Magnetic signal prospecting in a former Achaemenid ‘palace’: the example of Gumbati (Georgia)
Julien Thiesson, Sébastien Gondet, Jörg Fassbinder, Florian Becker, Marion Scheiblecker, Sandra Ostner, Mandana Parsi, Solène Bourgeois Espéron, Kai Kaniuth

To cite this version:
NEW GLOBAL PERSPECTIVES ON ARCHAEOLOGICAL PROSPECTION

13th INTERNATIONAL CONFERENCE ON ARCHAEOLOGICAL PROSPECTION
28 AUGUST - 1 SEPTEMBER 2019
SLIGO - IRELAND

This volume is a product of the 13th International Conference on Archaeological Prospection 2019, which was hosted by the Department of Environmental Science in the Faculty of Science at the Institute of Technology Sligo. The conference is held every two years under the banner of the International Society for Archaeological Prospection and this was the first time that the conference was held in Ireland. New Global Perspectives on Archaeological Prospection draws together over 90 papers addressing archaeological prospection techniques, methodologies and case studies from 33 countries across Africa, Asia, Australasia, Europe and North America, reflecting current and global trends in archaeological prospection. At this particular ICAP meeting, specific consideration was given to the development and use of archaeological prospection in Ireland, archaeological feedback for the prospector, applications of prospection technology in the urban environment and the use of legacy data.

Papers include novel research areas such as magnetometry near the equator, drone-mounted radar, microgravity assessment of tombs, marine electrical resistivity tomography, convolutional neural networks, data processing, automated interpretive workflows and modelling as well as recent improvements in remote sensing, multispectral imaging and visualisation.

James Bonsall uses geophysical and remote sensing technology to investigate ancient people and landscapes. James is particularly interested in challenging upland and coastal environments that require technical expertise combined with novel methodological approaches to enhance the interpretation of past environments. James has twenty years of archaeological geophysical experience acquired in the commercial and academic sectors. His PhD, a fellowship from the National Roads Authority, focused on aspects of prospecting driven by legacy data collected during the ‘Celtic Tiger’ economic boom. James is a Lecturer in Archaeology at the Institute of Technology Sligo. His recent publications include a geoarchaeological study of shell middens on the west coast of Ireland; mapping pauper burials in the UK; and the challenges of surveying remote upland sites in Ireland and Italy.
NEW GLOBAL PERSPECTIVES ON ARCHAEOLOGICAL PROSPECTION

13TH INTERNATIONAL CONFERENCE ON ARCHAEOLOGICAL PROSPECTION
28 AUGUST - 1 SEPTEMBER 2019
SLIGO - IRELAND

Edited by James Bonsall
Contents

The 13th ICAP and the Importance of Archaeological Prospection in Ireland 8
 James Bonsall

13th International Conference on Archaeological Prospection: Organisation Committee ... 14

13th International Conference on Archaeological Prospection: Scientific Committee ... 15

Part One – Archaeological Prospection in Europe ... 16

 Harbours from Antiquity to the Middle Ages: a Geophysical Panorama 17
 Wolfgang Rabbel, Dennis Wilken, Tina Wunderlich, Annika Fediuk, Michaela Schwardt, Daniel Köhn, Clemens Mohr, SPP 1630 Working Groups

 High-resolution underwater archaeological prospection of Upper Austrian pile dwellings and lakes using multi-beam and sediment sonar ... 21
 Immo Trinks, Wolfgang Neubauer, Timothy Taylor, Mario Wallner, Klaus Löcker, Jutta Leskovar

 Ground-penetrating radar study of the Asaviec 2 archaeological site, Belarus 24
 Alina Tšugai-Tsyryulnikova, Jüri Plado, Maxim Charniauski, Irina Khrustaleva, Aivar Kriiska

 The Challenge of Urban Archaeological Geophysics: the Example of Grand’Place in Brussels, Belgium ... 27
 Michel Dabas, François Blary, Gianluca Catanzariti, Paulo Charruadas, Sébastien Flageul, Benjamin Van Nieuwenhoeve, Philippe Sosnowska, Alain Tabbagh

 The Good, the Bad and the Ugly (Data): 100-year Discussion over Roman Fort in Herzegovina solved with shards of information ... 32
 Michal Pisz, Tomasz Dziurdzik

 Geophysical surveys of Eneolithic ditch enclosures in central Bohemia 36
 Roman Křivánek

 The application of the geophysical method in forested highland terrains of Bohemia 40
 Roman Křivánek

 Non-destructive survey of early medieval ramparts in the Czech Republic and Slovakia 45
 Peter Milo, Igor Murin, Michaela Prišťáková, Tomáš Tencer, Michal Vágner

 Looking for military remains of the Battle of Gergovia: Benefits of a towed multi-frequency EMI survey ... 47
 François-Xavier Simon, Guillaume Hulin, Yann Deberge, Marion Dacko

 First 3D reconstruction of the palaeoenvironment at the Mesolithic site of Duvensee, Germany, using geophysics and geoarchaeology .. 51
 Erica Corradini, Dennis Wilken, Marco Zanon, Daniel Groß, Harald Lübke, Diana Panning, Katharina Rusch, Rebekka Mecking, Ercan Erkul, Natalie Pickartz, Ingo Feeser, Wolfgang Rabbel

 Interaction of geophysical prospection, archaeological excavation and historical sources to reconstruct a medieval monastery in Southern Bavaria ... 54
 Roland Linck, Florian Becker, Mario Hözl
The sunken trade centre of Rungholt – Geophysical investigations in the German North Frisian Wadden Sea ..58

Michaela Schwartd, Dennis Wilken, Hanna Hadler, Annika Fediu, Tina Wunderlich, Andreas Vött, Wolfgang Rabbel

3-D Resistivity Imaging of Rock-Cut Chamber Tombs: the case of the Mycenaean Cemetery in Prosilio, Greece ..62

Nikos Papadopoulos, Dimitris Oikonomou, Gianluca Cantoro, Nikos Andronikidis, Apostolos Sarris

Manifestation of the urban design of ancient cities in northern Greece by archaeological prospection ..66

Gregory N. Tsokas, Panagiotis Tsourlos, George Vargemezis

Ground-Penetrating radar (GPR) for non-destructive testing of monument walls ..69

Gregory Tsokas, Nectaria Diamanti, Dimitrios Angelis, Panagiotis Tsourlos, George Vargemezis

From Roman Villas to 19th century gardens: case studies of geophysical surveys for built heritage in Hungary ..73

László Nagy

Hidden Depths and Empty Spaces: the contribution of archaeological prospection to the study of early medieval Ireland ..75

Susan Curran

Visualizing the Village: A Comparative Assessment of Remote Sensing Methods on Inishark, Co. Galway, Ireland ..78

Sean Field, Ian Kuijt

Unusual monuments, Unusual molecules: geochemical processes at work in County Limerick, Ireland ..81

Joanna Leigh, Geraldine Stout, Matthew Stout

Newgrange, New Monuments and New Perspectives ..85

Microgravimetry for cavity detection—an example from pilot measurements on Newgrange passage tomb (Brú na Bóinne World Heritage Site, Ireland) ..87

Roman Pasteka, Pavol Zahorec, Juraj Papco, Conor Brady, Kevin Barton

When the Norsemen return: Complementary GPR surveys at the Viking Age site of Woodstown, County Waterford, Ireland ..91

Petra Schneidhofer

Revisiting the Segesta and the Monreale Survey Sites - The Benefits and Possibilities of Digitising Analog Archaeological Spatial Data ..96

Doris Jetzinger, Christopher Sevara

Integrating geophysical and geoarchaeological surveys for the reconstruction of a Roman Port infrastructure: the Claudian Harbour at Portus ..99

Stephen Kay, Elena Pomar, Simon Keay, Kristian Strutt, Stoi Chapkanski, Jean-Philippe Goiran

Extensive Geophysical Investigations to study the Archaeological Site of Norba (Norma, Central Italy) ..104

Salvatore Piro, Stefania Quilici Gigli, Enrico Papale, Daniela Zamuner

Innovating Archaeological Investigations in Mediterranean Landscapes: Contributions from the Prospecting Boundaries Project ..107
Christopher Sevara, Michael Doneus, Erich Draganits, Roderick B. Salisbury, Cipriano Frazzetta, Doris Jetzinger, Sheba-Celina Schilk, Sebastiano Tusa

Looking for Etruscan harbours: geophysical survey of the ancient site of Pyrgi 111
Quentin Vitale, Christophe Benech, Jean-Philippe Goiran

Investigating a tumulus in the Etruscan necropolis of Banditaccia – Applying multiple non-invasive prospection methods on a World Heritage Site .. 115
Mario Wallner, Immo Trinks, Ingrid Schlögel, Alois Hinterleitner, Hannes Schiel, Tanja Trausmuth, Fabio Colivicchi, Maurizio Forte, Wolfgang Neubauer

Prospecting Mesolithic buried landscapes and sites. Two case studies from two different types of landscapes in the southern Netherlands ... 119
Eelco Rensink

"Where animals were equal to humans". Surprising results of complementary geophysical survey on gallows in Lower Silesia (Poland) ... 121
Michal Pisz, Magdalena Majorek, Bartosz Świątkowski, Daniel Wojtucki, Karolina Wojtucka, Krzysztof Narloch

Back to the roots. Remote sensing techniques for rediscovering the Chalcolithic eponymous settlement of Cucuteni culture, Romania ... 125
Andrei Asandulesei, Felix-Adrian Tencariu, Radu-Ștefan Balaur, Mihaela Asandulesei

Understanding the Anomaly: Multi-Method Geoscientific Research Applied on a Roman Fort in Pojejena ... 129
Michal Pisz, Radoslaw Mieszkowski, Emil Jęczmienowski

Geophysical and archaeological research of the baroque church of Saint Nicolas in Kovarce, Slovakia .. 133
Mário Bielich, Ján Tirpák

Outlining the karst: ERT and GPR surveys to detect karstic morphologies in the Sierra de Atapuerca sites (Burgos, Spain) ... 136
Lucía Bermejo Albarrán, Ana Isabel Ortega, Roger Guérin, Lawrence Conyers, Josep M. Parés, Isidoro Campaña, José María Bermúdez de Castro, Eudald Carbonell

Archaeological feedback of a GPR survey at Labeagako Santa Maria (Navarre): confirmation of survey interpretation and few more surprises .. 139
Ekhine Garcia-Garcia, Roger Sala, Alexandre Duró, Helena Ortiz-Quintana, Rosario Mateo, Javier Nuin

Multi method investigation of submerged features at Semblister, Shetland 143
Claire Christie, Michael Stratiagos, Benjamin Jennings

The Archaeology of 20th Century Sports and Leisure: topophilia, interiography and texture 148
Chris Gaffney, Tom Sparrow, Alex Corkum, Helen McCreary, Chrys Harris, Jason Wood

A New Look at Old County Number Records: Geophysical Reassessment of Scheduled Roman Villas ... 150
Neil Linford, Paul Linford, Andrew Payne

The influence of buried archaeology on equine locomotion: results from the Burghley Horse trials cross country course .. 154
Neil Linford, Russell Mackechnie-Guire

When finding nothing is interesting ... 157
Kris Lockyear
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-creation and archaeological prospection: LoCATE – The Local Community Archaeological Training and Equipment Project</td>
<td>161</td>
</tr>
<tr>
<td>Kate Welham, James Brown, Paul Cheetham, Mike Gill, Lawrence Shaw</td>
<td></td>
</tr>
<tr>
<td>Part Two – Archaeological Prospection in Africa</td>
<td>164</td>
</tr>
<tr>
<td>Old Plans versus Geophysical Surveys: the case study of Gurob (Fayum, Egypt)</td>
<td>165</td>
</tr>
<tr>
<td>Lionel Darras, Tomasz Herbich, Marine Yoyotte</td>
<td></td>
</tr>
<tr>
<td>Geophysical surveying in Egypt and Sudan: periodical report for 2017–2018</td>
<td>169</td>
</tr>
<tr>
<td>Tomasz Herbich, Robert Ryndziewicz</td>
<td></td>
</tr>
<tr>
<td>3-D Electrical Resistivity Tomography in an Urban Environment: the case of Shallalat Gardens, Alexandria, Egypt</td>
<td>173</td>
</tr>
<tr>
<td>Nikos Papadopoulos, Dimitris Oikonomou, Nasos Argyriou, George Kritikakis, Calliope Limneos Papakosta</td>
<td></td>
</tr>
<tr>
<td>Going back to Medamud: Excavation feedback on processing, interpretation and planning</td>
<td>177</td>
</tr>
<tr>
<td>Julien Thiesson, Félix Relats Montserrat</td>
<td></td>
</tr>
<tr>
<td>Magnetic prospection close to the magnetic equator: Case studies in the Tigray plateau of Aksum and Yeha, Ethiopia</td>
<td>180</td>
</tr>
<tr>
<td>Sandra Ostner, Jörg W.E. Fassbinder, Mandana Parsi, Iris Gerlach, Sarah Japp</td>
<td></td>
</tr>
<tr>
<td>Surveying Kushite sites in Sudan: town and cemetery in Kawa</td>
<td>184</td>
</tr>
<tr>
<td>Tomasz Herbich, Robert Ryndziewicz</td>
<td></td>
</tr>
<tr>
<td>Archaeo–geophysical prospection of forts in the North Omdurman (Sudan)</td>
<td>188</td>
</tr>
<tr>
<td>Robert Ryndziewicz, Mariusz Drzewiecki</td>
<td></td>
</tr>
<tr>
<td>Part Three – Archaeological Prospection in Asia</td>
<td>192</td>
</tr>
<tr>
<td>Magnetic signal prospecting in a former Achaemenid ‘palace’: the example of Gumbati (Georgia)</td>
<td>193</td>
</tr>
<tr>
<td>Julien Thiesson, Sébastien Gondet, Jörg W.E. Fassbinder, Florian Becker, Marion Scheiblecker, Sandra Ostner, Mandana Parsi, Solène Bourgeois Espéron, Kai Kaniuth</td>
<td></td>
</tr>
<tr>
<td>Venice in the desert: Archaeological geophysics on the world’s oldest metropolis Uruk-Warka, the city of King Gilgamesh (Iraq)</td>
<td>197</td>
</tr>
<tr>
<td>Jörg Fassbinder, Sandra Ostner, Marion Scheiblecker, Mandana Parsi, Margarete van Ess</td>
<td></td>
</tr>
<tr>
<td>Ancient Charax Spasinou (Iraq) – Interpreting a multi-phase city based on magnetometer survey data</td>
<td>201</td>
</tr>
<tr>
<td>Lena Lambers, Jörg Faßbinder, Stuart Campbell, Stefan Hauser</td>
<td></td>
</tr>
<tr>
<td>Revealing the Hidden Structure of the Ancient City Ur (Iraq) with Electrical Resistivity Tomography</td>
<td>206</td>
</tr>
<tr>
<td>Mandana Parsi, Jörg Fassbinder, Nikos Papadopoulos, Marion Scheiblecker, Sandra Ostner</td>
<td></td>
</tr>
<tr>
<td>Geophysical survey of single phase archaeological sites: Magnetometry in Wadi Shamlu, Kurdistan, Northern Iraq</td>
<td>209</td>
</tr>
<tr>
<td>Marion Scheiblecker, Simone Mühl, Jörg Faßbinder</td>
<td></td>
</tr>
<tr>
<td>Conclusions from Twenty Years of Electrical Resistivity Tomography (ERT) Surveys in Israel for Archaeological Prospection</td>
<td>214</td>
</tr>
<tr>
<td>Paul Bauman, Alastair McClymont, Eric Johnson, Richard Freund, Randy Shinduke</td>
<td></td>
</tr>
</tbody>
</table>
Restoring burial mounds damaged by disasters — Contribution of archaeological prospection to collect information at the Idera burial mound, Japan
Akihiro Kaneda, Hiroshi Yamaguchi

UAV-based Airborne Laser Scanning in densely vegetated areas: Detecting Sue pottery kilns in Nakadeke Sanroku, Japan
Michael Doneus, Maria Shinoto, Irmela Herzog, Naoko Nakamura, Hideyuki Haijima, Tomokazu Ōnishi, Shōhei Kitachi, Baoquan Song

Interpreting GPR data from Jaffna Fort, Northern Sri Lanka, using historic maps and new excavations
Armin Schmidt, Prishanta Gunawardhana, Christopher Davis, Duncan Hale, Robin Coningham, P. Pushparatnam, Richie Villis, Mark Woolston-Houshold, Mark Manuel

Common interpretation of induced polarization tomography (IPT) results with other geophysical methods in an archaeological site
Meriç Aziz Berge, Mahmut Göktuğ Drahor, Caner Öztürk, Atilla Ongar

Comparison of excavation results with GPR and magnetic gradiometer surveys at a workshop area in Šapinuwa, Central Anatolia/Turkey
Mahmut Göktuğ Drahor, Caner Öztürk, Meriç Aziz Berge, Aygül Süel, Atilla Ongar, Sedef Ayyıldız, Semih Gerçek, Murat Aydın

Archaeological interpretation of the prospection data from Ephesos
Jasmin Scheifinger

Part Four – Archaeological Prospection in Australasia
Multiple processing and interpretation methods of a complex 3-D GPR dataset: An example from northern Australia
Lawrence Conyers

Urupa - burial grounds - and remote sensing in Aotearoa (New Zealand)
Hans-Dieter Bader

Part Five – Archaeological Prospection in North America
Village Life in the Middle Ohio Valley, USA: Geophysical Survey and Anomaly Testing
Jarrod Burks

Geophysical Evidence for the Timing, Pace, and Complexity of Construction at the Poverty Point World Heritage Site, Louisiana, USA
Michael Hargrave, R. Berle Clay, Diana Greenlee, Rinita Dalan

The Origins of the West Plaza Rise at the Poverty Point World Heritage Site, Louisiana, USA
Rinita Dalan, Diana Greenlee, Michael L. Hargrave, R. Berle Clay, Thurman Allen, George Holley

GPR Investigations in Earthlodges of the Northern Plains, USA
Kenneth L. Kvamme
Drone radar: A new survey approach for Archaeological Prospection? 268
Roland Linck, Alen Kaltak

The limits of a blob: geophysically informed automatic extraction of magnetometer anomalies ... 272
Armin Schmidt

Quantification of Daub Masses based on Magnetic Prospection Data.. 274
Natalie Pickartz, Robert Hofmann, Stefan Dreibrodt, Knut Rassmann, Liudmyla Shatilo, René Ohlrau, Dennis Wilken, Wolfgang Rabbel

Applying Magnetic Depth Estimation Techniques to Archaeo-geophysics 279
Jeremy G. Menzer

Modelling the layer between topsoil and subsoil using magnetic prospection data 282
Alois Hinterleitner, Ralf Totschnig, Klaus Löcker, Hannes Schiel, Bendeguz Tobias

Pathways to prediction: quantifying the impact of soil moisture variations on electric and electromagnetic contrast .. 286
Philippe De Smedt, Daan Hanssens

A 3D imaging procedure for subsurface magnetic susceptibility: application to the basaltic foundations of a Gallo-Roman villa in Auvergne, France ... 289
Julien Guillemoteau, François-Xavier Simon, Bertrand Dousteyssier, Marion Dacko, Guillaume Hulin, Jens Tronicke

WuMapPy an open-source software for geophysical prospection data processing: 2019 milestone ... 293
Quentin Vitale, Lionel Darras, Christophe Benech, Julien Thiesson

Automated segmentation of archaeo-geophysical images by convolutional neural networks ... 296
Melda Küçükdemirci, Apostolos Sarris

Rise of the Machines: Improving the identification of possible graves in GPR data with interactive survey guidance and machine learning ... 300
Ashely Green, Paul Cheetham

Automated detection and analysis of diffraction hyperbolas in ground-penetrating radar data ... 305
Lieven Verdonck

Novel volume visualisation of GPR data inspired by medical applications 309
Wolfgang Neubauer, Alexander Bornik, Mario Wallner, Geert Verhoeven

Strategies for the optimization of 3-D electrical resistivity tomography data using the Jacobian matrix ... 313
Kleanthis Simyrdanis, Nikos Papadopoulos

Processing Strategies for 3-D Marine Dynamic Electrical Resistivity Tomography Data 317
Dimitrios Oikonomou, Nikos Papadopoulos, Kleanthis Simyrdanis, Gianluca Cantoro, Julien Beck, Meng Heng Loke
Improving the lithological significance of shear wave tomograms through coring and pressure correction.. 322
Dennis Wilken, Wolfgang Rabbel, Tina Wunderlich, Martina Karle

Aerial thermal imaging from UAV in archaeology, a case study: the abandoned medieval town of Montecorvino (Foggia, Italy).. 326
Luca d'Altilia

Multi-spectral, multi-temporal survey in the American Midwest ... 328
Helen McCreary, Jarrod Burks, Alex Corkum, Chris Gaffney, Andy Wilson

Evaluating the capability of a SUAS mounted multispectral sensor for the mapping of archaeological resources in an alluvial landscape ... 331
Nicholas Crabb, Matthew Brolly, Niall Burnside, Andy Howard, Robin Jackson, Chris Carey

Beneath the Stains of Time: The physiochemical prospection of multiperiod sites in southern Britain - a geophysics approach to geochemistry? ... 335
Paul Cheetham

Three-dimensional modelling of petroglyphs of South Siberia ... 337
Vladislav Kazakov, Vasily Kovalev, Kair Zhumadilov, Lyudmila Lbova, Aleksandr Simukhin

Part Seven – Improving our Legacy: Reviewing the Key Outcomes of Archaeological Prospection Data ... 339

Introducing the ‘Soil science & Archaeo-Geophysics Alliance’ (SAGA): a new interdisciplinary network in archaeo-geophysics.. 340
Carmen Cuenca-Garcia, Kayt Armstrong, Apostolos Sarris, Philippe De Smedt, Clare Wilson, Elina Aidona, Anne Roseveare, Martin Roseveare, Petra Schneidhofer, Jörg Faßbinder, Ian Moffat, Marion Scheiblecker, Abir Jrad, Martijn van Leusen, Kelsey Lowe, and SAGA’s Management Committee

Laying the geophysical groundwork: in situ measurements as a framework for strategizing archaeological prospection ... 344
Philippe De Smedt, Ynse Declercq, Daan Hanssens, Wouter B. Verschoof-van der Vaart, Tom Hamburg, Walter Laan, Pieter Laloo, Frédéric Cruz, Karsten Lambers

Review strategies for archaeological prospection, incorporating excavation and research ... 345
Cian Hogan

Methodological framework to automatically compare large-scale magnetometry measurements with excavation datasets .. 349
Gábor Mesterházy

Archaeological guidelines for geophysical survey in the urban environment................................. 353
Guglielmo Strapazzon, Dimitrios Oikonomou, Evan Alevizos, Kleanthis Simyrdanis, Melda Küçükdemirci, Apostolos Sarris

Addressing archaeological research questions using geophysical surveys – a landscape case study 355
Jakob Kainz

Up-skilling and Up-scaling: the realities of adapting to the challenges of the current environment in British commercial geophysics ... 359
Chrys Harris
Magnetic signal prospecting in a former Achaemenid ‘palace’: the example of Gumbati (Georgia)

Julien Thiesson¹, Sébastien Gondet², Jörg W.E. Fassbinder³, Florian Becker³, Marion Scheiblecker³, Sandra Ostner³, Mandana Parsi³, Solène Bourgeois Espèron⁴, Kai Kaniuth⁵

¹UMR 7619 Metis Sorbonne Université, Paris, France, ²UMR 5133 Archéorient (Univ Lyon, CNRS/Lyon 2 University), Lyon, France, ³Geophysics Department Ludwig-Maximilians-University München, München, Germany, ⁴Polytech Sorbonne, Sorbonne Université, Paris, France, ⁵Institut für Vorderasiatische Archäologie Ludwig-Maximilians-Universität München, München, Germany

The Gumbati site

The archaeological site of Gumbati is located on the right bank of the Alazani River in the Kakheti region, Georgia. Excavations in the 1990s (Knauß 2000: 119-130) revealed parts of a rectangular building made with mudbrick walls of 2m width on average. Its southern extension is almost 40m in length. Stone column bases, typical of an Achaemenid royal style well-known from ancient Persia, were found around the building. Because of its architectural characteristics, it was interpreted as the remains of one of the administrative complexes controlling the Transcaucasus, the northernmost province of the Achaemenid Empire (mid-6th/mid-4th century BC).

Project framework and purposes

In July 2018, archaeological investigations were resumed at Gumbati within the frame of a German-French joint project named “Paradise” and funded from 2017 to 2020 by the Deutsche Forschungsgemeinschaft (DFG) and the Agence National de la Recherche (ANR). Its main goal is to produce comparable datasets regarding the spatial organization of several Achaemenid centers of power located in central Iran and in the Caucasus. As these sites were created within planned landscapes, covering dozens of hectares and encompassing spacious gardens, residences and administrative buildings, an improved understanding of their layout depends on complementary surveys. Consequently, one of the main tasks implemented is to develop suitable geophysical approaches for these sites. Since they are of a complex archaeological nature, combining mudbrick architectural remains and lighter garden infrastructures such as flow channels, we focus on combined magnetic and electromagnetic methods. Also, since all sites are located in intensively farmed regions, we aim to evaluate whether a deeper study of the soil magnetic properties would enable us to map the different sectors of the site, e.g. gardened and inhabited areas, despite surveying within landscapes of destruction.

Implementing geophysics at Gumbati

Devices used

In order to comprehensively evaluate the magnetic signal of soils of the surroundings, we used magnetometry and EMI prospecting.

The magnetic anomaly map was obtained by using and processing data from three devices made available by the Munich University Geophysics Department:

- Förster Ferex Gradiometer in the so-called “quadro-sensor” configuration (Foerster Ferex 4.032 Datalogger with four CON650 probes). The probes were mounted on a frame and carried in zigzag mode, 40cm above the ground.
- Scintrex Smartmag Sm4G-special Cesium-magnetometer applied as total field magnetometer, in a so-called “duo-sensor” configuration.
- Geometrics G-858 MagMapper Cesium-magnetometer applied as total field magnetometer, in a so-called “duo-sensor” configuration.
The EMI maps were produced using a GF Instruments CMD-Mini Explorer made available by the University Lyon 2/CNRS Archéorient lab. Measurements were recorded in both horizontal coplanar/vertical dipole (HCP/VD) and vertical coplanar mode/horizontal dipole (VCP/HD) configurations. It provides in-phase and apparent electrical conductivity maps for three different transmitter-receiver (Tx-Rx) distances of 0.32m, 0.71m and 1.18 m.

Survey strategy
The main target of the first 2018 geophysical prospection campaign at Gumbati was to obtain more information on archaeological remains in the vicinity of the partially excavated building. The trenches that brought to light architectural features were located in cultivated fields southwest of a large farmstead built in Soviet times. Consequently we mainly focused the magnetic survey on that area. A grid of 40m by 40m squares was staked out on the field over an area of about 5.5ha. The southern part covered the refilled trenches of the former excavation. The prospection was accomplished using all three magnetometer instruments for different parts in order to evaluate their efficiency in that particular context. The Ferex gradiometer was used for the two eastern and southern 40m rows. The two cesium magnetometers were alternatively used on the northwestern part.

Once the magnetograms were edited, we selected an area where we implemented the EMI survey. This area shows remarkably discrete features combined with more continuous soil magnetic property variations. By surveying it with the EMI device, we aimed to test the capability of this method to describe accurately both types of anomalies (geometries and/or magnetic properties). The whole area was surveyed twice with the EMI, at first in HCP mode, then in VCP mode, collecting 12 datasets in all. The probe was held as close as possible to the surface. Regular measurements were taken on a reference point in order to correct the drift.

Results
Here, for brevity, we focus principally on the magnetic signal of the site, rather than a large treatise on the entire set of 12 EMI apparent properties maps.

Magnetic map
The magnetogram (Fig. 1) shows that the site is poorly preserved. The excavators had already stressed the impact of repeated ploughings on the architectural remains. In the northern part, a number of roundish dark anomalies can be interpreted as signatures of pits. The linear features, pointing to the existence of mudbrick walls, are only just visible in the center of the image. These faint lines, oriented approximately at a 45° angle from north, may belong to building remains such as the ones excavated. However, this direction is also parallel to the actual ploughing and field limits. Further analysis is therefore needed to ascertain the interpretation.

In the southern part of the surveyed area, the magnetogram shows blurry features possibly caused by the filling of the old trenches.

EMI and transformed magnetic anomaly map
The magnetic signal can be described as the whole set of parameters which could be measured in prospecting. It includes the magnetic field anomaly (total or gradient), the magnetic susceptibility (measured by EMI devices) and ideally the magnetic viscosity. Presently, only the first two parameters were measured. The magnetic map (Fig. 2a), and its conversion as a susceptibility layer (Desvignes and Tabbagh 1995: 122-132) (Fig. 2b), may be compared to apparent magnetic properties using EMI (Fig. 2c). The general trends are the same. However, since the EMI is characterized by a less spatially resolved sampling interval than the magnetometry, some discrepancies appear. We cannot evaluate if these discrepancies are linked to the spatial sampling, measurement errors or the difference between the total and the induced magnetization. The next step will be to use the processing described by Benech et al. (2016: 103-112) for inverting the data to a magnetic susceptibility model to be transformed in to a magnetic anomaly. If the discrepancies are confirmed, some sampling and trench testing could be useful to understand its origins.
Fig. 1. Results of the magnetic prospection on Gumbati (scale: white/-10nT to black/+10nT).

Fig. 2. (a) Extract of the magnetic anomaly map, (b) map of the pseudo-apparent magnetic susceptibility map computed from the magnetic anomaly map, (c) the apparent magnetic susceptibility map obtained from the in-phase measurement of the VCP Tx-Rx = 1.18m channel.
Conclusion

The magnetic signal of the archaeological remains at the site of Gumbati was investigated. Magnetic and EMI survey results are generally in good accordance. The discrepancies between the pseudo-susceptibility map and the apparent susceptibility map could evidence the presence of material bearing remnant magnetization. However, the uncertainties linked to the EMI map lead us to process the data further and we will compute an inverted susceptibility model. If differences are confirmed, then it might be worthwhile to combine the survey with a complete magnetic description of soil samples that would help us to clarify their origins.

References

