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Abstract

This article studies the optimal intertemporal allocation of resources devoted to
the prevention of deterministic epidemics that admit an endemic steady-state.
In a stylized economy, the dynamics of the optimal prevention depends on the
interplay between the epidemiological characteristics of the disease, the labour
productivity and the level of intergenerational equity. A minimal level of labour
productivity is shown to be necessary to reduce in the long run the prevalence
rate of the epidemic. If this threshold is not reached, the prevention is then
at best temporary, simply slowing down the spread of the epidemic disease.
However, it may not optimal to undertake temporary prevention. Conversely,
if labour productivity is suffi ciently high, permanent allocation of resources to
prevention is feasible but not necessarily optimal. If it is the case, the prevention
monotonically increases with time for low initial prevalence rate, while it is
decreasing or hump-shaped otherwise. The global analysis of the dynamics
permits to uncover paths that yield to the eradication of the epidemic disease.
It is shown that such paths are optimal if the pure discount rate is suffi ciently
low. Along those paths, the prevention is initially large and reaches zero in
finite time.
JEL Classification: I18, C61
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1 Introduction

Epidemic diseases constitute major health issues for which there is large con-

sensus on the legitimacy of governments interventions. Yet barely no analysis

has been undertaken to determine the socially optimal allocation of resources

to control the evolution of epidemics. In this article, we derive a welfare cri-

terion from individual preferences and give precise foundations on a generally

held belief, according to which intervention should begin as soon as possible and

involve large expenses. We focus our analysis on expenditure that reduce the

number of contaminative contacts per unit of time and, consequently, reduce

the spread of the epidemic. They include prevention campaigns that modify in-

dividuals’behaviors, diffusion of masks or condoms that reduce the probability

of a contact to be infectious, and any measures that reduce physical contacts

such as lockdowns of populations. All those policies will be named prevention

measures below, and our objective will be to determine the optimal intensity

over time of the prevention in a economy that faces an epidemics.

Epidemics’prevention is a legitimate topic for economics since, as argued by

Bloom and Canning [9], there is little doubt that resource constraints play an

important role in the spread of epidemics. Moreover diseases importantly affect

labor and capital markets and thus growth. However, and despite the fact that

past epidemics were recognized as economic tragedies, Gersovitz and Hammer

[23] pointed out that it is only recently that economists have entered the field.
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Most articles adopt a positive approach focusing on private behaviors, such as

individual choices on self-exposure to the risk (as in Geoffard and Philipson

[25] and Kremer [32]), health expenditure (Momota et al. [36]), human capital

accumulation (Bell and Gersbach [6], Corrigan et al. [17] and Boucekkine et al.

[11]), fertility (Young [44]), income distribution ([12]) or biodiversity (Bosi and

Desmarchelier [14]). Some papers analyzes the effect of public policies on private

behavior (e.g. Geoffard and Philipson [26]), while others consider optimal policy

correcting for the obvious externalities the epidemics generate (e.g. Gersovitz

and Hammer [24], Francis [21] or Bethune et al. [8]).

Even though only few papers in economics adopt a normative perspective,

there exists a rich mathematical epidemiology literature, that dates back from

Bernouilli [7]. Following Sethi [40] and Wickwire [43], it is common to use op-

timal control techniques to define the desirable timing of vaccination, screening

or health promotion campaigns. In most cases these studies use as a criterion

a convex combination of the dynamic costs of the control and of the number of

infected individuals. Moreover, the time horizon is usually finite and, in ana-

lytical models, the problem is linear with respect to the control. Based on this

approach Behncke [5] finds that the optimal solution is, in general, such that the

prevention effort is maximal on some initial time interval and then set to zero

(see also Morris et al. ). When the case of disease eradication is considered, the

problem is more complex since terminal conditions are free (Barrett and Hoel

[4]). Some economic studies (in particular Gersovitz and Hammer [23], Francis

2



[21], Feichtinger et al. [20] and Alvares and al. [1]) modify the criterion and use

the present discounted value of total income net of the costs of the disease and

of the control. To conclude, we can safely state that most of the epidemiological

literature relies on economic calculus and ignore approaches based on welfare.

We propose an optimal control model in the tradition of Ramsey [39], Cass

[15] and Koopmans [33] in which the whole population is affected by an epidemic

disease, whose dynamics is rather general while admitting an endemic steady-

state. The social welfare function is the present discounted value of the product

of individual utility and the size of the population. We notably show how this

criteria relies on preferences. The introduction of population in the objective

is key to avoid the problem stressed by the optimal population literature (see

notably Dasgupta [18]) about maximizing the welfare of alive individuals only.

Our work extends key contributions of Delfino and Simmons [19], Boucekkine

et al. [10] and Goenka and Liu [27], Goenka et al. [28], who consider spe-

cific epidemic dynamic processes and study local dynamics, and Gersovitz and

Hammer [24], who proceed by simulations. A second important assumption we

make is about the production structure which is of the ‘yeoman farmer’type

and allow us to completely solve the model despite a general formulation for the

epidemic dynamics. The dynamics of the optimal prevention then depends on

the interplay between the epidemiological characteristics of the disease, labour

productivity and intergenerational equity. We believe it’s important to charac-

terize the global dynamics of the optimal system as it permits to visualize both
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the objective that should be reached in the short run, and some trajectories

that could be hidden while performing local long-run analysis.

We find that it may be optimal to reduce the prevalence rate of the epidemic

in the long run only if labour productivity is above some minimal level. If this

threshold is not reached, prevention is then at best temporary, simply slowing

down the spread of the epidemic disease. However, it may not be optimal to

undertake temporary prevention. When instead labour productivity is suffi -

ciently high, permanent allocation of resources to prevention is feasible though

not necessarily optimal. If permanent prevention is socially optimal, the pre-

vention effort monotonically increases with time for low initial prevalence rate,

and is hump-shaped or decreasing otherwise. Hence, our paper establishes that

under a welfare criterion for social intertemporal optimization a “the-sooner-

the-better” strategy may not be the optimal one, in contrast to Behncke [5].

This statement is however reversed when we consider paths that may yield to

the eradication of the epidemic disease. We first show that a simple modification

of traditional epidemic models can be made to allow for eradication. Trajecto-

ries that drive to eradication are characterized by an increasing prevention for

a finite interval of time and, once the epidemics is eradicated, the prevention is

zero. We show that upon existence, such paths are optimal if the pure discount

rate is suffi ciently small. In that case, it consequently is socially desirable that

prevention should begin as soon as possible. Moreover, the effort initially de-

voted to prevention is larger for eradication than for any other dynamics. This
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is a theoretical foundation for an “whatever it costs” response to an epidemic

disease.

We begin by presenting the dynamics of the population affected by an epi-

demic in section 2. The epidemiological assumptions are put forward and dis-

cussed using standard examples of HIV epidemics and Flu epidemics. In section

3 we set up the social planner’s problem, then prove the existence of a solution

and characterize it. The dynamics of the optimal prevention is analyzed in sec-

tion 4. The question on whether it is socially optimal to eradicate the epidemic

disease is studied section 5, and illustrated with a hand solved example. Section

6 concludes.

2 Epidemic dynamics

This section presents the general characterization of the epidemic dynamics that

will be used in the paper. The evolution of the disease is constrained by some

assumptions that are satisfied, for instance, in classical compartmental epidemic

models (Kermack and Mac Kendrick [31]). We also propose to introduce an

arbitrarily small threshold above which the dynamics is valid and below which

the epidemics is considered as eradicated. This modelling feature will be key in

the subsequent analysis.

2.1 A two-classes framework

Time is continuous and indexed by t ∈ R+. The population at time t, whose size

is denoted Pt, is affected by an epidemic disease and is thus decomposed in two
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classes of individuals: the susceptible, who are healthy, and the infected, who

may transmit the disease. The number of individual of each class is respectively

denoted St > 0 and It ≥ 0, and satisfy: Pt = St+It. It will be convenient to de-

fine the relative share of infected individuals with respect to share of susceptible

ones as follows: at = It/St. This ratio is a monotonically increasing transforma-

tion of the prevalence rate of the epidemic, given by: It/Pt = at/ (1 + at), and

will be named as the prevalence index throughout the remaining of the paper.

Moreover, we consider the following general law of motion for at:

ȧt = g (ht, at) at, (1)

where the dot indicates the first derivative with respect to time and where ht

stands for the per capita expenditure devoted to the epidemic’s control. These

expenditure can be interpreted as prevention campaigns and any preventive

measures that reduce the number of contaminative contacts per unit of time

and, consequently, reduce the spread of the epidemic (see, for instance, Castilho

[16]). Note that these expenditure can not stand for vaccination campaigns or

screening and isolation strategies, as they produce a third class of individuals

within the population; a case that is not considered here. In the rest of the

paper, ht will be referred as the level of prevention at time t.

The growth rate of the prevalence index, characterized by function g, is

supposed to satisfy:

H1. g : R2
+ → R, is C2, g′1 (ht, at) < 0, g′2 (ht, at) < 0 and g′′11 (ht, at) > 0. There
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exist a∗ > 0 and h∗ > 0 such that g (0, a∗) = g (h∗, 0) = 0.

Assumption H1 fully describes the kind of epidemic we are dealing with. The

growth rate of the prevalence index is supposed to decrease with at which, of

course, does not imply a monotonic relationship between ȧt and at. If there is no

prevention, the epidemic lasts forever but stabilizes within the population: the

prevalence index converges to the endemic steady-state a∗. The other steady-

state, given for a = 0, and named in the epidemiological literature the disease-

free equilibrium, can easily be check as being unstable as Assumption H1 implies

g (0, 0) > 0. The reproduction number1 , i.e. the number of secondary cases

that can appears when one infected individual is added in a population of fully

susceptible individuals for the duration of her illness, denoted R0, is here larger

than 1 (van den Driessche [42]). Figure 1a represents this dynamics.

6

-

g(0, at)at

at
a∗- - �

Figure 1a: The dynamics of at when ht= 0

Prevention may modify the dynamics of the epidemics. To fix ideas, let

assume that ht is an exogenous constant. If this constant belongs to (0, h∗),

the prevalence index converges to another stable steady-state characterized by
1Formally, we can write: ag (h, a) = F (h, a) + V (a) where F include the terms related

to the transmission of the disease and V those related to other causes (death, etc.). The
derivative at a = 0 of the pervious equation is given by: g (h, 0) = F ′(h, 0) + V ′(0). Then
the (controled) reproduction number is defined as Rc = −F ′(h, 0)/V ′(0), while the (classical)
reproduction number is R0 = −F ′(0, 0)/V ′(0).
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a prevalence rate that is lower than a∗; the reproduction number with positive

control Rc remains larger than 1. However, if the constant is larger than h∗, the

epidemic dynamics are dramatically modified as the prevalence index converges

to zero; the control is suffi cient to eliminate the disease in the long run and

we now have Rc < 1. Figure 1b illustrates such dynamics with two different

exogenous ht: h1 ∈ (0, h∗) and h2 > h∗. In the remaining of the paper, ht will

be the control variable optimally chosen by a benevolent social planner.

6
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g(h2, at)at
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Figure 1b: The dynamics of at when ht> 0

Let us remark that it is easy to extend our approach to other kinds of epi-

demic dynamics. An alternative dynamics without prevention could be obtained

by assuming: a∗ < 0. Such an epidemic would not exhibit an endemic steady-

state. The unique stable steady-state being the one with a zero prevalence index.

Prevention may then be used to accelerate the convergence process. Moreover,

assuming that a∗ → +∞, allow to consider an epidemic whose prevalence in-

definitely increases if there is no control of it.

By definition, the population growth rate writes as follows:

Ṗt
Pt

=
1

1 + at

(
Ṡt
St

+
İt
It
at

)
. (2)

For computational reasons, we assume that the growth rate is characterized by
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a function denoted n (.) that satisfies:

H2. Ṗt/Pt = n (at). n : R+ → [n
¯
, n (0)], is C2, n′ (at) ≤ 0.

Assuming that the population growth rate does not depend on (St, It, ht) is

rather strong but is widely used in the epidemiological literature, notably in the

examples presented below. Moreover, the assumption concerning non positivity

of n′ (at) is not only more realistic -epidemics increase the death rates- but also,

as it will be discussed throughout the paper, more meaningful.

2.2 A minimal threshold for the epidemics

We now consider a simple generalization of equation (1), which is given by:

ȧt =

∣∣∣∣∣∣
g (ht, at) at if at > amin

0 if at ≤ amin,
(3)

where 0 ≤ amin � 1. Moreover, Assumption H1 is left unchanged. Equation

(3) introduces a threshold below which the epidemic is considered as eliminated

(less than one individual is infected). Below it, the prevalence index is negligible

and the epidemic can not survive and spread within the population. Above this

threshold, the dynamics has the same qualitative property as the one we have

considered before. Technically, the main difference between the case amin > 0

and the case amin = 0 that is usually considered in the epidemiology literature,

is that steady-state amin can be reached in finite time, which will appear as a

key property below. We will then assume that when amin is reached, the disease

is eradicated.
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The dynamics of at is represented in Figure 2, in the case of no prevention.

6

-

ȧ

at
a∗

- �-
amin

Figure 2: The dynamics of at with amin> 0

Our framework generalizes most works in economics that have analytically

studied the optimal dynamics of an epidemic: Delfino and Simmons [19], Gerso-

vitz and Hammer [23] and Barrett and Hoel [4] study a dynamics similar to

(1), but for a function g which is specified, while Boucekkine et al. [10] con-

sider a shock on the initial stock of the population describing an epidemic with

instantaneous effects and no endemic steady-state.

2.3 Examples

Our assumptions on functions g and n are now confronted to two examples: a

SI model, which can describe the HIV epidemic and a SIS model, which can

describe flu epidemics. In SIS models, infected individuals may recover for the

disease but are not immunized and may again be infected. This is relevent

for flu if one considers a mutating virus. However, most current models of the

SARS-CoV-2 assume this is not the case and use three-compartments models

of the SIR type (Avery et al. [3]). Such models can be covered by our analysis

provided that the size of the population is kept constant.
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Example 1. SI model (HIV epidemic)

Let us first suppose that amin = 0 and ignore the possibility to control the

epidemics. The natural growth rate of the susceptible population is given by

β−µ, where β > 0 and µ > 0 respectively stand for the birth and the death rates,

while the growth rate of the infected population is β − µ− γ; parameter γ ≥ 0

measures the over-mortality yield by the disease. Both vertical and horizontal

contamination are considered: first a proportion π ∈ [0, 1] of the children of

infected people are born healthy, while the others are infected. Moreover, as in

May and Anderson [34], it is assumed that the incidence of the epidemic follow

a law in frequency: contamination is proportional, up to a parameter σ > 0,

to the density of infected individuals in the total population. The dynamics of

each subpopulation is therefore given by:

Ṡt = (β − µ)St + βπIt − σSt
It

St + It
, (4)

İt = [β (1− π)− µ− γ] It + σSt
It

St + It
. (5)

It can be easily shown that this system does not generically admit a steady-state

except: St = It = 0. Hence, the dynamics of the epidemic is better understood

using per capita variables or, equivalently, by using our prevalence index at

(defined as at = It/St). Using (4) and (5), the dynamics of at solves:

ȧt = [σ − βπ − γ − βπat] at, (6)
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which is a logistic equation. Therefore, if π ∈ (0, 1], the dynamics of at writes:

at =

(σ−βπ−γ)
βπ a0

a0 +
(

(σ−βπ−γ)
βπ − a0

)
e−(σ−βπ−γ)t

. (7)

Equation (6) admits (i) two steady-states if σ > βπ + γ: namely, â = 0, which

is unstable and a∗ = (σ − βπ − γ) /βπ, which is stable, (ii) one steady-state if

σ ≤ βπ+ γ: namely, â = 0, which is stable. Consequently, if the contamination

coeffi cient σ is suffi ciently low, the epidemic ultimately disappears. Conversely,

if σ is high, the epidemic survives as the prevalence index stabilizes.2 If there is

full vertical transmission (i.e. if π = 0), the only possible steady state is â = 0,

whose stability is given by the sign of σ − γ.

Using (4) and (5), the population growth rate n (at) solves:

n (at) = β − µ− γat
1 + at

, (8)

which decreases in at; moreover, β − µ− γ ≤ n (at) < β − µ. The higher bound

for n (.) being the population growth rate without epidemic.

Suppose now that prevention may affect the epidemic dynamics through

the contamination parameter by reducing the number of effective contacts by

time unit. Let ht be the per capita expenditure devoted to prevention and the

contamination coeffi cient at time t be a function that writes σ (ht) and satisfies

2Alternatively, one may present the stability results using the reproduction number which
is here given by R0 = (σ − βπ) /γ. The dynamics of a can be rewritten as:

ȧt =

[
R0 − 1−

βπ

γ
at

]
atγ,

which implies that a∗ > 0 if and only if R0 > 1.
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σ′ (ht) < 0. The dynamics of at is now given by:

ȧt = [σ (ht)− βπ − γ − βπat] at. (9)

It immediate to check that Assumption H1 is satisfied only if π > 0 and if

σ (0) > βπ + γ and that Assumption H2 is always satisfied. Hence, full vertical

transmission is excluded here.

Remarkably, our example easily extend to the case amin > 0, for which

equation (7) holds for at ≥ amin only. The stability analysis is modified as

follows: if σ > βπ + γ, a∗ remains a stable steady-state while if σ < βπ + γ,

amin is stable and can be reached in finite time.

Example 2. SIS model (Flu epidemic)

Following Hethcote and Yorke [30], let us now consider the following dynam-

ics for the susceptible and the infected:

Ṡt = β (St + It)− µSt + δIt − σSt
It

St + It
, (10)

İt = − (δ + µ+ γ) It + σSt
It

St + It
. (11)

The main difference are that there is no vertical transmission of the disease,

and that infected individuals recover at rate δ > 0. Then, the dynamics of the

prevalence index satisfies:

ȧt = [σ − δ − γ − β − at (δ + β)] at, (12)

while the population growth rate is the same as (8). The stability analysis is
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similar to that of the previous example.3 Again, we can assume that σ is a

decreasing function of the level of prevention h.

3 The optimal control problem

This section establishes the optimal control problem we are going to study. It

is an infinite horizon framework with an economic structure and the population

dynamics described in section 2. We first present and discusses the social welfare

function and then prove the existence of an optimal solution.

3.1 The social welfare function

The social welfare function we introduce is derived from the aggregation of

individual’s preferences. Each individual is supposed to belong to a dynasty of

altruistic individuals. Without epidemics, the growth rate of the dynasty is the

constant n (0). However, at each point of time, the epidemic disease may kill

the dynasty. Denote by λt the probability as of time t = 0 that the dynasty is

still alive at time t. If alive at time t, the utility of a dynasty member depends

on consumption ct and is independent of the health status. The utility function

is then u (ct). If not alive at time t, the utility is supposed to be the constant

u (0)� −∞. The expected utility of the dynasty at time t = 0 is therefore:

∫ +∞

0

e−(ρ−n(0))t [λtu (ct) + (1− λt)u (0)] dt, (13)

3The reproduction number is now given by R0 = σ/ (δ + β + γ) and the dynamics of the
prevalence index can be rewritten as:

ȧt = (δ + γ + µ)

[
R0 − 1− at

δ + β

δ + γ + µ

]
at.
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where ρ is the pure discount rate which satisfies the following restriction:

H3. ρ > n (0) .

Moreover, function u satisfies the following assumption:

H4. u : R+ → R+, u ∈ C3, u′ > 0, u′′ < 0 and limc→0 u
′(c) = +∞.

To obtain the social welfare function, we assume that the population is com-

posed by a continuum of identical dynasties, whose total size at time t = 0 is P0.

By the law of large numbers, the probability λt is, at the aggregate level, the

ratio between the size of the population and the size that would prevail without

epidemic. Thus: λt = Pt/P0e
n(0)t = e

∫ t
0

[n(as)−n(0)]ds. The social welfare func-

tion at time t = 0 is therefore simply obtained by multiplying the function (13)

by the initial size of the population P0, and rearranging to obtain:

P0

∫ +∞

0

e−
∫ t
0

[ρ−n(as)]ds [u (ct)− u (0)] dt+
P0u (0)

ρ− n (0)
. (14)

Maximizing this latter function is, in fact, equivalent to maximizing:

∫ ∞
0

e−ρtPtu (ct) dt. (15)

The social planner function is thus the discounted value of the product of the

size of the population, Pt, and of the instantaneous utility of each individual.

For a given path of consumption, a larger population hence increases the social

welfare. Consequently, the assumption n′ (at) < 0, implies that reducing the
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number of infected individuals increases welfare, everything being equal. Ob-

serve finally that the limit case n′ (at) = 0, which features epidemics that have

no impact of the population growth, implies λt = 1 and a standard objective

function.

3.2 The social planner’s program

The social planner faces the resource constraint of the economy. There is one

material good produced using labor and it is assumed that the productivity of an

infected individual is lower than the one of an susceptible individual. Production

per capita writes: αf (at) where f is C1 a non increasing function and α > 0

is a measure of the productivity of labor. The larger α, the wealthier the

economy. For instance, one may consider that the production function is linear

with respect to labor, with the productivity being equal to α for susceptible

individuals and to ηα for infected individual (with 0 ≤ η ≤ 1). Then, in this

example: f (at) = (1 + ηat) / (1 + at).

The produced good can be used for consumption or for the expenditure

devoted to the control of the epidemics. The resource constraint written in per

capita units is therefore:

ct + ht = αf (at) . (16)

Moreover, consumption, prevention and the prevalence index should be non

negative. The program of the social planner is to maximize (15) subject to (1)
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and (16). It writes:

max
ht

∫ ∞
0

e−
∫ t
0
θ(as)dsu (αf (at)− ht) dt,

s.t.

∣∣∣∣∣∣∣∣∣∣
ȧt =

∣∣∣∣∣∣
g (ht, at) at if at > amin

0 if at ≤ amin,

0 ≤ ht ≤ αf (at) and a0 ∈ (amin, a
∗) given.

(17)

where θ (at) := ρ − n (at). We note that since n is a decreasing function and

given Assumption H3, one has θ (.) > 0 and θ′ (.) > 0.

The problem is formally similar to an optimal growth model with endogenous

discounting (see also Boucekkine et al. [13]). To reduce the length of the proofs

and to focus on the meaningful cases, we solved the problem for a0 ∈ (amin, a
∗)

but the analysis can be generalized to a0 > a∗. Let us notice that the problem

is trivial if the initial prevalence of the epidemic is below the minimal threshold

(i.e. a0 ≤ amin): the optimal consumption is equal to the production αf (amin)

and the prevention is equal to zero.

The intertemporal trade-off is the following: an increase in ht yields a reduc-

tion of both the immediate per-capita consumption and the prevalence of the

epidemic. The latter implies first an increase in future per-capita production

and therefore the expenditure devoted to prevention can be understood as an

investment. Moreover, reducing prevalence leads to a modification of the spread

between the discount rate and the population growth rate. As θ′ (at) > 0, an

increase in ht implies a reduction of the spread, meaning a more equal treatment

between individuals of different generations as it increases the weight associated
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to the utility of future generations.

3.3 An existence result

The program (17) is a non autonomous problem with endogenous discounting

but can be equivalently analyzed as an exogenous discounting problem using the

virtual time method described by Uzawa [41]. The following results are then

derived.

Lemma 1 There exists an optimal solution to program (17). The optimal so-

lution satisfies ht < αf (at).

Proof. See Appendix.

We now turn to the characterization of the solution by analyzing first the

case such that amin = 0, which is standard in mathematical epidemiology. The

main goal is to characterized the dynamics of the optimal prevention strategy.

Then, we turn to the case amin > 0 to analyze the issue of eradication.

4 Is prevention optimal?

This section studies the system of equations (18) that characterizes the dynam-

ics of prevalence and prevention when there is no minimal threshold for the

epidemics (i.e. for amin = 0). Local dynamics around steady-state are first

studied and a geometrical analysis using phase diagrams is then provided.

4.1 The optimal dynamics for amin = 0

Let us first give the equations describing the optimal trajectories.
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Lemma 2 An optimal path is necessarily a solution of the following system:
ȧt = g(ht,at)at

θ(at)

ḣt = Φ(ht,at,ct)

−θ(at)
[
u′′(αf(at)−ht)
u′(αf(at)−ht)

+
g′′11(ht,at)
g′1(ht,at)

] if ht > 0,

ȧt = g(0,at)at
θ(at)

if ht = 0,

(18)

with ct = αf (at)− ht and:

Φ (ht, at, ct) =

[
−αf ′ (at)

u′′ (ct)

u′ (ct)
+
g′′12 (ht, at)

g′1 (ht, at)
+
θ′ (at)

θ (at)

]
g (ht, at) at

+

[
−αf ′ (at) +

u (ct)

u′ (ct)

θ′ (at)

θ (at)

]
g′1 (ht, at) at

−g′2 (ht, at) at + θ (at) . (19)

Proof. See the Appendix.

From Lemma 2, it is straightforward to derive the optimal dynamics of con-

sumption, which is always positive (see Lemma 1).

4.2 Prevention in the long run

Let us first consider the local dynamics in the neighborhood of the steady-states

of (18). We define a ‘corner steady-state’as a steady-state for which the optimal

prevention is zero and an ‘interior steady-state’as a steady-state for which the

optimal prevention is positive.

Given Assumption H1, the pairs (a∗, 0) and (0, 0) are the two corner steady-

states of our system. The first one satisfies the following properties:

Lemma 3 Provided that there exists an optimal path that converges to the cor-

ner steady-state (a∗, 0), it satisfies ht = 0 for t large enough.
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Proof. See the Appendix.

Whatever its initial dynamics, the optimal prevention is thus equal to zero

after a finite date if the prevalence index converges to an endemic steady-state

without prevention. The intuition is that (a∗, 0) is not a steady-state for the

interior dynamics of system (18). Optimal prevention may hence not converge

to zero but only reach zero in a finite time. Since it is never optimal to reach a∗

in a finite time, we conclude that ht = 0 in the neighborhood of (a∗, 0). Note

that this argument rules out local indeterminacy.

Concerning the second corner steady-state, we obtained the following:

Lemma 4 There is no optimal path that converges to (0, 0) .

Proof. See the Appendix.

The eradication of the epidemics is not a possible output of the model with a

traditional representation of the epidemics. The intuition, which is illustrated

in the phase diagrams below is the following. A trajectory that would converges

to the desease-free-equilibrium would necessary imply ḣt > 0 forever, which is

not possible because of the budget constraint.

Let us now study interior steady-states, upon which prevention is positive.

Using (18), such a steady-state is a pair (a, h) that satisfies a ∈ (0, a∗) , h ∈
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(0, αf (a)) and solves:

g (h, a) = 0, (20)

− [g′2 (h, a) a− θ (a)] = −
[
−αf ′ (a) +

u (c)

u′ (c)

θ′ (a)

θ (a)

]
g′1 (h, a) a, (21)

where c = αf (a) − h. Then, a necessary condition for existence of an interior

steady-state is the positivity of equation (21)’s right hand side, which rewrites

as follows:

d

da

(
u (αf (a)− h)

θ (a)

)
< 0. (22)

Condition (22) means that the discounted welfare of a generation in the long

run should be increased by a reduction of the epidemic. The increase in util-

ity implied by a marginal decreases of a (measured by −αf ′ (a)u′ (c) /θ (a))

should be larger than the negative impact on the endogenous discount (given

by θ′ (a)u (c) / (θ (a))
2). Necessary and suffi cient conditions (20) and (21) may

be rewritten in the following way:

u′ (u (αf (a)− η (a)))

θ (a)
=
dȧ

dh
× d

da

(
u (αf (a)− η (a))

θ (a)

)
, (23)

where η (a) is the implicit relation between h and a derived from Assumption H1.

The contemporaneous desutility induced by a marginal increase in prevention

should equal the benefits of the reduction of the epidemic.

The following lemma studies the existence of interior steady-states.

Lemma 5 i) There exists ᾱ > 0, such that there is no interior steady-states

if α ≤ ᾱ. ii) There exists α̂ > ᾱ, such that there exist interior steady-states if
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α ≥ α̂. iii) Upon existence, interior steady-states are locally unstable.

Proof. See the Appendix.

Lemma 5 shows the importance of labor productivity, or equivalently, of the

level of wealth per capita, on the prevalence index in steady-state: there are

thresholds below which there is an high prevalence and no prevention, and

above which there is lower prevalence with some prevention. The intuition of

this result hinges on the concavity and on the Inada condition imposed on the

utility function: when the average production is low, resources are exclusively

devoted to consumption since a marginal decrease of it produces a large desu-

tility and since the marginal impact of prevention is independent of the level of

productivity. Consequently, an interior steady-state is more likely to exist if the

labor productivity is increased: the immediate marginal desutility of prevention

(i.e. the LHS of (23)) is then lowered while its impact on future generations’

discounted utility (i.e. the RHS of (23)) is increased.

Importantly, interior steady-states are locally unstable. As it will be done be-

low, it is possible to characterize, under further conditions, saddle-path steady-

states. Hence, from Lemmas 3 and 5, we conclude there are at most two kinds

of paths that converge to a steady-state. First, we have a family of paths

converging to corner steady-states. Second, upon existence of a saddle-path

steady-state, we have the stable arm converging to one interior steady-state.

All paths are candidates for optimality.
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Suppose now there exists at least one saddle-path steady-state. Let us com-

pare the unique path that converges to this steady-state to the family of those

which converge to the corner steady-state.

Lemma 6 Suppose there exists a saddle-path interior steady-state, denoted by

(
ā, h̄
)
. The stable arm that converges to

(
ā, h̄
)
may not be optimal.

Proof. See the Appendix.

Lemma 6 shows that the existence of an interior steady-state does not implies

that the stable arm is necessarily optimal. In the proof, we show that using a

particular case where the long run cost of prevention is higher that the benefit

in terms of production of having a lower share of infected individuals. Then,

there exist sets of initial condition such that the intertemporal utility yield by

the stable arm is lower than the one yield by the path converging to the corner

steady-state. Conversely, there exists initial conditions, upon which the saddle-

path is always preferred to those converging to the corner steady-state.

4.3 The global dynamics of prevention

We now propose a geometrical representation of the results that have been

previously established by drawing the phase diagram associated to the system

of equations (18). To reduce the length of the proofs, an additional set of

restrictions is assumed:

H5. g′′12 (h, a) = 0, and −u′′′ (c) /u′′ (c) ≥ −u′′ (c) /u′ (c).
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Assumption H5 is suffi cient to ensure that isocline ḣ = 0, derived from function

Φ given in equation (19) is well defined for g > 0. The epidemic dynamics

considered in Assumption H1 is now constrained by further assumptions on the

impact of prevention on ȧt: it is now convex and proportional to at. Moreover,

the utility function restricts to a representative individual with absolute risk

aversion lower than absolute prudence, a property satisfied by standard utility

functions including those with harmonic absolute risk aversion. We established

the following properties.

Lemma 7 i) The ȧ = 0 locus is downward slopping in the plane (a, h) and

is such that ȧ > 0 below the locus. ii) For g > 0, the ḣ = 0 locus is de-

fined by a function h = χ (a) that satisfies lima→0 χ (a) = −∞ and is such

that ḣ > 0 above the locus. iii) As α increases, the ḣ = 0 moves upward in

{
(a, h) ∈ R2, g (h, a) > 0

}
.

Proof. See the Appendix.

Lemma 7 gives enough information to draw the phase diagram associated to

system (18). Depending on the existence of interior steady-states, optimal paths

can hence be represented. Possible phase diagrams are given by figure 3a if there
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is no interior steady-states and by figure 3b if there are two interior steady-states.
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Figure 3a: No interior steady-state

Note that we have represented the upper limit for h, given by function αf (a),

above the ȧ = 0 locus, but it as well can be below for some value of a. For

an initial condition a0 ∈ (0, a∗), there is hence a family of feasible paths: they

converge toward the corner steady-state (0, a∗) and provided that the ḣ = 0

locus is above the horizontal axis, a positive level of prevention is possible for

a finite interval of time. The dynamics of the epidemic may be slowed down

for a while but, ultimately, the prevalence index reaches the long-run level with

no intervention. Another family of paths is drawn in Figure 2a: they move to
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the vertical axis with a high level of prevalence. These paths are however not

feasible since the prevention monotonously increases with time and reaches in

finite time the upper limit given by αf (a). The consumption is there equal to

zero and, consequently, the path is not optimal.

Labor productivity, which has been shown in the previous section to be

crucial for the existence of interior steady-states, has an impact on the dynamics.

Geometrically, as α increases, the ḣ = 0 locus and the constraint αf (a) move

up. Since the ȧ = 0 locus is left unchanged, interior steady-states are more

likely to appear, as stated in lemma 5 and drawn in Figure 3b.
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Figure 3b: Two interior steady-states
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Two interior steady-states are represented in the phase diagram of Figure 3:

a first one with a higher level of prevention and a lower prevalence, which is

saddle-path and a second one which is a repulsive cycle. Hence, in addition

to the families of paths that have been considered in the case without interior

steady-states, there is a unique path that converges to the saddle-path steady-

state. Remark that if there exist more than two interior steady-states, the phase

diagram would exhibit alternatively saddle-paths and cycles. If the stable arm

converging to the steady-state
(
h̄, ā
)
is optimal, the prevention monotonically

increase with time if a0 < ā and can be an hump shaped function of time if

a0 > ā.

In this phase diagram analysis, we have insisted on the fact that on the

neighborhood of the vertical axis, the growth rate of prevention is always positive

(i.e. ḣ > 0). This behavior is induced, using (18), by the assumption of a "not

too concave" relationship between the epidemic growth rate and the prevention.

More precisely, it is true if:

lim
h→0

g′′11 (h, 0)

g′1 (h, 0)
< −u

′′ (αf (0))

u′ (αf (0))
, (24)

which is satisfied in Assumption H5.

Note finally that any path that may converge to the vertical axis, and thus

to the eradication of the epidemic, necessarily reaches in finite time the resource

constraint and is therefore not optimal. Assuming the opposite inequality than

that of (24) would not change the statement about the impossibility to eradicate,
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but simply the phase diagram. In the next section, we assume that amin > 0,

which allows to consider the eradication of the epidemic.

5 The eradication of the epidemic

Lemma 4 has shown that eradication was not possible in the case a amin = 0.

We now consider the case with a positive threshold below which the epidemic

remains constant at a negligible prevalence rate. Below, we first show that a

trajectory that converges to amin > 0 is feasible and then give the conditions

for its optimality.

5.1 The trajectory toward eradication

We start with the following result.

Lemma 8 An optimal path that converges to the corner steady-state (amin, 0)

may exist. It satisfies ht = 0 for t large enough.

Proof. See the Appendix.

If amin > 0 is allowed, the eradication is feasible in our model. Since amin can

be reached in finite time, ht also reaches zero in finite time, as prevention has

no impact when at = amin.

5.2 Global dynamics with eradication

Let us now see how our phase diagrams are modified: a new feasible path

appears, which yields to the eradication of the epidemic in finite time. Figure
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4a represents a possible phase diagram when there is no interior steady-state.
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Figure 4a: Eradication with no interior steady-state

The family of paths that converges to the corner steady-state (0, a∗) is still

represented in Figure 4a. Moreover, there is a path that reaches the vertical

axis in finite time, along which prevention monotonically increases. Moreover,

the path is unique as it necessarily goes through the intersection between the

vertical line at amin and the ȧ = 0 locus. A necessary condition for the existence

of such a path is simply that those coordinates are feasible, meaning that the

h̆ such that g
(
h̆, amin

)
= 0 satisfies the following condition: h̆ < f (amin). A

path leading to eradication also appears when there are interior steady-states,
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as it is shown by Figure 4b.
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Figure 4b: Eradication with two interior steady-states

In the following lemma, we give a condition for the optimality of the eradication

of the epidemic.

Lemma 9 Suppose there exists a path that leads to the eradication of the epi-

demic. There is a threshold for the pure discount rate, denoted ρ̄, such that for

ρ < ρ̄, this path is optimal.

Proof. See the Appendix.
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When eradication is achieved, the discounted utility of generation t, (i.e. u (ct) /θ (at))

is the highest possible since there is no prevention and the prevalence index is

zero. This however implies that generations that have lived before the erad-

ication have supported large reduction of their welfare due to the necessarily

high levels of prevention devoted to the control of the epidemics. The path

that yields to eradication is thus optimal if the pure discount rate is suffi ciently

small.

5.3 A hand solved example

Let us illustrate our dynamics with a simple example that encompass the two

cases described in Section 2. Concerning the epidemics, we first assume that

the over-mortality rate of infected persons is zero (γ = 0), which considerably

simplifies the problem as n′ (a) = 0. Moreover, to reduce the number of parame-

ters, we assume n (0) = 0, which simply means that the death rate equals the

birth rate. Both restrictions are consistent with H1 and H3. We also suppose

that the impact of prevention on the infectious contacts is linear by writing:

σ (h) = σ0 − h, and assuming that h ∈ [0, σ0]. The dynamics of the prevalence

index is thus given by: ȧt = at [σ0 − ht − ζ (1 + at)] where ζ = βπ for the model

describing the HIV epidemic and ζ = δ + β for the model describing an epi-

demics of flu. The endemic steady-state without control is thus a∗ = σ0/ζ − 1,

which is positive provided that σ0 > ζ. Concerning the economy, we assume

u (c) = ln c and f (a) = 1− a, which imposes a ≤ 1.
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The optimal control problem is thus:

∫ ∞
0

e−ρt ln ctdt

s.t.

ȧt =

∣∣∣∣∣∣
at [(σ0 − α− ζ) + ct − (ζ − α) at] if at > amin

0 if at ≤ amin

max {0, α− αat − σ0} ≤ ct ≤ α− αat

a0 ∈ (amin,min {a∗, 1}) , given.

(25)

For at > amin, the optimal dynamics is given by the following system: ċt = −ct [ρ+ (ζ − α) at]

ȧt = at [(σ0 − α− ζ) + ct − (ζ − α) at]
(26)

while the optimal prevention is given by ht = α (1− at)− ct.

Two different cases shall be considered α ≤ ζ and α > ζ. For α ≤ ζ, the

phase diagram is presented in Figure 5a. The diagram represents two lines:

the isocline ȧt = 0 and the line given by ct = α (1− at), which represents the

upper limit for ct and the situation such that ht = 0; the isocline ċt = 0 does

not appear here as it is in the negative quadrant. In this diagram, there is

thus no interior steady-state, which is consistent with Lemma 7 as the level

of development given by α is low. For an initial prevalence a0, two trajecto-

ries are feasible, which converge to the corner steady-states, amin and a∗. The

first one features a temporary decline in consumption till the prevalence reaches

amin; then, consumption jumps to its highest possible level. In this trajectory,

prevention first increases with time and fall to zero when the epidemics is erad-

icated (Lemma 8). We see that such a trajectory is not likely to be optimal

if amin = 0 as consumption would converge to zero (Lemma 4). The second
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trajectory features a infinite decline in consumption as the epidemic converges

to the endemic steady-state; the prevention is always zero in that case (Lemma

3). Among those two trajectories, one is optimal and Figure 5a is a nice illus-

tration of Lemma 9. Compared to the second one, the trajectory that lead to

eradication indeed imposes initially a lower consumption that is compensated

later by a higher one. Such a strategy can be optimal only if the discount rate

is low.
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Figure 5a: Possible trajectories an initial prevalence index (case α < ζ)

For α > ζ (i.e. if the level of development is suffi ciently large), the phase
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diagram analysis (Figure 5b4) now represents the two isoclines ȧt = 0 and ċt = 0

and the line ct = α (1− at). We see there exists an interior steady-state, which

is given by ā = ρ/ (α− ζ), c = α + ζ − ρ− σ0, and h̄ = σ0 − ζ [1 + ρ/ (α− ζ)],

and is saddle-path (as established in Lemma 5). We represented the trajectories

for two initial prevalence index al0 and a
h
0 . The trajectory that converges to the

interior steady-state features a consumption that decreases over time for the

low initial prevalence and increase for the large one. There are, moreover, two

additional trajectories that converge to amin or a∗. The second corner steady-

state can be reached only if the initial prevalence is larger than ā. As in the case

with a low α, the choice between those trajectories depends on the pure discount

4The diagram represents three lines: the isoclines ċt = 0 and ȧt = 0 and the ct = α−αat,
which represents the upper limit for ct and the situation such that ht = 0.
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rate: the more the initial prevention, the higher the long run consumption.
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6 Conclusion

In this article, we have exhibited the relative role of resource constraints and

individual preferences on the dynamic of the optimal prevention. Resources

constraints are crucial for defining which paths are feasible, while preferences,

and notably the discount rate, are used to characterize optimality. In the limit

case of no pure discounting, as in Ramsey [39], "the-sooner-the-better" strategy

is always optimal, provided there is an minimal threshold below which the epi-

demics is considered as eradicated. This strategy is initially very costly in term
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of prevention but permits to set future expenses to zero.

Possible extensions of the present work may include the traditional decom-

position of the population in three classes, a production economy and/or some

endogenous growth factors. The size of the dynamic system would then increase

making the analytical resolution of the model unlikely. More importantly, future

researches should incorporate delay and age structure effects as they are cru-

cial for most epidemic diseases. The next step is also to incorporate individual

behaviors and decentralize the optimum.
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Appendix

Proof of Lemma 1. The program (17) is a non autonomous problem with en-

dogenous discounting. Let us rewrite it as an exogenous discounting problem

using the virtual time method5 notably used by Uzawa [41]. This method is

based on a change of time scale, which can be applied as the state dynamics is

autonomous. First define: δt =
∫ t

0
θ (as) ds; since δ is invertible from R+ to R+,

it is possible to characterize t = τ (δ); moreover, dδ = θ (at) dt. According to

Assumption H3, θ (a) > 0. The social planner’s program (17) is then equivalent

to:

max
h̃δ

∫ ∞
0

e−δ
u
(
αf (ãδ)− h̃δ

)
θ (ãδ)

dδ,

s.t.

∣∣∣∣∣∣∣∣∣∣∣
dãδ
dδ =

∣∣∣∣∣∣∣
g(h̃δ,ãδ)ãδ
θ(ãδ)

if ãδ > amin

0 if ãδ ≤ amin,

0 ≤ h̃δ ≤ αf (ãδ) and ã0 ∈ (amin, a
∗) given.

(27)

where
(
ãδ, h̃δ

)
≡
(
aτ(δ), hτ(δ)

)
. Since there is no ambiguity, we will nevertheless

keep the usual notations (at, ht). Let us denote a (., t0, a0, h (.)) the unique

solution of the state dynamics with initial condition a0 at time t0. Let

K = {h (.) piecewise continuous such that 0 ≤ h (t) ≤ αf (a (., t0, a0, h (.)))} .

(28)

The existence problem is then standard (Ani̧ta et al. [2]). Let us denote

J (h) =

∫ ∞
0

e−t
u
(
αf
(
ah
)
− h
)

θ (ah)
dt (29)

5Francis and Kompas [22] propose a nice presentation of the method and of its conditions
of application.
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where ah is the solution of

ȧ =

∣∣∣∣∣∣
g(h,a)a
θ(a) if a > amin

0 if a ≤ amin,

(30)

and a (0) = a0 ∈ (amin, a
∗). Observe first that the application a 7−→ g (h, a) a/θ (a)

is locally lipschitz for a ∈ (amin, a
∗) and that, given the assumptions on g, for

any admissible control,

ȧ ≤ g (0, amin) amin

θ (amin)
. (31)

We conclude that: amin ≤ ah ≤ a0e
g(0,amin)amin

θ(amin) < a∗. Moreover, according to

the properties of u, f and θ, one has:

0 <
u
(
αf
(
aht
)
− ht

)
θ
(
aht
) <

u
(
αf
(
aht
))

θ (amin)
<
u (αf (amin))

θ (amin)
, (32)

from which we deduce that maxh∈K J (h) is positive and finite. We conclude

the existence of an optimal control h∗ and its relative optimal state ah
∗
by using

the fact that K is a closed and convex set.

Let H (ht, at, µt) be the current value of the Hamitonian associated with

problem (27) that is given by:

H (ht, at, µt) =
u (αf (at)− ht)

θ (at)
+ µt

g (ht, at) at
θ (at)

, (33)

and µt be the associated costate variable. Denoting by p and q the Lagrange

multipliers associated with the inequality constraints, the Lagrangian in the

current value is written as:

L (ht, at, µt) =
u (αf (at)− ht)

θ (at)
+µt

g (ht, at) at
θ (at)

+ptht+qt (αf (at)− ht) . (34)
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Let us consider an optimal pair (a, h). According to the previous remark and

applying the maximum principle (Proposition 3.52, Grass et al [29]), there exists

a continuous function µ, which is piecewise continuously differentiable, and two

piecewise continuous multipliers (qt, pt) that satisfy:

−u
′ (αf (at)− ht)

θ (at)
+ µt

g′1 (ht, at)

θ (at)
at + pt − qt = 0, (35)

and

µ̇t = −αf ′ (at)
u′ (αf (at)− ht)

θ (at)
− µt

(
g′2 (ht, at) at + g (ht, at)

θ (at)
− 1

)
−qtαf ′ (at) +

θ′ (at)

θ (a)
H (ht, at, µt) (36)

Moreover, the complementary slackness conditions are:

ptht = 0, pt ≥ 0, ht ≥ 0,

qt (αf (at)− ht) = 0, qt ≥ 0, αf (at) ≥ ht
(37)

while the transversality condition (see Michel [35]) is:

lim
t→∞

e−tH (ht, at, µt) = 0. (38)

As µ is continuous, piecewise C1, the condition limc→0 u
′ (c) =∞ in H4 prevents

the first order condition ∂L/∂h = 0 to be satisfied at c = 0. Consequently qt = 0.

�

Proof of Lemma 2. For ht > 0, pt = 0. The expression for ḣt is obtained by

differentiating (35) with respect to t and rearranging using (36). For ht = 0,

the derivation of the system is immediate. �
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Proof of Lemma 3. In the neighborhood V of (a∗, 0) the interior solution of ht

solves:

ḣt

∣∣∣
(a∗,0)

=
− [g′2 (0, a∗) a∗ − θ (a∗)] +

[
−αf ′ (a∗) + u(αf(a∗))

u′(αf(a∗))
θ′(a∗)
θ(a∗)

]
g′1 (0, a∗) a∗

−θ (a∗)
[
u′′(αf(a∗))
u′(αf(a∗)) +

g′′11(0,a∗)
g′1(0,a∗)

] .

(39)

Thus, ḣt
∣∣∣
(a∗,0)

can be positive or negative, depending on the exogenous values

of (α, a∗). If ḣt
∣∣∣
(a∗,0)

> 0, the constraint ht ≥ 0 implies ht = 0. If ḣt
∣∣∣
(a∗,0)

< 0,

the trajectory reaches h = 0 in finite time t0 and then ht = 0 for all t ≥ t0. �

Proof of Lemma 4. In the neighborhood V of (0, h), c > 0 and h is finite, the

interior solution of (at, ht) solves:

ḣt

∣∣∣
(0,h)

=
1

−
[
u′′(αf(0)−h)
u′(αf(0)−h) +

g′′11(h,0)
g′1(h,0)

] , (40)

which given H1 and H4 is positive. Due to ȧt = g (ht, at) at, a = 0 is not

achieved in finite time. Thus the constraint h = αf (0) is reached in finite time.

According to lemma 2, this solution is not optimal. �

Proof of Lemma 5. As a preliminary, use (20) as an implicit equation to define

h = η (a), which, given Assumption H1, satisfies η′ (a) < 0 and η (a∗) = 0, and

replace it in (21) to define the function φ (a, α) such that:

φ (a, α) = − [g′2 (η (a) , a) a− θ (a)]

+

[
−αf ′ (a) +

u (αf (a)− η (a))

u′ (αf (a)− η (a))

θ′ (a)

θ (a)

]
g′1 (η (a) , a) a. (41)

Function φ (a, α) ∈ C2 (D (α)× R+,R) where:

D (α) =
{
a ∈ R+/αf (a)− η (a) > 0

}
. (42)
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Then, an interior steady-state is a a ∈ (a∗, 0) such that φ (a, α) = 0.

To prove claim i), use Lemma 2 and Assumption H4 to establish the following

limit:

lim
α→0

φ (a, α) = − [g′2 (0, a) a− θ (a)] > 0, (43)

and conclude using the continuity of φ (., .) with respect to α.

Claim ii): since α 7−→ αf (a) is strictly increasing and since limα→∞ αf (a) =

∞, there exists ά such that D (ά) = R+. Suppose α ≥ ά. Under Assumptions

H1 and H4, φ (a, α) decreases with α, φ (0, α) = θ (0) > 0 and:

φ (a∗, α) = − [g′2 (0, a∗) a∗ − θ (a∗)]

+

[
−αf ′ (a∗) +

u (αf (a∗))

u′ (αf (a∗))

θ′ (a∗)

θ (a∗)

]
g′1 (0, a∗) a∗, (44)

is negative for suffi ciently large α.

Claim iii): the stability property is obtained by computing the trace of the

Jacobian matrix of system (18) on the neighborhood of any interior steady-

state. Since:

∂Φ (ht, at)

∂ht

∣∣∣∣
Φ(ht,at)=0

= 1− g′2 (htat) at
θ (at)

, (45)

∂g (ht, at) at
∂at

∣∣∣∣
g(ht,at)=0

=
g′2 (htat) at
θ (at)

, (46)

the trace is consequently equal to 1. The steady-states are not stable. �

Proof of Lemma 6. Let us denote by
(
ā, h̄
)
the interior steady-state and by

(a∗, 0) the corner steady-state. To prove the lemma, we compute the intertem-

poral utilities for each paths in a particular case.
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Suppose that a0 = ā < a∗. Consider two paths that are candidates for optimal-

ity: the first one is given by: ht = h̄ and at = ā, and the second one is given

by ht = 0 and at = â (ā, t) (where according to notations used in the proof

of Lemma 1 â (ā, t) = a (t, 0, ā, 0)). The intertemporal utility yield by the first

path is: ∫ ∞
0

e−t
u
(
αf (ā)− h̄

)
θ (ā)

dt =
u
(
αf (ā)− h̄

)
θ (ā)

. (47)

The intertemporal utility yield by the second path is denoted U (ā) and satisfies:

U (ā) =

∫ ∞
0

e−t
u (αf (â (ā, t)))

θ (â (ā, t))
dt. (48)

As g (0, a) a is C2 according to Assumption H1, â (ā, t) has a derivative according

to ā and

d

dā

(
u (αf (â (ā, t)))

θ (â (ā, t))

)
=

dâ (ā, t)

dā

(
αf ′ (â (ā, t))u′ (αf (â (ā, t)))

θ (â (ā, t))
− θ′ (â (ā, t))u (αf (â (ā, t)))

θ2 (â (ā, t))

)
< 0

Since U ′ (ā) < 0, conclude that U (ā) > U (a∗). Hence, the first path is not

optimal if:

u
(
αf (ā)− h̄

)
θ (ā)

<
u (αf (a∗))

θ (a∗)
, (49)

It is easy to check that the last inequality may not be satisfied for a pair
(
h̄, ā
)

that satisfies: (20), (21). For instance use the following functions:

g (h, a) = e−h − [βπ (1 + a) + γ + δ] , (50)

f (a) =
1 + λa

1 + a
, (51)

u (c) = σc
1
σ , (52)
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and the following parameters: α = 1.5, µ = 0.01, γ = 0.01, π = 0.9, β = 0.5,

ρ = 0.5, λ = 0.6, σ = 1/0.69. �

Proof of Lemma 7. We consider successively the ȧ = 0 locus and the ḣ = 0

locus.

Claim i). The ȧ = 0 locus for all a > 0 is given by the implicit function

g (h, a) = 0. Given Assumption H1, the locus is downward slopping in the plane

(a, h), and is such that ȧ > 0 below the locus and ȧ < 0 above.

Claim ii). Using the definition of ḣ in (18) and Assumption H5, the ḣ = 0 locus

is given by the function ψ (h, a, α) = 0 where:

ψ (h, a, α) =

[
−αf ′ (a)

u′′ (αf (a)− h)

u′ (αf (a)− h)
+
θ′ (a)

θ (a)

]
g (h, a) a

+

[
−αf ′ (a) +

u (αf (a)− h)

u′ (αf (a)− h)

θ′ (a)

θ (a)

]
g′1 (h, a) a

−g′2 (h, a) a+ θ (a) , (53)

ψ′1 (h, a, α) =

[
−αf ′ (a)

u(3) (αf (a)− h)u′ (αf (a)− h) +
(
u(2) (αf (a)− h)

)2
(u′ (αf (a)− h))

2

]
g (h, a) a

+
θ′ (a)

θ (a)

[
u (αf (a)− h)u(2) (αf (a)− h)

(u′ (αf (a)− h))
2

]
g′1 (h, a) a

+

[
−αf ′ (a) +

u (αf (a)− h)

u′ (αf (a)− h)

θ′ (a)

θ (a)

]
g′11 (h, a) a, (54)

which, using Assumptions H1, H4 and H5, satisfies ψ′1 (h, a, α) > 0 for all (h, a)

below the ȧ = 0 locus (i.e. for g (h, a) > 0). It is then possible to define the

function χ such that h = χ (a, α), which satisfies: lima→0 χ (a, α) = −∞.

Using (18), compute, on the neighborhood of (0, 0), the interior solution of
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ht to obtain:

ḣt

∣∣∣
(0,0)

= −
[
u′′ (αf (0))

u′ (αf (0))
+
g′′11 (0, 0)

g′1 (0, 0)

]−1

, (55)

which is positive given the convexity of g (Assumption H5). Conclude that

ḣ > 0 above the locus and that ḣ < 0 below.

Claim iii). Define R =
{

(a, h) ∈ R2, g (h, a) > 0
}
. Using Assumptions H1,

H4 and H5, we have ψ′3 (h, a, α) < 0 for all (h, a) such that g (h, a) > 0. As

ψ′1 (h, a, α) > 0 on R, the claim is proved. �

Proof of Lemma 8. In the neighborhood V of (amin, h), c > 0 and h is finite, the

interior solution of (at, ht) solves:

ḣt

∣∣∣
(amin,h)

' ḣt

∣∣∣
(0,h)

=
1

−
[
u′′(αf(0)−h)
u′(αf(0)−h) +

g′′11(h,0)
g′1(h,0)

] > 0, (56)

which given H1 and H4 is positive. As the optimal trajectory (a, h) reaches amin

in finite time t1, for t > t1, a (t) = amin, which does not depends on h.Thus, for

t > t1, h = 0. �

Proof of Lemma 9. A path that leads to eradication in a finite time T can be

characterized by {het , aet} for all t < T and by ht = 0 and at = amin for all t ≥ 0.

This yields the following intertemporal utility:

∫ T

0

e−t
u (αf (aet )− het )

θ (aet )
dt+ e−T

u (αf (amin))

θ (amin)
. (57)

For amin > 0 but small, then θ (amin) is close to zero, and therefore the in-

tertemporal utility is very large while intertemporal utilities yield by any other

path is smaller. We conclude by continuity. �
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