X. Wei, S. L. Phung, and A. Bouzerdoum, ?Visual descriptors for scene categorization: experimental evaluation, Artificial Intelligence Review, vol.45, issue.3, pp.333-368, 2016.

A. Sassi, C. B. Amar, and S. Miguet, ?Skyline-based approach for natural scene identification, 13th IEEE/ACS International Conference of Computer Systems and Applications, AICCSA 2016, pp.1-8, 2016.

A. Day, ?Urban visualization and public inquiries: the case of the heron tower, london, Architectural Research Quarterly, issue.6, pp.363-372, 2002.

A. S. Iii, J. L. Nasar, and K. Hanyu, ?Using pre-construction validation to regulate urban skylines, Journal of the American Planning Association, vol.71, issue.1, pp.73-91, 2005.

J. L. Nasar and K. Terzano, ?The desirability of views of city skylines after dark, Journal of Environmental. Psychology, issue.2, pp.215-225, 2010.

M. Ayadi, L. Suta, M. Scuturici, S. Miguet, . Ben et al., ?A parametric algorithm for skyline extraction, pp.604-615, 2016.

R. Tonge, S. Maji, and C. V. Jawahar, ?Parsing world's skylines using shape-constrained mrfs, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.3174-3181, 2014.

A. Sassi, W. Ouarda, . Ben, C. Amar, and S. Miguet, ?Neural Approach for Context Scene Image Classification based on Geometric, Texture and Color Information'. In: Representation, analysis and recognition of shape and motion FroM Image data, 2017.

F. M. Yassin, O. Lazzez, W. Ouarda, and A. M. Alimi, ?Travel user interest discovery from visual shared data in social networks, 2017 Sudan Conference on Computer Science and Information Technology (SCCSIT), pp.1-7

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., ?Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-9, 2015.

Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang et al., ?Convolutional recurrent neural networks: Learning spatial dependencies for image representation, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.18-26, 2015.

Y. Gong, L. Wang, R. Guo, and S. Lazebnik, ?Multi-scale orderless pooling of deep convolutional activation features, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ?Imagenet classification with deep convolutional neural networks', Proceedings of the 25th International Conference on Neural Information Processing Systems, vol.1, pp.1097-1105, 2012.

J. Sá-nchez, F. Perronnin, T. Mensink, and J. Verbeek, ?Image classification with the fisher vector: Theory and practice, Int J Comput Vision, issue.105, pp.222-245, 2013.

-. Sky and . Cnn, A CNN-based Learning Approach for Skyline Scene Understanding Copyright © 2019 MECS I, J. Intelligent Systems and Applications, vol.4, pp.14-25, 2019.

J. Yang, K. Yu, Y. Gong, and T. S. Huang, ?Linear spatial pyramid matching using sparse coding for image classification, pp.1794-1801, 2009.

J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva, ?Sun database: Exploring a large collection of scene categories, International Journal of Computer Vision, vol.119, issue.1, pp.3-22, 2016.

A. Oliva and A. Torralba, ?Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope, International Journal of Computer Vision, vol.42, pp.145-147, 2001.

T. Ojala, M. Pietikãd'inen, and D. Harwood, ?A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, pp.51-59, 1996.

S. Huttunen, E. Rahtu, I. Kunttu, J. Gren, and J. Heikkilä, ?Real-time detection of landscape scenes', pp.338-347, 2011.

X. Han and Y. Chen, ?Image categorization by learned PCA subspace of combined visual-words and low-level features, Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp.1282-1285, 2009.

N. Serrano, A. E. Savakis, and J. Luo, ?Improved scene classification using efficient low-level features and semantic cues, Pattern Recognition, vol.37, pp.1773-1784, 2004.

A. Vailaya, A. Jain, and H. J. Zhang, ?On image classification: City images vs. landscapes', Pattern Recognition, pp.1921-1935, 1998.

Z. Chen, Z. Chi, and H. Fu, ?A hybrid holistic/semantic approach for scene classification, 22nd International Conference on Pattern Recognition, pp.2299-2304, 2014.

Y. Lecun, L. Bottou, and Y. Bengio, Haffner, P. ?Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.

K. He, X. Zhang, S. Ren, and J. Sun, ?Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., A system for large-scale machine learning, Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. OSDI'16, pp.265-283, 2016.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. Setio, F. Ciompi et al., ?A survey on deep learning in medical image analysis, vol.42, pp.60-88, 2017.

L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, ?Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.40, issue.4, pp.834-848, 2018.

D. Balduzzi, M. Frean, L. Leary, J. P. Lewis, K. W. Ma et al., ?The shattered gradients problem: If resnets are the answer, then what is the question?, 2017.

G. Philipp, D. Song, and J. G. Carbonell, ?Gradients explode -deep networks are shallow -resnet explained', 2018.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ?Rethinking the inception architecture for computer vision, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, ?Identity mappings in deep residual networks, 2016.

T. Hiippala, ?Recognizing military vehicles in social media images using deep learning, 2017 IEEE International Conference on Intelligence and Security Informatics, pp.60-65, 2017.

S. Alvarez and M. Vanrell, ?Texton theory revisited: A bagof-words approach to combine textons, Pattern Recognition, vol.45, pp.4312-4325, 2012.