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ABSTRACT

Broadband spectrograms of French vowels /Ã/, /a/,
/E/, /e/, /i/, /@/, and /O/ extracted from ra-
dio broadcast corpora were used to recognize 45
speakers with a deep convolutional neural network
(CNN). The same network was also trained with 62
phonetic parameters to i) see if the resulting con-
fusions were identical to those made by the CNN
trained with spectrograms, and ii) understand which
acoustic parameters were used by the network. The
two networks had identical discrimination results
68% of the time. In 22% of the data, the network
trained with spectrograms achieved successful dis-
crimination while the network trained with phonetic
parameters failed, and the reverse was found in 10%
of the data. We display the relevant phonetic pa-
rameters with raw values and values relative to the
speakers’ means and show cases favouring bad dis-
crimination results. When the network trained with
spectrograms failed to discriminate between some
tokens, parameters related to f0 proved significant.

Keywords: deep learning, voice comparison, foren-
sic phonetics, vowels, phonetic parameters.

1. INTRODUCTION

Traditional phonetic analyses tend to focus on pro-
duction features – realizations of specific phonemes
or prosodic units – that are relatively stable across
speakers, and individual strategies are frequently
overlooked. In contrast, speaker recognition and
forensic voice comparison seek to select phonetic
features that display maximal between-speaker vari-
ation. In the present work we aim at identifying
phonetic invariants that are helpful for speaker char-
acterization, be it for phoneticians willing to bet-
ter understand the articulatory habits that are rep-
resentative of speakers, or for automatic speaker
recognition systems in small datasets, for exam-
ple [6]. This experiment is thus closer to a voice

comparison task rather than true speaker identifica-
tion. Recently, deep neural networks (DNNs) have
been highly successful in speaker classification tasks
when used as feature extractors with so-called bot-
tleneck features [10] and embeddings [15]. Lin-
ear predictive cepstral coefficients or Mel frequency
cepstral coefficients are usually well-suited for these
systems. However, these parameters turn out to be
quite frustrating for phoneticians since, contrary to
e.g. formants, they are not interpretable in articula-
tory terms [1, 11].

As a preliminary step towards interpreting what
DNNs predict, we ran two experiments involving a
deep convolutional neural network (CNN). Firstly,
speaker classification was performed with speech
excerpts comprised of productions of French vow-
els /Ã/, /a/, /E/, /e/, /i/, /@/, and /O/ by 45
speakers. The CNN was provided with broad-
band spectrograms (SPECTR model hereafter). Sec-
ondly, the same model architecture was trained and
tested on the same vowels, but this time providing
the model with acoustic measurements traditionally
used by phoneticians (PHONET model henceforth)
rather than spectrograms.

The SPECTR model was expected to achieve better
scores than PHONET because contrary to the latter,
SPECTR had the opportunity to learn its own pho-
netic representations, and also, it was trained with a
higher-dimensional space. Our prediction was borne
out, and it is precisely the comparison between the
two models and how they allow us to infer relevant
phonetic features for speaker classification that con-
stitutes the aim of the current work.

2. SPEECH MATERIAL AND METHOD

2.1. Vowel extractions

The vowels were extracted from the ESTER Cor-
pus [3], a radio broadcast corpus characterized by
prepared speech [4]. France Inter, France Info and



Radio France International were the three sources
and some speakers had occurrences over different
radio stations. We used the phonetic alignment
provided with the corpus by the IRISA (Institut de

Recherche en Informatique et Systèmes Aléatoires)
through the AFCP (Association Francophone de la

Communication Parlée) website (http://www.afcp-
parole.org/camp_eval_systemes_transcription/).
Automatic alignment was used to extract vowels
with a rectangular window shape and without their
phonetic context, the latter being neither controlled
nor provided to the network. Vowels were extracted
from 35 male speakers and 10 female speakers.

2.2. Spectrograms

Based on Praat default values, we chose to use
5.0625 ms frames and 0.5 ms hop size for spectro-
grams with a 16 kHz sampling rate. The speech seg-
ments were element-wise multiplied by a Hamming
window and padded to obtain 512-sample segments
on which FFT was applied. No pre-emphasis was
performed and the dynamic amplitude range was
normalized to 70 dB to make sure that dynamics did
not bias discrimination. Vowels whose duration was
greater than 250 ms were left out; the shortest vow-
els were 30 ms long. Spectrograms of vowels shorter
than 250 ms were padded with zeros in order for all
spectrograms to have equal width. They then were
converted to 8-bit grayscale images and resized to
224× 224 pixels, where a pixel was equal to 1.15
ms in the time dimension and 35.71 Hz in terms of
frequency. The conversion to 8 bits was performed
so that GPU memory would handle mini-batches of
sufficient size.

2.3. Measurements of phonetic parameters

Phonetic parameters were collected with Praat [2]
and VoiceSauce software [13]. VoiceSauce is a Mat-
lab toolbox that provides automated voice measure-
ments from audio recordings. Most parameters gath-
ered within VoiceSauce are measured using several
software programs, thus providing several values for
the same phonetic parameter.

We used the full selection of measurements, that
is f0, formants F1-F4 center frequencies and band-
widths, energy, cepstral peak prominence (CPP),
harmonic to noise ratios (HNR), subharmonic to har-
monic ratio (SHR), strength of excitation (SOE) for
the uncorrected parameters. All other parameters
measured by VoiceSauce are H1 (amplitude of har-
monic 1), H2, H4, A1 (amplitude of formant 1),
A2, A3, 2K (amplitude of the harmonic at 2kHz),
5K, H1-H2, H2-H4, H1-A1, H1-A2, H1-A3, H4-

2K, 2K-5K. These are provided as corrected (c) rel-
ative to the measured formants (except for 5K), but
also uncorrected (u), see [13] and [8] for more infor-
mation on the parameters. The 62 parameters were
measured every millisecond.

These parameters are considered to be good de-
scriptors of voice quality, which is an important as-
pect in voice comparison [12], and they have been
used in the relevant literature [8]. Measurements of
spectral moments: center of gravity (COG), kurto-
sis, skewness, and standard deviation (SD) were ex-
tracted with Praat. All values were normalized per
vowel for all speakers on a 0-255 scale, in order to
match the quantization of our spectrograms, and re-
sized to 224×224 to conform to the fixed input size
of our model. For the descriptive phonetic analy-
sis we carried out after running the DNNs, values
were taken at 25, 50 and 75 % temporal points and
were averaged here for the sake of legibility. The
spectral variation within each vowel will have to be
accounted for in a follow-up study.

2.4. Model training and testing

We used VGG16 [14], which is a popular CNN in im-
age recognition. In bith experiments the model was
re-trained from scratch with randomly initialized
weights. The models were trained using an NVIDIA

GTX 1080 GPU with the Adam optimizer [7], with a
gradient decay factor of 0.900, and a squared gradi-
ent decay factor of 0.999. The initial learn rate was
0.0001 and the mini-batches contained 56 spectro-
grams. For each vowel and each speaker, 140 to-
kens were used for training (70 %), 20 for validation
(10 %), and 40 for test (20 %). One SPECTR model
and one PHONET model were trained for each of the
7 vowels in our dataset.

3. RESULTS

3.1. Classification rates

The results presented in Table 1 show that features
learned from spectrograms (SPECTR) score on av-
erage 10-15 points above the acoustic features. The
highest scores, above 69% accuracy, are highlighted
in bold. For our descriptive analysis the results were
split into 5 categories:

• cat. 1: PHONET was successful.
• cat. 2: SPECTR successful.
• cat. 3: PHONET successful; SPECTR failed.
• cat. 4: PHONET failed; SPECTR successful.
• cat. 5: PHONET and SPECTR failed.

The two networks showed identical classifica-
tion results for 68.0 % of the test vowels, whether



Table 1: Classification rates (%) for each vowel
according to the two methods (P for PHONET and
S for SPECTR).

cat. Ã a E e i @ O
cat. 1 71.2 69.3 63.6 64.8 53.1 57.9 63.2
cat. 2 86.7 77.1 75.4 76.0 69.8 71.5 74.5
cat. 3 5.8 10.5 10.3 9.7 10.5 10.1 11.6
cat. 4 21.3 18.3 22.1 20.9 27.3 21.4 25.2
cat. 5 7.4 12.4 14.3 14.3 19.7 25.2 16.9

correct: 53.5 % or incorrect: 14.5 %. 22.0 % of
the vowels were correctly classified with SPECTR
while PHONET misclassified them, and the reverse
was found in 10.0 % of the vowels. For both meth-
ods, /Ã/ had the best discrimination results. Table 1
also shows that with SPECTR, the difference is more
important between /Ã/ and the other vowels.

Classification results according to speaker sex
were better for male speakers (67.6 %) compared
to female speakers (62.0 %) with PHONET, while
they were very similar with SPECTR (74.5 % vs.
76.4 %). As could be expected due to f0 and spec-
tral similarity, discrimination errors were more fre-
quent within the same sex but more so for male
speakers compared to female speakers: 92.0 % vs.
70.0 % on average for both models. While, as is
well known, some PHONET parameters (e.g. for-
mants) are sensitive to differences between men and
women, CNNs trained with spectrograms may be
more immune to such differences – and therefore
constitute effective normalization tools – because
they are translation invariant [5].

3.2. Relevance of phonetic features

A MANOVA for each vowel was conducted with
all phonetic parameters as dependent variables and
speaker identity as independent variable. In order to
test the post-hoc relevance of phonetic parameters,
we also calculated the eta-squared values for uni-
variate ANOVAs with speaker as independent vari-
able. Only eta-squared values higher than 10 for all
vowels are considered here (see Table 2). Measure-
ments containing more than 25 % of undefined val-
ues were discarded: pB4, SOE, pF4, epoch, & SHR.

We then calculated a linear discriminant analysis,
so that we could infer the weight of each acoustic pa-
rameter as well as their degree of collinearity since
collinearity is expected considering some measure-
ments are identical phonetic parameters provided by
several software. Parameters that did not show any
collinearity for more than one vowel were kept for
the following sections, and among parameters that

Table 2: Eta squares for each vowel for main pho-
netic parameters (values above 30 % in bold).

P Ã a E e i @ O
H1c 61 55 47 50 33 47 47
H2c 43 39 38 44 23 36 40
H4c 17 25 20 19 15 20 25

H1H2c 48 51 51 20 52 51 48
A1c 20 22 16 15 8 13 16

H1A1c 47 54 47 42 12 36 38
CPP 13 14 11 13 11 10 11

energy 54 58 52 50 45 53 50
sF1 9 7 17 17 8 10 7
sF2 18 18 29 37 25 9 11
sB1 12 11 13 11 7 7 9
sB2 14 9 10 9 6 11 8

COG 27 27 24 26 13 6 19
skewness 20 22 27 30 25 36 20
kurtosis 15 17 12 24 15 35 19

SD 14 24 28 21 17 11 25
HNR35 35 34 38 36 34 38 37

pF0 47 40 38 39 37 36 34

showed collinearity, the one with the highest weight
was chosen, that is HNR35, energy, H1u, H1H2u,
H1H2c, H1A1u, skewness, COG, pF0, H2KH5Kc,
A2u, and A3u.

Figure 1: Mean values of H1A1c for /Ã/ re-
ordered by speaker’s mean.

Fig. 1 illustrates that H1A1c values display con-
sistent between-speaker variation. Phonetic param-
eters with a higher eta-squared value thus imply a
steeper slope between speakers.

3.3. Comparing correct and incorrect classification

By computing the mean per speaker for each pho-
netic feature and for each vowel, as shown in Fig. 1
for H1A1c and /Ã/, we calculated the difference
for each occurrence between its actual value and its
mean for each speaker and analyzed its distance to



the mean. If the value was too far away from the
mean value, then it was expected to be less typical
of the speaker. Within-speaker variation therefore
stands out as a plausible reason for incorrect classi-
fication.

Figure 2: Mean values of H1c for all vowels ac-
cording to classification results.

Fig. 2 shows occurrences where discrimination
was successful (cat. 1 & 2) compared to occurrences
where discrimination had failed for both PHONET
and SPECTR (cat. 5), and for all vowels a signifi-
cant difference was found:

• incorrect classification showed higher values
than the speaker’s mean for pf0, HNR35, skew-
ness, and H1A1u.

• correct classifications showed higher values for
energy, H1u, H1H2u, H1H2c, H2KH5Kc, CPP,
A2u, and A3u.

When comparing the complementarity of
PHONET and SPECTR – that is when PHONET
yielded correct classification while SPECTR had
misclassifications (cat. 3 from Table 1), and vice-
versa (cat. 4) – results were mostly inconsistent.

3.4. Comparing good speakers and poor speakers

In order to understand the differences between
speakers who show the best results (good speakers)
and those with the worst results (poor speakers), we
analyzed the four male speakers with the best clas-
sification results, together with the four male speak-
ers with the worst results, and who were common
to both methods. The four good speakers repre-
sent 13.7 % (SPECTR) and 14.8 % (PHONET) of the
successful predictions, while the four poor speakers
represent 17.1 % (SPECTR) and 16.1 % (PHONET)
of the mistakes. We used raw values this time as
we only compared a few speakers with supposedly
different characteristics. We considered a third cat-
egory for better comparison, the mean of all the 45
speakers. We only mention here results that are sta-
ble for all vowels. As can be seen in Fig. 3, the
4 speakers with the worst discrimination rates are

characterized by a lower f0 compared to the mean
and compared to speakers with high discrimination
rates. The same was found for H1H2u, H1H2c, and
COG. They were however characterized by higher
values of H1u, Energy, H1A1u, HNR35, and skew-
ness.

Figure 3: F0 mean values for /Ã/ according to the
classification result quality.

4. DISCUSSION AND CONCLUSION

The vowel for which the best results were achieved
was the nasal vowel /Ã/. It has been argued that
it was better than other vowels for speaker discrim-
ination [1] as the opening of the nasal cavity in
these phonemes adds relevant acoustic information.
Nasal vowels are also longer than oral vowels (100
ms vs 60 ms on average) and thus naturally bring
more acoustic information. These results emphasize
the difficulty phoneticians encounter in the acous-
tic analysis of specific phonemes, like nasal vowels
due to the presence of anti-formants in their spec-
trum [9], or high vowel /i/, acoustic information
about the first harmonics is often biased by the pres-
ence of the first formant. Formants 1 to 2 and their
bandwidths were poor indicators of speakers’ char-
acteristics, which was expected as they are known to
be good descriptors of vowel category, especially for
oral vowels. We found that F4 was characterized by
high eta-squared values but with many missing val-
ues, this point will have to be further investigated.

Phonetic parameters like f0, energy, H1, HNR,
and skweness were useful to recognize speakers, and
the SPECTR model did not seem to fully take them
into account. Future work will explore early/late
fusion strategies to measure how phonetic features
identified here as relevant might enhance perfor-
mance when used in conjunction with spectrograms.
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