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(Un-)validated models?

Schelling model (toy model)
Quant model (operational
models)
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Model validation

Proposed definition: increasing the confidence in a model to fit
its purpose

Depends on:
I model nature/type
I model purpose
I discipline
I particular problem or application case
I expected standards
I background or mood (!) of the reviewer/reader/listener
I . . .
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Model validation

→ Validation has very different implications depending on episte-
mological positioning: from an objective procedure (reductionism)
to a more conversational and reflexive process (holistic)
[Barlas and Carpenter, 1990]

→ How disciplines are positioned, political relations, effective cita-
tion practices, etc. are all aspects of implicit “social” model valida-
tion
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Predictive models

In geosciences (hydrology e.g. [Legates and McCabe Jr, 1999]),
quantitative agreement between model and data

→ choice among numerous indicators to quantify the agreement

→ robust indicators? choice can be validated itself

In practice, not systematically done, as for example for land-use
change models [van Vliet et al., 2016]

Microsimulation models enter a similar context (e.g.
[Park and Schneeberger, 2003] for the Vissim traffic model), in a
slightly different way than agent-based models
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Statistical models

Statistical models exhibit different measures of “model quality”:
I predictive power (explained variance)
I p-value (alpha errors) and beta power (false positives)

Following [Saltelli, 2019], mathematical modeling may benefit
similar standards as in statistics

6 / 32



Analytical models

→ to what extent of analytical resolution is a model “validated”?
(limit theorem, restricting assumptions, unfeasible ranges in prac-
tice, . . . )

→ finally most of the time coupled with numerical simulation? see
coupling of machine learning and mathematical modeling
[Butler et al., 2018] or statistical inference [Bzdok et al., 2018]

→ computational turn of science [Arthur, 2013]?

On the link with simulation models:

I Formal proof systems remain limited
I Undecidability of the Turing machine Halting problem
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Simulation models

Overview of simulation model validation methods and processes by
[Sargent, 2010]

1. independent validation and verification (modelers as cognitive
agents [Giere, 1990]

2. iterative process between conceptual, computerized models,
and the system itself

3. Numerous validation techniques: comparison, extreme
conditions, historical data, internal validity, sensitivity analysis,
predictive performance, Turing test

4. Specific techniques for operational validity
5. Documentation of the validation process is crucial
6. Accreditation: science as a social process

[Landry et al., 1983] similar in operations research
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Simulation models as generative models

Simulating the evolution of a system in a generative way:
[Epstein and Axtell, 1996]: “if you did not grow it, you did not
explained it”

→ similar to Pattern Oriented Modeling [Grimm et al., 2005]:
reconstruct (macro) patterns from the bottom-up

Implications for validation:
I Crucial role of indicator choice (see e.g. link prediction vs.

network structure reconstruction)
I fine understanding of model behavior
I role of processes and parameters
I controlled experiments (virtual laboratories)

→ typical example of explication/comprehension models (but
which can also be statistical, analytical)
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Sensitivity analysis

→ Sensitivity analysis is part of a model validation process
[Saltelli et al., 2010]: how does a model behave in response to vari-
ations in its parameters/variables/input data?

→ Articulation of complementary methods [Cariboni et al., 2007]
(validation is then the full cascade of successive methods applied)
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Sensitivity analysis: examples of properties
Design of Experiments
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Exploration of simulation models

Model exploration is running a simulation model, following a design
of experiments, to gain knowledge about model properties.

e.g. : sensitivity analysis

Recent and significant increase in the development of methods to
explore, calibrate and optimize (geo)simulation models.

→ part of model validation also

Explicative / comprehensive models are mostly made useful by
their exploration
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Advanced exploration methods

Example of validation methods included in OpenMOLE:
Calibration: Evolutionary (GA) and Bayesian (ABC) methods

Diversity Search: unveil the variety of obtainable patterns in
output space: can the model produce unexpected patterns, and if
so what does it means for its mechanisms ?

Origin Search: inverse problem, tackling the problem of
equifinality
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New methods: spatial sensitivity

Spatial sensitivity analysis techniques

Example: generators of synthetic urban districts
[Raimbault and Perret, 2019]
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Multi-modeling

→ Validation of submodels to foster diverse questions and
approaches

→ Validation of coupled models remains an open question (e.g.
error propagation techniques)

→ Comparison of the model with alternative formalisms: for
example agent-based modeling against differential equations

→ Importance of systematic model benchmarks/classifications

→ Occam’s razor and parsimony plays a certain role for model
validity in this context
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Validation and model functions

Varenne’s model function families [Varenne, 2017]:

I Perception and observation: perception medium,
visualization, experimental medium

I Understanding: description, prediction, explication,
comprehension

I Theory construction: interpretation of a theory, test of
internal coherence, applicability, co-computability

I Communication: scientific communication, stakeholders
involvement

I Decision-making: planning, decision-making, self-fulfilling
system prescription
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Validation and model functions

I Perception and observation: how much information is
extracted

I Description: how much information is contained within
I Prediction: predictive power (quantitative indicators or

qualitative behavior)
I Explication and comprehension: how much of the causal

structure of the system is grasped
I Theory construction: how does the model contributes to the

theory, to coupling of its components (e.g. medium for
interdisciplinarity)

I Communication: how much information is conveyed and to
which agents

I Decision-making: how are decision supported, which benefits
and for what dimension (societal, environmental, etc.)?
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Validation and model type

I Statistical: model fit/statistical power
I Machine learning: predictive power
I Analytical: level of resolution, genericity
I Simulation/generative: model behavior, sensitivity analysis,

pattern reconstruction, causal processes
I Operational: planning/decision-making relevance
I . . .

Rq: classification of “model types” can neither be exhaustive nor
consistent
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Social aspects of validation

I Acceptance and impact within the discipline/specific subject
of study

I Impact in other disciplines
I Impact outside of science
I Interdisciplinary/bridging/integrative role

[Raimbault and Pumain, 2019]
I Different dimensions: complex and multidimensional nature of

scientometrics [Raimbault and Pumain, 2019]
[Cronin and Sugimoto, 2014]

I . . .
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Validation within a knowledge framework

Epistemological foundations of a knowledge framework for integrated
approaches to complex systems [Raimbault, 2017], coined by
[Raimbault and Pumain, 2019] as Applied Perspectivism:

Giere’s cognitive approach to science [Giere, 1990] : cognitive agents
have perspectives on aspects of the real world.

Scientific perspectivism [Giere, 2010] : cognitive agents use me-
dia, the models, to represent something with a certain purpose.

[Varenne, 2017]’s classification of main model functions : perception
and observation, understanding, theory building, communication,
decision making.
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Knowledge domains

Definition of Knowledge Domains :
I Empirical. Empirical knowledge of real world objects.
I Theoretical. Conceptual knowledge, implying cognitive

constructions.
I Modeling. The model as the formalized medium of the

perspective.
I Data. Raw information that has been collected.
I Methods. Generic structures of knowledge production.
I Tools. Implementation of methods and supports of others

domains.
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Knowledge framework

Description of the Knowledge Framework :

1. Any scientific knowledge construction on a complex system
can be understood as a perspective, decomposed into
knowledge domains.

2. Contents within domains coevolve [Holland, 2012] between
themselves and with other elements of the perspective
(including cognitive agents and the purpose).

3. It implies weak emergence [Bedau, 2002] what is consistent
with the existence of bodies of knowledge.

22 / 32



Interactions between domains
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Validation within the knowledge framework

→ Role and type/method of validation are proper to each
perspective

→ Links and interaction between domains are part of the
model/theory construction process and thus of validation of the
perspective

→ Intrinsically iterative nature of validation

→ Cannot be dissociated (at least for the study of complex
systems) to new methods and tools
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Conclusion

→Meaning of “model validation” is indeed strongly dependant on its
properties, including type, function, context of application, discipline

→ Obvious? Not for all seeing some debates/questions here and
there. Interdisciplinarity requires an opening to other stan-
dards/definitions/viewpoints

→ Validation within the Applied Perspectivism knowledge frame-
work: validation proper to each perspective and to the coupling of
perspectives, intrinsically iterative

→ Construction of integrative theories and models implies this mul-
tiple view of model validation and the variety of methods and tools,
in particular in the case of simulation models
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