Validation levels and standards depending on models types and functions

J. Raimbault 1,2,3,*

CASA, UCL
 UPS CNRS 3611 ISC-PIF
 UMR CNRS 8504 Géographie-cités

* juste.raimbault@polytechnique.edu

OpenMOLE

CCS 2019 Satellite SIMEXPLO October 2nd, 2019

Schelling model (toy model)

Quant model (operational models)

Proposed definition: increasing the confidence in a model to fit its purpose

Depends on:

- model nature/type
- model purpose
- discipline
- particular problem or application case
- expected standards
- background or mood (!) of the reviewer/reader/listener
- . . .

- \rightarrow Validation has very different implications depending on epistemological positioning: from an objective procedure (reductionism) to a more conversational and reflexive process (holistic) [Barlas and Carpenter, 1990]
- ightarrow How disciplines are positioned, political relations, effective citation practices, etc. are all aspects of implicit "social" model validation

In geosciences (hydrology e.g. [Legates and McCabe Jr, 1999]), quantitative agreement between model and data

- ightarrow choice among numerous indicators to quantify the agreement
- → robust indicators? choice can be validated itself

In practice, not systematically done, as for example for land-use change models [van Vliet et al., 2016]

Microsimulation models enter a similar context (e.g. [Park and Schneeberger, 2003] for the Vissim traffic model), in a slightly different way than agent-based models

Statistical models exhibit different measures of "model quality":

- predictive power (explained variance)
- p-value (alpha errors) and beta power (false positives)

Following [Saltelli, 2019], mathematical modeling may benefit similar standards as in statistics

- \rightarrow to what extent of analytical resolution is a model "validated"? (limit theorem, restricting assumptions, unfeasible ranges in practice, . . .)
- \rightarrow finally most of the time coupled with numerical simulation? see coupling of machine learning and mathematical modeling [Butler et al., 2018] or statistical inference [Bzdok et al., 2018]
- \rightarrow computational turn of science [Arthur, 2013]?

On the link with simulation models:

- ► Formal proof systems remain limited
- Undecidability of the Turing machine Halting problem

Overview of simulation model validation methods and processes by [Sargent, 2010]

- 1. independent validation and verification (modelers as cognitive agents [Giere, 1990]
- 2. iterative process between conceptual, computerized models, and the system itself
- Numerous validation techniques: comparison, extreme conditions, historical data, internal validity, sensitivity analysis, predictive performance, Turing test
- 4. Specific techniques for operational validity
- 5. Documentation of the validation process is crucial
- 6. Accreditation: science as a social process

[Landry et al., 1983] similar in operations research

Simulating the evolution of a system in a generative way: [Epstein and Axtell, 1996]: "if you did not grow it, you did not explained it"

 \rightarrow similar to *Pattern Oriented Modeling* [Grimm et al., 2005]: reconstruct (macro) patterns from the bottom-up

Implications for validation:

- Crucial role of indicator choice (see e.g. link prediction vs. network structure reconstruction)
- fine understanding of model behavior
- role of processes and parameters
- controlled experiments (virtual laboratories)
- \rightarrow typical example of **explication/comprehension** models (but which can also be statistical, analytical)

Sensitivity analysis

- → Sensitivity analysis is part of a model validation process [Saltelli et al., 2010]: how does a model behave in response to variations in its parameters/variables/input data?
- ightarrow Articulation of complementary methods [Cariboni et al., 2007] (validation is then the full cascade of successive methods applied)

Design of Experiments

One factor at a time	Coverage	Interpretability	Budget
	X	✓	✓
Complete plan LHS/Sobol	✓	✓	X
	✓	X	✓

Sensitivity analysis

	Coverage	Interpretability	Budget
Morris	X	✓	✓
Saltelli	✓	✓	X

Model exploration is running a simulation model, following a *design* of experiments, to gain knowledge about *model properties*.

e.g.: sensitivity analysis

Recent and significant increase in the development of methods to explore, calibrate and optimize (geo)simulation models.

ightarrow part of model validation also

Explicative / comprehensive models are mostly made useful by their exploration

Advanced exploration methods

Example of validation methods included in OpenMOLE: **Calibration**: Evolutionary (GA) and Bayesian (ABC) methods

Diversity Search: unveil the variety of obtainable patterns in output space: can the model produce unexpected patterns, and if so what does it means for its mechanisms?

Origin Search: inverse problem, tackling the problem of equifinality

Spatial sensitivity analysis techniques

Example: generators of synthetic urban districts [Raimbault and Perret, 2019]

Multi-modeling

- \rightarrow Validation of submodels to foster diverse questions and approaches
- ightarrow Validation of coupled models remains an open question (e.g. error propagation techniques)
- ightarrow Comparison of the model with alternative formalisms: for example agent-based modeling against differential equations
- ightarrow Importance of systematic model benchmarks/classifications
- \rightarrow Occam's razor and parsimony plays a certain role for model validity in this context

Varenne's model function families [Varenne, 2017]:

- Perception and observation: perception medium, visualization, experimental medium
- Understanding: description, prediction, explication, comprehension
- ► Theory construction: interpretation of a theory, test of internal coherence, applicability, co-computability
- ► Communication: scientific communication, stakeholders involvement
- Decision-making: planning, decision-making, self-fulfilling system prescription

- Perception and observation: how much information is extracted
- ▶ **Description**: how much information is contained within
- Prediction: predictive power (quantitative indicators or qualitative behavior)
- ► **Explication and comprehension**: how much of the causal structure of the system is grasped
- ► Theory construction: how does the model contributes to the theory, to coupling of its components (e.g. medium for interdisciplinarity)
- ► **Communication**: how much information is conveyed and to which agents
- Decision-making: how are decision supported, which benefits and for what dimension (societal, environmental, etc.)?

Validation and model type

- ▶ Statistical: model fit/statistical power
- Machine learning: predictive power
- Analytical: level of resolution, genericity
- Simulation/generative: model behavior, sensitivity analysis, pattern reconstruction, causal processes
- Operational: planning/decision-making relevance
- . . .

Rq: classification of "model types" can neither be exhaustive nor consistent

- Acceptance and impact within the discipline/specific subject of study
- Impact in other disciplines
- Impact outside of science
- Interdisciplinary/bridging/integrative role [Raimbault and Pumain, 2019]
- Different dimensions: complex and multidimensional nature of scientometrics [Raimbault and Pumain, 2019]
 [Cronin and Sugimoto, 2014]
- **.** . . .

Epistemological foundations of a knowledge framework for integrated approaches to complex systems [Raimbault, 2017], coined by [Raimbault and Pumain, 2019] as **Applied Perspectivism**:

Giere's cognitive approach to science [Giere, 1990]: cognitive agents have *perspectives* on aspects of the real world.

Scientific perspectivism [Giere, 2010] : *cognitive agents* use *media*, the models, to represent something with a certain purpose.

[Varenne, 2017]'s classification of main model functions: perception and observation, understanding, theory building, communication, decision making.

Definition of Knowledge Domains:

- **Empirical.** Empirical knowledge of real world objects.
- ➤ Theoretical. Conceptual knowledge, implying cognitive constructions.
- ▶ **Modeling.** The model as the formalized *medium* of the perspective.
- Data. Raw information that has been collected.
- ▶ **Methods.** Generic structures of knowledge production.
- ► **Tools.** Implementation of methods and supports of others domains.

Description of the Knowledge Framework:

- Any scientific knowledge construction on a complex system can be understood as a perspective, decomposed into knowledge domains.
- Contents within domains coevolve [Holland, 2012] between themselves and with other elements of the perspective (including cognitive agents and the purpose).
- 3. It implies weak emergence [Bedau, 2002] what is consistent with the existence of bodies of knowledge.

Validation within the knowledge framework

- \rightarrow Role and type/method of validation are proper to each perspective
- \rightarrow Links and interaction between domains are part of the model/theory construction process and thus of validation of the perspective
- → Intrinsically iterative nature of validation
- \rightarrow Cannot be dissociated (at least for the study of complex systems) to new methods and tools

- → Meaning of "model validation" is indeed strongly dependant on its properties, including type, function, context of application, discipline
- → Obvious? Not for all seeing some debates/questions here and there. Interdisciplinarity requires an opening to other standards/definitions/viewpoints
- ightarrow Validation within the Applied Perspectivism knowledge framework: validation proper to each perspective and to the coupling of perspectives, intrinsically iterative
- \rightarrow Construction of integrative theories and models implies this multiple view of model validation and the variety of methods and tools, in particular in the case of simulation models

References I

- Arthur, W. B. (2013).

 Complexity economics.

 Oxford University Press, Oxford.
- Barlas, Y. and Carpenter, S. (1990).
 Philosophical roots of model validation: two paradigms.

 System Dynamics Review, 6(2):148–166.
- Bedau, M. (2002).

 Downward causation and the autonomy of weak emergence.

 Principia: an international journal of epistemology, 6(1):5–50.
- Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., and Walsh, A. (2018).

 Machine learning for molecular and materials science.

 Nature, 559(7715):547.

References II

- Bzdok, D., Altman, N., and Krzywinski, M. (2018). Points of significance: statistics versus machine learning.
- Cariboni, J., Gatelli, D., Liska, R., and Saltelli, A. (2007). The role of sensitivity analysis in ecological modelling. *Ecological modelling*, 203(1-2):167–182.
- Cronin, B. and Sugimoto, C. R. (2014).

 Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact.

 MIT Press.
- Epstein, J. M. and Axtell, R. (1996).

 Growing artificial societies: social science from the bottom up.

 Brookings Institution Press.

References III

- Giere, R. N. (1990).

 Explaining science: A cognitive approach.

 University of Chicago Press, Chicago, ISBN: 9780226292069.
- Giere, R. N. (2010).

 Scientific perspectivism.

 University of Chicago Press.
- Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., and DeAngelis, D. L. (2005).

 Pattern-oriented modeling of agent-based complex systems: lessons from ecology.

 Science, 310(5750):987–991.

References IV

Signals and boundaries: Building blocks for complex adaptive systems.

MIT Press.

Legates, D. R. and McCabe Jr, G. J. (1999). Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation.

Water resources research, 35(1):233-241.

References V

Park, B. and Schneeberger, J. (2003).

Microscopic simulation model calibration and validation: case study of vissim simulation model for a coordinated actuated signal system.

Transportation Research Record, 1856(1):185–192.

- Raimbault, J. (2017).

 An applied knowledge framework to study complex systems. In Complex Systems Design & Management, pages 31–45.
- Raimbault, J. and Perret, J. (2019).
 Generating urban morphologies at large scales.

 The 2019 Conference on Artificial Life, (31):179–186.
- Raimbault, J. and Pumain, D. (2019). Exploration methods for simulation models. arXiv preprint arXiv:1905.07160.

References VI

A short comment on statistical versus mathematical modelling.

Nature communications, 10(1):1–3.

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S. (2010).

Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index.

Computer Physics Communications, 181(2):259–270.

Sargent, R. G. (2010).

Verification and validation of simulation models.

In *Proceedings of the 2010 Winter Simulation Conference*, pages 166–183. IEEE.

References VII

an Vliet, J., Bregt, A. K., Brown, D. G., van Delden, H., Heckbert, S., and Verburg, P. H. (2016).

A review of current calibration and validation practices in land-change modeling.

Environmental Modelling & Software, 82:174–182.

Varenne, F. (2017).

Théories et modèles en sciences humaines. Le cas de la géographie.

Editions Matériologiques.