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Abstract

The Status of the World’s Soil Resources Report identified in 2015 soil pollution as

a major threat to all the services provided by soils (FAO and ITPS, 2015). This paper

develops a spatial growth model for an agricultural economy where pollution diffuses in

the soil. In order to produce, the economy needs fertile soil, which is naturally bounded

by the amount of available land. Although production entails pollution, locations can

protect their soil investing in abatement. Once a location reaches its maximum of fer-

tile land, the economy is split into a fertile region and a polluted region, separated by

a dynamic frontier which follows the spatial evolution of pollution. After providing the

optimal trajectories for consumption and fertile land, we prove that heterogenous steady

states can emerge even in homogeneous economies, and that a polluted region can stag-

nate forever in an environmental poverty trap. Our results are numerically illustrated,

including examples of the economy’s resilience to pollution shocks.

Keywords: Spatial growth, Diffusion, Soil Pollution, Frontier, Dynamic programming,

Optimal Control.
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1 Introduction

Every year, agriculture is responsible for a loss of 24 billion tonnes of fertile soil (UNCCD,

2017). This loss implies major risks in food security and crop sustainability worldwide.

There is an urgent need to understand and foresee the impact of agriculture on soil fertility

since food demand will keep increasing in the next decades, pushed by population growth.

Although research on the economics of soil loss started in the late 1960’s, this area has

attracted relatively little attention until a very recent past. As Burt (1981) pointed out, “the

most obvious reason for this apparent lack of interest in the subject is the view that advances

in technology have made soil resources per se of less consequence for agricultural production”.

Indeed, in most economic growth papers, agricultural production is simply modeled as a linear

function of land, implying that increases in technology or land lead to proportional increases

in production. However, we know that regions can actually remain below their production

capacity, despite technology and the possibility to increase soil fertility. In this paper, we

develop a spatial growth model to account for the diffusion of pollution in agricultural soils.

With the analytical optimal trajectories for fertile and polluted land in hand, we can measure

how local pollution affects all other locations’ fertility.

Soil pollution can be defined as “the presence of a chemical or substance out of place

and/or present at a higher than normal concentration that has adverse effects on any non-

targeted organism” (ITPS, 2015).1 Generally speaking, anthropogenic activities are the main

source of soil pollution and unfortunately, there is no lack of examples: wars, mining, former

factory sites, accidental oil leakage, over use of fertilizers, etc. Concerns are now growing since

the Status of the World’s Soil Resources Report identified soil pollution as one of the main

threats to all the services provided by soils ecosystems (FAO and ITPS, 2015). Soil pollution

falls in two categories: point-source and diffuse. On the one hand, point source pollution

is “released to the soil, and the source and identity of the pollution is easily identified”

(FAO, 2018). To illustrate point soil pollution, let us mention inadequate waste disposal or

accidental chemical leakages. On the other hand, diffuse pollution is “spread over very wide

areas, accumulates in soil, and does not have a single or easily identified source”. Regarding

the agricultural activity, the use of fertilizers is the main source of diffuse pollution. This

paper focuses on soil pollution caused by inappropriate agricultural practices as the over use

of fertilizers and, as a result, it will only consider diffuse soil pollution.

Diffuse soil pollution is mainly originated from inappropriate agricultural practices, and

in particular from the use of nitrogenous fertilizers. Although we now have a precise under-

standing on how nitrogenous fertilizers pollute soils and even drinkable water, their use in

1“Soil pollution” shall not be used as a synonym for “soil contamination”. For the ITPS a soil is contam-
inated when “the concentration of a chemical or substance is higher than would occur naturally but is not
necessarily causing harm” (ITPS, 2015).
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agriculture keeps increasing every year. In 1980, the worldwide nitrogenous fertilizer con-

sumption attained 60 million tonnes, and almost doubled in less than 40 years, reaching 110

millions tonnes in 2014. It goes without saying that the use of fertilizers depends on local

regulations. For instance, due to a lack of a strict environmental regulation in China, 19%

of all of its agricultural soil is officially declared as polluted by the Chinese Environmental

Protection Ministry (CCICED, 2015). In contrast, after an even more important growth in

the use of fertilizers in Europe between 1960 and 1980, their use abruptly decreased by almost

50% by 1990, and it has been decreasing ever since. The decrease in the use of nitrogenous

fertilizers in Europe can directly be related to the EU Nitrate Directive of 1991 which aimed

at “preventing nitrates from agricultural sources polluting ground and surface waters and by

promoting the use of good farming practices” (EU Commission, 1991). There is no doubt

that legislations can make a real difference regarding the pollution in soils, and this is why

we adopt here the perspective of a policy maker.

The economics of soil conservation has a long tradition of interdisciplinary thinking, bor-

rowing tools and concepts from related disciplines as ecology or agronomy. In the early days

of soil economics, Ciriacy-Wantrup (1968) borrowed from ecology the concept of damage

thresholds to study irreversible damages due to agricultural production. Nevertheless, as

already mentioned, soil conservation did not receive the required attention for a long time.

A second wave of theoretical research on the economics of soil developed from the 1980’s to

analyze the complex interactions between agricultural practices and soil fertility. The seminal

paper of Pope et al. (1983) analyzes the relationships among soil loss, topsoil depth, net farm

income, and technological progress and provide with the optimal policies in soil conservation

which maximizes net farm income. Similarly, Saliba (1985) studies the interactions between

the choices in soil management, soil loss and farmland productivity. Noteworthy, among the

papers of this second wave, there are region specific case-studies like Segarra et al. (1987)

and Barbier (1990). More recently in the 2000s, the question of soil conservation shifted to

the context of developing countries where it is thought that better soil management practices

could lead to the highest potential gains.2

As pointed out, the economics of soil conservation touches upon different trends in eco-

nomics as agricultural, environmental, development economics and dynamic programming.

Here we study the economics of soil conservation using a spatial growth model where the

diffusion of pollution is described using Fick’s law. According to Fick’s law the flux of pol-

lution concentration at a location is proportional to the concentration gradient of pollution

at this location (see Brock and Xepapadeas, 2008 and 2010, Smith et al., 2009, La Torre et

al, 2015, or Camacho and Perez-Barahona, 2015). Our agricultural economy is made of a

2See for instance Antle et al. (2006), Hagos et al. (2006), de Graaf et al. (2008), Stephens et al. (2012),
Barrett et al. (2015), Bevis et al. (2017), or Berazneva et al. (2018).
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continuum of locations distributed along the unit circle, and each location is endowed with

a given amount of fertile soil. The unique agricultural good is locally managed, and it can

be either directly consumed or reinvested to abate at least some of the pollution generated.

Our model is structurally close to Boucekkine et al. (2013) and Boucekkine et al. (2018),

since production is linear in fertile soil. Besides, pollution locally generated can diffuse across

locations as in Camacho and Perez-Barahona (2015). And yet, there is a key difference with

all existing spatial models which study the diffusion of wealth or air pollution: the production

factor, fertile soil, is naturally bounded.

The explicit optimal solution foresees the economy transiting through two distinct phases.

In the first phase all locations have some pollution and the policy maker takes into account

locations’ heterogeneity and optimal consumption at a given location will depend, among

other factors, on its abatement efficiency. Despite being spatially heterogeneous, consumption

grows at the same constant rate at all locations as in Boucekkine et al. (2018). A second

phase is triggered when all land is fertile in at least one location. In this second phase,

the economy is divided in one fertile region and a polluted region. Hence, the two regions

are separated by a pollution frontier which evolves over time and space, responding to the

optimal decisions taken in both the polluted and fertile region.

Locations in the fertile region abate their own pollution, but only theirs, putting an

end to global diffusion and their role of pollution sinks. Outside the realm of fertility, some

locations optimally continue emitting beyond their abatement capacity and pollution diffuses.

Contrary to the well-known results that apply when the production factors are unbounded,

the economy can reach a steady state with two distinct regions: a permanently fertile region,

and next to it, a polluted region. How can such a situation arise? During the first phase, the

more fertile locations act as pollution sinks, absorbing pollution generated at the less fertile

locations. Once fertile locations attain the second phase and stop acting as pollution sinks,

polluted locations may not be able to abate enough to eradicate their own pollution. If this

happens, the polluted region stagnates forever at low levels of fertile soil, never catching up

with the fertile region.

From a modeling perspective, this paper describes for the first time the evolution of an

economy made of two regions separated by a frontier that can evolve geographically with

time, responding to the policy maker’s optimal decisions. It also provides with numerical

exercices and show that in a spatially homogeneous economy, initial disparities in soil fertil-

ity may not vanish with time if the fertile region does not help absorbing the pollution from

neighboring locations. Moreover, we also assess numerically the resiliency of the economy to

pollution shocks. Overall, we show that if the economy uses a sufficiently advanced technol-

ogy, then the pollution shock can be absorbed with time via abatement. In this case, the

economy progressively turns back to its initial fully fertile state. However, if technology is

4



not sophisticated enough, then the pollution shock can diffuse across the economy, at the risk

of affecting a too large area of the economy, leading to a global collapse.

The rest of the paper is organized as follows. The model is presented in section 2. Section

3 provides with the optimal solution for the policy maker problem, describing the transit

between the two phases of the optimal solution. In Section 4 we run different numerical

exercises, which show some dynamic properties of the model. Section 5 concludes. All the

proofs are gathered in the Appendix.

2 Soil pollution diffusion in a linear growth model

We consider a closed economy, where both land and households are distributed over the unit

circle on the plane, S = {(sin θ, cos θ) ∈ R2 : θ ∈ [0, 2π]}. Each location θ ∈ S is populated

by N(θ) individuals and is endowed with an amount of land L(t, θ).

Assumption 1. The spatial distribution of land, L(·) is given and independent of time.

Moreover, L(·) is either a constant or a linear function of space.

Assumption 1 implies that locations cannot increase their total land allocation. We

also assume that land is composed of both fertile and polluted soil, LF and LP , that is,

L(θ) = LP (t, θ)+LF (t, θ). All locations produce a unique agriculture good from the labour of

local fertile soil, according to the following linear production function Y (t, θ) = A(θ)LF (t, θ),

where A(θ) is the local production technology at location θ. Hence, a partially polluted

location can still produce.

The dynamics of soil pollution at one location is explained by three factors. First, pol-

lution diffuses accordingly to Fick’s law: pollution diffuses from more polluted locations to

less polluted locations and its flux is proportional to the pollution gradient. Accordingly,

the diffusion of soil pollution is captured by D ∂2LP
∂θ2

(t, θ), where D is the diffusion coefficient.

For simplicity reasons, D is assumed both constant in time and homogeneous in space.3 Sec-

ond, fertile soil deteriorates locally. Indeed, local production generates some pollutant, which

transforms fertile soil into polluted soil. The local effect is measured as ν(θ)A(θ)LF (t, θ),

where ν(θ) is the local sensitivity of fertile soil to pollution. ν(θ) can be related to more

or less pollutant production technologies, to different levels of biodiversity, etc. And third,

soil pollution is reversible. Indeed, polluted soil can be depolluted independently of the local

pollution level. This last assumption is made for simplicity, being aware that it would be

more accurate to consider that abatement is feasible only if pollution remains below a certain

3We do not consider any seasonal effect nor heterogeneity in soil porosity, which would lead to study time
and space dependent diffusion coefficients. These more general specifications for the diffusion coefficient could
be analyzed following Boucekkine et al. (2020), but it is out of the scope of this paper.
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threshold.4 Letting C(t, θ) denote total consumption at location θ at time t, the amount

invested in abatement at location θ is A(θ)LF (t, θ)− C(t, θ) ≥ 0. Let φ(θ) be the local pol-

lution abatement efficiency. Then putting together the three factors behind local pollution,

the spatial dynamics of polluted soil can be described as

∂LP
∂t

(t, θ) = D
∂2LP
∂θ2

(t, θ) + ν(θ)A(θ)LF (t, θ)− φ(θ)[A(θ)LF (t, θ)− C(t, θ)].

Under Assumption 1, one can write that ∂LF
∂t (t, θ) = −∂LP

∂t (t, θ), and writing total consumptionC(t, θ)

as the product of per capita consumption, c(t, θ), and the location’s time-independent pop-

ulation N(θ), the evolution of fertile soil becomes
∂LF
∂t (t, θ) = D ∂2LF

∂θ2
(t, θ) +A(θ)[φ(θ)− ν(θ)]LF (t, θ)− c(t, θ)N(θ)φ(θ),

LF (0, θ) = L0
F (θ),

(1)

for all t > 0 and θ ∈ S, where A(θ)[φ(θ)−ν(θ)] is the net land productivity. From now on we

will only work with LF . Obviously, it is straightforward to obtain the corresponding results

for LP .

Next, let us introduce the linear operator L defined for all functions u in the Hilbert space

of function from S to R by, Lu(θ) := Du′′(θ) + A(θ)[φ(θ) − ν(θ)]u(θ). Using L, (1) can be

rewritten as
∂LF
∂t

(t, θ) = LLF (t, θ)− c(t, θ)N(θ)φ(θ), (2)

where the initial distribution of LF is known, LF (0, θ) = L0
F (θ) for all θ ∈ S. Operator L

is well behaved when applied to twice differentiable functions, measurable in S. We say a

function φ defined on S, regular and non-identically zero, is an eigenfunction of L, with asso-

ciated eigenvalue λ ∈ R if Lφ(x) = λφ(x). Coddington and Levinson (1955) prove that there

exists a countable set of eigenvalues {λn}n≥0, which can be ordered as a decreasing sequence.

It can be proven that the first eigenvalue of L, λ0, is an eigenvalue with multiplicity 1, all

other eigenvalues have either multiplicity 1 or 2.5 Besides, e0, the eigenfunction associated

to λ0, is strictly positive on the unit circle and one can set
∫ 2π
0 e20(θ)dθ = 1. Moreover, the

eigenfunctions of L form an orthonormal basis in L2(S) and the sequence of eigenvalues tends

to −∞, while the eigenfunction en associated to λn has n zeros in [0, 2π].6

Finally, we assume there exists a policy maker, whose aim is to maximize overall welfare.

Welfare is measured as the present value of the spatial aggregate of individuals’ utility. Here,

4The critical zone for pollution reversibility has been widely studied, see for instance Dupouey et al. (2002),
Chartier et al. (2006), Gao et al. (2011) and Le Kama et al. (2014). Technically speaking, introducing
irreversible pollution damages would lead us to impose that above a local pollution threshold concentration,
the first partial derivative of fertile soils with respect to time should be negative, that is ∂LF (t,θ)

∂t
≤ 0.

5The multiplicity of an eigenvalue is the number of times it appears in the sequence {λn}n≥0.
6See Appendix A for a brief introduction to abstract dynamic systems in infinite dimensions. For further

details see Coddinton and Levinson (1955) or Brown et al. (2013).
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utility depends solely on consumption per capita, c, and it is measured by a constant inter-

temporal elasticity of substitution function of parameter σ ∈ R. Knowing that the policy

maker discounts time at a constant rate ρ, her problem writes as

max
c

∫ ∞
0

e−ρt
[∫ 2π

0

c(t, θ)1−σ

1− σ
N(θ)dθ

]
dt, (3)

subject to (1) and

0 ≤ LF (t, θ) ≤ L(θ), (4)

c(t, θ) ≥ 0, for all θ ∈ S, and t ≥ 0. (5)

Our model is structurally close to Boucekkine et al. (2013) and Boucekkine et al. (2018),

since production is linear in fertile soil. As in previous works, all land is labored at all loca-

tions, independently of the distribution of population. Nevertheless, there is a key difference

with all previous work in the literature: the production factor, here fertile soil, is naturally

bounded. We define the different phases an economy may go through:

Definition 1. The economy is said to be in Phase 1 if the constraint for fertile soil in (4) is

not binding. Similarly, the economy is in Phase 2 if (4) binds.

We face here new challenges. First, our problem requires the description of optimal

trajectories in two separate phases. It is worth noting that the policy maker will play an active

role in Phase 1 by indirectly redistributing consumption from fertile to polluted locations.

And second, we need to provide a description of the dynamic frontier dividing the fertile

region and the partially polluted region in Phase 2. In this regard, we will invoke Stefan’s

equation to describe the evolution of our frontier as a function of the gradient of pollution.

A detailed description is provided in Section 3.2.

3 Optimal policy and the evolution of fertile soil

This section provides with the optimal solution to the policy maker problem presented in

Section 2. In particular, we show that the economy optimally transits through two phases.

In Phase 1, each location’s land is divided between fertile and polluted soil. We will prove that

during Phase 1, fertile soil steadily grows at a constant rate. Phase 2 is triggered whenever

fertile soil at a single location attains its maximum or its minimum. The following subsections

characterize the entire paths for optimal consumption and fertile soil. 7

7We have relegated to the Appendix most technical material as well as all the article’s proofs.
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3.1 Optimal dynamics in the polluted economy

As in Boucekkine et al. (2018), the following assumption ensures both the positivity of the

value function and the finiteness of the inter-temporal utility:

Assumption 2. ρ > λ0(1− σ), where λ0 the first eigenvalue of the problem Lu = λu.

Let 〈LF 〉(t) := 1
2π

∫ 2π
0 LF (η, t)dη be the instantaneous spatial mean value for a given

fertile soil distribution LF at time t. We provide next the optimal solution for fertile soil and

consumption in Phase 1.8

Proposition 1. Under Assumptions 1 and 2, the optimal spatial dynamics of fertile soil in

Phase 1, L∗F (t, θ), is the solution to

dL∗F
dt

(t, θ) = LL∗F (t, θ)− [φ(θ)N(θ)]
σ−1
σ N(θ)

1
σ (α0e0(θ))

− 1
σ

∫ 2π

0
L∗F (t, η)α0e0(θ)dη,

where L∗F (t, θ) < L(θ) for all t ≥ 0 and θ ∈ S. At any time t, the mean of optimal fertile

land is

〈L∗F 〉(t) = 〈L0
F 〉egt,

and L0
F (θ) = LF (0, θ) is the initial distribution of fertile soil. Moreover, optimal consumption

c∗ can be expressed as

c∗(t, θ) = [φ(θ)α0e0(θ)]
− 1
σ egt

∫ 2π

0
L0
F (η)α0e0(θ)dη, (6)

where α0 ∈ R is defined as

α0 =

[
σ

ρ− λ0(1− σ)

∫ 2π

0
[φ(η)e0(η)]−

1−σ
σ N(η)dη

] σ
1−σ

.

e0 is the first eigenvector of the problem Lu = λu associated to the first eigenvalues λ0, and

g = λ0−ρ
σ is the growth rate of the economy.

Proposition 1 proves that both the mean of fertile soil and consumption grow at a constant

and homogeneous rate g from t = 0. Hence, although consumption varies across locations,

it grows at the same constant rate everywhere. If g is positive, then consumption increases

continuously with time. However, note that fertile soil cannot increase forever because land

is naturally bounded. Some locations will attain their maximum for fertile land and trigger

8Note that although we have separated the presentation of the optimal solution in the two phases for the
sake of exposition, the optimization problem is solved globally from t = 0 taking into account the eventuality
of reaching the upper bound for LF at certain locations (see Appendix B). Using the optimal conditions found
in Appendix B, Appendix C finds the explicit optimal solution in Phase 1, while Appendix F provides us with
the optimal solution in Phase 2 that we provide in Section 3.2.
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Phase 2, which we study in next section. If g < 0, then fertile soil tends to zero at all

locations, and according to Definition 1, the economy could also enter Phase 2. Although we

will focus on the case of a second phase with g > 0, this other case could be studied along

the same lines.

Proposition 1 also reveals the existence of a sustainable level for the time discount rate

ρ̃ = λ0. If the policy maker weights the future generations enough, namely if ρ < ρ̃, then

she sacrifices current consumption to increase abatement and guarantee future generations’

consumption. In this case g > 0, and at least some locations attain the maximum of fertile

soil. If ρ = ρ̃, then g = 0 and the economy remains forever at the initial situation. When the

policy maker is not altruistic enough and ρ > ρ̃, then g < 0. Here, the policy maker privileges

consumption, reduces abatement, seriously endangering the future of fertile soil, production

and consumption.

As in Boucekkine et al. (2018), the policy maker cannot disregard the heterogeneity of the

economy. Despite weighting equally the welfare of each individual, consumption per capita

varies across locations. Note that c∗ in (6) depends on the location characteristics via φ and

e0. However, since the analytical form of e0 is not usually computable, we cannot provide

a detailed analytical description of the effect of the different factors on c∗. Similarly, when

A, φ, ν and N are spatially distributed and D 6= 0, the growth rate g depends on the first

eigenvalue λ0 of L, which generally does not have a closed form.

Fortunately, we can provide closed form expressions for the eigenvectors and eigenvalues

of the operator under specific hypothesis on the model’s parameters. As a result, closed forms

will also obtain for the growth rate, consumption and fertile soil. In particular, we study next

two applications of the general framework for which solutions are analytically tractable. In

the first one, A, φ, ν and N are homogeneous and where the initial distribution of fertile soil

is potentially heterogeneous. In the second application, we analyse the role of diffusion by

comparing the previous results to an unconnected economy where pollution does not diffuse

across locations, i.e. where D = 0.

Proposition 2. Let Assumptions 1 and 2 hold and let us consider a diffusive economy where

A, φ, ν and N are homogeneously distributed in space. The optimal trajectory for fertile soil

in Phase 1 is

L∗F (t, θ) = 〈L0
F 〉egt +

∑
n≥1
〈L0

F , en〉en(θ)eλnt, ∀θ ∈ S and ∀t ∈ [0, τ [,

where L0
F is the initial distribution of fertile soil, λn the nth eigenvalue of the problem Lu = λu

with associated eigenvector en, with λn = A(φ− ν)−Dn2 for n ≥ 0, and τ the time at which

the economy reaches Phase 2.

Moreover, the optimal growth rate of consumption is independent of the pollution diffusion

9



coefficient D and of population N

g =
λ0 − ρ
σ

=
A(φ− ν)− ρ

σ
.

Proposition 2 provides a very convenient writing for the optimal distribution of fertile soil.

Indeed, L∗F is the sum of its mean value, 〈L0
F 〉egt, and a second term,

∑
n≥1〈L0

F , en〉eneλnt,
with zero mean. The effects of pollution are all contained in the second term, and in partic-

ular, in the eigenvalues λn. Note that if diffusion is strong enough, and here strong enough

means that D > A(φ − ν), then λn < 0 for n ≥ 1 and the second term vanishes with time.

Hence if soil is permeable enough, then initial disparities disappear with time and all locations

join the same trajectory.

Next let us consider a homogeneous unconnected economy where D = 0. Here, soil

pollution no longer diffuses so that the activity of one location does not affect its neighbors.

Hence the optimal control problem presented in Section 2 reduces to a much simpler standard

problem, which can be solved for each location independently. In what follows we analyze

and quantify the gains and losses of belonging to a diffusive economy with positive growth.

The consumption transfer distribution can be defined as

Γ(t, θ) := cU (t, θ)− cD(t, θ),

where cU and cD stand for consumption in the unconnected and in the diffusive economy,

respectively. In other words, Γ measures the losses in consumption from entering a diffusive

economy. Whenever Γ(t, θ) is positive, it means that location θ would be better off alone at

time t. Obviously, since the contrary is also true, the economy will be made of losers and

winners at all times. Will there be an actual and direct transfer of consumption? The answer

is no. Recall that the agricultural good cannot be traded nor shipped among locations.

Then, what do we mean by consumption transfer? An indirect transfer in consumption is

generated when a location makes an extra effort in abatement, acting as a pollution sink

and allowing the neighboring locations to increase their own consumption. The following

proposition measures the exact amount of this indirect transfer:

Proposition 3. When A, φ, ν and N are homogeneous, the consumption profiles are

cU (t, θ) =
ρ+A(φ− ν)(σ − 1)

Nσφ
L0
F (θ)egt,

cD(t, θ) =
ρ+A(φ− ν)(σ − 1)

Nσφ
〈L0

F 〉egt.

L0
F is the initial distribution of fertile soil and 〈L0

F 〉 its mean value. The two consumption pro-

files grow at the same rate g = A(φ−ν)−ρ
σ , and the consumption transfer distribution depends
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on the initial distribution of fertile soil L0
F (θ)

Γ(t, θ) =
ρ+A(φ− ν)(σ − 1)

Nσφ

[
L0
F (θ)− 〈L0

F 〉
]
egt.

Proposition 3 proves that whether pollution diffuses or not, homogeneous economies grow

at the same rate. In both cases, if the net productivity A(φ−ν) is not large enough, that is if

A(φ− ν) < ρ, then g < 0 and consumption decreases. It is worth to interpret this inequality

in terms of φ. It turns out that there exists an abatement efficiency threshold, ρ
A + ν above

which the economy prospers, and below it collapses. From here, we can obtain an insightful

conclusion: an economy which wants to grow and enjoy ever increasing consumption needs

first to adopt a performing abatement technology and devote enough resources to preserve

land.

Although the growth rates of consumption are identical in both economies, their distri-

butions differ. In the unconnected economy, consumption depends solely on the local initial

endowment of fertile soil and spatial inequalities in consumption persist in time. Note how

consumption grows at a constant rate g without ever adjusting to current values of fertile

soil, only building on the initial land endowment. In contrast, consumption in the diffusive

economy is homogeneous in space, even starting from an heterogeneous initial distribution

L0
F . Finally, Assumption 2 implies that ρ + A(φ − ν)(σ − 1) > 0. Therefore, if L0

F (θ) is

above the economy’s initial mean value, then Γ(t, θ) > 0 and location θ will always transfer

consumption. Hence Proposition 3 reveals that the policy maker induces a larger abatement

effort to the initially more fertile and productive locations so that they can absorb pollution

from other locations, which thanks to that, can increase their consumption.

3.2 The fertile, the polluted region and their dynamic frontier

The second phase begins the moment one location’s fertile soil attains its maximum. Loca-

tions at the maximum divide their production between consumption and the abatement of

instantaneously generated pollution to ensure that fertile soil remains at its maximum.

Let S = S(t) ∪ S̄(t), where S̄(t) is made of the locations that have reached the upper

bound for fertility at time t, and S(t) of those which have not reached the boundary yet. Our

results hold if S̄(t) is a convex set or a finite union of convex sets. For simplicity reasons, we

proceed as if S̄(t) was made of a single convex set. In the sequel, and for simplicity reasons

we shall omit the time index in S(t) and S̄(t). Figure 1 shows how S would be split in S and

S̄ by two frontiers θ1 and θ2. Note that the right panel is just a linear representation of the

circle, which may be helpful in the numerical exercises.
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Figure 1: Description of the pollution frontier.

In Physics, the Stefan equation describes the evolution in time of the frontier between two

phases of a matter. Typically, it has been applied to describe the frontier between the solid

and liquid phases of water.9 In our problem, we assume that the pollution frontier delimiting

the fertile region S̄ moves according to the Stefan equation, following the spatial gradient of

polluted land. If at time t ≥ 0, S(t) = [θ1(t), θ2(t)] ⊂ S, then

θ̇1(t) = −D∂LP (t, θ1)

∂θ
= D

∂LF (t, θ1)

∂θ
and θ̇2(t) = −D∂LP (t, θ2)

∂θ
= D

∂LF (t, θ2)

∂θ
.

Figure 2 below describes graphically the dynamics of the pollution frontier.

Figure 2: Dynamic pollution frontier

We provide next the optimal consumption policy in this Phase 2 and the optimal dynamics

for fertile soil in the polluted region.

Proposition 4. Suppose that at least one location reaches the upper bound for fertile soil at

time τ ≥ 0 and that Assumptions 1 and 2 hold. If at time t ≥ τ , θ ∈ S̄(t), then L∗F (t, θ) = L(θ)

9The Stefan condition is expressed as a law of energy conservation, and in the case of water, the moving
frontier depends on the change of temperature. Hence, if u(x, t) denotes the temperature of water at location
x in a space X at a given time t ≥ 0, and ξ(t) is the frontier between solid and liquid water, then

ηρξ̇(t) = c1
∂u(x−, t)

∂x
− c2

∂u(x+, t)

∂x
,

where ξ(0) = 0, so that initially all space is frozen, and water melts when temperature attains an upper bound,
that is u(x, t) ≥ U for some U ∈ R. c1 and c2 are the coefficients of heat conductivity, ρ is the density of the
solid phase and η is the latent heat of melting per unit of mass.
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and its optimal consumption is

c∗(t, θ) = A(θ)
φ(θ)− ν(θ)

φ(θ)

L(θ)

N(θ)
, for all t ≥ τ. (7)

If on the contrary, θ ∈ S(t), then optimal consumption can be expressed as

c∗(t, θ) = (φβ0e0)
− 1
σ

∫
S(t)

L∗F (t, z)β0e0(z)dz, (8)

where e0 is the first eigenvector of the problem Lu = λu on S. β0 is the following function

of time

β
1−σ
σ

0 =
σ

ρ− λ0(1− σ)

∫
S(t)

[φ(z)e0(z)]
− 1−σ

σ N(z)dz,

and the optimal distribution of fertile soil in S is a solution to the integro-differential equation∫
S(t)

L∗F (t, z)e0(z)dz =

∫
S(t)

L∗F (τ, z)e0(z)dz e
λ0−ρ
σ

(t−τ)

+

∫ t

τ
e
λ0−ρ
σ

(t−s)
[
L(θ2(s))e0(2π)θ̇2(s)− L(θ1(s))e0(0)θ̇1(s)

]
ds.

The dynamics of the pollution frontier [θ1(t), θ2(t)] is described by the differential equations

θ̇1(t) = D
∂L∗F (t, θ1)

∂θ
and θ̇2(t) = D

∂L∗F (t, θ2)

∂θ
,

together with the initial condition (θ1(τ), θ2(τ)).

Contrary to Phase 1, consumption in the polluted region S does not grow at a constant

rate. Among other things, optimal consumption depends on the evolution of the pollution

frontier and on the abatement efficiency φ. In contrast, consumption in the fertile region S̄
is constant in time, although heterogeneous in space. More productive locations, those less

populated and those with a higher total land endowment consume more. Moreover, optimal

consumption in S̄ ensures that each location abates its own pollution, i.e. φ(AL − c∗N) =

νAL, avoiding this way the diffusion of pollution to its neighbors. By the same token, the

fertile region does no longer contribute to the abatement of overall pollution.

Regarding the long-term in Phase 2, the following proposition shows that either all loca-

tions become fertile or an ever-polluted region will emerge:

Proposition 5. In Phase 2, the economy can reach a steady state with two distinct regions

constant in size, S = S̄ ∪S, separated by a fixed frontier {θ̄1, θ̄2}. In S̄ fertile soil equals total

land and optimal consumption is given by (7). The steady state for fertile soil in region S,

L̄F , is a solution to DL̄′′F +A(φ− ν)L̄F = 0, with LF (θ̄1) = L(θ̄1) and LF (θ̄2) = L(θ̄2).

Proposition 5 presents one of the main findings of the paper: a polluted region S may
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fall in an environmental poverty trap and never catch up with the fertile region. This result

may come as a surprise since it shows the existence of an heterogeneous steady state even in

an homogeneous economy with diffusion. Let us describe one of the possibly many genesis of

an heterogeneous steady state: When the most advanced locations become fully fertile, they

stop absorbing others’ pollution. From that moment onwards still polluted locations face

an increased challenge since they will have to satisfy consumers’ demand with their inferior

land endowment but without the external help of the leader region. The polluted region may

fall into an environmental poverty trap if its production or abatement technologies are not

advanced enough to cope with their own pollution plus, probably, some additional pollution

from their neighbors.

4 Numerical experiments

The previous section has provided with analytical solutions for optimal fertile soil and con-

sumption in the two phases of the economy. In this section, we develop numerical exercises

to shed light on some of the remaining open questions. In particular, Subsection 4.1 explores

the dependency of the optimal solution on the spatial heterogeneity of some of the model

components during Phase 1. Set in Phase 2, Subsection 4.2 proposes different exercises that

describe the dynamics of the optimal solution and the evolution of the pollution frontier. We

first study the convergence towards the fertile economy. Then, we study the resiliency of two

technologically apart fertile economies to a pollution shock.10

Regarding the model’s calibration, the discount rate ρ is set to 3% as in Boucekkine et

al. (2018) and Lopez (2008). Using micro-household data, Attanasio and Weber (1993) and

Attanasio and Browning (1995) show that σ lies in an interval between 1.25 and 3.33. Here

we assume that σ = 2 following Barro et al. (1995). The amount of available land is 10 at

all locations. Population is uniformly distributed, with N(t, θ) = 1 for all t and θ. Finally,

we set the diffusion parameter D to 1.

4.1 Optimal solution in Phase 1

We study the detrended optimal consumption distribution c∗g(θ) = e−gtc∗(t, θ) and then

for the dynamics of fertile soil for two values of the abatement efficiency, φ, and different

functional forms for the soil sensitivity to pollution, ν.

10Subsection 4.1 uses the package Chebfun in Matlab. An algorithm has been developed in Matlab to
simulate the optimal solution in Phase 2.
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The role of abatement efficiency φ in inequality. Let us compare two economies with a

technological pole, which only differ in their abatement efficiency. In particular, suppose there

exists a technological pole around π, and let us analyze the effect of the abatement efficiency

when φ = 2 and φ = 3. Figure 4 shows the given spatial distributions of productivity A,

abatement efficiency φ, soil sensitivity ν and the resulting trajectories for optimal detrended

consumption c∗g.

Figure 3: Impact of φ on c∗g in Phase 1. Dashed lines correspond to φ = 3; solid lines to
φ = 2.

Since net productivity A(φ − ν) increases with φ, optimal consumption also increases

with φ at each location. Further, Figure 3 shows that consumption is heterogeneous and that

consumption inequality increases with abatement efficiency. Surprisingly, consumption is

lower in the technologically advanced locations. There are two reasons behind this behavior.

First and independently of φ, pollution damage νALF is stronger in the technological pole.

As a result, the social planner sacrifices consumption there in order to abate the local excess

in pollution. Second, the central area can abate more efficiently since Aφ is also larger. For

this reason the policy maker induces these locations to abate even further to act as a pollution

sink. In doing so, consumption diminishes further and fosters heterogeneity.

Figure 4: Dynamics of fertile soil in Phase 1 for φ = 2 starting with L0
F (θ) = 1 for all θ ∈ S.

With time, the technological pole accumulates faster fertile soil and they are first to reach

their fertility upper bound (see Figure 4). Moreover, the advantage of the core region over the
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periphery gets even more pronounced. Figure 5 shows that the more efficient the abatement

technology, the more unequal the economy (in terms of LF ). A higher φ also reduces the

length of Phase 1, which, as we will later see may irremediable break appart the economy,

segregating fertile from non fertile locations forever.

Proposition 1 proves that during Phase 1 g is constant in time and spatially homogeneous.

Our numerical exercises additionally show that g increases with φ. Indeed, g grows from 6%

to 14.1% when φ increases from 2 to 3. That is, an increase of 50% in the abatement efficiency

implies an increase of 135% in the growth rate, pushing the economy towards Phase 2 at a

radically faster pace. Indeed, when φ = 2 the economy reaches Phase 2 in 36.2 units of time,

i.e. τ = 36.2, while τ = 14.4 when φ = 3.

This exercise has revealed the hidden consequences of improving abatement. Good abators

will produce, consume and abate better, act as pollution sinks. Obviously, inequality between

good and bad abators widens. Land also becomes fertile at a faster rate which will eventually

push the economy faster into Phase 2 and trigger inequality even further since the good

abators will stop absorbing others’ pollution.

Figure 5: σLF as a function of time for φ = 2 and φ = 3.

On technology, sensitivity and resilience. Suppose that efficient technologies cause

greater damages to soil, locally eroding the area’s resilience. The dependence of soil sensitivity

to productivity is very simply modeled using a power function: ν = ν0A
γ , with ν0 ∈ R and

0 < γ < 1. To make sure we control all sources of heterogeneity, we let vary abatement

efficiency and consider two different values for φ, namely φ = 10 and φ = 11.
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Figure 6: Impact of φ on c∗g with spatially heterogeneous ν. Dashed lines correspond to φ = 11; solid
lines to φ = 10.

Figure 6 shows that as abatement efficiency increases, detrended consumption increases

as in the previous example. This time the increase in consumption comes at the expense of

further pollution, which cannot be absorbed despite the advanced technology. The situation

of the technological pole worsens further because the area is highly sensitive to pollution. As a

result, fertile land will lag behind in the technological pole and the first locations to become

fully fertile are in the periphery, despite having the least productive and least damaging

technology.

Obviously, this pattern hinges on φ. If φ is very large,then all pollution is absorbed and

the technologicall advanced region willb e first to reach Phase 2.

Figure 7: Dynamics of fertile soil in Phase 1 for φ = 11 starting with L0
F = 1 for all θ.

4.2 Fertile soil dynamics in Phase 2

Let us explore numerically Phase 2. The first exercise continues the first example of section

4.1, describing the dynamics of fertile soil from the moment Phase 2 is reached. We will learn

that optimal dynamics and convergence are far from monotonic or balanced growth paths.

The second set of exercises investigates the resiliency of the fertile economy to pollution

shocks and explores the existence of a spatially heterogeneous steady state.

When technology is constant we choose A = 0.2, smaller than the standard value of 1, to
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underline that the economy is agricultural. In the cases where A is spatially heterogeneous,

A will be an exponential function. Regarding the remaining parameters, φ is equal to 2, ν is

0.2 and population is homogeneous and equal to 10.

Convergence towards the fertile economy. This exercise presents the continuation

of the optimal solution studied in Subsection 4.1 and depicted in Figure 4, in which the

central region attains Phase 2 at τ = 36.2. From that moment onwards, locations at the

maximum of fertile soil only abate their own pollution to safeguard their fertile land, and

diffusion only takes place in the polluted region and across the frontier. That is, locations

with the largest amount of fertile soil stop absorbing pollution from neighboring locations.

As Figure 8 shows, this change seems to come as a shock for all partially polluted locations,

where pollution instantaneously rises. Let us underline that the policy maker had obviously

foreseen the passage from Phase 1 to Phase 2, and it is by no means a shock, it is actually

an optimal adaptation pattern. Figure 8 shows how at locations around θ = 0 (or θ = 2π),

fertile soil drops from 7.9 to 7.4 at the moment Phase 2 is hit. What happens later is that

abatement rates increase in S and fertile soil starts growing again so that the polluted region

starts catching up. The right panel in Figure 8 shows the growth rate of fertile soil. Note

that in contrast to Phase 1, the growth rate is not in the least constant in time nor spatially

homogeneous. Locations where fertile soil had dropped in the most severe manner grow the

fastest later on.

Figure 8: Dynamics in Phase 2 towards the fertile economy for φ = 2.

Resiliency of the fertile economy to pollution shocks and the emergence of hetero-

geneous steady states. In this last exercise, the central region of a fully fertile economy

receives a pollution shock. In particular, the central region [4.510 2π, 5.510 2π] of size 1 receives

a pollution shock, which induces a loss of 1% of its fertile soil, that is, LF (0, θ) = 0.99L(θ)

for θ ∈ [4.510 2π, 5.510 2π]. In order to seize the major role played by technology, two different
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distributions are considered a homogeneous distribution with A = 0.2 and on heterogeneous

distribution A(θ) = 0.20+2e−(θ−π)
2
, which generates a technological pole in the middle area.

Several interesting features will come to light, first we conclude that a pollution shock can

be overcome only if the region under ecological stress is endowed with a sufficiently advanced

technology. Second, after-shock changes in the economy may come in long stages, which may

seem wrongfully definitive if the time span we consider is not long enough. Indeed, if attention

is focused on the fertile region and its frontier, forgetting the latent stock of pollution in the

polluted region, then agents will not foresee the second pollution wave. A second wave does

arise when the polluted region attains its maximum abatement and resilience capacity.

Figure 9: Spatial dynamics for initial shock LF (0, θ) = 0.99L(θ) for θ ∈ [ 4.5
10 2π, 5.5

10 2π].

Let us analyze the different stages the economy goes through after receiving a pollution

shock (see Figure 9). Right after the shock, polluted land increases, and this is independent

on technology. Indeed, the remaining fertile soil has to face now a large stock of pollution,

and in order to preserve consumption in as much as possible, abatement will be sacrified

temporarily. Additionally, once pollution is present in the soil, it accumulates in time. As a

result, after the initial shock, polluted land rockets.

Let us follow the evolution of the economy when technology is homogeneous (left column

of Figure 9). Right after the shock, pollution diffuses over space pushing the frontiers of the

polluted region. As the top-left graph in Figure 9 shows, the polluted region becomes stable

in size for some time, and the level of pollution lowers. Nevertheless, this situation does not

last. Indeed, the fall in polluted land is followed by a very slow and subtle accumulation
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of pollution at all polluted locations. Once a threshold of pollution is reached, the region

is not able to abate enough. As a result, pollution starts diffusing again, pushing further

the frontiers of the polluted region. At that moment there is a massive uprise in pollution

everywhere. Indeed, not only local pollution accumulates due to production, but previously

protected locations start receiving pollution from neighboring locations. Again, locations

tend to preserve consumption, diminishing abatement, which makes pollution increase even

more. Noteworthy, in this example, locations at the maximum of fertile soil at the beginning,

and which do not abate more than needed, end up being highly polluted by the diffusion

mechanism.

In sharp contrast, when the shocked region has a technological advantage, locations can

overcome the shock by adapting their consumption and abatement during the initial moments

(right column in Figure 9). Although polluted land increases at first, note that the central

locations are more productive and can produce more using less land and polluting less. This

mechanism counterbalances the shock, explaining why the central region absorbs all pollution

in an extremely short period of time.

This exercise has illustrated the existence of non homogeneous steady states, even when

all the model’s parameters are spatially homogeneous. We have also learnt about their

emergence, following the changes in the pollution frontier and revealing recovery thresholds

in technology.

5 Conclusion

This paper has developed a spatial growth model accounting for the diffusion of pollution in

soils, and it has provided with the explicit optimal trajectory for fertile soil and consumption.

We have faced two major challenges. First, the production factor, fertile soil, is naturally

bounded by the amount of available land at each location. Second, at any moment in time

the economy can be made of a polluted and a fertile region separated by a frontier. Since

pollution diffuses, the frontier can actually continuously change with time. Borrowing the

Stefan’s equation from Physics, we have modeled the dynamics of the pollution frontier

around the fertile region.

The boundedness of the production factor defines two phases in the dynamics of fertile soil.

In the first phase there is some polluted land everywhere, and fertile soil and consumption

grow at the same constant rate at all locations. Eventually, some locations eradicate all

pollution and the economy enters the second phase. Here the dynamics change radically.

Locations at the maximum stop absorbing pollution coming from the polluted area. Different

long-term patterns can emerge. Eventually, the polluted region may actually never reach its
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potential maximum for fertile soil, and remain forever in a sort of environmental poverty

trap. This possibility has been analytically proven and numerically explored.

Although we did not develop any policy recommendations, this paper has shown that

specially after a pollution shock, policy makers should leave temporarily aside their optimal

policies which discount heavily the far future and induce instead fertile regions to help reduce

overall pollution. Refusing to do so could optimally lead to an entirely polluted economy.
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Appendices

A. Mathematical Preliminaries

We represent (2) as an abstract dynamical system in infinite dimension.11 Its solutions belong to

L2(S), defined as

L2(S) = {f : S −→ R |
∫ 2π

0

| f(θ) |2 dθ <∞}.

11A similar account can be found in Boucekkine et al. (2013). For a deeper insight see Bensoussan et al.
(2007).
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For any two functions f, g in L2(S), their inner product is defined as < f, g >=
∫ 2π

0
f(θ)g(θ)dθ, and

f ’s norm is then | f |2=< f, f >=
∫ 2π

0
f2(θ)dθ. L2(S) endowed with the inner product < ·, · > is a

Hilbert space. Since we cannot take derivatives on all elements of L2(S), let us define three spaces

that will help us defining the domain of L

H0
+(S) := {f ∈ L2(S) : f(·) ≥ 0, and f(·) 6= 0},

H1(S) := {f ∈ L2(S) : ∃f’ in weak sense and belongs to L2(S)},

H2(S) := {f ∈ L2(S) : ∃f’ in weak sense and belongs to H1(S)}.

Hence, the domain of L is H2(S) and L is well defined on this domain. Operator L is self-adjoint since

for any two f, g ∈ H2(S), < Lf, g >=< f,L∗g >=< f,Lg >. Note first that the Laplacian operator

is closed in its domain, H2(S), and it generates a semigroup on L2(S). Since the second factor in L is

bounded, we can conclude that our operator L is closed in its domain, D(L) = H2(S) and it generates

a C0 semigroup.

The Laplacian operator generates a C0 semigroup in the following sense. Let A be a closed linear

operator defined on L2(S) (for simplicity), and consider the following initial value problem

y′(t) = Ay(t),

y(0) = y0 ∈ L2(S), given.

If the operator A is bounded, then the solution to this problem is given by

y(t) = etAy0 :=

∞∑
j=0

tjAjy0

j!
.

Let us define ZA(t) = etA, then ZA(t + s) = ZA(t)ZA(s), and ZA(0) = 1. As mentioned in p. 89

in Bensoussan (2007), there is a one-to-one correspondence between the group (R,+) and the subset

ZA = {ZA(t) : t ∈ R} in L(S), or in particular in L2(S) under composition “◦”. So we say that

(ZA, ◦) is a group. When A is unbounded like in the case of the Laplacian operator, then one can

define ZA only for t ≥ 0 and s ≥ 0 in general. We say then that ZA is a semigroup.

The most useful property of semigroups hinges on the following relationship. The infinitesimal

generator A of Z is the linear operator in S defined by

D(A) = {x ∈ S : such that lim
h→0+

Z(h)x− x
h

exists},

and Ax = limh→0+
Z(h)x−x

h for all x ∈ D(A). Then, we have that

d

dt
Z(t)x = AZ(t)x = Z(t)Ax.

Given the set of admissible trajectories for LF , we can define the set of admissible strategies for c, C
as

C(L0
F ) = {c ∈ L1

loc(Rt, L2(S)+) : LF ∈ H0, for all t ≥ 0}.
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Finally, the objective functional is

J(L0
F ; c) :=

∫ ∞
0

e−ρtU(c)dt,

where

U(c) =

∫
S

c(t, θ)1−σ

1− σ
N(θ)dθ.

The value function associated to our problem is then

V (L0
F ) := sup

c
J(L0

F ; c).

B. Necessary optimal conditions

Although our problem is close to Boucekkine et al. (2013) and Boucekkine et al. (2018), the production

factor is here bounded. Most importantly, the policy maker needs to take into account the eventuality

of reaching one of the boundaries, and that the economy could be split in two regions. The authors

resort to an optimal control approach to sort this problem. Using Ekeland’s variational principle,

we first obtain the set of necessary conditions for our problem. Then we will go back and forth

from optimal control to dynamic programming, being aware of the awkwardness it generates. As

said earlier, the inclusion of a (moving) frontier and the possibility of two coexisting regions make us

combine these two different approaches. We explain next all details.

The set of necessary optimal conditions obtained though the variational principle has the main

shortcoming of including a reverse time parabolic partial differential equation, which makes our prob-

lem difficult to analyse. For this reason, we resort to dynamic programming to obtain the exact

expression of the optimal solution of an auxiliary problem in which locations never reach their bound-

ary. Fortunately, and since the optimal solution is unique (see Camacho and Pérez-Barahona, 2015),

we can prove that the solution obtained through dynamic programming also satisfies the set of optimal

conditions obtained via optimal control when fertile land lies within its boundaries. Then, we prove

that during this first regime fertile land grows at a constant and spatially homogeneous rate, steadily

increasing or decreasing with time. As a result, one location will eventually reach a boundary for

fertile land. At that moment, the solution enters in the second phase. In this second phase, some of

the locations have attained the maximum level of fertile land, while others are still transiting. Once

locations reach the bound, they stop investing in pollution abatement. Let us see next all details.

In order to apply Ekeland’s variational principle, let us write the value function V (·) associated

to problem (2)-(5)

V (c, LF , ψ, µ) =

∫ ∞
0

∫ 2π

0

e−ρt
c(t, θ)1−σ

1− σ
N(θ)dθdt

−
∫ ∞

0

∫ 2π

0

ψ(t)

(
∂LF
∂t

(t, θ)−D∂
2LF
∂θ2

(t, θ)−A(θ)[φ(θ)− ν(θ)]LF (t, θ) + c(t, θ)N(θ)φ(θ)

)
dθdt

−
∫ ∞

0

∫ 2π

0

µ(t, θ) [L(θ)− LF (t, θ)] dθdt−
∫ ∞

0

∫ 2π

0

ξ(t, θ)LF (t, θ)dθdt.

Then, assuming there exists an optimal solution and that any solution to our problem can be written
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as a deviation from the optimal solution we obtain

c(t, θ) = c∗(t, θ) + εC(t, θ),

LF (t, θ) = L∗F (t, θ) + εlF (t, θ).

V becomes then a function of ε. At the optimal ε∗, ∂V (ε∗)
∂ε = 0. We use that the auxiliary variables

ψ, µ and ξ are C1 functions, so that ψ(t, 0) = ψ(t, π), µ(t, 0) = µ(t, π), ξ(t, 0) = ξ(t, π); and ψx(t, 0) =

ψx(t, π), µx(t, 0) = µx(t, π), ξx(t, 0) = ξx(t, π). Since LF ∈ C1, it is also true that LF (t, 0) = LF (t, 2π)

and LF,x(t, 0) = LF,x(t, 2π). Then, since V is continuously differentiable in c and LF , after applying

integration by parts, we can compute ∂V (ε)
∂ε as

∂V (ε)

∂ε
=

∫ ∞
0

∫ 2π

0

e−ρtc(t, θ)−σC(t, θ)N(θ)dθdt

−
∫ ∞

0

∫ 2π

0

[−ψt(t, θ)LF (t, θ)−Dψxx(t, θ)lF (t, θ)] dθdt

−
∫ ∞

0

∫ 2π

0

[A(θ)[φ(θ)− ν(θ)]ψ(t, θ)lF (t, θ) + C(t, θ)N(θ)φ(θ)] dθdt

+

∫ ∞
0

∫ 2π

0

[µ(t, θ)− ξ(t, θ)] lF (t, θ)dθdt,

with limt→∞ ψ(t, θ)LF (t, θ) = 0, for all θ ∈ S. Along with the transversality condition, we obtain the

following condition on LF and ψ

ψ(t, θ)∇θLF (t, θ) |2π0 = ∇θψ(t, θ)LF (t, θ) |2π0 , (9)

where ∇θ is the space integral of L.

Collecting the terms multiplying C and lF , and time detrending ψ, we obtain the following set of

necessary optimal conditions for all θ ∈ S and for all t > 0

ψ(t, θ) = 1
φ(θ)c(t, θ)

−σ,

ψt(t, θ) +Dψxx(t, θ) +A(θ)[φ(θ)− ν(θ)]ψ(t, θ)− ρψ(t, θ) + µ(t, θ)− ξ(t, θ) = 0,

µ(t, θ) [L(θ)− LF (t, θ)] = 0,

ξ(t, θ)LF (t, θ) = 0.

Recalling that Lψ(t, θ) = Dψxx(t, θ) +A(θ)[φ(θ)− ν(θ)]ψ(t, θ), we can rewrite the second equation as

ψt(t, θ) + Lψ(t, θ)− ρψ(t, θ) + µ(t, θ)− ξ(t, θ) = 0.

Note that if LF lies within its bounds, then both µ(t, θ) and ξ(t, θ) are identically zero. Hence, we

can provide a set of necessary conditions when fertile land is between the lower and the upper bound,
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at all locations

I



∂LF
∂t (t, θ) = LLF (t, θ)− c(t, θ)N(θ)φ(θ),

ψ(t, θ) = 1
φ(θ)c(t, θ)

−σ,

ψt(t, θ) + Lψ(t, θ)− ρψ(t, θ) = 0,

limt→∞ ψ(t, θ)LF (t, θ) = 0.

Hence (I) describes the optimal dynamics of the economy when no location has reached a bound.

The second phase is triggered whenever a location reaches the upper bound for fertile land.12 In

this case, we assume that S = S ∪ S̄, where S̄ is the set of locations that have reached the upper

bound. Hence, for each θ ∈ S̄

LF (t, θ) = L(θ), LF,t(t, θ) = 0 and LF,xx(t, θ) = 0,

which implies that c(t, θ) = A(θ)φ(θ)−ν(θ)
φ(θ)

L(θ)
N(θ) ,∀t ≥ 0.

However, when analizing the set of optimal conditions in S, we need to pay special attention to

the border. The border condition (9) becomes

ψ(t, θ)∇θLF (t, θ) |θ2(t)
θ1(t)= ∇θψ(t, θ)LF (t, θ) |θ2(t)

θ1(t) . (10)

Hence, in the second phase at all t

II



∂LF
∂t (t, θ) = LLF (t, θ)− c(t, θ)N(θ)φ(θ),

ψ(t, θ) = 1
φ(θ)c(t, θ)

−σ,

ψt(t, θ) + Lψ(t, θ)− ρψ(t, θ) = 0,∀θ ∈ S,

ψ(t, θ)∇θLF (t, θ) |θ2(t)
θ1(t)= ∇θψ(t, θ)LF (t, θ) |θ2(t)

θ1(t),

limt→∞ ψ(t, θ)LF (t, θ) = 0,

and

LF (t, θ) = L(θ), LF,t(t, θ) = 0 and LF,xx(t, θ) = 0,

c(t, θ) = A(θ)φ(θ)−ν(θ)
φ(θ)

L(θ)
N(θ) ,∀θ ∈ S̄.

C. Proof of Proposition 1. Optimal solution in Phase 1.

We prove that the explicit solution obtained using dynamic programming for the first phase fulfills

the set of necessary conditions obtained via optimal control. This way, we are able to provide an

explicit solution to the set of necessary conditions in (I). In Phase 1, the Hamilton-Jacobi-Bellman

12When fertile land reaches the lower bound, dynamics are similar to the case of the upper bound except
that consumption becomes zero at locations with zero fertile land.
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(HJB) equation associated to the previous optimal control problem can be written as

ρv(LF ) = 〈 LF ,L∇v(LF ) 〉 + sup
c

{
〈 c

1−σ

1− σ
N,1 〉 − 〈 φcN,∇v(LF ) 〉

}
.

Let ĉ := argmax
{
〈 c

1−σ

1−σ N,1 〉 − 〈 φcN,∇v(LF ) 〉
}

. ĉ verifies that

ĉ−σN = φN∇v(LF ) ⇐⇒ ĉ = [φ∇v(LF )]
− 1
σ .

Therefore

sup
c

{
〈 c

1−σ

1− σ
N,1 〉 − 〈 φcN,∇v(LF ) 〉

}
= 〈 ĉ

1−σ

1− σ
N,1 〉 − 〈 φĉN,∇v(LF ) 〉

= 〈 1

1− σ
[φ∇v(LF )]

− 1
σ N,1 〉 − 〈 φN [φ∇v(LF )]

− 1
σ ,∇v(LF ) 〉

=
1

1− σ
〈 [φ∇v(LF )]−

1−σ
σ N,1 〉 − 〈 [φ∇v(LF )]−

1−σ
σ N,1 〉 =

σ

1− σ
〈 [φ∇v(LF )]−

1−σ
σ N,1 〉 .

We look for a solution which can be written as

v =
〈 LF , α0e0 〉 1−σ

1− σ
, (11)

with α0 ∈ R. Hence if v is defined by (11), then ∇v(LF ) = 〈LF , α0e0〉−σα0e0. Plugging this solution

in the HJB equation leads to the following equation in α0

ρ

1− σ
〈 LF , α0e0 〉 1−σ = 〈 LF , 〈L,α0e0〉−σLα0e0 〉 +

σ

1− σ
〈LF , α0e0 〉 1−σ〈 (φα0e0)−

1−σ
σ N,1 〉

= λ0〈LF , α0e0〉1−σ +
σ

1− σ
〈LF , α0e0 〉 1−σ

∫ 2π

0

[φ(η)α0e0(η)]
− 1−σ

σ N(η)dη.

Dividing by 〈 LF , α0e0 〉 1−σ

ρ

1− σ
= λ0 +

σ

1− σ

∫ 2π

0

[φ(η)α0e0(η)]
− 1−σ

σ N(η)dη

⇐⇒ ρ− λ0(1− σ)

σ
= α

− 1−σ
σ

0

∫ 2π

0

[φ(η)e0(η)]
− 1−σ

σ N(η)dη.

Since by Assumption 2 ρ− λ0(1− σ) > 0, then α0 obtains as

α0 =

[
σ

ρ− λ0(1− σ)

∫ 2π

0

[φ(η)e0(η)]
− 1−σ

σ N(η)dη

] σ
1−σ

.

Moreover, we have that

L′F = LLF − (φN)
σ−1
σ N

1
σ (α0e0)

− 1
σ 〈 LF , α0e0 〉 .
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Thus ∀Φ ∈ D(L)

d

dt
〈 LF ,Φ 〉 = 〈 LLF ,Φ 〉 − 〈 L,α0e0 〉 〈 (φN)

σ−1
σ N

1
σ (α0e0)−

1
σ ,Φ 〉

= 〈 LF ,LΦ 〉 − 〈 L,α0e0 〉 〈 (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ ,Φ 〉 .

In particular, for Φ = α0e0

d

dt
〈 LF , α0e0 〉 = 〈 LF , λ0α0e0 〉 − 〈 LF , α0e0 〉 〈 (φN)

σ−1
σ N

1
σ (α0e0)−

1
σ , α0e0 〉

= [λ0 − 〈 (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ , α0e0 〉 ]〈 LF , α0e0 〉 .

Let g be g := λ0 − 〈 (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ , α0e0〉. Then we can write the expression above as

d

dt
〈 LF , α0e0 〉 = g〈 LF , α0e0 〉.

whose solution is 〈 LF , α0e0 〉 = 〈 L0
F , α0e0 〉 egt, where L0

F is the initial distribution for fertile soil.

Optimal consumption can be expressed as

c∗ = [φ∇v(LF )]
− 1
σ = φ−

1
σ [〈 LF , α0e0 〉 −σα0e0 〉 ]−

1
σ = φ−

1
σ 〈 LF , α0e0 〉 (α0e0)−

1
σ .

Using (26) we obtain optimal consumption in terms of the initial distribution of fertile land, the model

parameters and g

c∗ = φ−
1
σ (α0e0)−

1
σ 〈 L0

F , α0e0 〉 egt.

Finally when we obtained the expression of α0, it was shown that

ρ− λ0(1− σ)

σ
=

∫ 2π

0

[φ(z)N(z)α0e0(z)]
− 1−σ

σ N(z)
1
σ dz.

Therefore, a simpler expression of g can be derived

g = λ0 −
∫ 2π

0

[φ(z)N(z)α0e0(z)]
− 1−σ

σ N(z)
1
σ dz = λ0 −

ρ− λ0(1− σ)

σ
=
λ0 − ρ
σ

.

With this explicit solution in hand, the next step is to prove that it actually verifies the set of necessary

conditions in (I). We claim that:

c∗(t, θ) = [φ(θ)α0e0(θ)]
− 1
σ egt

∫ 2π

0

L0
F (z)α0e0(z)dz,

is the optimal solution in Phase 1. As said, let us prove next that actually this solution verifies the

optimal necessary conditions (I). Since ψ(t, θ) = 1
φ(θ)c(t, θ)

−σ, then

ψ(t, θ) = α0e0(θ)e−σgt
(∫ 2π

0

L0
F (z)α0e0(z)dz

)−σ
, (12)
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and its partial derivatives are

ψt(t, θ) = −σgψ(t, θ),

ψx(t, θ) = α0e
′
0(θ)e−σgt

(∫ 2π

0
L0
F (z)α0e0(z)dz

)−σ
,

ψxx(t, θ) = α0e
′′
0(θ)e−σgt

(∫ 2π

0
L0
F (z)α0e0(z)dz

)−σ
.

Substituting into

ψt(t, θ) + Lψ(t, θ)− ρψ(t, θ) + µ(t, θ) = 0,

checking that Lψ(t, θ) = λ0ψ(t, θ), and letting µ(t, θ) ≡ 0, we do obtain that the solution in (30)

satisfies the optimality condition whenever g = λ0−ρ
σ .

Finally, once we have proven that both solutions coincide, we close this proof showing that aggre-

gated land grows at rate g. Since 〈 LF , α0e0 〉 = 〈 L0
F , α0e0 〉 egt then

∫ 2π

0

LF (t, θ)e0(θ)dθ =

∫ 2π

0

L0
F (θ)e0(θ)egtdθ ⇐⇒

∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
e0(θ)dθ = 0.

Defining e0 := min[0,2π] e0(θ) and ē0 := max[0,2π] e0(θ), the following inequalities obtain

e0

∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
dθ ≤

∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
e0(θ)dθ = 0, (13)

and

ē0

∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
dθ ≥

∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
e0(θ)dθ = 0. (14)

Hence, since e0(θ) > 0 ∀θ ∈ [0, 2π], then (13) and (14) imply that ē0 > 0 and e0 > 0. As a result, (13)

and (14) imply that∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
dθ ≤ 0, and

∫ 2π

0

[
LF (t, θ)− L0

F (θ)egt
]
dθ ≥ 0,

which implies that
∫ 2π

0

(
LF (t, θ)− L0

F (θ)egt
)
dθ = 0. Dividing by the length of the interval, the result

in terms of mean values obtains: 〈LF (t)〉 = egt〈L0
F 〉.

D. Proof of Proposition 2.

We decompose fertile soil on the eigenvector basis as LF =
∑
n≥0〈LF , en〉en(θ) and look for the

expression of the coefficients 〈LF , en〉 for n ≥ 0. Recall that A, φ and ν,N ∈ R. Thus, the eigenvalue

problem can be written as the following second order linear ordinary differential equation with constant

coefficients

u′′ +
A(φ− ν)− λ

D
u = 0. (15)

Any function u(θ) = C1 cos

(
θ
√

A(φ−ν)−λ
D + C2

)
, whith (C1, C2) ∈ R2 is a solution to (15). Note

that since our problem is 2π periodic, solutions obviously need to verify u(0) = u(2π). Imposing this
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boundary condition, we obtain that

cos (C2) = cos

(
2π

√
A(φ− ν)− λ

D
+ C2

)
,

which holds if and only if

2π

√
A(φ− ν)− λn

D
+ C2 = C2 + 2nπ, with n ∈ Z =⇒

√
A(φ− ν)− λn

D
= n.

Therefore, the nth eigenvalue of the problem and the associated nth eigenvector are λn = A(φ− ν)−
Dn2, and

en(θ) = C1 cos

(
θ

√
A(φ− ν)− λn

D
+ C2

)
= C1 cos

(
θ

√
A(φ− ν)−A(φ− ν) +Dn2

D
+ C2

)
= C1 cos (θn+ C2) .

(16)

Here we need to analyze separatedly the cases n = 0 and n > 0:

1. When n = 0, we have that λ0 = A(φ − ν). As a result, g = λ0−ρ
σ = A(φ−ν)−ρ

σ . From (16),

e0(θ) = e0 = C1 cos(C2) is spatially homogeneous. As a result, 〈LF , e0〉e0 can be written as

〈LF , e0〉e0 = 〈L0
F , e0〉e0e

gt = e2
0

∫ 2π

0

L0
F (θ)dθ egt.

Since eigenvectors form an orthonormal basis, we have that in particular
∫ 2π

0
e2

0dθ = 1, which

implies that e2
0 = 1

2π . As a result, we can write 〈LF , e0〉e0 = 〈L0
F , e0〉e0e

gt = 〈L0
F 〉egt.

2. For n ≥ 1, the dynamics of fertile soil is given by

L′F = LLF − (φN)
σ−1
σ N

1
σ (α0e0)

− 1
σ 〈 LF , α0e0 〉,

and 〈LF , e0〉 = 〈L0
F , e0〉egt, so that

d

dt
〈 LF , en 〉 = 〈 LLF , en 〉 − 〈 LF , α0e0 〉 〈 (φN)

σ−1
σ N

1
σ (α0e0)−

1
σ , en 〉

= 〈 LF ,Len 〉 − 〈 LF , α0e0 〉βn = λn〈 LF , en 〉 − 〈 L0
F , α0e0 〉 egtβn,

with βn = 〈 (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ , en 〉. Since φ, N , and e0 are spatially homogeneous

βn = (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ

∫ 2π

0

en(θ)dθ = (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ

∫ 2π

0

C1 cos (θn+ C2) dθ

= (φN)
σ−1
σ N

1
σ (α0e0)−

1
σ

[
C1

n
sin(θn+ C2)

]2π

0

= 0.

Therefore, d
dt 〈 LF , en 〉 = λn〈 LF , en 〉, and 〈LF , en〉 = 〈L0

F , en〉eλnt.

Substituting 〈 LF , e0 〉 e0 and 〈 LF , en 〉 en into LF =
∑
n≥0〈LF , en〉en(θ), LF can be written as

LF (t, θ) = 〈L0
F 〉egt +

∑
n≥1〈L0

F , en〉eneλnt, which proves our claim.
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E. Proof of Proposition 3. Consumption transfers.

This proof is structured in three steps. First, we obtain the optimal solution for the policy maker

problem in the un-connected economy. Second, we do the same for the diffusive economy. In the third

step, we use the previous results to compute consumption transfers.

1. We obtain optimal consumption cU (t) in the unconnected economy. Here, the social planner

solves the following standard Ramsey-type problem for each location

max
cU (t)

∫ ∞
0

c1−σU (t, θ)

1− σ
Ne−ρtdt (17)

subject to {
L̇F (t, θ) = A(φ− ν)LF (t, θ)− ΦNcU (t, θ),

LF (0, θ) = L0
F (θ) ≥ 0

(18)

for all t > 0 and θ ∈ S, with N,A, φ, ν,Φ ∈ R. The Hamiltonian associated to (17)-(18) writes as

H(cU , LF , λ, t) =
c1−σU

1−σ Ne
−ρt + ζ[A(φ − ν)LF − ΦNcU ]. Taking the first order conditions of H with

respect to cU and LF , we obtain the set of Pontryagin conditions{
∂H
∂cU

= 0 =⇒ c−σU Ne−ρt = ζφN.
∂H
∂LF

= −ζ̇ =⇒ −λ̇ = ζA(φ− ν),

plus the transversality condition limt→∞ LF (t, θ)ζ(t) = 0. Let us define ζ̃ = ζeρt. Then we can express

the dynamics of the co-state variable as
˙̃
ζ = −ζ̃ (A(φ− ν)− ρ). Since ζ̃ =

c−σU
φ , then

˙̃
ζ = −σc

−σ−1
U ċU
φ

and
˙̃
ζ

ζ̃
= −σ ċUcU .

gU denotes c′Us growth rate, gU := ċU
cU

= A(φ−ν)−ρ
σ and cU (t, θ) = cU (0, θ)egt. Note that gU = g,

which proves that location’s consumption in the unconnected and the diffusive economy grow at the

same rate. Hereafter we will write g.

Finally, note that

L̇F (t, θ) = A(φ− ν)LF (t, θ)− φNcU (t, θ) ⇐⇒ L̇F (t, θ)

LF (t, θ)
= A(φ− ν)− φN cU (t, θ)

LF (t, θ)
.

Hence L̇F (t,θ)
LF (t,θ) = g along the balanced growth path, and as a result LF (t, θ) = LF (0, θ)egt = L0

F (θ)egt,

and

cU (t, θ) =
A

Nσφ

[ ρ
A

+ (φ− ν)(σ − 1)
]
LF (t, θ) =

A

Nσφ

[ ρ
A

+ (φ− ν)(σ − 1)
]
L0
F (θ)egt.

2. Proposition 1 provided us with the trajectory for optimal consumption in the diffusive economy,

cD

cD(t, θ) = egt(φα0e0(θ))−
1
σ

∫ 2π

0

L0
F (η)α0e0(η)dη,

with

α0 =

[
σ

ρ−A(φ− ν)(1− σ)

∫ 2π

0

N(φe0(η))−
1−σ
σ dη

] σ
1−σ
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and where e0(·) the first eigenvector of the problem Lu = λu. In Appendix D we proved that e0 is

spatially homogeneous, so that

α0e0 =

[
σ

ρ−A(φ− ν)(1− σ)

∫ 2π

0

N(φe0)−
1−σ
σ dη

] σ
1−σ

e0

=

[
2πσN(φe0)−

1−σ
σ

ρ−A(φ− ν)(1− σ)

] σ
1−σ

e0 =
1

φ

[
2πσN

ρ−A(φ− ν)(1− σ)

] σ
1−σ

.

Therefore, we can prove that cD is homogeneous in space and we obtain the following expression

cD(t, θ) = egt(φα0e0)−
1
σ

∫ 2π

0

L0
F (η)α0e0dη

= egt
[

2πσN

ρ−A(φ− ν)(1− σ)

] 1
σ−1 1

φ

[
2πσN

ρ−A(φ− ν)(1− σ)

] σ
1−σ

∫ 2π

0

L0
F (η)dη

= egt
ρ−A(φ− ν)(1− σ)

2πσNφ

∫ 2π

0

L0
F (η)dη =

ρ−A(φ− ν)(1− σ)

Nσφ
〈L0

F 〉egt.

3. Finally, let us compute consumption transfers. Γ(t, θ) obtains using all previous results

Γ(t, θ) = cU (t, θ)− cD(t, θ) =
ρ+A(φ− ν)(σ − 1)

Nσφ
L0
F (θ)egt − ρ+A(φ− ν)(σ − 1)

Nσφ
〈L0

F 〉egt

=
ρ+A(φ− ν)(σ − 1)

Nσφ

[
L0
F (θ)− 〈L0

F 〉
]
egt.

F. Proof of Proposition 4. Optimal solution in Phase 2.

In order to obtain the optimal trajectories in S(t), we need to start by defining the interior product

in S(t). For any two functions f, g in H2(S(t)), we define their interior product as

〈 f, g 〉S =

∫ θ2(t)

θ1(t)

f(z)g(z)dz.

In Phase 2, the HJB equation is

ρv(LF ) = 〈 LF ,L∇v(LF ) 〉S + sup
c

{
〈 c

1−σ

1− σ
N,1 〉S − 〈 φcN,∇v(LF ) 〉S

}
.

Let ĉ := argmax
{
〈 c

1−σ

1−σ N,1 〉S − 〈 φcN,∇v(LF ) 〉S
}

. As in Appendix C, ĉ verifies that ĉ = [φ∇v(LF )]
− 1
σ .

As in Phase 1, we also look in Phase 2 for a solution that can be written as v =
〈 LF ,β0e0 〉1−σS

1−σ ,

where β0 is this time a continuous function of time. e0 is the first eigenvector associated to eigenvalue

λ0 of the eigenvalue problem: Lu = λu on S. Note that we are borrowing the first eigenvector and

eigenvalue from the problem on S and not restricting the eigenvalue problem to S.
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Operator L is self-adjoint on S only under certain assumptions. Indeed

〈 LLF ,∇v(LF ) 〉S =

∫ θ2(t)

θ1(t)

LLF (z)∇v(LF )(z)dz

= ∇θLF (z)∇v(LF ) |θ2(t)
θ1(t) −

∫ θ2(t)

θ1(t)

∇θLF (z)∇θ(∇v(LF )(z))dz

= ∇θLF (z)∇v(LF ) |θ2(t)
θ1(t) −LF (z)∇θ(∇v(LF )) |θ2(t)

θ1(t) +

∫ θ2(t)

θ1(t)

LF (z)L∇v(LF )(z)dz.

Hence

〈 LLF ,∇v(LF ) 〉S = 〈 LF ,L(∇v(LF )) 〉S +∇θLF (z)∇v(LF ) |θ2(t)
θ1(t) −LF (z)∇θ(∇v(LF )) |θ2(t)

θ1(t),

and our operator is self-adjoint if and only if

∇θLF (z)∇v(LF ) |θ2(t)
θ1(t)= LF (z)∇θ(∇v(LF )) |θ2(t)

θ1(t) . (19)

Note that (19) coincides with (10), implying that operator L is self-adjoint in the subset of optimal

solutions.

Proceeding like in Appendix C, we substitute ĉ into the HJB equation and impose that the

solutions must be optimal, that is, that they verify (19):

ρ

1− σ
〈 LF , β0e0 〉1−σS = 〈 LF , 〈L, β0e0〉−σLβ0e0 〉S +

σ

1− σ
〈LF , β0e0 〉1−σS 〈 (φβ0e0)−

1−σ
σ N,1 〉S

= λ0〈LF , β0e0〉1−σ +
σ

1− σ
〈LF , β0e0 〉1−σS

∫
S

(φ(η)β0e0(η))−
1−σ
σ N(η)dη.

Hence, dividing on both sides by 〈 LF , β0e0 〉1−σS :

ρ

1− σ
= λ0 +

σ

1− σ

∫
S

(φ(η)β0e0(η))−
1−σ
σ N(η)dη

⇐⇒ ρ− λ0(1− σ)

σ
= β

− 1−σ
σ

0

∫
S

(φ(η)e0(η))−
1−σ
σ N(η)dη.

By Assumption 2, ρ− λ0(1− σ) > 0, so that

β
1−σ
σ

0 =
σ

ρ− λ0(1− σ)

∫
S

(φ(z)e0(z))−
1−σ
σ N(z)dz =

σ

ρ− λ0(1− σ)
< (φ(z)e0(z))−

1−σ
σ N(z),1 >S .

(20)

As a result, we can write ĉ as ĉ = [φ∇v(LF )]
− 1
σ = (φβ0e0)

− 1
σ < LF , β0e0 >S .

Taking the logarithm of (20) and derivating, we obtain β0’s growth rate

1− σ
σ

β0,t(t)

β0(t)
=

d

dt
ln

∫
S

(φ(z)e0(z))−
1−σ
σ N(z)dz

=
N(θ2(t))[φ(θ2(t))e0(θ2(t))]−

1−σ
σ θ̇2(t)−N(θ1(t))[φ(θ1(t))e0(θ1(t))]−

1−σ
σ θ̇1(t)∫

S
(φ(z)e0(z))−

1−σ
σ N(z)dz

.

(21)
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Replacing ĉ in the original state equation for LF , we obtain that

L′F = LLF − φN (φβ0e0)
− 1
σ 〈 LF , β0e0 〉S . (22)

Let us multiply (22) by β0e0 and compute the interior product restricting our analysis to optimal

solutions that verify (19)

〈 d
dt
LF , β0e0 〉S = 〈 LLF , β0e0 〉S − 〈 (φN)

σ−1
σ N

1
σ (β0e0)−

1
σ , β0e0 〉S〈 LF , β0e0 〉S

= 〈 LF , β0Le0 〉S − 〈 (φNβ0e0)
−(1−σ)

σ N
1
σ ,1 〉S〈 LF , β0e0 〉S

= λ0〈 LF , β0e0 〉S − 〈 (φNβ0e0)
−(1−σ)

σ N
1
σ ,1 〉S〈 LF , β0e0 〉S .

Note that we cannot solve the problem unless we transform 〈 d
dtLF , β0e0 〉S . Indeed, when the

interior product changes with time, it is not straightforward to proceed as in Appendix C. Note that

d

dt
〈 LF , β0e0 〉S =

d

dt

∫ θ2(t)

θ1(t)

LFβ0e0dz

=

∫ θ2(t)

θ1(t)

d

dt
LFβ0e0dz +

∫ θ2(t)

θ1(t)

LF
d

dt
β0e0dz + LF (θ2(t))β0(t)e0(θ2(t))θ̇2(t)

− LF (θ1(t))β0(t)e0(θ1(t))θ̇1(t)

= 〈 d
dt
LF , β0e0 〉S + 〈 LF , β0,te0 〉S + LF (θ2(t))β0(t)e0(θ2(t))θ̇2(t)

− LF (θ1(t))β0(t)e0(θ1(t))θ̇1(t).

We finally obtain that

〈 d
dt
LF , β0e0 〉S =

d

dt
〈 LF , β0e0 〉S −

β0,t

β0
〈 LF , β0e0 〉S

− LF (θ2(t))β0(t)e0(θ2(t))θ̇2(t) + LF (θ1(t))β0(t)e0(θ1(t))θ̇1(t).

(23)

Replacing (19) and (23) into (22)

d

dt
〈 LF , β0e0 〉S =

[
λ0 − 〈 (φN)

σ−1
σ N

1
σ (β0e0)−

1
σ , β0e0 〉S +

β0,t

β0

]
〈 LF , β0e0 〉S

+ LF (θ2(t))β0(t)e0(θ2(t))θ̇2(t)− LF (θ1(t))β0(t)e0(θ1(t))θ̇1(t).

(24)

Using (20), and removing the time variable for simplicity

d

dt
〈 LF , β0e0 〉S =

[
λ0 − ρ
σ

+
β0,t

β0

]
〈 LF , β0e0 〉S + β0

[
LF (θ2)e0(θ2)θ̇2 − LF (θ1)e0(θ1)θ̇1

]
. (25)

We can solve (25) in two stages
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1. First, we solve the homogeneous equation

〈 LF , β0e0 〉S = 〈 LF , β0e0 〉S(τ)e
∫ t
τ

(
λ0−ρ
σ +

β0,t
β0

)
ds

= 〈 LF (τ), β0(τ)e0 〉e
λ0−ρ
σ (t−τ)e

∫ t
τ

β0,t
β0

ds = 〈 LF (τ), β0(τ)e0 〉e
λ0−ρ
σ (t−τ)eln β0|tτ

= 〈 LF (τ), β0(τ)e0 〉e
λ0−ρ
σ (t−τ)eln β0|tτ = 〈 LF (τ), β0(τ)e0 〉e

λ0−ρ
σ (t−τ) β0(t)

β0(τ)

= 〈 LF (τ), α0e0 〉 e
λ0−ρ
σ (t−τ) β0(t)

α0

(26)

where LF (τ) is the distribution of fertile soil at the time the second phase is triggered and S(τ) = S.

By continuity, it is also true that β0(τ) = α0.

2. Then we solve the non-homogeneous equation trying a solution of the type

〈 LF , β0e0 〉S = m(t)e
λ0−ρ
σ tβ0(t) (27)

whose time derivative is

d

dt
〈 LF , β0e0 〉S = ṁ(t)e

λ0−ρ
σ tβ0 +m(t)

λ0 − ρ
σ

e
λ0−ρ
σ tβ0 +m(t)e

λ0−ρ
σ tβ0,t(t)

= e
λ0−ρ
σ tβ0

[
ṁ(t) +m(t)

(
λ0 − ρ
σ

+
β0,t(t)

β0(t)

)]
.

(28)

If (27) is a solution, then it has to verify (25). Replacing 〈 LF , β0e0 〉S by (27) and d
dt 〈 LF , β0e0 〉S

using (28), we get that

ṁ(t) = e−
λ0−ρ
σ t

[
LF (θ2)e0(θ2)θ̇2 − LF (θ1)e0(θ1)θ̇1

]
,

that is

m(t) =

∫ t

τ

e−
λ0−ρ
σ s

[
LF (θ2(s))e0(θ2(s))θ̇2(s)− LF (θ1(s))e0(θ1(s))θ̇1(s)

]
ds.

Plugging m back into (27), and taking into account that 〈 LF , β0e0 〉S(τ) = 〈 LF (τ), α0e0 〉 , we obtain

that the solution for 〈 LF , β0e0 〉S is

〈 LF , β0e0 〉S =
β0(t)

α0
〈 LF (τ), α0e0 〉 e

λ0−ρ
σ (t−τ)

+ e
λ0−ρ
σ tβ0(t)

∫ t

τ

e−
λ0−ρ
σ s

[
LF (θ2(s))e0(θ2(s))θ̇2(s)− LF (θ1(s))e0(θ1(s))θ̇1(s)

]
ds,

or

〈 LF , β0e0 〉S = β0(t)〈 LF (τ), e0 〉 e
λ0−ρ
σ (t−τ)

+ β0(t)

∫ t

τ

e
λ0−ρ
σ (t−s)

[
LF (θ2(s))e0(θ2(s))θ̇2(s)− LF (θ1(s))e0(θ1(s))θ̇1(s)

]
ds.

With this solution for 〈 LF , β0e0 〉S , we can obtain the optimal solution for consumption:

c∗ = [φ∇v(LF )]
− 1
σ = φ−

1
σ [〈 LF , β0e0 〉−σS β0e0]−

1
σ = (φβ0e0)−

1
σ 〈 LF , β0e0 〉S . (29)
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Let us prove next that c∗ can be the optimal solution in Phase 2 under certain conditions. 13

According to II, optimal consumption in Phase 2 needs to be equal to (φψ)
−1/σ

. On the other hand,

the candidate we have just obtained is c∗ = (φ∇v(LF ))
−1/σ

. Hence, to prove that c∗ is the optimal

solution for consumption, it remains to prove that ψ = ∇v(LF ).

From the first order optimal conditions we know that ψ(t, θ) = 1
φ(θ)c(t, θ)

−σ. We can substitute

c∗ using (29) to obtain that

ψ(t, θ) = β0e0〈 LF , β0e0 〉−σS . (30)

Using (30), the partial derivative of ψ with respect to t is

ψt(t, θ) = −σβ0e0〈 LF , β0e0 〉−σ−1
S

d

dt
〈 LF , β0e0 〉S + β0,te0〈 LF , β0e0 〉−σS .

Note that we also know that Lψ(t, θ) = λ0ψ(t, θ). Substituting ψt and Lψ into the optimal condition

for ψ

ψt(t, θ) + Lψ(t, θ)− ρψ(t, θ) = 0,

we have

−σβ0e0〈 LF , β0e0 〉−σ−1
S

d
dt 〈 LF , β0e0 〉S + β0,te0〈 LF , β0e0 〉−σS + (λ0 − ρ)β0e0〈 LF , β0e0 〉−σS = 0,

−σβ0e0〈 LF , β0e0 〉−σ−1
S

d
dt 〈 LF , β0e0 〉S +

(
λ0 − ρ+

β0,t

β0

)
β0e0〈 LF , β0e0 〉−σS = 0,

−σ d
dt 〈 LF , β0e0 〉S +

(
λ0 − ρ+

β0,t

β0

)
〈 LF , β0e0 〉S = 0,

d
dt 〈 LF , β0e0 〉S = 1

σ

(
λ0 − ρ+

β0,t

β0

)
〈 LF , β0e0 〉S .

Hence, the solutions coming from the two approaches are identical if and only if[
λ0 − ρ
σ

+
β0,t

β0

]
〈 LF , β0e0 〉S + β0

(
LF (θ2)e0(θ2)θ̇2 − LF (θ1)e0(θ1)θ̇1

)

=
1

σ

(
λ0 − ρ+

β0,t

β0

)
〈 LF , β0e0 〉S .

The condition above can be simplified to

1− σ
σ

β0,t

β0
〈 LF , β0e0 〉S = β0

(
LF (θ2)e0(θ2)θ̇2 − LF (θ1)e0(θ1)θ̇1

)
. (31)

In order to better understand our results, let us rewrite (21) as

1− σ
σ

β0,t(t)

β0(t)
=
N(θ2)[φ(θ2)e0(θ2)]−

1−σ
σ θ̇2 −N(θ1)[φ(θ1)e0(θ1)]−

1−σ
σ θ̇1

〈 (φe0)−
1−σ
σ N,1 〉S

.

13Note that dynamic programming does not allow us to introduce the border conditions, θ̇1 and θ̇2. For this
reason, we will mix here as in Appendix C dynamic programming and optimal control.
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Replacing
β0,t

β0
into (31) using the expression above, we obtain that

θ̇2

(
β0LF (θ2)e0(θ2)−

〈 LF , β0e0 〉S
〈 (φe0)−

1−σ
σ N,1 〉S

N(θ2) (φ(θ2)e0(θ2))
σ−1
σ

)

= θ̇1

(
β0LF (θ1)e0(θ1)−

〈 LF , β0e0 〉S
〈 (φe0)−

1−σ
σ N,1 〉S

N(θ1) (φ(θ1)e0(θ1))
σ−1
σ

)
.

(32)

We can rewrite (32) using the definition of θi, i.e. θ̇i = DLF,θ(θi), and using that

ψ(θ) = β0e0(θ)〈 LF , β0e0 〉−σS

and

β0 =

(
σ

ρ− λ0(1− σ)

) σ
1−σ

〈 (φe0)−
1−σ
σ N,1 〉

σ
1−σ
S (33)

to obtain

LF,θ(θ2)e0(θ2)

(
L(θ2)− σ

ρ− λ0(1− σ)
N(θ2)φ(θ2)

σ−1
σ ψ(θ2)

−1
σ

)
= LF,θ(θ1)e0(θ1)

(
L(θ1)− σ

ρ− λ0(1− σ)
N(θ1)φ(θ1)

σ−1
σ ψ(θ1)

−1
σ

)
.

(34)

(34) needs to be completed with the spatial boundary conditions that ensure that our operator is

self-adjoint

∇θLF (z)∇v(LF ) |θ2(t)
θ1(t)= LF (z)∇θ(∇v(LF )) |θ2(t)

θ1(t), (35)

that is:

LF,θ(θ2)ψ(θ2)− LF,θ(θ1)ψ(θ1) = L(θ2)ψθ(θ2)− L(θ1)ψθ(θ1). (36)

Hence, the optimal solution for the co-state variable in Phase 2 is given by the following system made

of a PDE for the shadow price of fertile land, two boundary conditions on ψ and ψθ at θ1 and θ2, plus

a transversality condition

III



ψt(t, θ) + Lψ(t, θ)− ρψ(t, θ) = 0, ∀t ≥ τ, and ∀θ ∈ S,

LF,θ(θ2)e0(θ2)
(
L(θ2)− σ

ρ−λ0(1−σ)N(θ2)λ(θ2)
σ−1
σ ψ(θ2)

−1
σ

)
= LF,θ(θ1)e0(θ1)

(
L(θ1)− σ

ρ−λ0(1−σ)N(θ1)φ(θ1)
σ−1
σ ψ(θ1)

−1
σ

)
, ∀t ≥ τ,

LF,θ(θ2)ψ(θ2)− LF,θ(θ1)ψ(θ1) = L(θ2)ψθ(θ2)− L(θ1)ψθ(θ1), ∀t ≥ τ,

limt→∞ ψLF = 0, ∀θ ∈ S.

G. Proof of Proposition 5. Steady states in Phase 2.

If a steady state is attained at time τ ′ ≥ 0, then θ̇1(t) = θ̇2(t) = 0 for all t ≥ τ ′. Let us denote

the steady state solution (L̄F , ψ̄, θ̄1, θ̄2). At the steady state, the left hand side of (36) is zero. Since
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LF (θ̄i) = L(θ̄i) for i = 1, 2, (36) implies that

L(θ̄1)e0,θ(θ̄1) = L(θ̄2)e0,θ(θ̄2).

By definition of the steady state, L̄F is the solution of

LL̄F = φN (φβ0e0)
− 1
σ 〈 L̄F , β0e0 〉S ,

with L̄F (θ̄1) = L(θ̄1) and L̄F (θ̄2) = L(θ̄2). Besides, we know that L̄F,θ(θ̄2) = L̄F,θ(θ̄1) = 0. c̄ will

obtain using that ψ̄ = 1
φ(θ) c̄

−σ. According to III, ψ̄ is a solution to

Lψ̄ − ρψ̄ = 0. (37)

To complete the description of the steady state, we need the border conditions for c̄ and ψ̄. c̄(θ̄1) and

c̄(θ̄2) follow from (32) and (33). Note that (32) holds if the parenthesis are zero. Let us develop for

θ̄1, knowing that computations are identical for θ̄2. Then, from (32)

β0LF (θ1) =
〈 LF , β0e0 〉S

〈 (φe0)−
1−σ
σ N,1 〉S

N(θ1) (φ(θ1)e0(θ1))
σ−1
σ .

Since c(θ1) = 〈 LF , β0e0 〉S (φ(θ1)β0e0(θ1))
−1
σ , then

β0LF (θ1)〈 (φe0)−
1−σ
σ N,1 〉S = N(θ1)φ(θ1)cβ

1
σ
0 ,

so that

c(θ1) =
LF (θ1)

N(θ1)φ
β
σ−1
σ

0 〈 (φe0)−
1−σ
σ N,1 〉S .

Using (33), we obtain that

c̄(θ̄1) =
ρ− λ0(1− σ)

σ

LF (θ̄1)

N(θ̄1)φ(θ̄1)
and c̄(θ̄2) =

ρ− λ0(1− σ)

σ

LF (θ̄2)

N(θ̄2)φ(θ̄2)
.

The border conditions for ψ̄ implied in (32) are

ψ̄(θ̄1) =
1

φ(θ̄1)1−σ

(
ρ− λ0(1− σ)

σ

LF (θ̄1)

N(θ̄1)

)−σ
and ψ̄(θ̄2) =

1

φ(θ̄2)1−σ

(
ρ− λ0(1− σ)

σ

LF (θ̄2)

N(θ̄2)

)−σ
.

Hence the steady state (L̄F , ψ̄, θ̄1, θ̄2) is the solution to
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LL̄F = φN (φβ0e0)
− 1
σ 〈 L̄F , β0e0 〉S ,

L̄F (θ̄1) = L(θ̄1), L̄F (θ̄2) = L(θ̄2),

Lθ(θ̄1) = 0, Lθ(θ̄2) = 0,

Lψ̄ − ρψ̄ = 0,

ψ̄(θ̄1) = 1
φ(θ̄1)1−σ

(
ρ−λ0(1−σ)

σ
LF (θ̄1)

N(θ̄1)

)−σ
,

ψ̄(θ̄2) = 1
φ(θ̄2)1−σ

(
ρ−λ0(1−σ)

σ
LF (θ̄2)

N(θ̄2)

)−σ
.

Recall that in Phase 2 ρ < λ0 = max
λ∈σ(L)

λ. Since ψ̄ solves Lψ−ρψ, ψ is an eigenvalue of L. Additionally,

we know that λ̄ 6= 0, meaning that there exists a non-zero steady state that we characterize next.

Since the eigenvectors of L are orthogonal, then

〈 ψ̄, e0 〉S = 0 ⇐⇒ 〈 c̄
−σ

φ
, e0 〉S = 0 ⇐⇒ 〈

[〈L̄F , β0e0 〉S(φβ0e0)−
1
σ ]−σ

φ
, e0 〉S = 0

⇐⇒ 〈 L̄F , β0e0 〉−σS β0〈 e0, e0 〉S = 0 ⇐⇒ 〈 L̄F , β0e0 〉S = 0.

The last equality obtains because β0 6= 0 and 〈 e0, e0 〉S = 1. Finally, since L̄F is a solution to

LL̄F = φN (φβ0e0)
− 1
σ 〈 L̄F , β0e0 〉S ,

and since 〈 L̄F , β0e0 〉S = 0, we have that LL̄F = 0, which implies that L̄F ∈ kerL, i.e. L̄F is a

solution to LL̄F = 0 ⇐⇒ DL̄′′F +A(φ− ν)L̄F = 0.
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