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Human capital and welfare∗

Stefano BOSI†, Carmen CAMACHO‡, David DESMARCHELIER§

June 10, 2020

Abstract

We introduce the Human Development Index (HDI) in a growth model
à la Lucas (1988), where human capital has an additional positive effect
on social welfare through the quality of individual health and education.
In a simple economy with a Cobb-Douglas technology and logarithmic
preferences, we provide the explicit trajectories for human capital, con-
sumption and the HDI, which correspond to the Balanced Growth Path
(BGP). Using a two-step maximization strategy, we compute the optimal
initial value of the control variable, in this case, the initial optimal labor
supply. In other words, we prove the optimality of the BGP. We high-
light a HDI crossing property: the propensity to consume has a positive
effect on the HDI in the short run, but negative in the long run. Finally,
both the growth rate and overall welfare are proven to decrease in the
propensity to consume.

JEL codes: I00, O11, C61.
Keywords: human capital, unbalanced growth, transversality condi-

tion.

1 Introduction

When Mahbub ul Haq introduced human development as a compound process
which included education and life expectancy, he paved the way for a new av-
enue of research in development economics. The introduction of the Human
Development Index (HDI) in ul Haq (1995) led to a new paradigm and to a
modern theory of human development. However, although his works have influ-
enced prominent economists like Amartia Sen, most growth theorists still focus
on the utility of consumption. Stemming from the common belief that educated
and healthy people enjoy life differently, the present paper considers that human
capital is made of both education and health. Then we incorporate the HDI
into the utility function defining a new composite good, which generalizes the
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§BETA, University of Lorraine, AgroParisTech, CNRS, INRA. E-mail:

david.desmarchelier@gmail.com.
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consumption good. The new good embodies the notion that human capital is
crucial to appreciate consumption, and it allows us to study the cross effect of
human capital on the marginal utility of consumption.
While the seminal notion of human capital was introduced by Adam Smith

in 1776 and later by Arthur Cecil Pigou in 1928, the modern theory of human
capital can be traced back to Schultz (1961) and Becker (1964). Uzawa (1965)
was first to incorporate human capital as an engine of growth in a theoretical
model. The emergence of a new endogenous growth literature stimulated the
interest of economists in the role of human capital. Building on Rosen (1976),
Lucas (1988) underlined that the accumulation of human capital can trigger a
mechanism of perpetual growth. In particular, he shows that the growth rate
of income per capita depends on the growth rate of human capital, which in
turn depends on the time individuals use to acquire skills and to protect their
health. After Lucas (1988), the literature developed fast, scrutinizing all factors
underlining the formation of human capital: education, transmission, health,
culture,...1 Nevertheless, the literature becomes thinner regarding the other
various roles of human capital in an economy. Although sociologists report that
as a matter of fact, education does affect life enjoyment, research in economics
has for the most part neglected the role of human capital in welfare. Among
the studies in sociology let us mention Ross and Wu (1995), who find that well
educated individuals have a more fulfilling job and a better control over their
lives. Moreover, they are in a healthier condition since they smoke and drink
less. Similarly, Finkelstein et al. (2013) point out a complementarity between
health and consumption demand: an increase of 1% in the number of chronic
diseases reduces the marginal utility of consumption from 10% to 25%. From
an economist’s viewpoint, this empirical evidence suggests that human capital
does increase the marginal utility of consumption.
In order to consider the effect of education and health on wellbeing, it is

necessary to enlarge the standard view of household’s preferences. Neverthe-
less, introducing human capital in the utility function requires careful atten-
tion. Indeed, from a theoretical perspective, the effects of human capital on
the marginal utility of consumption are potentially ambiguous. On the one
hand, human capital increases the marginal utility of consumption when, for
instance, a well educated individual watches a movie and fully grasps all cul-
tural references; on the other, human capital decreases the marginal utility of
consumption when she becomes aware about the environmental damages of con-
sumption. Empirical studies are not definite about the cross effect of human
capital on consumption demand.
To our knowledge, Chakraborty and Gupta (2006) is the only model à la

Lucas (1988) where human capital has the two essential roles we have underlined.
There, human capital is, at the same time, a production factor and a source of
wellbeing, and it enters both in the production and in the utility functions.

1Let us mention some of the most notorious works. Regarding education and human capital
formation, see De la Croix and Doepke (2003), Tamura (2001) or Cervellati and Sunde (2005).
Concerning health and human capital formation, the interested reader can refer to De la Croix
and Licandro (1999) or Kalemli-Ozcan et al. (2000).
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When human capital affects more the agent’s preferences than consumption,
then they find that the growth rate is higher along the Balanced Growth Path
(BGP). When it affects less the production function, then multiple steady states
coexist. Note however that the authors do not study the optimality of their
BGP solution. Our objective is to address the important question of the role of
human capital in wellbeing by considering a growth model where, as in Lucas
(1988), the household chooses the working time and the time devoted to acquire
skills. Following Ben-Porath (1967), there is no physical capital, but human
capital affects both the production and the utility function as in Chakraborty
and Gupta (2006).
Despite the absence of an optimality analysis in Chakraborty and Gupta

(2006), intuition suggests that the optimality of the BGP is a relevant question
when human capital enters preferences. Indeed, along the BGP, human capital
grows at a constant rate by definition. Now, suppose human capital enters the
utility function with standard properties, that is, a decreasing marginal utility.
Then, depending on preferences, there may exist a critical level of human capital
beyond which a further increase does not confer any extra utility. Beyond the
threshold, the household stops acquiring skills and devotes all her time to work,
in contradiction with the perpetual growth of human capital along a BGP. This
paper aims precisely at questioning the optimality of the BGP when human
capital is an argument of the utility function. Unlike Chakraborty and Gupta
(2006), we reinterpret here the composite good as the mixture of consump-
tion and human capital, in the form of a Human Development Index. Under a
Cobb-Douglas technology and logarithmic preferences, we are able to provide
the explicit trajectories for capital, consumption and HDI not only because we
obtain the analytical solution to the system of differential equations, but also
because we compute the initial control (labor supply) in a two-step maximiza-
tion, which is new in growth literature. We actually prove that the optimal
initial value of labor supply belongs to the BGP, demonstrating that the BGP
is actually optimal from the start. Interestingly we highlight a HDI crossing
property: the propensity to consume has a positive effect on consumption and,
thus, on the HDI in the short run, but a negative effect in the long run. Finally,
both the growth rate and welfare are proven to be decreasing in the propensity
to consume, while, interestingly, the impact of time preference on welfare is
positive when the initial human capital is below a threshold because of a scale
effect.
The rest of the paper is organized as follows. The model is presented in

Section 2. Section 3 considers the optimal solution when both utility and tech-
nology are isoelastic functions. Assuming a unit elasticity of substitution both
in preferences and in the HDI, Section 4 provides the explicit optimal solutions
for human capital and consumption. Finally, Section 5 concludes. All the proofs
are gathered in the Appendix.
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2 The model

In the spirit of Chakraborty and Gupta (2006), we assume that human capital
(health and education) increases workers’ productivity and households’ utility.
There exists a representative household, who lives forever and maximizes the
infinite-horizon utility:

max

! ∞

0

e−θtu (x̃ (t)) dt (1)

choosing the optimal trajectories of consumption, c, and labor, l, and where the
HDI2, x̃ (t) ≡ x (c (t) , h (t)), is an increasing function of consumption and human
capital. Optimal decisions are subject to the human capital accumulation law:

ḣ (t)

h (t)
≤ B [1− l (t)] (2)

the resource constraint:
c (t) ≤ y (t) ≡ h (t) l (t) (3)

and the initial condition h(0) ≡ h0. Output y (t) is a linear function of labor,
whose productivity is precisely human capital.
At each date in time, the representative household is endowed by one unit of

time that she arbitrates between the working time in the firm, l (t) ∈ [0, 1], and
the time spent to acquire skills, 1− l (t). As in Lucas (1988), the growth rate of
human capital is a linear function of 1− l (t), and it attains its maximum value
B when l(t) = 0, that is, when the household’s labor is zero.
For simplicity, we will omit the time argument in the following.

Assumption 1 Function x : R2+ → R+ is C2, strictly increasing and homoge-
neous of degree 1. u is C2, strictly increasing and strictly concave.

From (3) and the principle of non-satiation, c is uniquely determined by l
for a given h. That is, the representative household chooses a unique control l
to maximize her discounted intertemporal utility. In this context, an admissible
control l is a locally integrable function l : [0,+∞) → [0, 1] satisfying (2) with
h(0) ≡ h0 > 0.
In order to solve the household’s program, let us introduce the Hamiltonian

function:
H (h, l, λ, t) ≡ e−θtu (x (hl, h)) + λB (1− l)h (4)

The following proposition characterizes the optimal behavior of human cap-
ital, h, and of µ ≡ λeθt, its shadow price.

Proposition 1 (necessary conditions) Consider program (1) under Assump-
tion 1, and assume that there exists an interior continuous solution (l, h) ∈
[0, 1]× [0,+∞). Then, there exists a continuously differentiable function µ > 0

2 If y (t) ≡ h (t) l (t) denotes the per capita income (production) and c (t) = y (t), we recover
ul Haq’s definition of HDI.
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such that the optimal control l and the corresponding state variable h satisfy the
following necessary conditions:

µ =
u′ (x)

B

∂x

∂c
(5)

µ̇

µ
= θ −B (1− l)−

u′ (x)

µ

"
∂x

∂c
l +

∂x

∂h

#
(6)

ḣ

h
= B (1− l) (7)

lim
t→∞

e−θtµh ∈ R (8)

Proof. See the Appendix.
Applying the implicit function theorem to the optimal condition (5), l can

be written a function of h, that is l ≡ l∗ (h, µ, t) ≡ l̃∗ (h). This observation
allows us to prove that the set of necessary conditions in Proposition 1 are not
only necessary but also sufficient.3

Proposition 2 (sufficient conditions) Under Assumption 1, conditions (5)
to (7) are necessary and sufficient optimal conditions for (1) if the Arrow-Kurz
sufficient condition holds:

∂2x

∂c2

$
l̃∗ (h) + hl̃∗′ (h)

%2
+ 2

∂2x

∂c∂h

$
l̃∗ (h) + hl̃∗′ (h)

%
+
∂2x

∂h2
< 0 (9)

together with a stronger transversality condition:

lim
t→∞

e−θtµ∗h∗ = 0

Proof. See the Appendix.

Remark 3 The transversality condition limt→∞ e−θtµ∗h∗ ∈ R is necessary for
optimality (see the proof of Proposition 1). Notice that limt→∞ e−θtµ∗h∗ =
0 is a sufficient condition in Pontryagin et al. (2018, page 49) because the
arrival space is not full-dimensional, which is not the case in our unconstrained
problem. Many economic papers introduce limt→∞ e−θtµ∗h∗ = 0 as a sufficient
condition without giving proof, while few show the sufficiency (see Bosi et al.,
2017, among others). Halkin was first to provide a mathematical example of
a nonzero transversality condition, but meaningless in economic terms (see the
footnote at page 46 in Arrow and Kurz, 1970, and the counterexample on page
271 in Halkin, 1974). Theorem 7.13 in Acemoglu (2009) demonstrates that the
transversality condition is of the form limt→∞ e−θtµ∗h∗ = 0 when the economy
converges towards a steady state or towards a balanced growth path. We recover
this property in the next section.

3The Arrow-Kurz sufficient conditions for optimality are not necessary and, in this sense,
they are possibly too restrictive: an optimal path can exist even if these conditions are not
verified. See for instance Dechert and Nishimura, (1983), or Bambi and Gozzi (2019), where
the first-order conditions lead to a unique optimal solution and the Arrow-Kurz conditions
fail. However, we show in the following section that the Arrow-Kurz sufficient conditions are
always verified in our problem when both u and x take isoelastic functional forms.
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The following proposition provides the optimal trajectories for human capi-
tal, labor supply and consumption demand.

Proposition 4 (dynamic system) The optimal solution (h, l)∗ satisfies the
following dynamical system:

ḣ

h
= B (1− l) (10)

l̇

l
=

θ −B −B ∂x/∂h
∂x/∂c −B (1− l)

$
xu′′(x)
u′(x)

&
c
x
∂x
∂c +

h
x
∂x
∂h

'
+ c

∂x/∂c
∂2x
∂c2 +

h
∂x/∂c

∂2x
∂c∂h

%

c
x
∂x
∂c

xu′′(x)
u′(x) +

c
∂x/∂c

∂2x
∂c2

(11)

where c = hl.

Proof. See the Appendix.
The computation of the optimal solution in the general case presented in

Proposition 4 turns out to be impossible. However, in the case of isoelastic
functional forms, the two-dimensional system (10)-(11) boils down to a single
differential equation, easier to study.

3 The case of isoelastic functional forms

Consider the isoelastic functions:

u (x) ≡
ε

ε− 1
x
ε−1
ε (12)

x (c, h) ≡
(
ac

σ−1
σ + bh

σ−1
σ

) σ
σ−1

(13)

where ε is the (dynamic) elasticity of substitution between the HDI x today and
tomorrow, and σ is the (static) elasticity of substitution in the HDI between the
consumption c and the human capital h today.
Notice that there is no loss in generality if we assume

a+ b = 1 (14)

Indeed, if a+ b )= 0, then

! ∞

0

e−θt
ε

ε− 1

*(
ac

σ−1
σ + bh

σ−1
σ

) σ
σ−1
+ ε−1

ε

dt

=
$
(a+ b)

σ
σ−1

% ε−1
ε

! ∞

0

e−θt
ε

ε− 1

*(
ãc

σ−1
σ + b̃h

σ−1
σ

) σ
σ−1
+ ε−1

ε

dt

where

ã ≡
a

a+ b
, b̃ ≡

b

a+ b
, and ã+ b̃ = 1
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and, thus,

argmax

! ∞

0

e−θt
ε

ε− 1

*(
ac

σ−1
σ + bh

σ−1
σ

) σ
σ−1
+ ε−1

ε

dt

= argmax

! ∞

0

e−θt
ε

ε− 1

*(
ãc

σ−1
σ + b̃h

σ−1
σ

) σ
σ−1
+ ε−1

ε

dt

Proposition 5 (constant elasticities of substitution) If the utility func-
tion and the HDI are defined by (12) and (13), then the Arrow-Kurz criterion
(9) is satisfied. As a result, the first-order conditions (5) to (7) jointly with the
transversality condition are necessary and sufficient for utility maximization.
Optimal labor supply is driven by a single differential equation:

l̇ = Bl

"
l + ε

b

a
l
1
σ − 1− ε

θ −B
B

#
al

σ−1
σ + b

al
σ−1
σ + b εσ

≡ ϕ (l) (15)

Proof. See the Appendix.

Proposition 6 (Balanced Growth Path) There exists a non-zero station-
ary solution l̄ to (15), which is a solution to the following equation:

l + ε
b

a
l
1
σ = 1 + ε

θ −B
B

(16)

The steady state l̄ for labor supply determines the human capital growth rate
g = B

&
1− l̄

'
. Furthermore, human capital and consumption grow at the same

rate, that is, the economy follows a BGP:

h̄ (t) = eB(1−l̄)th0 (17)

c̄ (t) = eB(1−l̄)th0 l̄ (18)

The BGP in (17)-(18) is globally unstable.

Proof. See the Appendix.
One of the main issues of this paper is the analysis of the impact of human

capital on consumption demand. More precisely, we are interested in the impact
of human capital on the marginal utility of consumption. As it follows from
(13), this effect is negative (positive) if consumption and human capital are
substitutes (complements). Hence, the elasticity of consumption-human capital
substitution affects the optimal solution to the initial program, which generically
differs from the BGP.
According to (15), labor supply l (t) decreases when the initial condition

l0 < l̄, and it increases otherwise. Note that the dynamics of labor are not
necessarily monotonic nor symmetric on either side of l̄. l (t) can decrease to
zero if l0 < l̄, while, if l0 > l̄, it reaches 1 in a finite lapse of time T . After date
T , human capital stops growing.

7



The elasticity of consumption-human capital substitution, σ, affects the crit-
ical value l̄ and, as such, it plays a key role in the dynamics of labor supply and
human capital accumulation. Indeed, totally differentiating (16), we get

σ

l̄

∂l̄

∂σ
=

B
&
1− l̄

'
+ ε (θ −B)

σaBl̄ +B
&
1− l̄

'
+ ε (θ −B)

ln l̄ =
εbl̄

1
σ

σal̄ + εbl̄
1
σ

ln l̄ < 0

Hence, σ has a clear negative impact on l̄:

(1) the more substitutable are consumption and human capital, the lower
is l̄ and, hence, the more likely is that l0 > l̄. That is, the more plausible is
the situation in which labor supply increases over time until the critical date T
beyond which the household stops investing in human capital;

(2) the less substitutable are consumption and human capital, the larger is
l̄. Thus, the more likely is that l0 < l̄, that is, the more plausible a decrease of
labor supply to zero ensuring, asymptotically, the largest human capital (and
consumption) growth rate g = B.

In other words, when human capital lowers the marginal utility of consump-
tion (substitutability case), the individual no longer invests in human capital in
the long run, or more precisely, beyond the critical date T . Conversely, when hu-
man capital raises the marginal utility of consumption (complementarity case),
the individual wants to invest in human capital at the maximal rate (B) in the
long run.
For the sake of precision, let us observe that the optimal starting point l∗0

is endogenous. Consequently, even a very narrow (large) interval
&
0, l̄
'
does

not ensure that l∗0 > l̄ (neither that l∗0 < l̄). In order to avoid any heuristic
interpretation and to determine unambiguously whether the optimal initial labor
supply l∗0 is lower or higher than l̄, in the following example, we fix σ = 1.

4 Optimal BGP in a simple economy

In order to obtain a complete description of the optimal solution, let us consider
logarithmic preferences: u (x) ≡ lnx, with a Cobb-Douglas HDI: x (c, h) ≡
cαh1−α. These functions have unit elasticities of substitution: ε = σ = 1.
Indeed, taking the limit of the logarithm of (13) and applying the de l’Hôpital’s
rule, we get

lim
σ→1

lnx (c, h) = lim
σ→1

ln
(
ae

σ−1
σ ln c + be

σ−1
σ lnh

)

σ−1
σ

=
a ln c+ b lnh

a+ b
= ln

&
cahb

'

because a+ b = 1 according to (13). Thus, x (c, h) = cahb in the limit. Setting
α = a = 1− b, we recover the Cobb-Douglas HDI function x (c, h) = cαh1−α.
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In the Cobb-Douglas case, we are able to compute explicitly the optimal
initial value for labor supply and to prove that the optimal initial value for
labor supply (l∗0) is precisely αθ/B. This value corresponds to the BGP. In
other words, in the Cobb-Douglas case, the optimal trajectory is unique and
coincides with the BGP.
To prove the optimality of the BGP, we adopt a constructive strategy based

on the explicit solutions of the dynamic system. More precisely, following
Borissov et al. (2018), we remaximize (1) with respect to l0 under the sys-
tem of constraints (10)-(11).
The following proposition provides the optimal paths for human capital and

consumption demand depending on the value of α, B and θ.

Proposition 7 (optimal path) If ε = σ = 1, the optimal labor supply is given
by l∗ (t) = αθ/B and the optimal growth path is the BGP:

h∗ (t) = h0e
(B−αθ)t (19)

c∗ (t) = α
θ

B
h0e

(B−αθ)t (20)

x̃∗ (t) =

"
α
θ

B

#α
h0e

(B−αθ)t (21)

for any t ≥ 0. Along the BGP, the transversality condition is zero:

lim
t→∞

e−θtµ (t)h (t) = e−θtµ∗0h0 = 0

Proof. See the Appendix.
In light of Proposition 7, we can easily compute the impact of the three

main parameters α, θ and B on the BGP in terms of the elasticities of h∗ (t),
c∗ (t), x̃∗ (t). Furthermore, their impact on the balanced growth rate and on the
welfare functional also obtain straightforwardly.
Let us introduce the following critical dates:

Tx,α ≡
1 + ln l∗

θ
, Tx,θ ≡

1

θ
, Tc,α ≡

1

αθ
, Tx,B ≡

α

B
, Tc,B ≡

1

B

where l∗ = αθ/B is the optimal labor supply. We observe that Tx,α < Tx,θ <
Tc,α. Moreover, Tx,B < Tc,B and Tx,B < Tx,θ.
The following four corollaries directly stem from Proposition 7. Let us start

by considering the effects of propensity to consume on the BGP.

Corollary 8 (propensity to consume) The impact of α on human capital is
negative at any date. Its impact on consumption demand is positive in the short
run, when t < Tc,α, and it becomes negative thereafter. Similarly, the impact of
α on the HDI is positive in the short run, while t < Tx,α (< Tc,α), and negative
in the long run, when t > Tx,α. Note that if Tx,α < t < Tc,α, the impact of α
is positive on consumption but negative on the HDI. In addition, the impact on
the HDI is always negative if Tx,α < 0, that is if α < B/ (θe).

9



Proof. See the Appendix.
As Corollary underlines, α is a new important incoming parameter. When

the HDI is given by (13) and σ = 1, the HDI is defined as a geometric average
of income, which equals consumption, and human capital with weights α and
1− α, respectively. Hence, α captures the propensity to consume by construc-
tion, while 1 − α represents the propensity to invest in education and health.
Consequently, the larger the propensity to consume, the higher the labor supply
and the lower the capital accumulation at any time.
There exists a critical moment in time, Tc,α, such that the reaction of c∗

to α overturns. Indeed, in the short run, the higher labor supply increases
consumption, while the lower human capital accumulation reduces both labor
productivity and consumption in the long run. The following figures depict
the crossing property plotting consumption demand and HDI for two different
values of α, namely 1/3 and 2/3. For this exercise, h0 = 1, B = θ = 0.01
(quarterly discounting). The solid lines correspond to the lower propensity to
consume, i.e. to α = 1/3. ηc,α and ηx,α respectively stand for the elasticity of
c and x with respect to α.
Recall that the impact of α on the HDI is positive in the short run and

negative in the long run if α > B/ (θe). Under our calibration this is the
case when α = 1/3. However, α always affects negatively the HDI when α =
2/3. Here again, the higher labor supply increases consumption in the short
run. In the long run, the lower human capital accumulation reduces both labor
productivity and consumption.

Fig. 1 Consumption and HDI crossing properties.
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Next, let us consider the effects of time preference on the BGP.

Corollary 9 (time preference) The impact θ on the human capital is nega-
tive at any date. The impact on consumption is positive in the short run, when
t < Tc,α, and negative thereafter. θ makes the HDI increase in the short run,
when t < Tx,θ, and decrease in the long run, when t > Tx,θ. Since Tx,θ < Tc,α,
if Tx,θ < t < Tc,α, then the impact of time preference is positive on consumption
but negative on the HDI.

Proof. See the Appendix.
The effect of θ on both h∗ (t) and c∗ (t) mimics exactly the effect of α in

strength and sign. Note in particular that the elasticity of c∗ with respect to θ
also changes at Tc,α.
Since returns to human capital investment are not instantaneous, a more

impatient household’s reduces the time to accumulate human capital and in-
creases her labour supply. Production and consumption increase in the short
run. However, the lack of human capital accumulation reduces production in
the long run, lowering consumption in turn.
In the short run, the impact of θ on the HDI is positive because the positive

effect on consumption is sufficiently large to compensate for the negative effect
on capital. However, the impact becomes negative because either the negative
effect on capital dominates the positive effect on consumption, or because both
effects become negative.
Finally, let us consider the impact of the productivity of human capital

formation on the BGP.

Corollary 10 (productivity of human capital formation) The impact of
B on human capital is always positive. B affects negatively consumption demand
in the short run, when t < Tc,B, and positively in the long run, when t > Tc,B.
Similarly, the impact of B on the HDI is negative in the short run, when t <
Tx,B (< Tc,B), and positive in the long run, when t > Tx,B. If Tx,B < t <
Tc,B, then the impact of time preference is negative on consumption demand but
positive on the HDI.

Proof. See the Appendix.
B has opposite effects on h∗ (t) and c∗ (t) with respect to θ. The higher

the productivity of human capital formation, the more households will invest
in human capital. Then the higher B, the lower the labor supply in the short
run, and as a consequence, the lower the consumption. In the long run, when
t > Tc,B, the induced larger stock of human capital allows for higher production
and consumption.
In the short run, when t < Tx,B, the impact of B on the HDI is negative

because the negative effect on consumption is sufficiently large to compensate
for the positive effect on capital. However, the impact of B becomes positive
in the long run, when t > Tx,θ, because either the positive effect on capital
dominates the negative effect on consumption, or because both effects become
positive.

11



It is important to compare the effects on the optimal growth rate with those
on the optimal welfare functional. In this regard, let us introduce a threshold
for the initial human capital:

h̄0 ≡
e−2(1−l

∗)Bθ

l∗α

Corollary 11 (growth and welfare) (1) The effects of α and θ on the bal-
anced growth rate are always negative, while the impact of B is always positive.
(2) The impact of α on the optimal welfare level W ∗ ≡

,∞
0 e−θt ln x̃∗ (t) dt

is non-positive at any date, while the effect of B is always positive. The impact
of θ on W ∗ is positive if the initial human capital is low (h0 < h̄0) and negative
if the initial capital is large (h0 > h̄0).

Proof. See the Appendix.
The negative impact of the propensity to consume on growth is not surpris-

ing. Indeed, economic growth is driven by the growth rate of human capital,
which decreases as α decreases.
The time preference θ and the productivity of human capital formation B

have opposite effects. As already underlined, a less patient household reduces
the time devoted to human capital accumulation. Conversely, a higher human
capital productivity always fosters human capital accumulation, which increases
economic growth along the BGP.
Interestingly, the changing-in-time effects that α has on consumption are

not present for welfare. α always has a non-positive effect on welfare, even in
the short run when consumption increases. In order to understand the role of
each and all of the model’s elements, note that a higher α reduces the length
of the period during which α has a positive effect on consumption ∂Tc,α/∂α =
−1/

&
θα2

'
< 0. The permanent negative effect of α on human capital formation

and on consumption from Tc,α onwards always dominates the short-run positive
effect on consumption.
Regarding B, a higher human capital productivity always increases human

capital while it increases consumption only in the long run. Here, the positive
effect always dominates the negative short-run effect leading to a higher overall
welfare.
As discussed before, returns on human capital investment are not instan-

taneous and, as a result, a less patient household increases her labour supply,
which increases consumption in the short run and lowers it in the long run.
Moreover, an increase in impatience always lowers human capital. According to
(19), the drop in human capital induced by θ is amplified by the initial value
h0. Therefore, overall welfare decreases with θ if h0 is sufficiently high.

5 Conclusion

In this paper, we have extended the model of human capital accumulation pub-
lished by Lucas in 1988 by considering instead of consumption a more general

12



Human Development Index. Considering a Cobb-Douglas technology and loga-
rithmic preferences, we have provided the explicit trajectories for human capital,
consumption and the HDI, proving the optimality of the balanced growth path.
Finally, we have highlighted a HDI crossing property: the propensity to con-
sume has a positive effect on the HDI in the short run, but a negative impact in
the long run. Finally, both growth rate and welfare decrease with the propensity
to consume.

6 Appendix

Proof of Proposition 1
We define a feasible solution to be a trajectory (h, l) which satisfies the initial

condition for h, h(0) = h0 and the law of motion (2).
To apply Ekeland’s variational principle, we build a value function V (h, l, λ)

as follows:

V (h, l, λ) ≡
! ∞

0

e−θtu (x (h (t) l (t) , h (t))) dt

+

! ∞

0

λ∗ (t)
(
h (t)B [1− l (t)]− ḣ (t)

)
dt (22)

where λ∗ is the multiplier function associated to the optimal solution (h, l)∗.
We can rearrange the last term in the second integral using integration by

parts:
! ∞

0

λ∗ (t) ḣ (t) dt = [λ∗ (t)h (t)]
∞
0 −

! ∞

0

λ̇
∗
(t)h (t) dt

= lim
T→∞

λ∗ (T )h (T )− λ∗ (0)h (0)−
! ∞

0

λ̇
∗
(t)h (t) dt

Replacing this into (22), we obtain

V (h, l, λ) =

! ∞

0

e−θtu (x (h (t) l (t) , h (t))) dt

+

! ∞

0

(
λ̇
∗
(t)h (t) + λ∗ (t)h (t)B [1− l (t)]

)
dt

+λ∗ (0)h (0)− lim
T→∞

λ∗ (T )h (T ) (23)

According to Ekeland’s variational principle, if there exists an optimal solu-
tion (h, l)∗, then any other trajectory (h, l) can be written as a deviation from
the optimal.
Hence, for every feasible pair (h, l) )= (h, l)∗ and a constant ε ∈ R/ {0}, there

exist functions H,L : R+ → R such that

H (t) ≡ [h (t)− h∗ (t)] /ε
L (t) ≡ [l (t)− l∗ (t)] /ε

13



that is
(h (t) , l (t)) = (h∗ (t) , l∗ (t)) + ε (H (t) , L (t))

(H,L) represents a given direction in the function space. Any feasible solu-
tion can be written as an ε-deviation from the optimal along a direction (H,L).
We can find the optimal solution by maximizing the value function with respect
to ε. Indeed, given (H,L) and (h, l)∗, the value V computed along the feasible
trajectory (h, l) can be written as a function of ε. More precisely, we have

Ṽ (ε) ≡ V (h∗ + εH, l∗ + εL,λ∗)

where (h, l)∗, (H,L) and λ∗ are given.
Under Assumption 1, the necessary condition for (h, l)∗ to be an optimal

solution is Ṽ ′ (0) = 0.
First, we observe that

λ∗ (0)h (0)− lim
T→∞

λ∗ (T )h (T )

= λ∗ (0)h∗ (0)− lim
T→∞

λ∗ (T )h∗ (T )− ε lim
T→∞

λ∗ (T )H (T )

so that

∂

∂ε

$
λ∗ (0)h (0)− lim

T→∞
λ∗ (T )h (T )

%
= − lim

T→∞
λ∗ (T )H (T )

because λ∗ (0)h (0)− limT→∞ λ∗ (T )h∗ (T ) does not depend on ε.
Next, let us obtain the optimal conditions. We obtain the derivative (23)

w.r.t. ε:

Ṽ ′ (ε) =

! ∞

0

e−θtu′ (x (h (t) l (t) , h (t)))

"
∂x

∂c
[H (t) l (t) + h (t)L (t)] +

∂x

∂h
H (t)

#
dt

+

! ∞

0

(
λ̇
∗
(t)H (t) + λ∗ (t)H (t)B [1− l (t)]− λ∗ (t)h (t)BL (t)

)
dt

− lim
T→∞

λ∗ (T )H (T ) (24)
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The first-order condition is given by Ṽ ′ (0) = 0, that is by4

! ∞

0

e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

"
∂x

∂c
[H (t) l∗ (t) + h∗ (t)L (t)] +

∂x

∂h
H (t)

#
dt

+

! ∞

0

(
λ̇
∗
(t)H (t) + λ∗ (t)H (t)B [1− l∗ (t)]− λ∗ (t)h∗ (t)BL (t)

)
dt

− lim
T→∞

λ∗ (T )H (T ) = 0 (25)

because the optimal solution corresponds to ε = 0:

(h (t) , l (t)) = (h∗ (t) , l∗ (t)) + 0 ∗ (H (t) , L (t)) = (h∗ (t) , l∗ (t))

Focus again on (25). We gather the terms that multiply H(t) and L(t):
! ∞

0

H (t)

"
e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

*
∂x

∂c
l∗ (t) +

∂x

∂h

+
+ λ̇

∗
(t) + λ∗ (t)B [1− l∗ (t)]

#
dt

+

! ∞

0

L (t)

*
e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

∂x

∂c
h∗ (t)− λ∗ (t)h∗ (t)B

+
dt

− lim
T→∞

λ∗ (T )H (T ) = 0 (26)

Consider the subclass S of functions H such that

lim
T→∞

λ∗ (T )H (T ) = 0

or, equivalently, such that

lim
T→∞

λ∗ (T )h (T ) = lim
T→∞

λ∗ (T )h∗ (T ) ∈ R (27)

In this case, condition (26) is equivalent to
! ∞

0

H (t)

"
e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

*
∂x

∂c
l∗ (t) +

∂x

∂h

+
+ λ̇

∗
(t) + λ∗ (t)B [1− l∗ (t)]

#
dt

+

! ∞

0

L (t)

*
e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

∂x

∂c
h∗ (t)− λ∗ (t)h∗ (t)B

+
dt = 0

4With some notational abuse, we write
!
∂x

∂c
,
∂x

∂h

"

instead of !
∂x

∂c
(h (t) l (t) , h (t)) ,

∂x

∂h
(h (t) l (t) , h (t))

"
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whatever the direction (H,L) with H ∈ S you consider. Because (H,L) identi-
fies an arbitrary direction in the function space, we require

e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

*
∂x

∂c
l∗ (t) +

∂x

∂h

+
+ λ̇

∗
(t) + λ∗ (t)B [1− l∗ (t)] = 0

e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))
∂x

∂c
h∗ (t)− λ∗ (t)h∗ (t)B = 0

These are necessary conditions for (h∗, l∗) to be optimal. But, according
to (26), these conditions also imply that limT→∞ λ

∗ (T )H (T ) = 0, that is
limT→∞ λ

∗ (T )h (T ) ∈ R for whatever feasible h and, in particular, for h∗. The
(transversality) condition

lim
T→∞

λ∗ (T )h∗ (T ) ∈ R (28)

is also necessary.
We obtain then the system of necessary optimal conditions:

λ∗ (t) = e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))
1

B

∂x

∂c
(29)

λ̇
∗
(t) + λ∗ (t)B [1− l∗ (t)] + e−θtu′ (x (h∗ (t) l∗ (t) , h∗ (t)))

*
∂x

∂c
l∗ (t) +

∂x

∂h

+
= 0

(30)

jointly with the law of motion, ḣ∗ (t) = h∗ (t)B [1− l∗ (t)], and the transversality
condition limt→∞ λ

∗ (t)h∗ (t) ∈ R.
Since µ ≡ λeθt and λ̇/λ = µ̇/µ− θ, (29) and (30) become:

µ∗ (t) =
u′ (x (h∗ (t) l∗ (t) , h∗ (t)))

B

∂x

∂c

µ̇∗ (t)

µ∗ (t)
= θ −B [1− l∗ (t)]−

u′ (x (h∗ (t) l∗ (t) , h∗ (t)))

µ∗ (t)

*
∂x

∂c
l∗ (t) +

∂x

∂h

+

that is (5) and (6). Since µ∗ (t) > 0, (2) holds with equality and we obtain (7).
Finally, (8) is given by (28).

Proof of Proposition 2
The Arrow-Kurz sufficiency theorem in Arrow and Kurz (1970) states that

the first-order conditions (5) to (7) are not only necessary but also sufficient if
the Hamiltonian H (h, l, λ, t) maximized with respect to the control variable l
(given h, λ and t), that is H∗ (h,λ, t) = H (h, l∗ (h, λ, t) , λ, t), is concave in h
(state variable), given λ and t, that is

∂2H∗

∂h2
(h∗, λ, t) < 0

jointly with the transversality condition limt→∞ λh∗ = 0.
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In our case, (4) becomesH∗ (h, λ, t) = e−θtu
(
x
(
hl̃∗ (h) , h

))
+λB

$
1− l̃∗ (h)

%
h,

where l̃∗ (h) ≡ l∗ (h, λ, t) given λ and t. We compute the first derivative:

∂H∗

∂h
(h, λ, t) = e−θtu′

(
x
(
hl̃∗ (h) , h

))"∂x
∂c

$
l̃∗ (h) + hl̃∗′ (h)

%
+
∂x

∂h

#

+λB
$
1− l̃∗ (h)

%
− λBl̃∗′ (h)h

then the second derivative:

∂2H∗

∂h2
(h,λ, t) = e−θtu′′

(
x
(
hl̃∗ (h) , h

))"∂x
∂c

$
l̃∗ (h) + hl̃∗′ (h)

%
+
∂x

∂h

#2

+e−θtu′
(
x
(
hl̃∗ (h) , h

))

∗
"
∂2x

∂c2

$
l̃∗ (h) + hl̃∗′ (h)

%2
+ 2

∂2x

∂c∂h

$
l̃∗ (h) + hl̃∗′ (h)

%
+
∂x

∂c

$
2l̃∗′ (h) + hl̃∗′′ (h)

%
+
∂2x

∂h2

#

−2λBl̃∗′ (h)− λBl̃∗′′ (h)h (31)

Using (29), we write

e−θtu′ (x) = λB

"
∂x

∂c

#−1

and replacing it in (31), we obtain

∂2H∗

∂h2
(h, λ, t)

= n+ λB

"
∂x

∂c

#−1"
∂2x

∂c2

$
l̃∗ (h) + hl̃∗′ (h)

%2
+ 2

∂2x

∂c∂h

$
l̃∗ (h) + hl̃∗′ (h)

%
+
∂2x

∂h2

#

where n is given by

n ≡ e−θtu′′
(
x
(
hl̃∗ (h) , h

))"∂x
∂c

$
l̃∗ (h) + hl̃∗′ (h)

%
+
∂x

∂h

#2

Under Assumption 1, n < 0 and ∂x/∂c > 0. Then, (9), implies

∂2H∗

∂h2
(h, λ, t) < 0

Proof of Proposition 4
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Taking the logarithm of (5) and differentiating the result with respect to t,
we obtain

µ̇

µ
=

xu′′ (x)

u′ (x)

-"
c

x

∂x

∂c
+
h

x

∂x

∂h

#
ḣ

h
+
c

x

∂x

∂c

l̇

l

.

+

"
c

∂x/∂c

∂2x

∂c2
+

h

∂x/∂c

∂2x

∂c∂h

#
ḣ

h
+

c

∂x/∂c

∂2x

∂c2
l̇

l
(32)

Replacing (5) in (6), we get

µ̇

µ
= θ −B −B

∂x/∂h

∂x/∂c
(33)

Substituting (7) and (33) in (32), we find system (10)-(11).

Proof of Proposition 5

From (5), using the functional forms (12) and (13), and noticing that c = hl,
we obtain

h = l−
ε
σ

(
al

σ−1
σ + b

) ε−σ
σ−1

"
a

µB

#ε

that is l̃∗ = l̃∗ (h) ≡ l∗ (h, λ, t), an implicit function of h with the following
elasticity:

ω (h) ≡
hl̃∗′ (h)

l̃∗ (h)
= −

σal̃∗ (h)
σ−1
σ + σb

σal̃∗ (h)
σ−1
σ + εb

(34)

Given λ and t, let H∗ (h) ≡ u (x∗ (h)) + µB
$
1− l̃∗ (h)

%
h be the maximum

of H with respect to l, with x∗ (h) ≡ x
(
hl̃∗ (h) , h

)
.

According to Arrow and Kurz (1970), we require H∗ to be strictly concave:
H∗′′ (h) < 0.
In the isoelastic case, we obtain

(x
c
,
x

h

)
=

(
al

σ−1
σ + b

) σ
σ−1

"
1

l
, 1

#
(35)

"
∂x

∂c
,
∂x

∂h

#
=

(
al

σ−1
σ + b

) 1
σ−1

(
al−

1
σ , b
)

(36)
-

∂2x
∂c2

∂2x
∂h∂c

∂2x
∂c∂h

∂2x
∂h2

.
=

ab

cσ

(
al

σ−1
σ + b

) σ
σ−1−2

l
σ−1
σ

*
−1
l 1
1 −l

+
(37)

As discussed in the proof of Proposition 1, the first-order conditions of the
maximization program are not only necessary but also sufficient if (9) holds.
That is, if

(
l̃∗ [1 + ω (h)]

)2 ∂2x
∂c2

+ 2l̃∗ [1 + ω (h)]
∂2x

∂c∂h
+
∂2x

∂h2
< 0
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Replacing (34) and (37), we obtain

−
ab

cσ

*
l̃∗

2σ−1
σ

(
al̃∗

σ−1
σ + b

) σ
σ−1−2

+/
σal̃∗

σ−1
σ + σb

σal̃∗
σ−1
σ + εb

02
< 0

which is always true. Surprisingly, we do not need any restriction on σ or ε.
Reconsidering (12) and (13), and using (35), (36) and (37), we find

∂x/∂h

∂x/∂c
=
b

a
l
1
σ (38)

and the elasticities
"
c

x

∂x

∂c
,
h

x

∂x

∂h

#
=

1

al
σ−1
σ + b

(
al

σ−1
σ , b

)
(39)

"
c

∂x/∂c

∂2x

∂c2
,

h

∂x/∂c

∂2x

∂c∂h

#
=

1

σ

b

al
σ−1
σ + b

(−1, 1) (40)

Replacing c = hl, u′ (x) / [xu′′ (x)] = −ε and expressions (39) and (40) in
(11), we obtain equation (15).

Proof of Proposition 6

Let l̄ be the nonzero steady state solution of ϕ (l) = 0. Thus, l̄ is the
(unique) solution of (16). Integrating ḣ/h = B

&
1− l̄

'
over time, we get (17)

and, replacing l̄ and h̄ in c = hl, we obtain (18). Reconsidering (15), we find
that l decreases if l0 < l̄, while l increases if l0 > l̄. Thus the BGP is globally
unstable.

Proof of Proposition 7

Under the parametric specification ε = σ = 1, the differential equation (15)
becomes

l̇ = l

"
B

α
l − θ

#

with the following explicit solution

l (t) =
αθl0

Bl0 + (αθ −Bl0) eθt
(41)

where l0 ≡ l (0) ∈ [0, 1], with

l′ (t) = −
αθ2l0 (αθ −Bl0) eθt

[Bl0 + (αθ −Bl0) eθt]
2 > 0⇔ l0 > α

θ

B

Then, depending on the initial labor allocation, three different cases arise:
(1) If 0 < l0 < αθ/B, then l′ (t) < 0 and limt→∞ l (t) = 0.
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(2) If l0 = αθ/B, then l′ (t) = 0 and l (t) = l̄ = αθ/B forever: the economy
grows at the balanced growth rate g = B (1− αθ/B) (BGP).
(3) If αθ/B < l0 ≤ 1, then l′ (t) > 0 and

l (t) =
αθl0

Bl0 + (αθ −Bl0) eθt
if 0 ≤ t < T (42)

l (t) = 1 if t ≥ T

where

T ≡
1

θ
ln
Bl0 − αθl0
Bl0 − αθ

(43)

Therefore, the steady state l̄ = αθ/B is globally unstable. In addition, recall
that h0 is a given initial condition, while l0 is a choice variable.

We compute the value of the functional
,∞
0
e−θtu (x) dt in these three cases

with u (x) ≡ lnx and x (c, h) ≡ cαh1−α.
We observe that these functions have a unit elasticity of substitution: ε =

σ = 1, and α = a = 1− b.
We organize the proof in three parts, computing c (t) and h (t) in each of the

three cases and evaluating the utility functional
! ∞

0

e−θt ln
&
cαh1−α

'
dt (44)

Case (1): 0 < l0 < αθ/B.
Replacing (41) in (10):

(lnh)′ =
ḣ

h
= B

*
1−

αθl0
Bl0 + (αθ −Bl0) eθt

+

Integrating both the sides, h(t) follows:

h (t) = h0e
Bt

"
αθ −Bl0 +Bl0e−θt

αθ

#α
(45)

with h (0) = h0.
Replacing (41) and (45) in c (t) = h (t) l (t), c (t) can be written as

c (t) = h0l0e
(B−θ)t

"
αθ

αθ −Bl0 +Bl0e−θt

#1−α
(46)

Using (45) and (46), the utility functional v1 (l0) is evaluated:

v1 (l0) ≡
! ∞

0

e−θt ln
&
cαh1−α

'
dt =

! ∞

0

e−θt ln
$
h0l

α
0 e
(B−αθ)t

%
dt

= ln (h0l
α
0 )

! ∞

0

e−θtdt+ (B − αθ)
! ∞

0

e−θttdt

=
1

θ

*
ln (h0l

α
0 ) +

B

θ
− α

+
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Case (2): l0 = αθ/B.

Replacing l̄ by l̄ = l0 = αθ/B in (17) and (18), and then introducing these
expressions for c and h in (44), we find the value of the utility functional along
the BGP. More explicitly,

h (t) = h0e
(B−αθ)t

c (t) = h0l0e
(B−αθ)t

and

v2 (l0) ≡
! ∞

0

e−θt ln
$
c (t)

α
h (t)

1−α
%
dt

=

! ∞

0

e−θt ln
(
h0l

α
0

$
e(B−αθ)t

%)
dt

= ln (h0l
α
0 )

! ∞

0

e−θtdt+ (B − αθ)
! ∞

0

e−θttdt

=
1

θ

*
ln (h0l

α
0 ) +

B

θ
− α

+
(47)

Case (3): αθ/B < l0 ≤ 1.
As seen above, if l0 > αθ/B, then l′ (t) > 0 and l increases over time. At

time T , l reaches the upper bound: l (T ) = 1.
Accordingly, the utility functional (44) is then evaluated considering the

integrals before and after T :

! ∞

0

e−θt ln
&
cαh1−α

'
dt =

! T

0

e−θt ln
&
cαh1−α

'
dt+

! ∞

T

e−θt ln
&
cαh1−α

'
dt

(48)
where T is given by (42).
As in the first case, if 0 ≤ t < T , then (41) holds and the trajectories (45)

and (46) for human capital and consumption hold as well. If t ≥ T , l (t) = 1
and using the definition of T in (43)

h (t) = h (T ) = h0e
BT

"
αθ −Bl0 +Bl0e−θT

αθ

#α

= h0l
α
0

"
Bl0 − αθl0
Bl0 − αθ

#B
θ −α

≡ hT (49)

c (t) = h (t) l (t) = hT (50)

Let us consider (48). When t < T , let us replace c and h using (45) and
(46). When t ≥ T , we use (50), (49) and (43) to substitute for c, hT and T .
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The utility functional becomes a function v3 of l0:

v3 (l0) ≡
! ∞

0

e−θt ln
$
c (t)

α
h (t)

1−α
%
dt

=

! T

0

e−θt ln
$
c (t)α h (t)1−α

%
dt+

! ∞

T

e−θt lnhT dt

=

! T

0

e−θt [ln (h0l
α
0 ) + (B − αθ) t] dt+ lnhT

! ∞

T

e−θtdt

= ln (h0l
α
0 )

! T

0

e−θtdt+ (B − αθ)
! T

0

e−θttdt+ lnhT

! ∞

T

e−θtdt

=
1

θ

"
e−θT lnhT +

&
1− e−θT

'
ln (h0l

α
0 ) +

1
1− (1 + θT ) e−θT

2"B
θ
− α

##

=
1

θ

*
ln (h0l

α
0 )− α+

α

l0

+

Summing up, we obtain

v1 (l0) =
1

θ

*
ln (h0l

α
0 )− α+

B

θ

+

v2 (l0) =
1

θ

*
ln (h0l

α
0 )− α+

B

θ

+

v3 (l0) =
1

θ

*
ln (h0l

α
0 )− α+

α

l0

+

with v′1 (l0) > 0 and

v′3 (l0) = −
α

θ

1− l0
l20

< 0

Therefore,

l̄ = α
θ

B
= arg max

l0∈(0,1]

! ∞

0

e−Bt ln
$
c (t)α h (t)1−α

%
dt

that is, the BGP is optimal.
We find the optimal HDI path (21) by using (19) and (20) to replace c∗ and

h∗ in x̃∗ (t) = c∗ (t)α h∗ (t)1−α.
It only remains to check the transversality condition along the BGP. From

equations (33) and (38):

[lnµ∗ (t)]′ =
µ̇∗ (t)

µ∗ (t)
= θ −B −B

∂x/∂h

∂x/∂c
= θ −B −B

b

a
l∗ (t)

1
σ

= θ −B −B
1− α
α

l∗ (t) = αθ −B (51)

Integrating both sides we obtain that µ (t) = µ∗0e
(αθ−B)t, and using h (t) =

h0e
(B−αθ)t, it can be proven that the transversality condition is satisfied along
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the BGP:

lim
t→∞

1
e−θtµ∗ (t)h∗ (t)

2
= lim
t→∞

$
e−θtµ∗0e

(αθ−B)th0e
(B−αθ)t

%
= µ∗0h0 lim

t→∞
e−θt = 0

Proof of Corollary 8.
Using the results in Proposition 7, we can easily compute the elasticities of

the BGP with respect to α:

α

h∗ (t)

∂h∗ (t)

∂α
= −αθt < 0

α

c∗ (t)

∂c∗ (t)

∂α
= 1− αθt > 0⇔ t < Tc,α

α

x̃∗ (t)

∂x̃∗ (t)

∂α
= α

*
1 + ln

"
α
θ

B

#
− θt

+
> 0⇔ t < Tx,α

Proof of Corollary 9.
As in the previous proof, the elasticities of the BGP with respect to θ follow:

θ

h∗ (t)

∂h∗ (t)

∂θ
= −αθt < 0

θ

c∗ (t)

∂c∗ (t)

∂θ
= 1− αθt > 0⇔ t < Tc,α

θ

x̃∗ (t)

∂x̃∗ (t)

∂θ
= α (1− θt) > 0⇔ t < Tx,θ

Proof of Corollary 10.
The elasticities of the BGP with respect to B obtain as in the previous

corollaries, using the description of the BGP provided in Proposition 7:

B

h∗ (t)

∂h∗ (t)

∂B
= Bt > 0

B

c∗ (t)

∂c∗ (t)

∂B
= Bt− 1 > 0⇔ t > Tc,B

B

x̃∗ (t)

∂x̃∗ (t)

∂B
= Bt− α > 0⇔ t > Tx,B

Proof of Corollary 11.
(1) Recall that output is defined as y (t) ≡ h (t) l (t). As we have proven in

this paper, l (t) is constant along the optimal path, and growth is balanced:

ẏ∗ (t)

y∗ (t)
=
ḣ∗ (t)

h∗ (t)
= g∗ = B (1− l∗) = B − αθ ≥ 0
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because l∗ ∈ (0, 1]. The impact on the optimal (balanced) growth rate of α, θ
and B are the following:

∂g∗

∂α
= −θ < 0,

∂g∗

∂θ
= −α < 0 and

∂g∗

∂B
= 1 > 0

(2) Along the BGP, l (t) = l∗ = αθ/B and, according to (47), the welfare
functional is given by

W ∗ =

! ∞

0

e−θt ln
$
c (t)α h (t)1−α

%
dt ≡ v2 (l0) =

1

θ

*
lnh0 + α ln

"
α
θ

B

#
+
B

θ
− α

+

Since l∗ ∈ (0, 1], we obtain

∂W ∗

∂α
=

1

θ
ln

"
α
θ

B

#
=
1

θ
ln l∗ ≤ 0

∂W ∗

∂θ
= −

1

θ2

*
ln (h0l

∗α) + 2 (1− l∗)
B

θ

+
< 0⇔ h0 > h̄0

∂W ∗

∂B
=

1− l∗

θ2
> 0
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