.

ax Ax
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All grandparents dead One or two grandparents still alive
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Note: the horizontal blue dashed line corresponds to the average value calculated on all individuals, regardless of
the death status of the grandparents. The annuities are calculated for 100 terms, the expected present value for life
insurance and for endowment are calculated for 100-year coverage. The interest rate is assumed to be 3%.
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A Models for Joint Life Dependencies

A.1 Parametric Copulas

In order to provide a more accurate comparison with related literature, we consider
some popular parametric copulas, in this section: Clayton copula is defined as

Ceo(u,v) = [,[9 v — 1]—1/0

’

(with 6 > 0 from Clayton, 1978), Gumbel copula

0 0\'/?
Co.o(u,) = exp| - ((~ log()” + (= log)’) |
(with 6 > 1, from Clayton, 1978) the normal (or Gaussian) copula

x2 = 2pxy + y?

o'W o)
Cho(u,v) = / / —exp( —)dydx,
' —o0 —o 2w/l = p? 2(1 - p?)

(with p € (=1, 1)), and finally Frank copula (from Frank (1979))

(exp(=6u) — 1)(exp(-0v) — 1)]
exp(—6) — 1 ’

1
Ceo(u,v) = ~3 10g[1 +

(with 6 € R, with the independent copula with 8 equals zero).

To estimate the parameters of the copula, instead of using the IFM method of
Joe and Xu (1996), we prefer the omnibus semiparametric procedure described in
Oakes (1989), where the copula is fitted on non-parametric pseudo observations
(itf i, Um,i) Where

n

= 9 = 1
ur; = Sp(xr,;) where Sg(x) = - Z 1(xr; > x),
j=1

for fathers, and a similar expression for mothers.
We define the empirical copula C, as the cumulative distribution function of
(izf,ia izm,i)’s
~ 1 &
C,(u,v) = ; Z 1(ﬁf,i < u,ﬁm,i < v),
i=1

or some smooth version En(u, v) using some probit transformation, as in Geenens
et al. (2017).

If a positive dependence is observed, in the sense defined by Lehmann (1966),
it can be used to derive bounds for most actuarial quantities.
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A.1.1 Positive Association between Lifetimes

As in Lehmann (1966) — see also Scarsini and Shaked (1996) for an exhaustive
survey — X and Y are said to be positively quadrant dependent (PQD) if and only if

Fx(x) - Fy(y) <P[X < x,Y < y]forall x,y € Ry,
or equivalently
Sx(x)-8y(y) <P[X > x,Y > y]forall x,y € R,.
The later can be written equivalently
C.(u,v) < C(u,v) for all u,v € [0,1].

An interesting interpretation of PQD association of lifetimes is given in Denuit and
Scaillet (2004): if lifetimes of a husband age (x,,,) and spouse age (xy) are positively
quadrant dependent, then for all r € R,

E[Ty,|Ty,, > 1] 2 E[Ty,] and E[Ty, [Ty, > 1] = E[T,,, .

The interpretation of those inequality is that knowing that one of the two spouses
is still alive, at some time, increases the remaining lifetime of the other one.

Gijbels et al. (2010) compares several test for positive quadrant dependence,
and in this section, we use a Kolmogorov-Smirnov test, as in Scaillet (2005). More
specifically, we want to test Hy : C > C,, and we use

S = Vn sup{C. (u,v) — Cp(u,v)},
(u,v)

where C,, is the empirical copula.'* Using 5,000 bootstrap samples, we obtain a
p-value lower than 1%o, with 90% chance. So we can claim, with strong confidence,
that in our data, joint lifes are PQD.

14and the p-value is approximated using standard bootstrap techniques, as described in section 3.2.
of Scaillet (2005). More specifically, if 6,’; is the empirical copula built from a bootstrap sample,
define

S = Vi sup {Cyr(u.v) = Cu(u,v)}
(u,v)
and then p = P[S¥ > S,,]. In the application, a 500 X 500 uniform grid is used to approximate the
supremium on the unit-square.
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A.1.2 From Joint Distributions to Insurance Premiums

Consider two positive random variables X and Y, with marginal cumulative distri-
butions Fx and Fy respectively, and survival functions Sx and Sy. From Fréchet
(1960), without any further assumption,

max{0, Fx(x) + F,(y) = 1} < P[X < x,Y < y] < min{Fx(x), F,(y)},
or equivalently

max{0,Sx(x) + Sy(y) — 1} < P[X > x,Y > y] < min{Sx(x),Sy(y)},
for all x,y € R,. In the context of joint lifes, the later can be written

max{O, tPxm, + tpr - 1} < szm,xf < min{tpxma tpr}e (1)

for all time ¢ € R,.. The upper bound is obtained when the associated copula is C*.

Sharper bounds can be derived, at least for the lower bound, assuming some
positive association between variables, namely the PQD property. In that case, the
lower bounds corresponds to the independent case, and the associated copula is C*.
Thus, as a consequence, if lifetimes of a husband age (x,,) and spouse age (xy) are
positively quadrant dependent, then Equation (1) becomes

tPxp * tpr < tpxm,xf < min{tpxm,tpxjc}, (2)

Consider some quantity of interest Z (that could be the life expectancy, or some
annuity), so that 7(X,Y) can be written E[¢(X,Y)], where ¢ is a supermodular
function, in the sense that

@(x1,y1) + @(x2,y2) = @(x1,¥2) + @(x2,y1) for all x3 > x1,y2 > y1. 3)

As proved in Lorentz (1953) and Cambanis et al. (1976), comonotonic vectors
maximize 7 (X,Y), in the sense that

I(Fg'(U),Fy'(1-U)) < I(X,Y) < I(Fg'(U), Fy ' (U)),

where U is uniformly distributed. And in the case where (X,Y) are positively
quandrant dependent,

I(XHYH <I(X,Y)<I(X"Y"),

where (X*,Y*) denotes an independent version of vector (X,Y), in the sense that
X+ has the same distribution as X, Y+ has the same distribution as Y, and the
copula of (X*,Y*) is C* — and similarly for some (X*,Y*). In the case where ¢
is a supermodular function (with a less or equal instead of a greater or equal in
Equation 3), bounds are inverted. As mentioned in Carriere and Chan (1986) and
Denuit and Scaillet (2004), those bounds appear when calculating various annuities.
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A.2 Bounds for Insurance Premiums

As discussed previously assuming positive association between life times 7'(xr) and
T(x,), the independence case and the comonotonic cases will provide lower and
upper bounds for various quantities. Hence, in the independent case,

CZJ' =

k
XfXm v (kpr + kPxp — kpr . kpxm) ’

00
k=1
S

L k
Uxpoxm = Z Vo kPxy " kPxm>

k=1
[ee] (e8]
1 k k
ax]clx]c = Z V kPxm — ZV kPx¢ * kPxp»
k=1 k=1

while in the perfectly correlated case,

k .
a;f’}m = Zv (l - mln{kpr,kpxm}) ,

k=1
[s6]
+ _ k .
axf,xm - Z v mln{kpr,kpxm },
k=1
(o) [Se]
+ _ k _ ko
axmle - Z 14 kpxm Z 14 mln{kpr, kpxm}-
k=1 k=1

And as shown in Denuit and Scaillet (2004), if lifetimes are positively quadrant

dependent,

€1 +
axf,xm < axf,xm < axf,xm’

— — L
XfXm < avaxm = Xf.Xm’

and
"

axm [xr

1
< Cx,p, |xg < axmle.

Thus, for the last-survivor and the widow’s pension, the independence assumption is
conservative (as soon as lifetimes are positively associated). In that case, using the
independence assumption for pricing those annuities will incorporate some safety
loading (as in Figure 7 where we plot the present value of a widow’s pension, apyt
(relative to independent case art | () as a function of xp,.).
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B Parents and Children Dependencies

Figure B1. Force of mortality (log scale) u, for individuals depending on their
gender (top), and for their parents (bottom).
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Figure B2. Survival function for individuals depending on their gender (top), and
for their parents (bottom).
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Figure B3. Age of individuals (daughters and sons) as a function of age of parents.

(a) Daughters on mothers (b) Sons on mothers
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Note: The blue and purple dashed lines correspond to the first and ninth deciles of quantile regression of age at
death of an individual as a function of the age at death of their spouse.

Table B1. Linear regression coefficients of children’s age at death as a function of
parent’s age at death.

Variables

Relationship Intercept Age of the parents R?

Daughter vs. Mother ~ 30.17 [29.31,31.03]  0.243[0.230,0.256]  0.0158

Son vs. Mother 30.39[29.60,31.18]  0.202[0.190,0.214]  0.0120
Daughter vs. Father 35.03 [34.06,36.00]  0.167[0.152,0.181]  0.0059
Son vs. Father 34.71[33.82,35.59]  0.134[0.120,0.147]  0.0042

Note: The 95% confidence intervals for each coefficient are provided between brackets next to the estimates.
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Table B2. Residual life expectancy of children depending on information on
parents.

Men ‘Women

x Information used €x male Dev. from Ref. €x female Dev. from Ref.

Information on parents when the child is 20 years old

20 Reference 39.13 0.00 43.17 0.00
20 Both parents still alive 39.70 0.57 43.69 0.51
20 Only mother still alive 38.48 -0.65 43.12 -0.05
20 Only father still alive 38.02 -1.11 41.37 -1.81
20 Only one parent still alive 38.27 -0.86 42.30 -0.87
20 Both parents deceased 37.00 -2.13 42.03 -1.15
30 Reference 33.31 0.00 36.87 0.00
30 Both parents still alive 33.71 0.40 37.27 0.40
30 Only mother still alive 32.97 -0.34 36.73 -0.14
30 Only father still alive 3234 -0.97 35.20 -1.66
30 Only one parent still alive 32.67 -0.64 36.02 -0.84
30 Both parents deceased 31.85 -1.45 36.71 -0.16
40 Reference 26.71 0.00 30.32 0.00
40 Both parents still alive 26.98 0.27 30.60 0.28
40 Only mother still alive 26.64 -0.07 30.21 -0.11
40 Only father still alive 25.81 -0.90 29.13 -1.19
40 Only one parent still alive 26.25 -0.46 29.71 -0.60
40 Both parents deceased 25.84 -0.87 30.22 -0.10
Information on parents when the child is 30 years old
30 Reference 3331 0.00 36.87 0.00
30 Both parents still alive 34.13 0.82 37.99 1.12
30 Only mother still alive 33.27 -0.03 37.07 0.20
30 Only father still alive 32.92 -0.39 35.01 -1.86
30 Only one parent still alive 33.12 -0.19 36.18 -0.69
30 Both parents deceased 31.68 -1.63 35.78 -1.09
40 Reference 26.71 0.00 30.32 0.00
40 Both parents still alive 27.25 0.54 31.12 0.80
40 Only mother still alive 26.84 0.13 30.53 0.21
40 Only father still alive 26.22 -0.49 28.70 -1.62
40 Only one parent still alive 26.57 -0.14 29.74 -0.58
40 Both parents deceased 25.65 -1.06 29.68 -0.64
Information on parents when the child is 40 years old
40 Reference 26.71 0.00 30.32 0.00
40 Both parents still alive 28.04 1.33 31.90 1.58
40 Only mother still alive 27.26 0.55 31.54 1.22
40 Only father still alive 26.41 -0.30 29.30 -1.02
40 Only one parent still alive 26.91 0.20 30.66 0.34
40 Both parents deceased 25.77 -0.94 29.10 -1.22

Note: The reference situation is one in which no information regarding the death’s status of the parents is accounted
for. x is the age of children and e, the corresponding residual life expectancy expressed in years. The deviation
from the reference is the difference between life expectancy when some information on parents death is used and
life expectancy when such information is not accounted for.
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C Grandparents and Children Dependencies

Table C3. Age at death of the individuals and age of their grandparents, according
to the gender of the grandchildren, keeping only grandchildren whose four
grandparents are known.

Mean SD  Min Max 0 (o)) Q3 No Missing

Men (n = 31, 096)

Individual (¢) 39.1 295 0.0 104.0 38 433 657 0
Maternal grandfather 646 143 150 1041 552 66.7 754 0
Maternal grandmother 633 153 150 1040 530 658 750 0
Paternal grandfather 644 142 150 1041 551 665 752 0
Paternal grandmother 629 152 150 1025 530 651 745 0
Last survivor 71.5 82 150 1041 727 781 829 0
First to die 484 122 150 1000 392 481 576 0
Average grandparents 63.8 80 150 100.0 58.6 642 69.5 0
Women (n = 28, 367)
Individual (z.) 389 30.1 0.0 1044 42 404 66.6 0
Maternal grandfather 64.7 143 157 1042 553 669 755 0
Maternal grandmother 632 153 152 1040 530 657 749 0
Paternal grandfather 644 143 150 1041 549 663 753 0
Paternal grandmother 629 152 160 1026 527 652 746 0
Last survivor 71.5 82 250 1042 726 781 83.0 0
First to die 484 122 150 1020 392 481 576 0
Average grandparents 63.8 81 250 1025 585 641 69.6 0
Men & Women (n = 59, 463)
Individual (¢.) 39.0 29.8 0.0 1044 40 420 66.1 0
Maternal grandfather 64.6 143 150 1042 552 66.7 754 0
Maternal grandmother 633 153 150 1040 530 657 749 0
Paternal grandfather 644 143 150 1041 550 664 753 0
Paternal grandmother 629 152 150 1026 529 651 74.6 0
Last survivor 71.5 82 150 1042 727 781 83.0 0
First to die 484 122 150 1020 392 481 576 0
Average grandparents 63.8 80 150 1025 58.6 64.1 69.5 0

Note: this table provides descriptive statistics of the ages contained in the dataset of grandchildren and their
grandparents. n stands for the number of observations, SD is the standard deviation, Q;, O, and Q3 are the
first, second, and third empirical quartiles, respectively, and No. Missing refers to the number of missing values.
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Figure C4. Force of mortality (log scale) u, for individuals depending on their
gender (top), and for their grandparents (bottom).
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Figure CS. Survival function for individuals depending on their gender (top), and
for their grandparents (bottom).
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Figure C6. Age of individuals (daughters and sons) as a function of age of
parents.
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Table C4. Linear regression coefficients of grandchildren’s age at death as a
function of grandparent’s age at death.

Variables

Grandchildren Intercept Age of the parents R?

Granddaughter ~ 37.113 [34.32,39.91]  0.0280 [-0.0154,0.0715]  0.000056
Grandson 37.056 [34.43,39.69]  0.0325 [-0.0084,0.0734]  0.000078

Note: The 95% confidence intervals for each coefficient are provided between brackets next to the estimates.
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Table C5. Residual life expectancy of grandchildren depending on information on
grandparents.

Men Women

x Information used €x male Dev. from Ref. €x female Dev. from Ref.

Information on grandparents when the grandson is 10 years old

10 Reference 44.84 0.00 44.60 0.00
10 All grandparents deceases 43.92 -0.92 43.29 -1.30
10 Only 1 grandparent still alive 45.06 0.22 45.04 0.44
10 Only 2 grandparents still alive 45.55 0.71 45.28 0.68
10 Only 3 grandparents still alive 45.25 0.41 45.82 1.23
10 All grandparents still alive 47.26 242 47.38 2.78
15 Reference 40.88 0.00 41.06 0.00
15 All grandparents deceases 40.03 -0.85 39.73 -1.33
15 Only 1 grandparent still alive 41.07 0.19 41.58 0.52
15 Only 2 grandparents still alive 41.54 0.66 41.66 0.60
15 Only 3 grandparents still alive 41.18 0.30 42.46 1.40
15 All grandparents still alive 43.44 2.56 43.20 2.13
20 Reference 37.08 0.00 37.71 0.00
20 All grandparents deceases 36.23 -0.86 36.35 -1.35
20 Only 1 grandparent still alive 37.26 0.18 38.27 0.57
20 Only 2 grandparents still alive 37.67 0.59 38.24 0.53
20 Only 3 grandparents still alive 37.46 0.38 39.14 1.44
20 All grandparents still alive 40.24 3.16 40.03 232

Information on grandparents when the grandson is 15 years old

15 Reference 40.88 0.00 41.06 0.00
15 All grandparents deceases 40.48 -0.40 40.20 -0.86
15 Only 1 grandparent still alive 41.12 0.24 41.63 0.57
15 Only 2 grandparents still alive 41.70 0.82 42.34 1.28
15 Only 3 grandparents still alive 40.94 0.06 42.67 1.61
15 All grandparents still alive 42.69 1.82 43.33 2.27
20 Reference 37.08 0.00 37.71 0.00
20 All grandparents deceases 36.68 -0.41 36.85 -0.86
20 Only 1 grandparent still alive 37.28 0.19 38.21 0.51
20 Only 2 grandparents still alive 37.94 0.85 38.99 1.29
20 Only 3 grandparents still alive 37.42 0.33 39.44 1.74
20 All grandparents still alive 38.67 1.59 40.92 3.21

Information on grandparents when the grandson is 20 years old

20 Reference 37.08 0.00 37.71 0.00
20 All grandparents deceases 36.88 -0.20 37.17 -0.54
20 Only 1 grandparent still alive 37.59 0.51 38.49 0.78
20 Only 2 grandparents still alive 37.14 0.06 39.26 1.55
20 Only 3 grandparents still alive 37.98 0.90 41.02 3.32
20 All grandparents still alive 38.51 1.43 42.10 4.40

Note: The reference situation is one in which no information regarding the death’s status of the grandparents
is accounted for. x is the age of grandchildren and e, the corresponding residual life expectancy expressed in
years. The deviation from the reference is the difference between life expectancy when some information on
grandparents death is used and life expectancy when such information is not accounted for.
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