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Abstract

The low observed uptake of non-subsidised index-based insurance policies in
developing countries has been puzzling researchers for about a decade. This paper
analyses the role of drought frequency in farmers’ demand for index-based insurance
in developing countries. While it is typically assumed that an increase in exposure to
risk would result in higher demand for index insurance, this paper finds the opposite:
an increase in drought frequency may result in lower demand for index insurance
under fairly standard conditions. In an expected utility model, we show that the
demand for insurance is an inverted U function of drought frequency. We further
show that downside basis risk decreases insurance demand under frequent drought
conditions. It implies that insurance against similar but more frequent events cannot
meet large demand from farmers. To check the empirical relevance of these effects,
we conduct an insurance field experiment in Burkina Faso with 205 farmers. We
analyse insurance demand for different drought frequencies, different levels of basis
risks and different loading factors through incentivised lottery choices. This analysis
confirms that for higher drought frequencies, insurance demand is lower. Insurance
demand also decreases with basis risk and the loading factor.
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1 Introduction

In developing countries, index-based insurance schemes are becoming more widespread.
Yet, despite growing interest among donors, insurers and banks, there is a low take-up
rate of index-based insurance products among farmers (Cole et al., 2013; Giné and Yang,
2009). Substantial progress has been made in the economic literature in understanding
the factors that may prevent farmers from purchasing index-based insurance in devel-
oping countries, such as cost and access to reliable information, and these factors are
not easy to overcome (Platteau et al., 2017). But the nature of the risk itself may affect
demand for insurance. And in this respect, the effect of drought frequency - and more
generally damage frequency - on insurance take-up has not received much attention,
apart from the literature on low probability risk problems (Slovic et al., 1977; Tversky
and Kahneman, 1992; Kunreuther and Pauly, 2004).

Few climatologists have certainties about how climate change might influence pre-
cipitations in the Sahel, but one likely scenario is that drought may be more frequent.
As mentioned by Panthou et al. (2018), there seem to be a recent recovery in annual
cumulative rainfall, but this recovery is associated with an increase of rainfall intensity
and a lower number of rainy days during the rainfall season, thus creating more frequent
dry spells.

In this paper we look at the role of drought frequency on demand for index-based
insurance in Burkina Faso. Rainfall season quality is critical for agriculture, and climate
change may alter the frequency, severity, duration and timing of drought and the impact
of such a change on demand for insurance is not known. We only consider here one
dimension of climate change, namely the increase in drought frequency while we take
severity, duration and timing as given. Several reactions of the insurer to this evolution
could be considered, notably premium increase, or partial indemnification. We focus
on the premium increase, for clarity, and because our focus is on the demand side
of insurance1. However, we do not know a priori whether such change will favour or
discourage insurance subscription, because both the price of insurance and the protection
provided are greater.

Many factors contributing to the low demand for insurance in developing countries
have been addressed in the economic literature.

A first set of factors is related to the demand side of index-based insurance products.
Farmers may be liquidity constrained, especially in the absence of credit markets, and
thus unable to afford insurance premiums (Cole et al., 2013; Carter et al., 2016). They
also often experience a seasonality in their credit constraint (Dercon and Krishnan,
2000), the premium being generally paid before sowing, which corresponds to the end
of the lean season when the credit constraint is particularly tied. Casaburi and Willis
(2018) showed that interlinked insurance contracts deducting premiums from farmers
revenues at harvest time significantly increase take-up rates. However, uncertainty in
the payout also matters, Casaburi and Macchiavello (2019) show evidence that farmers
are willing to incur sizable costs to receive infrequent payments as a commitment saving
device. Alternatively, farmers may find index-based insurance too complex to understand
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(Gaurav et al., 2011), for instance because of low financial literacy (Cai et al., 2015).
They may not trust the insurance supplier to provide the promised payouts (Patt et al.,
2010; Cai et al., 2009; Dercon et al., 2015). They may also already be insured through
informal networks, through non-agricultural activities or through limited-liability credit
contracts, which in turn limit their demand for a formal insurance product (Mobarak
and Rosenzweig, 2013).

A second set of factors is related to the supply side and to the limitations of index-
based insurance products, which may be too expensive or present technical deficiencies.
Although satellite data may be used to overcome ground data limitations, it may be sub-
ject to biases and trust issues. The lack of quality historical data and infrastructures,
such as dense networks of weather stations, remain significant obstacles to index insur-
ance supply in many countries. Recent experiments carried out with different levels of
subsidy argue in favour of a high elasticity of index-based insurance demand to insurance
price (Mobarak and Rosenzweig, 2012; Karlan et al., 2014). Contract non-performance is
another potential source of insurance product rejection (Doherty and Schlesinger, 1990).
It is particularly relevant for index-based insurance contracts because of the imperfect
correlation between the index and farmers yields. This discrepancy between insurance
payouts and agricultural output, known as basis risk, may deter farmers from taking out
index-based insurance (Giné et al., 2008; Giné and Yang, 2009; Cole et al., 2013; Tadesse
et al., 2015; Dercon et al., 2014; Clarke, 2016). Basis risk can arise from different reasons
(Leblois et al., 2014; Norton et al., 2013; Dalhaus et al., 2018) and frequenctly turns out
to be a downside basis risk, that is a yield shock situation with no payout triggered by
the index2. If this happens, the farmer finds herself in a worse situation with insurance
after paying a premium than without insurance (Clarke, 2016).

A third set of factors may be due to the nature of climate risk itself. The probability
of risk occurrence could be a potential obstacle to insurance subscription and to our
knowledge, it has not been addressed in the specific literature on index insurance.

The literature on optimal insurance addresses the question of the property of risk on
the optimal contract from the insurer’s point of view, under the constraint that farmers
subscribe (Chambers, 1989; Mahul, 2001). The farmers’ demand is studied through the
lens of the participation constraint. In their framework, a farmer participates to the
insurance scheme if and only if her expected utility with insurance is greater than her
expected utility without insurance. The sign of expected gains from insurance suffices to
design optimal insurance contract, but if we want to address the demand side of existing
index insurances, it is crucial to study also the size of expected gains.

Theoretical and empirical evidence about the potential impact of shock frequency
on insurance demand have focused on low-probability events. Literature on disaster
coverage in particular highlights low take-up for low-probability risks (Slovic et al.,
1977). Behaviour in relation to probability-based insurance is used in Kahneman and
Tversky (1979)’s seminal paper to explain the limited demand for insurance against low-
probability risks (typically disaster insurances). Kunreuther and Slovic (1978); Hertwig
et al. (2004); Kunreuther et al. (2001) argue that low probabilities are more difficult
to perceive than high probabilities. Raschky et al. (2013); Kousky and Cooke (2012);
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Grislain-Letrémy (2016) find empirical support for this hypothesis in various countries.
However, some experimental results provide empirical evidence suggesting the inverse
relationship and highlight the fact that insurance demand for low-probability risks may
be higher than that for higher-probability risks. McClelland et al. (1993) and Laury et al.
(2009) have conducted two experiments showing that demand for insurance decreases
when the probability of the shock increases3. In most cases, authors simultaneously test
an increase in shock probability, and a decrease in the damage magnitude to keep the
premium constant (Slovic et al., 1977) or small enough (Laury et al., 2009). This implies
that they compare different types of damage, not different frequencies of a same damage.

Furthermore, this literature has not really looked the effect of shock frequency for
a broad range of probability events. The only paper we found that investigates the
impact of shock frequency on insurance demand in the case of high-probability events
is Norton et al. (2014). The authors demonstrate, using a choice experiment based
on similar commercial insurance contracts sold locally, that insurance take up is much
higher among Ethiopian farmers in the case of high frequency risks. Their main result
is that insurance demand increases with the frequency of insured events, but again, in a
setting where the frequent damage is not more expensive than the infrequent damage.

To measure the specific effect of frequency change and not the combined effect of a
frequency change and a magnitude change, we propose an experiment and a theoretical
model where the damage magnitude is constant as its frequency increases. The corollary
is that the premium increases, as it would typically do when climate change occurs.
Given that farmers already face zero-yield situations in the Sahel, and that climate
change may increase the occurrence of such events, it seems relatively reasonable to
bound damage magnitude.

We build an expected utility (EU) discrete choice model of insurance derived from
Doherty and Schlesinger (1990)’s conceptual model to analyse the effect of shock fre-
quency on insurance demand for the same damage. We establish that (1) the demand
for insurance is an inverted U function of shock frequency indicating that there is an
optimal frequency for farmers to take out insurance, (2) for high-frequency shocks, gains
from insurance become negative (3) and both optimal frequency and maximal insurable
frequency decrease with basis risk and loading factor levels.

To assess the empirical relevance of these effects, we conducted an insurance field
experiment with 205 farmers in Burkina Faso. Farmers were asked to choose between
insurance and no insurance, in 18 lottery choices representing insurance policies with
different loading factors, different levels of basis risk and different drought frequencies.
Three shock frequencies were used: 1/20 (low-probability shocks that occur on average
once over a 20-year period), 2/20 (intermediate-probability shocks) and 7/20 (high-
probability shocks). Three levels of downside basis risk were tested for each frequency:
zero (no discrepancy between the index and the yield), 1/5 and 2/5, corresponding to the
probability of not getting a payout conditional upon the occurrence of a shock. Finally,
two loading factors were tested for each of the above combinations: the actuarially fair
rate and a loading factor of 1.5. We find that an increase in basis risk or loading factor
leads to lower demand for insurance, and, more originally, that an increase in drought
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frequency significantly reduces demand for insurance if the frequency is greater than
1/10. These experimental results are robust to different statistical specifications and
consistent with the theoretical model, for frequencies beyond the optimal level.

The paper is organized as follows. In section 2 we build upon a conceptual model to
account for the effect of shock frequency on insurance demand. In section 3, we present
the field experiment that we conducted in Burkina Faso, and in section 4, we describe
our empirical results.

2 An index-based insurance probability model

We adapt the formal framework proposed by Doherty and Schlesinger (1990) to the
binary decision to get full insurance or no insurance in the context of basis risk. In
theory two types of basis risk are possible: the “false alarm”, i.e. the probability of a
farmer receiving an indemnification while her production has not been impacted, and
the “missed crisis” (or downside basis risk), i.e. the probability of a farmer receiving
no indemnification while her production has been impacted by a random shock that is
theoretically included in the contract. We focus here on downside basis risk because
from the farmer’s point of view, only the downside basis risk is an actual risk, whereas
the “false alarm” is a risk for the insurer, which is not our perspective here. In the case
of a continuous risk, a similar asymmetry exists and the downside risk is then typically
defined by the semi-variance of profits (Turvey and Nayak, 2003; Conradt et al., 2015).

Downside basis risk can be formalized as a non performing contract (Doherty and
Schlesinger, 1990), be it an imperfection in the insurance scheme or a default by the
insurer. We note p the frequency of drought and r the downside basis risk, i.e. the prob-
ability of a farmer who has contracted an insurance receiving no indemnity conditional
on the occurrence of the shock. It encompasses both imperfections in the index and
insurer’s failings. The probability of a farmer who has contracted an insurance suffering
a shock without receiving any indemnity is thus rp.

In our model, a drought is an event of prolonged low rainfall leading to shortages
in water availability, such as low cumulative rainfall or unusually long or frequent dry
spells that are known to have a substantial impact on agriculture when they take place
during the cropping season. This impact is summarized into the crop yield decrease
relatively to a normal year, and in our simplified framework, it takes a unique value
L, the loss in case of a shock. If y is the farmer’s income in a normal year, y − L is
the income in the case of a drought year. In the case of a drought, the insurer pays
an indemnity L with probability 1 − r. Let P denote the yearly premium, and m ≥ 1
the loading factor applied by the insurer. The premium is then the average loss pL
multiplied by the probability of indemnification 1 − r multiplied by the loading factor,
P = mp(1 − r)L. The insurance framework probability model is summarised in Table
1. Note that an increase in downside basis risk implies a lower rate of indemnification,
thus a lower premium.

The farmer’s expected utility gain from taking out insurance is the difference between
her expected utility with insurance and her expected utility without insurance. This
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Table 1: Insurance framework probability model

Payout (1-r) No payout (r)

No yield shock (1-p) 0 1− p
Yield shock (p) (1− r)p rp

supposes that the decision to take out insurance is binary, which is a simplification
with regard to Doherty and Schlesinger (1990) where the decision is about choosing
an insurance rate between 0 and 1. This simplification is consistent with our field
experimental framework.

∆EU = (1− p)u(y − P ) + (1− r)pu(y − P ) + rpu(y − P − L)
− [(1− p)u(y) + pu(y − L)]

(1)

In this expression, the first term is the expected utility in the case of no drought if the
farmer has contracted an insurance, resulting from the benefit of the harvest minus the
cost of the premium (ie the probability of no drought times the utility with no drought).
In case of drought, there are two sub-cases. Either the farmer gets reimbursed and her
utility remains the same as in the case without drought, pu(y − P ), or the farmer does
not get reimbursed and her utility is lower, u(y − P − L). The expected utility in case
of drought is a combination of these two sub-cases : probability of a drought that is
indemnified times utility in this case (second term), and the probability of a drought
that is not indemnified times utility in this case (third term).

The fourth term is the expected utility for a farmer who does not take up the insur-
ance and there is no drought, and the fifth term is the expected utility for a farmer who
does not take up the insurance and there is a drought.

The farmer is supposed to take the insurance if she expects a higher utility, in average,
if she is insured than if she is not. Thus the demand for insurance is a binary decision that
depends on the sign of ∆EU . However, this decision is generally subject to individual
idiosyncrasies, leading to individual heterogeneity in take-up decisions for a given set of
parameters (m, p, L, y). People do not all take the same choice, even if their farming
activity is the same and face the same potential insurance contract. To account for these
idiosyncrasies we define individual demand xi(p, y, L,m) as follows:

xi(p, y, L,m) =

{
0 if ∆EU + εi ≤ 0
1 if ∆EU + εi > 0

(2)

so that the probability that a farmer gets the insurance, E(xi|m, p, L, y), equals the
probability that her expected gains of insurance plus the error term is strictly positive,
prob(∆EU + εi > 0|m, p, L, y), where εi is the error term representing idiosyncrasies.
Individual demands are added together to form a collective demand n(m, p, L, y) =
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∑
i∈[1,N ]

xi(m, p, L, y) where N is the total number of farmers potentially concerned by the

insurance contract.

2.1 Optimal shock frequency in the absence of basis risk

This subsection aims to provide understanding of the impact that drought frequency
would have on expected gains from insurance in the absence of basis risk. To achieve
this, we introduce r = 0 and thus P = pmL into (1) and derive the two propositions:

Proposition 1.
If the insurer’s profit rate is beyond a certain threshold, expected gains from insurance

are negative for all drought frequencies

Proposition 2.
If the insurer’s profit rate is below a certain threshold, in the absence of basis risk,

expected gains from insurance describe an inverted u-shaped curve as drought frequency
increases

Formal writings and proofs of all propositions are developed in the Appendix, section
6.2. As a consequence, there is a unique drought frequency (lower than 1) for which the
gain from insurance is maximum.

      

p*          p**

Expected utility of uninsured farmers

= (1-p) u(y) + p u(y-L)

Drought frequency (p)

Utility (u)

Expected utility of insured farmers

= u(y-mpL), with m=1

Increase in m

u(y)

u(y-L)

1

EU

Figure 1: Expected gain from insurance (∆ EU), without basis risk. p∗ is the drought
frequency that maximises the expected gain from insurance and p∗∗ is the drought
frequency for which the expected gain from insurance is nil.

Figure 1 provides some intuition of proposition 2. An increase in drought frequency
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impacts insured and uninsured farmers in a different way. For uninsured farmers the
expected utility decreases linearly as p increases, ie their marginal utility decrease is
constant, u(y) − u(y − L). For insured farmers utility decreases at an increasing rate,
mLu′(y −mpL), when p increases.

At low drought frequencies, the marginal cost of an increase in p is smaller for insured
farmers than for uninsured farmers, but increasing for insured farmers and constant for
uninsured farmers. As p increases until p∗, it becomes more and more interesting to take
out the insurance. At p∗, the marginal cost of an increase in p for insured farmers is
equal to the marginal cost of an increase in p for uninsured farmers. At this point the
benefit of being insured is maximal. And for higher values of p, the marginal cost of
an increase in p is greater for insured farmers. The expected utility of insured farmers
decreases faster than the utility of uninsured farmers as p increases. It is still profitable
to be insured, but the gain from being insured decreases as p increases. As p approaches
1, the utility for insured farmers u(y −mpL) becomes close to the utility for uninsured
farmers pu(y − L) + (1− p)u(y), all the more as m is also close to one.

The case where p approaches 1 is implausible in practice, which tends to reduce the
range of observable probabilities where ∆EU decreases with p. For instance if p∗ = 0.5,
it is unlikely that the decreasing side of the u-shaped curve can be empirically observed
because farmers would stop considering drought as a risk if it occurs more often than
every two years. This case of hyper-frequent droughts is useful only from theoretical
point of view, to understand why farmers stop getting insurance before this upper limit.
If p∗ = 0.1, it is more likely that the decreasing side of the u-shaped curve can be
validated empirically.

2.2 Optimal shock frequency with basis risk

This subsection aims to show that downside basis risk does not qualitatively alter the
main result of the previous subsection.

Proposition 3
If the insurer’s profit rate is not too high, in case of downside basis risk, the gain

from insurance is an inverted u-shape curve as drought frequency increases. For common
utility functions, downside basis risk has a negative impact on insurance take up

Proof is given in the Appendix, section 6.2.
The incentive to take out insurance first increases and then decreases with p. In other

words, if shocks are too rare, gains from insurance are low and if shocks are too frequent,
gains are low as well. Below we provide some intuition of this result. The principle is
as above, except that the benefit of insurance is risky. Starting from a virtual situation
where drought is very rare, the premium is cheap, but the indemnity is rare, so that the
gain from insurance is low.

Figure 2 represents farmers’ utility after the cropping season. Again, this utility is
independent of p for unisured farmers, and decreasing with p for insured farmers, because
the premium increases with p. Insured farmers in case of a non indemnified drought get
the worse pay off, all the more as p increases. the corresponding expected utilities are
drawn on figure 3 in the case where the expected utility of insured farmers in the case of

8



Utility (u)

Realised utility of uninsured farmers

u(y)

u(y-L)

1

in a drought year

in a year without drought

Drought frequency (p)

Realised utility of insured farmers

with indemni cation or no shock

= u(y - mp(1-r)L)

0

Realised utility of insured farmers

without indemni cation in case of 

a shock

= u(y - mp(1-r)L - L)

Realised utility of uninsured farmers

Figure 2: Realised utility of insured and uninsured farmers.

Expected utility of uninsured farmers

= (1-p) u(y) + p u(y-L)

u(y)

u(y-L)

1

Expected utility of insured farmers, with 

indemni�cation or no shock

= (1-rp) u(y - mp(1-r)L)

Expected utility of insured farmers without

indemni�cation in case of a shock 

 

 

= rp u(y - mp(1-r)L - L)

Expected utility of insured farmers

= (1-rp) u(y - mp(1-r)L) + rp u(y - mp(1-r)L - L)
EU

Utility (u)

Drought frequency (p)
p*0

Figure 3: Gain from insurance: expected utility of uninsured and insured farmers, in
the case where L ∈ [ 2ry

m(1−r)(2rp+ρ(1−rp)) ; y
mp(2−ρ)(1−r)+1 ]. p∗ is the drought frequency that

maximises the expected gain from insurance.
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a non indemnified drought, rpu(y−mp(1− r)L−L), increases with p and is concave on
[0, 1], while the expected utility of insured farmers in the case of indemnification, (1 −
rp)u(y−mp(1−r)L) decreases with p and is concave on [0, 1]. This is the case for instance
with a CRRA utility function of parameter ρ if L ∈ [ 2ry

m(1−r)(2rp+ρ(1−rp)) ; y
mp(2−ρ)(1−r)+1 ].

Note that these restrictions are imposed for illustration in Figure 3 but they are not
necessary for proposition 3. The expected utility of insured farmers (plein curve at the
top) is the sum of the expected utility of insured farmers in case of a non indemnified
drought (upward sloping dashed curve) and the expected utility of insured farmers in
case of an indemnified drought (downward sloping dashed curve).

2.3 Expected impacts of drought frequency on insurance demand

If the loading factor is not too high, the expected impact of an increase in drought
frequency is a decrease in the demand for insurance, provided drought frequency has
reached a threshold value strictly inferior to 1. Furthermore, the demand for insurance
is expected to decrease when the loading factor increases, and with some additional
restrictions, the demand for insurance is expected to decrease when downside basis risk
increases. See proofs in the appendix, section 6.2.

If the loading factor is not too high, basis risk tends to decrease subscription. This
implies that the maximal insurable shock frequency decreases as basis risk increases.
Figure 4 shows the expected effect of an increase in basis risk on expected utility.

0 1
Drought frequency

Utility gain of insurance

Figure 4: Expected effect of an increase in basis risk (r) on demand for index-based
insurance.
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3 Experimental design

In November 2015, we conducted a field experiment with 205 farmers in Burkina Faso
to look at the influence of different drought insurance policies on farmers’ insurance
demand. The insurance policies varied in terms of shock frequency, basis risk and load-
ing factor. Our experiment took place in the field which improves external validity of
experimental results, and has been raised by Gneezy and Imas (2017) as a tool “to com-
plement traditional Randomized Control Trials in collecting covariates to test theoretical
predictions and explore behavioral mechanism” at limited costs.

Agriculture in Burkina Faso is dominated by grain and cotton production. Grain
production tends to be oriented towards self-sufficiency strategies, especially for millet
and sorghum. Maize is partly sold on domestic markets. Millet, sorghum and maize
are rain-fed crops: grain yields are highly dependent on the occurrence of drought. Our
experiment took place after the end of the rainy season, which ends in Octobre in Burkina
Faso, where the dry season then runs until April.

3.1 Sample description

Nine villages were randomly selected in two different administrative units (départements)
of Burkina Faso: Yako and Komsilga (see Fig. 5 in Appendix, section 6.1 for their loca-
tion). An exhaustive list of villages in each unit, among which were randomly selected
4 and 5 villages, in Yako and Komsilga respectively, was provided by the Conféderation
Paysanne du Faso, the main national producers organisation, regrouping over 36 thou-
sands of cooperatives and producer groups across the country. We conducted field ex-
periment sessions in each village, with 20 or 25 farmers. A total of 205 producers were
surveyed in the 9 villages and participated in the insurance field experiment. The par-
ticipants were arbitrarily selected by the village chief, who we asked for a representative
sample of the village in terms of age, gender, income and ethnic group, provided that
each participant was available for the entire half day, and was able to write a cross in
the appropriate row and column identified by a figure. Nevertheless, we have no proof
that our sample is representative of the villages, and there is certainly some selection
bias. Our selection method was the only one we could find in order to avoid selecting too
many people who were not able to respond or were not available, as random selection
would have done. The survey aimed to characterise the respondents, their households
and their agricultural activities. Table 2 presents the descriptive statistics of our sample.

3.2 The insurance field experiment

We held two main sessions to carry out the field experiment. As an introduction, we
described drought index-based insurance to the farmers: its principles, the frequency of
the insured droughts, the existence of basis risk, the premiums farmers would have to
pay if they wanted to take out an insurance policy and the payouts they would receive
from the insurer if a drought occurred and the indemnity was effectively being paid.
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Table 2: Household characteristics
Variable Obs. Mean Std. Dev. Min Max

Sex (female=1) 205 .3 0.5 0 1
Age 204 40 12 17 72

Ability to read 204 0.5 0.5 0 1
Number of household members 204 9 5 1 30

Total acreage (ha) 198 3.2 2.3 0.25 15
Sorghum acreage (ha) 205 1.6 1.3 0 10

Maize acreage (ha) 205 0.5 0.8 0 5
Millet acreage (ha) 205 0.7 0.8 0 4
Number of cattle 202 1 3.3 0 40

Then, before the first session, we carried out hypothetical training using contextu-
alized games involving insurance contracts where farmers had to choose to take out the
insurance or not, on the basis of 18 examples of insurance contracts. In this training
period, no money changed hands. Then we ran incentivised versions of the same con-
textualized games where farmers were presented with 18 insurance contracts. Two of
the 18 games, randomly selected, resulted in payments being made to the farmers (one
of each session).

Insurance contracts were calibrated on existing drought index-based insurance con-
tracts in Burkina Faso. The assumptions were: a fixed surface of 0.5 ha of maize, and a
revenue of 80,000 cfa Francs (cfaF) based on maize production of 800 kg in a normal year,
and extreme damage of zero production in a dry year. For each of the 18 examples, the
farmers were presented with a contract defined by the probability of drought, the basis
risk, the premium, and the payout. The insurance premium differed for each of the 18
products, with a minimum of 2,000 cfaF (rare drought, high basis risk, no loading factor)
and a maximum of 56,000 cfaF (frequent drought, no basis risk and high loading factor).
Table 7 in Appendix 6.3 summarises these 18 insurance products. Insurance premiums
increased mechanically with the loading factor, the frequency of the insured drought
and decreased with basis risk. For each of the 18 insurance products, the farmers had to
choose whether or not they wanted to take out the insurance. After the first session of
nine such games without loading factor, a blindfolded child was asked to pick a ball at
random in the weather lottery. If he or she picked a white ball, meaning no drought, real
payouts for the first session were announced. If the child picked an orange ball, mean-
ing drought, he/she ran a second lottery (basis risk) to determine whether or not the
insurer would actually pay the indemnity. Real payouts were announced and games 10
to 18 were then similarly played (with loading factor), giving rise to another real payout.

Weather lottery
The occurrence of drought was determined by the result of a lottery, materialised by a
transparent bowl with white and orange table tennis balls. The proportion of balls of
each colour reflected the drought frequency. There was a total of 20 balls in the bowl,
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and the drought frequency varied from 1/20 to 7/20: the number of orange drought-balls
varied from 1 to 7 and the number of white rain-balls varied from 13 to 19.

Basis risk lottery
The second lottery represented basis risk, and was played for contracts with basis risk
(12 of the 18 games), i.e. only if a drought occurred in the first lottery. This second
lottery was materialised by a transparent bucket with black and red table tennis balls.
The proportion of black balls reflected the basis risk. There was a total of 5 balls and
the basis risk varied from 0 to 2/5. When there was no basis risk, the basis risk lottery
was not played. In the remaining cases, the number of black balls indicating risk varied
from 1 to 2, while the number of red balls indicating absence of risk varied from 3 to 4.

3.2.1 Training sessions

The training sessions involved 18 examples calibrated on the actual harvest. The first
nine examples corresponded to insurance contracts with an actuarially fair rate (m=1),
while the next nine corresponded to contracts with a loading factor (m=1.5). For each
subset of nine examples, those with no basis risk were played first, and corresponded to
examples 1 to 3 and 10 to 12. Examples with basis risk corresponded to examples 4 to
9 and 13 to 18.

3.2.2 Incentivised sessions

The incentivised sessions were the same as the training sessions, except that the farmers
are told that 2 of their 18 games would lead to a payment, and that this payment would
be one percent of the above-mentioned amounts calibrated on the actual harvest. They
had to decide whether they wanted to take out an insurance policy for 18 situations
corresponding to the ones presented during the training sessions (revenue divided by
100), and 2 games were randomly selected after game 9 and 18 respectively. Payments
were made at the end of the incentivised sessions. The average gains were around 700
cfaF for the first set of nine games and around 600 cfaF for the second set of nine games.
The overall average gain was thus 1,300 cfaF (about 2.2 USD), corresponding to about
1 to 2 working days’ wages in Burkina Faso.

Because of the existence of basis risks, some farmers could lose money. This situ-
ation could occur if the following four conditions were met: the randomly paid games
corresponded to one with basis risk, i.e. 4 to 9 or 14 to 18; the farmer decided to take
out insurance; a drought ball is picked in the first lottery; and a black ball is picked in
the basis risk lottery. We attributed a fixed loan of 840 cfaF to each participant before
beginning, so that liquidity was not a constraint on participation and no farmer could
lose money during the experiment. For practical reasons, no cash was manipulated dur-
ing the experiment, the payment was made at the end of the experiment. Table 3 details
payments for the incentivised sessions, to be multiplied by 100 to obtain contextualized
revenues (see Table 7). Table 4 describes the samples for both insurance sessions.
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Table 4: Insurance contracts offered by villages
Sessions games N villages N prod N obs.

Actuarially fair (m=1) 1 to 9 9 205 1,841
Loading factor (m=1.5) 10 to 18 6 130 1,168

Note: insurance with m=1.5 could not be played in 3 out of 9 villages

The sequence could imply a potential effects of learning on insurance adoption (Vasi-
laky et al., 2019): because lottery games were not randomised, it is possible that, by
increasing their understanding of the task, farmers may have improved their choices as
they played one game after another, which would interfere with exogenous changes in
parameters. Since the games with a loading factor were always played after the games
without a loading factor, we cannot exclude the possibility that the effect attributed to
the loading factor vis à vis take-up actually reflects the fact that farmers play better in
the second session. Although we cannot rule out the possibility of a remaining learning
effect in our experiment, we played multiple hypothetical training sessions before the
incentivized sessions to limit such an effect. Plus, we use session and game fixed effects
and session clustering in our econometric models to control for this learning effect.

3.3 Estimation strategy

Since each farmer has to make 18 binary choices, we have a typical panel structure of
205 time series and 18 sets of data.

x∗it = αi + Zit.β + µit i ∈ [1, 205] t ∈ [1, 18] (3)

xit = 1(x∗it > 0) (4)

where x∗it is the latent variable of insurance uptake and xit is the binary variable of in-
surance uptake; αi is the individual effect of farmer i and Zit is the vector of explanatory
variables. Let Φ be the cumulative distribution function of observations,

p(xit = 1|Zit, αi) = Φ(αi + Zit.β) (5)

Given the experimental nature of our data, the variables of interest are exogenous
and uncorrelated with fixed effects. Because linear estimations provide converging and
unbiased estimators (Angrist and Pischke, 2008), we show the results of linear regres-
sions in section 4 and provide robustness checks under nonlinear specifications, in the
Appendix, section 6.4.

4 Empirical results

4.1 Overall insurance demand

Table 5 shows the summary statistics of the insurance games.
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Table 5: Descriptive statistics of the insurance games
Sessions Obs Mean Std. Dev. Min Max

Take-up if m=1 1,841 0.81 0.39 0 1
Take-up if m=1.5 1,168 0.67 0.47 0 1

Overall, we obtain high insurance take-up rates, on average 80% for the actuarially
fair rate and 67% with a loading factor of m = 1.5 (Table 5), comparable with other
similar real earnings games involving contextualized agricultural insurance among farm-
ers (Petraud et al., 2014; Norton et al., 2014) or non-farmers (Laury et al., 2009; Slovic
et al., 1977). McIntosh et al. (2013) compared a survey-based hypothetical willingness
to pay for insurance with actual uptake and found that stated and actual demand are
very poorly correlated. Although our experiment is incentivised, it cannot be used to
determine the magnitude of the effect of drought frequency on insurance take up in
real life. The relatively high adoption rate in our experiment, required to increase the
precision of marginal effects, should not be used as an indicator of real life insurance
attractiveness. Take-up rates for all values of the parameters of interest (m, r and p),
i.e. in each of the 18 games, are available in Table 7.

These take-up rates are much higher than in empirical non-experimental survey pi-
lots4. Higher take-up in experiments than in pilots of real insurance supply seem to be a
rather general feature, found in comparable studies with high take-up or willingness to
pay, such as Petraud et al. (2014); Norton et al. (2014) and Serfilippi et al. (2016). This
discrepancy may be due to the fact that many practical issues such as seasonal liquidity
constraint or mistrust in the insurer are ignored in experimental set-ups.

4.2 Individual insurance demand

We estimate the relative role of the determinants of index-based insurance demand using
different linear panel estimations: with random and fixed effects (Table 6). Fixed effects
allows to control for the specificity of each village (column 2), individual (column 3),
game (18 per individual, column 4) and session (2 per individual, column 5).

Because there may be longitudinal effects, for instance if a learning effect exists,
wealth effects or any psychological effect due to pay off announcement, we introduce
game fixed effects in addition to individual fixed effect. In particular, if a learning effect
exists at each step of the experiment, its average value should be embedded in game fixed
effects. Session fixed effects were introduced to control for individual specific learning
across sessions. Similarly, although payments occurred at the end of the experiment,
farmers could mentally compute their gain after the first session, and play the second
one with greater wealth. We cannot exclude the possibility that this wealth effect is
linked to loading factor increases. The session effect tends to decrease this bias.

We control for heteroscedasticity by clustering at the individual and session level. In
the case of session clustering (column 5 of Table 6), because the number of clusters was
low (9), we use the Wild bootstrap method for a small number of clusters proposed by
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Table 6: Drivers of insurance take up : linear panel estimations
(1) (2) (3) (4) (5)
RE RE FE FE FE

m −0.211
∗∗∗

−0.208
∗∗∗

−0.208
∗∗∗

−0.418
∗∗∗

(0.0491) (0.0518) (0.0504) (0.098)

p −0.235
∗∗∗

−0.236
∗∗∗

−0.235
∗∗∗

−0.431
∗∗

−0.248
∗∗

(0.0542) (0.0592) (0.0584) (0.177) (0.110)
[0.0240]

r −0.0909
∗∗

−0.0908
∗∗

−0.0909
∗∗

0.154 −0.0809
(0.0437) (0.0400) (0.0396) (0.115) (0.0664)

[0.2382]

Constant 1.066
∗∗∗

0.976
∗∗∗

1.059
∗∗∗

0.787 0.811
∗∗∗

(0.0637) (0.0965) (0.0662) (0.715) (0.0319)

Fixed-effects No Village Ind. Ind. & game Ind. × session
Observations 3009 3009 3009 3009 3009

Bootstrapped standard errors in parentheses, with individual (columns 1 to 4) and session (column 5)
clustering. P-values from the distribution of Wild bootstrap t-statistics in brackets, with session
clustering (column 5).
∗
p < .1,

∗∗
p < .05,

∗∗∗
p < .01

Cameron et al. (2008). With this model, the effect of the loading factor (m) change is
included in the session fixed effect and is thus not reported.

Our main empirical result is that increasing drought frequency significantly decreases
insurance take-up, this result being robust to different specifications (columns 1 to 5).
The negative effect of p indeed holds both for random and fixed effects models and
stands for specifications with individual (column 1 to 4) and sessions clustering (column
5). As robustness checks, we ran additional nonlinear model specifications, available in
Appendix (Table 8 section 6.4), including both probit and logit regressions. Linear panel
regressions, as well as nonlinear panel estimations, validate the theoretical predictions
that increasing the loading factor or the basis risk significantly reduces insurance take-
up, in accordance with previous studies (Mobarak and Rosenzweig, 2012; Karlan et al.,
2014; Clarke, 2016; Giné et al., 2008; Giné and Yang, 2009; Cole et al., 2013).

The amplitude of the negative estimated impact of m should be treated with cau-
tion when considering the potential effect of learning during the experiment. Although
training sessions were played before incentivised sessions, it may be that farmers’ under-
standing was deeper during the second session with a higher loading factor, potentially
altering their attitudes and notably their sensitivity to parameter changes.

We establish that the demand for insurance decreases with drought frequency, this
result being robust to all specifications. In the trade-off between smoothing income and
maintaining a higher income average, our result indicates that the second effect tends
to dominate the first one as the drought frequency increases. It is consistent with the
right side of the inverted U curve. Moreover, the amplitude of the negative effect of p is
high and overpasses the impact of basis risk.

We have attempted to check whether drought frequency had a positive impact on
insurance take up for lower values of drought frequency (in addition to their negative
impact for greater values of drought frequency), as predicted in the theoretical model.
Unfortunately, this attempt does not lead to a clear conclusion, in particular in the
longitudinal effects specifications (see Table 10 of section 6.4 in Appendix).
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Basic individual characteristics of farmers (i.e. sex and age) and households (mem-
bers, number of cattle) were found to be non-significant (see Appendix, section 6.4).

To sum up our empirical results, demand for index-based insurance decreases with
the probability of drought for high-probability droughts. This extends existing results
on low-probabilities of shocks (Slovic et al., 1977; McClelland et al., 1993) to higher
risk probabilities. The fact that the demand for index-based insurance depends on the
probability of the insured risk challenges future index-based insurance contracts. Insurers
willing to develop index-based drought insurance products in developing countries should
bear in mind that : (1) drought insurance is only attractive to farmers under certain
climatic contexts, with relatively low drought frequency (in a context of climate change,
the attractiveness of such insurance is reduced if drought becomes more frequent); and
(2) the drought frequency of insurance products should be chosen as a function of both
basis risk and loading factor.

5 Conclusion

In this article we highlight that the low uptake of index-based insurance in developing
countries may be partly due to the high probability of shocks. For damages of a given
magnitude, there is an optimal damage frequency for which farmers’ willingness to take
out insurance is maximal. Our analytical and empirical findings suggest that beyond
a certain threshold, demand for drought insurance decreases when drought frequency
increases, all the more so as loading factor and basis risk are high.

Therefore, in addition to the low probability risk issue observed by many authors
(e.g. in the context of earthquakes or floods), there may be a high probability risk issue,
in the case of shocks like droughts, where damage remains significant as droughts tend
to be more frequent. In a nutshell, since climate change may increase the probability of
a given shock, it could hinder future individual adoption of private drought insurance.
The optimal drought frequency depends on the basis risk and the loading factor. In
our model this optimal frequency is reduced under basis risk, but we could not provide
empirical validation of this theoretical feature.

Our experimental results must be seen through the lens of experimental economics,
often associated with limitations on external validity. The amounts at stake in the
experiment are lower than the amounts at stake in real life, and take-up decisions in real
life may be subject to more complex constraints and incentives. The main interest of our
experiment is that the marginal effects of drought frequency on take-up, revealed in the
experiment, could explain some of the real life observations of low adoption of insurance.
Three parameter changes are introduced into our experiment, and we consider a unique
magnitude of loss, which is fixed and corresponds to a unique drought type, fully covered
by the insurance. Our work does not consider other factors limiting insurance take-up,
such as liquidity constraint or income diversification and the inhibiting role of drought
frequency on insurance demand should probably be confronted to competing factors.
The role of subjective probabilities and ambiguity on insurance demand has also been
tested by Visser et al. (2019) and Belissa et al. (2019). Combination of subjective
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weighted probabilities and perception of actual changes in drought probabilities could
be a potential follow up to our work.

Moreover, climate change in the Sahel may also be accompanied by more severe,
though still infrequent, droughts, which are not within the scope of our analysis. Future
research could address such questions by comparing different types of droughts that may
occur in the near future, considering the negative relationship between the probability
and the magnitude of the damage.

Notes

1 If climate change increases the probability of occurrence of a shock, we expect the insurer to adjust
insurance products to the raise of frequency by modifying the strike level (i.e. the threshold of the
weather index) and/or by increasing insurance premiums and indemnifications).

2 A risk of “missed crisis”, as opposed to a “false alarm”, corresponding to an indemnification in
absence of a weather shock, see section 2.

3 See also the literature review by Jaspersen (2015) on experimental evidence for insurance demand,
for a discussion on the methods used.

4 See section 1.
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document de travail, département de léconomie agricole et des ressources naturelles,
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6 Appendix

6.1 Location of villages in Burkina Faso

Lab-in-the-field experiments took place in 9 villages in Burkina Faso, which location is
shown on the following map (Fig. 5).

6.2 Propositions and proofs of the model

Proposition 1

If m > u(y)−u(y−L)
Lu′(y) ,∆EU ≤ 0 (nil in p = 0 and increasingly negative as p increases).

Proof
First note that ∂∆EU

∂p = u(y)− u(y − L)−mLu′(y −mpL). In p = 0, ∂∆EU
∂p < 0 if and

only if m > u(y)−u(y−L)
Lu′(y) . Furthermore, it is clear from (1) that ∆EU = 0, in p = 0.

Finally, check that ∂2∆EU
∂p2 = m2L2u′′(y −mpL) < 0.

As a consequence, if m > u(y)−u(y−L)
Lu′(y) , ∆EU is nil and decreasing with p in p = 0,

concave in [0, 1], this implies that ∀p > 0,∆EU < 0.
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> 1700 mm.

> 1250 mm.

> 850 mm.

> 600 mm.

> 450 mm.

> 50 mm.

Figure 5: Average annual cumulative rainfall levels (50, 450, 600, 850, 1250 and 1700mm
isohyets, CHIRPS data, 0.05 decimal degree resolution, 2000-2015, Funk et al. (2015))
and administrative units of Burkina Faso (départments: grey lines, régions: blue lines).
The field experiment took place in nine villages (red crosses), 5 in Yako department
(North Region) and 4 in Komsilga department (Center region).

Proposition 2

If 1 ≤ m < u(y)−u(y−L)
Lu′(y) and r = 0, ∆EU is an inverted u-shaped curve as p varies, with

the following properties:

∆EU is nil in p = 0, increasing with p in [0, p∗ =
y−u′−1

(
u(y)−u(y−L)

mL

)
mL ], decreasing with p

in [p∗; 1], and negative in p = 1 if and only if m > 1.

As a corollary, if 1 < m < u(y)−u(y−L)
Lu′(y) , there exists p∗∗ ∈]p∗; 1[ such that expected

gains are negative in [p∗∗; 1], with p∗∗ = u(y−mp∗∗L)−u(y)
u(y−L)−u(y)

Proof

The proof of proposition 1 implies that if m < u(y)−u(y−L)
Lu′(y) , ∂∆EU

∂p > 0 for p = 0.

In p = 1, ∆EU = u(y − mL) − u(y − L), which is strictly negative if and only if
m > 1.
These three properties together (concavity on [0, 1], positive slope in 0, ∆EU = 0 in
p = 0 and ∆EU < 0 in p = 1) guarantee the inverted U-shape of ∆EU in p, and the

existence of an optimal value of p∗ ∈]0; 1[ such that p∗ =
y−u′−1(

u(y)−u(y−L)
mL

)

mL < 1.

24



Proposition 3

∀r ∈ [0; 1[, if m < u(y)−u(y−L)
Lu′(y) , ∆EU is an inverted u-shape function of p in [0, 1]

As a consequence, there is a unique p∗ ∈ ]0; 1[ such that p∗ = argmax(∆EU).

Proof
First note that if p = 0, ∆EU = 0. Furthermore, replacing P by mp(1 − r)L in

equation 1, and deriving with regard to p leads to

∂∆EU

∂p
= u(y)− u(y − L)− r[u(y −mpL(1− r))− u(y −mpL(1− r)− L)]

− (1− r)mL[pru′(y −mpL(1− r)− L) + (1− pr)u′(y −mpL(1− r))] (6)

In p = 0, ∂EU
∂p = (1− r)[u(y)− u(y − L)−mLu′(y)].

Given that 0 ≤ r ≤ 1, ∆EU increases with p in p = 0 if and only if m < u(y)−u(y−L)
Lu′(y) ,

as in the case with no basis risk.
We then check that ∆EU is concave in p

∂2∆EU
∂p2 = rm(1− r)Lu′(y −mp(1− r)L)+

rm(1− r)Lu′(y −mp(1− r)L) + (1− rp)m2(1− r)2L2u′′(y −mp(1− r)L)
−m(1− r)Lru′(y −mp(1− r)L− L)− rm(1− r)Lu′(y −mp(1− r)L− L)
+rpm2(1− r)2L2u′′(y −mp(1− r)L− L)

(7)

Or after rearranging,

∂2∆EU
∂p2 = 2rm(1− r)L [u′(y −mp(1− r)L)− u′(y −mp(1− r)L− L)]

+(1− rp)m2(1− r)2L2u′′(y −mp(1− r)L)
+rpm2(1− r)2L2u′′(y −mp(1− r)L− L)

(8)

Concavity of u ensures that u′(y − mp(1 − r)L) < u′(y − mp(1 − r)L − L) and that

u′′ < 0. We thus have ∂2∆EU
∂p2 < 0.

Then we show that in p = 1,∆EU < 0.
∆EU = (1− r)u(y − P ) + ru(y − P − L)− u(y − L).
If L < P , u(y−L−P ) < u(y−P ) < u(y−L) and u(y−L) is then greater than any

weighted mean of u(y−P ) and u(y−P−L), thus (1−r)u(y−P )+ru(y−P−L) < u(y−L).
If L ≥ P , u(y−L−P ) < u(y−L) < u(y−P ) and because u is concave, u(y−L) is

greater than any weighted mean of u(y − L− P ) and u(y − P ), thus (1− r)u(y − P ) +
ru(y − P − L) ≤ u(y − L).

Thus, ∆EU is nil in p = 0, increasing with p in p = 0 provided m > u(y)−u(y−L)
Lu′(y) ,

and concave on [0,1], and reaches negative values before p = 1. This garantees that
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∀p ∈ [0; 1], if m < u(y)−u(y−L)
Lu′(y) , expected gain from insurance has an inverted U-shape as

p varies.
The global analysis of the variation of ∆EU when r varies on [0, 1] is not trivial

because ∆EU is not concave in r without more assumptions. For instance ∆EU is
decreasing in r for r = 0, ∀p but increasing in r in r = 1, p = 1, which indicates a change
in concavity of ∆EU with respect to r for p = 1.

We can nevertheless provide a sufficient condition for ∆EU to be decreasing in r on
[0; 1]. If u is a CRRA function of parameter ρ, ∂∆EU

∂r < 0 is equivalent to(
y − P

y − P − L

)ρ (1− ρ)rpmL+ y − P − L
(1− rp)(1− ρ)mL− y + P

< −1

a sufficient condition for this expression to be true is

m <
1

1− ρ

Expected effects

If m < u(y)−u(y−L)
Lu′(y) , three types of impact are expected:

∂prob(x̃i=1)
∂m < 0

∂prob(x̃i=1)
∂p < 0 iff p > p∗

∂prob(x̃i=1)
∂r < 0 if u(r,m, p, L) is a CRRA utility function of parameter ρ and m < 1

1−ρ

The partial effect of m is straightforward and the partial effect of p simply derives
from the fact that prob(x̃i = 1) = prob(∆EU + εi > 0) which is decreasing with p if and
only if ∆EU is decreasing with p, i.e. when p > p∗.

6.3 Experimental protocol

Introductory comments

You have the opportunity to take part in a field experiment about risk and drought
insurance. Drought insurance is an agreement between a farmer and an insurer whereby
the farmer pays a premium in May and, if drought occurs, he receives an indemnity
in November. We will describe 18 types of insurance, and for each one, you have to
decide whether you want to take out the insurance and pay the premium. A the end
of the experiment, you will get the amount of money that is defined in these contracts,
depending on the choices you made in these games, and whether drought occurred or not.
Of the 18 choices, two will be randomly selected, and these two choices will determine
how much money you will receive. The amount you will receive will depend on your
choices, but also on random factors, since the occurrence of drought or rain is random.
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This money will be yours.
Do you have any questions?

If you have questions during the games, raise your hand and we will answer you. It
is important that you do not talk with one another once the game has started. There
is no right or wrong answer, the money you will obtain will depend upon your choices
and the random draws. It is important that you do not try to look at your neighbour’s
sheet.

The games will last two hours. If you think that you cannot stay for two hours,
please tell us now.

Instructions given to farmers. Training examples

Before starting the experiment, we will give you two examples. In this game, we consider
that you produce maize and you have the choice whether or not to take out insurance
against drought affecting your maize production.

In the example, you cultivate half a hectare of maize and your yield is 8 bags of 100
kg if the rainfall is good and 0 bags if there is a drought. Each bag you produce is sold
for 10,000 cfaF. If the rainfall is good, you earn 80,000 cfaF and if there is a drought
you earn zero.

In the first example, drought is rare. There is a drought once every 20 years. In May,
you decide whether to take out the insurance, in which case you will pay a premium of
4,000 cfaF, or not to pay the premium. Then we must determine whether there is rain or
drought. To do this, we put one orange ball and 19 white balls in a bowl. A blindfolded
child will pick one ball.

If he picks a white ball, the season is rainy and the harvest is good. If you have paid
the insurance premium (4,000 cfaF) the harvest value is 80,000 cfaF and your income is
thus 76,000 cfaF. If you did not pay for the insurance, your income is 80,000 cfaF.

If the child picks the orange ball, the season is dry and the harvest is nil. If you
have paid the premium (4,000 cfaF) you get an indemnity to compensate for your loss
(80,000 cfaF), so that your income is 76,000 cfaF. If you did not pay the premium, you
get zero.

The choice you have to make is: “do you want to take out this insurance?”
In the second example, the drought is still rare, but there is a small risk that the

insurer makes a mistake and does not pay the indemnity. There is one drought every
20 years and the insurer can make a mistake on two occasions out of ten. This means
that if there is a drought and if you have paid the premium, there is a 2 in 10 chance
that the insurer does not pay the indemnity. This is because, for example, the insurer
thinks that there has been rain but in reality, the rain has not fallen on your field or not
during the useful period. The insurance premium is then cheaper (3,200 cfaF) because
the insurer knows that he might make a mistake. First, you decide whether or not to pay
the insurance premium, then the child picks a ball from the bowl to determine whether
the weather is rainy or dry.
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If he picks a white ball, there is rain. Everybody harvests 80,000 cfaF-worth of maize.
The income of those who have paid the premium is 76,800 cfaF, whereas those who have
not paid the premium receive 80,000 cfaF.

If the child picks an orange ball, there is a drought. The harvest is zero. Those
who did not take the insurance get zero. The income of those who took the insurance
depends on the result from the bucket, which contains two red balls and 8 black balls. If
the child picks a red ball, those who have paid the insurance get zero from the insurer,
so that they have lost 3,200 cfaF. If the child picks a black ball, the income of those who
have paid the insurance is 76,800 cfaF.

The choice you have to make is: “do you want to take out this insurance?”. Do you
have any questions? Has everyone understood everything ?

Instructions given to farmers. Incentivised insurance experiment

Now, the game is for real money. For each type of insurance, we will tell you the amount
of the premium, the frequency of drought, and the risk that the insurer makes a mistake.
For each type of insurance, you decide whether you want to pay the premium or not. If
you want to pay the premium, you make a cross in the blue column. If you do not want
to pay the insurance, you make a cross in the yellow column. There are 18 choices in this
serie, for 18 types of insurance. At the end of the series, a child will pick two of the 18
numbered balls from this cage. The numbers on these two balls will indicate the numbers
of the choices for which you will receive money. Then, the child will pick one ball from
the bowl to determine whether the rainfall was good, and one ball from the bucket to
determine whether you get the indemnity from the insurer. You will then receive the
amount of money corresponding to your decision whether or to to take out insurance.
In the previous examples, the price of a bag was 10,000 cfaF. In the experiment, it is
100cfaF. In the first example above, this means that the harvest is 800 cfaF instead of
80,000 cfaF if there is rain, and the premium is 40 cfaF instead of 4,000 cfaF.

Do you have any questions? Has everyone understood everything ?

• Insurance 1. Drought occurs once every twenty years, and the insurer makes no
mistakes. The premium is 40 cfaF. There are 19 white balls and 1 orange ball in
the bowl. If the child picks a white ball, there is rain, and those who take insurance
receive 760 cfaF, and those who do not take insurance receive 800 cfaF. If the child
picks an orange ball, the harvest is nil, those who take the insurance get 760 cfaF,
those who do not take the insurance receive zero. Do you want to pay the premium
and take out the insurance?

• Insurance 2. Drought occurs twice every twenty years, and the insurer makes no
mistakes. The premium is 80 cfaF. There are 18 white balls and 2 orange balls in
the bowl. If the child picks a white ball, there is rain, and those who take insurance
receive 720 cfaF, and those who do not take insurance receive 800 cfaF. If the child
picks an orange ball, the harvest is nil, those who take the insurance receive 720
cfaF, those who do not take the insurance receive zero. Do you want to pay the
premium and take out the insurance?
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• Insurance 3. Drought occurs seven times every twenty years, and the insurer makes
no mistakes. The premium is 280 cfaF. There are 13 white balls and 7 orange balls
in the bowl. If the child picks a white ball, there is rain, and those who take
insurance receive 520cfaF, and those who do not take insurance receive 800 cfaF.
If the child picks an orange ball, the harvest is nil, those who take the insurance
receive 520 cfaF, those who do not take the insurance receive zero. Do you want
to pay the premium and take out the insurance?

• Insurance 4. Drought occurs once every twenty years, and the insurer makes 2
mistakes out of 10 cases. The premium is 30 cfaF. There are 19 white balls and 1
orange ball in the bowl. If the child picks a white ball, there is rain, and those who
take insurance receive 770 cfaF, and those who do not take insurance receive 800
cfaF. If the child picks an orange ball, the harvest is nil, those who do not take the
insurance receive zero and the income of those who take the insurance depends on
the results from the bucket. If the child picks a red ball from the bucket, they lose
their 30cfaF and if the child picks a black ball, they receive 770 cfaF. Do you want
to pay the premium and take out the insurance?

• Insurance 5. Drought occurs twice every twenty years, and the insurer makes 2
mistakes out of 10 cases. The premium is 60 cfaF. There are 18 white balls and
2 orange balls in the bowl. If the child picks a white ball, there is rain, and those
who take insurance receive 740 cfaF, and those who do not take insurance receive
800 cfaF. If the child picks an orange ball, the harvest is nil, those who do not take
the insurance receive zero and the income of those who take the insurance depends
on the results from the bucket. If the child picks a red ball from the bucket, they
lose their 60cfaF and if the child picks a black ball, they receive 740cfaF. Do you
want to pay the premium and take out the insurance?

• Insurance 6. Drought occurs seven times every twenty years, and the insurer makes
2 mistakes out of 10 cases. The premium is 220 cfaF. There are 13 white balls and
7 orange balls in the bowl. If the child picks a white ball, there is rain, and those
who take insurance receive 580 cfaF, and those who do not take insurance receive
800 cfaF. If the child picks an orange ball, the harvest is nil, those who do not take
the insurance receive zero and the income of those who take the insurance depends
on the results from the bucket. If the child picks a red ball from the bucket, they
lose their 220 cfaF and if the child picks a black ball, they receive 580 cfaF. Do
you want to pay the premium and take out the insurance?

• Insurance 7. Drought occurs once every twenty years, and the insurer makes 4
mistakes out of 10 cases. The premium is 20 cfaF. There are 19 white balls and
1 orange ball in the bowl. If the child picks a white ball, there is rain, and those
who take insurance receive 780 cfaF, and those who do not take insurance receive
800cfaF. If the child picks an orange ball, the harvest is nil, those who do not take
the insurance receive zero and the income of those who take the insurance depends
on the results from the bucket. If the child picks a red ball from the bucket, they
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lose their 20 cfaF and if the child picks a black ball, they receive 780 cfaF. Do you
want to pay the premium and take out the insurance?

• Insurance 8. Drought occurs twice every twenty years, and the insurer makes 4
mistakes out of 10 cases. The premium is 50 cfaF. There are 18 white balls and
2 orange balls in the bowl. If the child picks a white ball, there is rain, and those
who take insurance receive 750 cfaF, and those who do not take insurance receive
800 cfaF. If the child picks an orange ball, the harvest is nil, those who do not take
the insurance receive zero and the income of those who take the insurance depends
on the results from the bucket. If the child picks a red ball from the bucket, they
lose their 50cfaF and if the child picks a black ball, they receive 750 cfaF. Do you
want to pay the premium and take out the insurance?

• Insurance 9. Drought occurs seven times every twenty years, and the insurer makes
4 mistakes out of 10 cases. The premium is 170 cfaF. There are 13 white balls and
7 orange balls in the bowl. If the child picks a white ball, there is rain, and those
who take insurance receive 630 cfaF, and those who do not take insurance receive
800 cfaF. If the child picks an orange ball, the harvest is nil, those who do not take
the insurance receive zero and the income of those who take the insurance depends
on the results from the bucket. If the child picks a red ball from the bucket, they
lose their 170 cfaF and if the child picks a black ball, they receive 630 cfaF. Do
you want to pay the premium and take out the insurance?

Nine similar choices are made in the case where the insurer makes a profit (loading
factor m = 1.5). The 18 insurance products are summarised below.
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6.4 Robustness checks

Nonlinear estimations

We decline, as robustness checks, our analysis using two main econometric specifications
in panel: a probit random effects model with bootstrapped standard errors (Table 8
columns 1 and 2) including Mundlak-Chamberlain’s corrections and a logit model with
individual fixed effects (Table 8 column 3). In column 2 of Table 8, village fixed effects
are added to the estimation.

We first estimate a probit random effects panel regression as in Laury et al. (2009),
with bootstrapped standard errors. The MLE of this model is the efficient-unbiased es-
timation method in case of no correlation between regressors and fixed effects. However,
Hausman’s test of no correlation between regressors and individual effects is significantly
rejected and this rejection is robust to specification changes, which raises doubts about
the random effect specification. Mundlak-Chamberlain’s approach can be used to no
longer apply the random effect assumption of no correlation between individual effects
and regressors (Chamberlain, 1984). The correlation is supposed to have a given struc-
ture, for instance a linear function of the mean of the regressors for each time series, as
in Mundlak (1978):

αi|Zit ∼ N (ψ + Z̄iξ, σ
2) (9)

where Z̄i is a vector of individual mean values of each regressor Zit.
Secondly, we estimate a conditional logit model which eliminates the fixed effect

terms in the estimate of covariates. The covariate estimates are then unbiased. This
method works with a logistic functional form of the error term distribution and not with
a normal one.

With both estimators, we estimate a linear model:

x∗it = αi + β0 + β1mt + β2pt + β3rt + Ci.γ + µit (10)

xit = 1 (x∗it > 0) (11)

where Ci is the vector of individual characteristics of farmer i, only used in the
random effects estimations. When this vector is introduced in the fixed effect model,
multi-colinearity makes estimation impossible.

Household characteristics

The results of linear panel specifications show no stable impact of household charac-
teristics on adoption rates (Table 9). We control for household characteristics and for
productive assets, and notably for age and education (ability to read and secondary
school attendance), number of members of the household, total acreage and number of
cattle.
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Table 8: Drivers of insurance take up : nonlinear estimations

(1) (2) (3)
Probit RE Probit RE Logit FE

m −1.426
∗∗∗ −1.403

∗∗∗ −2.370
∗∗∗

(0.367) (0.310) (0.543)
p −1.417

∗∗∗ −1.417
∗∗∗ −2.402

∗∗∗

(0.400) (0.284) (0.445)
r −0.506

∗∗ −0.505
∗∗ −0.886

∗∗

(0.249) (0.234) (0.357)
Constant 3.237

∗∗∗
2.751

∗∗∗
.

(0.396) (0.568) .

lnsig2u 1.088
∗∗∗

0.942
∗∗∗

.
(0.146) (0.170) .

Observations 3009 3009 1596
Prob > chi2 . . 0.0000
Village fixed effects No Yes No

Bootstrapped standard errors in parentheses
∗
p < .1,

∗∗
p < .05,

∗∗∗
p < .01

Drivers of insurance take up for low and high values of drought frequencies
in a linear panel estimation

The inverted u shape of the effect of p on the take up, cannot directly be tested in our
setting, but we can try to distinguish the effect of p for relatively low values of p and for
relatively high values of p. We constructed two binary variables, p1 = p when p < 7/20
and zero if p = 7/20, and p2 = p when p > 1/20 and zero if p = 1/20. The results
are presented in Table 10. The effect of drought frequency on insurance take-up is not
monotonic. The effect of p1 is the shift from a high frequency (7/20) to lower frequencies
and it appears to have no clear effect or a positive effect on take up, (especially after
controlling for session-specific variance through session clustering (column 4, Table 10).
By contrast, the shift from a low frequency (1/20) to higher frequencies (p2) has a clearly
negative impact on take up. This cannot be taken as a confirmation of our theory of
a inverted u curve, but mostly a validation that the negative effect occurs for higher
frequencies.
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