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Abstract
The discovery of causal relationships from observations is a fundamental and difficult
problem. We address it in the context of Additive Noise Models, and show, through both
consistency analysis and experiments, that the state-of-art causal inference procedure on
such models can be made simpler and faster, without loss of performance. Indeed, the
method we propose uses one regressor instead of two in the bivariate case and 2(d −
1) regressors instead of (d2 − 1) in the multivariate case with d random variables. In
addition, we show how one can, from the regressors we use, accelerate the computation
of the Hilbert-Schmidt Independence Criterion, a standard independence measure used
in several causal inference procedures.
Keywords: Causal Discovery, Additive Noise Models, Time Complexity, Autoencoders

1. Introduction

Causal inference has been the subject of many studies, Spirtes et al. (2000); Pearl (2000);
Shimizu et al. (2006); Mooij et al. (2009); Zhang and Hyvärinen (2009, 2010); Bühlmann
et al. (2014); Spirtes and Zhang (2016); Blöbaum et al. (2018) to name but a few. An im-
portant class of models to study causal inference are the so-called Additive Noise Models
(ANMs), that simply consider, in the bivariate case, that the effect is a function of its cause
plus a noise term independent of the cause. No further assumption is made regarding
the function relating the cause to the effect. The corresponding structural causal model is
given by:

C := Nc

E := fE(C) + NE, C |= NE.
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An important property of ANMs is that they are usually identifiable except for some spe-
cific distributions contained in a 3-dimensional affine space (Hoyer et al., 2009). Within
ANMs, the current best procedure to infer the causal structure of a set of variables (see for
example the comparisons presented in Mooij et al. (2016) and Blöbaum et al. (2018)) is the
one described in Mooij et al. (2009), which we refer to here as ANM-pHSIC. In this proce-
dure, the direction of the causal relation is determined according to the lowest dependence
between the potential cause and its residual when predicting the potential effect. The
dependence is measured by the p-value of the empirical Hilbert-Schmidt Independence
Criterion (HSIC) estimator (Gretton et al., 2005). For multivariate data sets, ANM-pHSIC
relies on two main steps:

1. Causal ordering that consists in constructing a causal graph based on an ordering of
the variables;

2. Pruning that consists in pruning the relations obtained in the causal ordering step.

However, ANM-pHSIC suffers from two main drawbacks:

1. Its reliance on the p-value of HSIC, and not directly on HSIC, is not well grounded
theoretically;

2. Its time complexity limits its use to small to medium scale settings. Indeed ANM-
pHSIC computes regression functions between all pairs of variables, which is of
course problematic when the number of variables is important but also when the
number of observations is important as each regression function will take more time
to be estimated in this case. In addition, computing HSIC is a time consuming oper-
ation.

We specifically address these problems in this study and introduce a procedure that dis-
penses with training many regression functions. Intuitively, one can use an autoencoder
to estimate the relations between all variables and mask (in a sense described below) some
of the inputs and outputs of this autoencoder to obtain regressors between subsets of vari-
ables. By doing so, one dispenses with computing many different regressors. In addition,
the regressors obtained are simple and scale well wrt the number of variables and ob-
servations. Lastly, the latent representations provided by the autoencoder can be used to
accelerate the computation of HSIC.

The remainder of the paper is organized as follows: Section 2 provides a theoretical jus-
tification for the new procedure we propose, which is fully described in Section 3. Section
4 then presents a variety of experiments for the bivariate and multivariate cases. These
experiments show that the new procedure we propose is indeed faster than ANM-pHSIC
and leads to the same quality in terms of causal inference. Section 5 discusses our approach
with respect to other studies and concludes the paper.

2. Considerations on the consistency of the causal ordering procedure in the
bivariate case

Let assume two bivariate data sets, Dn := (xi, yi)
n
i=1, and D′n := (x′i , y′i)

n
i=1, both consist-

ing of i.i.d. observations from PX,Y and let x denote the set of values (x1, · · · , xn) (y, x′,
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... are defined in the same way). The causal ordering procedure (Mooij et al., 2016) for
identifying bivariate causal graphs in ANMs can be summarized as follows:

1. Using Dn, learn f̂Y (resp. f̂X), an estimator of the regression function which maps x
(resp. y) to E(Y|X = x) (resp. E(X|Y = y));

2. On D′n, compute residuals ê′Y = y′ − f̂Y(x′) and ê′X = x′ − f̂X(y′);

3. Output X → Y if Ĉ(x′, ê′Y) < Ĉ(y′, ê′X) and Y → X if Ĉ(y′, ê′X) < Ĉ(x′, ê′Y), where Ĉ
is an estimator of the dependence between the two variables (as measured through
sets of values).

If the regression functions f̂Y and f̂X are suitable (i.e. the mean squared error between true
and predicted residuals vanishes asymptotically in expectation) and if the score estimator
Ĉ is consistent, then the above inference procedure is consistent.

As mentioned before, we want to use an autoencoder to estimate the relations between
variables and then mask some of its inputs and outputs to obtain regressors between sub-
sets of variables. The autoencoders we consider in this study are based on Multilayer
Perceptrons (MLP) with only one hidden layer. Assuming a linear function at the output
layer and a non-linear, squashing function σ at the input layer1, the class of such MLPs
takes the form:

Fn =

{
kn

∑
i=1

ci,jσ(ai
Tu + bi) + c0,j : 1 ≤ j ≤ d′, kn ∈N,

(ai, u) ∈ Rd, bi ∈ R,
kn

∑
i=1

d′

∑
j=1
|ci,j| ≤ βn

} (1)

with d (resp. d′), kn and βn corresponding respectively to the dimension of the input (resp.
output) of the MLP, to the number of hidden units and to a constraint on output weights.
This class of function is weakly universally consistent:

Theorem 1 (extension of Theorem 16.1 of (Györfi et al., 2002) for d′ > 1) LetFn be the class
of neural networks defined in (1), f̂mlp(.;Dn) be the network that minimizes the empirical L2 risk in
Fn. If kn and βn satisfy, for n→ +∞: kn → +∞, βn → +∞, and knβ4

n log(knβ2
n)/n→ 0, then

f̂mlp(.; .,Dn) is weakly universally consistent for all distributions of input and output variables
(U, V) with, for all 1 ≤ j ≤ d′, E(V2

j ) < ∞:

lim
n→∞

E

∫
|| f̂mlp(u;Dn)−E(V|U = u)||22du = 0.

Therefore, by Lemma 19 of (Mooij et al., 2016), u 7→ f̂mlp(u;Dn) is a suitable function.
Let us now consider the case where U = V = (X Y)T and where the MLP considered
is a denoising autoencoder (Vincent et al., 2008) that will be denoted by f̂ae(.;Dn). In our
denoising autoencoder, one variable, randomly chosen, is arbitrarily set to 0 in the input,
but not in the output, at each iteration during training, which enables to reconstruct a

1. In practice, we consider a more general class of functions.
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corrupted version of the data. One thus considers different types of inputs, corresponding
to whether or not a variable has been set to 0. We further denote by f̂ Y

ae (resp. f̂ X
ae) the value

predicted by the autoencoder for the output corresponding to Y (resp. X). Then, from
Theorem 1, as all expectations are positive, one has:

lim
n→∞

E

∫
( f̂ Y

ae(u;Dn)−E(Y|U = u))2du = 0, (2)

and similarly for f̂ X
ae .

Focusing first on variable Y, we denote by u|y=0 the situation in which the input variable
Y has been set to 0 and by u|y 6=0 the situation in which it has not been changed. One can
decompose the expectation in Eq. 2 according to these two cases:∫

( f̂ Y
ae(u;Dn)−E(Y|U = u))2du =

∫
( f̂ Y

ae(u|y=0;Dn)−E(Y|U = u|y=0))
2du|y=0

+
∫
( f̂ Y

ae(u|y 6=0;Dn)−E(Y|U = u|y 6=0))
2du|y 6=0.

(3)

Hence, exploiting again the fact that all quantities are positive in the right-hand side of
Eq. (3) and that the left-hand side of Eq. (2) is equal to zero for n→ ∞, one obtains:

lim
n→∞

E

∫
( f̂ Y

ae(u|y=0;Dn)−E(Y|U = u|y=0))
2du|y=0 = 0,

and similarly for f̂ X
ae and u|x=0.

Thus, the function u 7→ f̂ Y
ae(u|y=0;Dn), regressing Y on X and obtained by setting the

input Y of the denoising autoencoder considered above to 0, is weakly universally consis-
tent. By Lemma 19 of Mooij et al. (2016), this function is also suitable, and so is the function
u 7→ f̂ X

ae(u|x=0;Dn) regressing X on Y.
Following Hoyer et al. (2009), we rely in this study on the Hilbert-Schmidt Indepen-

dence Criterion (HSIC) for testing the independence of the estimated residuals with the
input. Its empirical estimate, which is used as the score estimator Ĉ, takes the form (Gret-
ton et al., 2005)2:

HSICk(x, y)
∧

:=
1

(n− 1)2 tr(Kx HKyH),

where Kx (resp. Ky) is a n× n kernel matrix for x (resp. y), and H is a n× n matrix defined
by Hij = δij − 1 for 1 ≤ i, j ≤ n, where δ is the Kronecker symbol. Gretton et al. (2005)
show that, when n → ∞, HSIC→ 0 if and only if X |= Y. Furthermore, as shown in Mooij
et al. (2016), the empirical HSIC estimator is consistent in the sense that as n→ ∞:

HSICk(x, y)
∧

P−→ HSICk(x, y),

where k is a non-negative bounded kernel.
This leads us to the following consistency result3:

2. For simplicity, we restrict ourselves here to the symmetric version of HSIC where the same kernel is used
for the two variables.

3. We conjecture that an extension of Theorem 2 exists in the case of more than two variables, but this is
beyond the scope of this study.
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Theorem 2 Let X, Y be two real-valued random variables with joint distribution PX,Y that ei-
ther satisfies an ANM X → Y, or Y → X, but not both. Suppose we are given a training
data set Dn and a test data set D′n in the data splitting scenario. Let k : R × R → R be
a bounded non-negative Lipschitz-continuous kernel. Then, the causal ordering procedure in
which Ĉ = HSIC

∧

k, f̂Y(x) = f̂ Y
ae(u|y=0;Dn) and f̂X(y) = f̂ X

ae(u|x=0;Dn) is a consistent proce-
dure for estimating the direction of the ANM.

The proof of Theorem 2 directly parallels the proof of Corollary 21 of (Mooij et al., 2016)
and exploits the consistency of HSIC

∧
and the suitability of the regression functions con-

sidered.

Based on these results, we propose in the next section a fast approach for multivariate
causal discovery.

3. KIKO: a fast approach for causal discovery in ANM

Let us first extend the notations of the previous section to the multivariate case. We con-
sider here d random variables that can be represented by a a random vector X, the jth coor-
dinate of which is denoted by xj; X\j denotes the random vector obtained from X by remov-
ing its jth coordinate. The training and test data sets, Dn := (x(i))n

i=1 and D′n := (x′(i))n
i=1,

now consist of sets of vectors denoted by x. The denoising autoencoder learned onDn and
based on the single layer MLP is denoted by x 7→ f̂ae(x;Dn), whereas x 7→ f̂

xj
ae (x|xj=0;Dn)

denotes the function estimating xj using the denoising autoencoder f̂ae(x|xj=0;Dn) in which

the jth coordinate of all the vectors in x is set to 0. The encoder part of the denoising au-
toencoder, in our case the function mapping an input to the single hidden layer, will be
denoted by θae(.); θae(x) corresponds to the application of the encoder to all the elements of
the set x, leading to a set of latent representations of x. Finally, f̂mlp(xj; xpa(j),Dn) denotes
the single layer MLP trained on Dn and predicting the n values xj from xpa(j), whereas
f̂mlp(xj; xpa(j)|xl=0,Dn) denotes its restriction when setting the lth variable to 0.

Our approach, called KIKO4 and described in Algorithm 1, parallels ANM-pHSIC. It
is decomposed into two parts. First, the variables are ordered according to their likelihood
of being effects rather than causes. This is realized in the first loop of Algorithm 1 by esti-
mating the variable for which the potential causes are less dependent to its residuals from
the current set of variables. The empirical HSIC estimator is used to measure the indepen-
dence between a latent-space representation of the input and residuals5. This procedure
is a direct multivariate application of the results presented in Section 2. It starts by learn-
ing a complete autoencoder f̂ae that is directly used, through a reminiscent mechanism of
interventions, to derive a regression function f xl

ae for each variable l from all the others. In
practice, this is done either by cutting all the weights from the input variable xl or by set-

4. Knock-In Knock-Out: one-for-one substitution (knock-in) of variables by zeros to decide which variable to
knock out.

5. Note that here HSIC is used to measure the dependence between sequences of vectors and scalars, which
raises no particular difficulties as kernels can be defined on both sequences.

5



ASSAAD, DEVIJVER, GAUSSIER, AND A ÏT-BACHIR

ting the variable xl to zero. This contrasts with ANM-pHSIC which needs to train specific
regression functions for each variable.

Algorithm 1: KIKO: Causal Discovery Algorithm

Input Dn,D′n
Identification of the causal ordering
for j = d downto 1 do

Learn f̂ae(x;Dn)
For l = 1 to d do

ê′l = x′l − f̂ Xl
ae (x′|xl=0;D′n)

hl = HSIC
∧

k(θae(x′|xl=0), ê′l)
end for
aj = arg minl hl
x = x\aj

end for
Pruning of spurious relations
for j = 1 to d do

pa(aj) = {a1, · · · , aj−1}
Learn f̂mlp(xaj ; xpa(aj),Dn)
for l in pa(aj) do

ê′l = x′aj
− f̂mlp(xaj

; xpa(aj)|xl=0,Dn)

hl = HSIC
∧

k(θae(xpa(aj)|xl=0), ê′l)
end for
α = GetGap(Sort(h))
Prune(pa(aj), α)

end for

After the first part, a causal graph that is likely to be faithful (i.e., to contain all potential
causal relations) is obtained and that still needs to be pruned to remove spurious causal re-
lations. The second part aims at pruning these spurious relations between possible causes
and effects identified in the first part. It does so by considering to which extent all possible
causes of a variable are indeed independent from their residuals. So now we directly learn
a regression function to each child using its potential parents. Then each parent iteratively
undergo an intervention in order to check the significance of its influence on the child. The
regression function used in this case is a single layer MLP f̂mlp, with the set of possible
causes as input and the effect considered as output. The empirical HSIC estimator is again
used to measure dependency. The function GetGap selects the first gap between consecu-
tive HSIC scores with a considerable increase (2 times) with respect to its predecessor. All
relations corresponding to an HSIC smaller to this gap are pruned.
Remark on the computation of HSIC

∧

k Autoencoders compress their input into a latent
representation and then reconstruct the output from this representation. The latent rep-
resentation can be seen as a noise-free version of the input, that contains all its important
information (hence the fact that one can reconstruct the input from this representation).
The latent representation can thus be used as a proxy to the input in the computation of

6
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HSIC
∧

k. By doing so, one relies on a lower dimensional version of the input that can lead
to significant gains when computing the Gram matrices used in HSIC

∧
. Assuming that the

complexity for computing the kernel between two observations is O(d), then the gain in
complexity by using a latent representation of dimension d′′ will be d/d′′. As we will see
in the next section, this gain can indeed be substantial.

4. Experiments

As mentioned before, the main objective of this study is to propose a method for causal
inference in ANMs that scales well while providing the same level of quality as ANM-
pHSIC. The experiments6 below illustrate these two points.

4.1 Quality of causal inference

We make use here of the commonly used Cause-Effect Pairs (CEP) benchmark of 100 real-
world data sets, introduced and available in Mooij et al. (2016); Dheeru and K. Taniskidou
(2017), and an artificial multivariate data set introduced in Hoyer et al. (2009) with 500 ob-
servations and 20 variables arranged in the diamond-like causal structure. As mentioned
before, we place ourselves in the data splitting scenario: the main data set is split into two
equal parts, the first part being used to fit the data and the second one to estimate the
residuals and compute the HSIC7 score. In addition, another scenario, called data recy-
cling, is used for the concurrent method, denoted by ANM-pHSIC(R), where Dn = D′n.
Note that for ANM-pHSIC methods, the p-value is computed using the γ approximation,
which speeds up the computation.

For the Gram matrices used in HSIC
∧

k, two RBF kernels are used with bandwidths
selected by the median heuristics (Schölkopf and Smola, 2001). In all neural networks,
we consider one hidden layer with 10 neurons. Adam optimizer is used with a learning
rate 0.01 and 300 epochs. All observed variables are scaled into [−1, 1]. The denoising
autoencoder is set to denoise an observation with a probability 0.5. In case of denoising,
one chooses one variable at random and forces its value to 0, while the others are left
untouched. This means that, for bivariate datasets, around one fourth of the training ex-
amples have a null value for each variable. We consider two different architectures8 suited
with the theory presented in Section 2, the first relies on a Tanh at the input layer and a
linear function in the output layer, and the second relies on a Leaky Relu at the input layer
and a Tanh at the output layer, which are donoted respectively as KIKO-TL and KIKO-
RT. In addition, we also consider a simplified variant of the above in which the denoising
autoencoder is replaced by a standard autoencoder. These two variants are denoted as
SKIKO-TL and SKIKO-RT.

Evaluation measures. To evaluate the quality of the inferred graph, we rely on differ-
ent measures, depending on the number of variables. For the bivariate case, we use the
accuracy measure ACC. For the multivariate case, one has two aspects to consider, namely

6. The code is available at https://github.com/kassaad/KIKO/.
7. We compute HSIC by expanding tr(Kx HKy H) into non-repeated terms (Gretton et al., 2005).
8. We investigated more complex architectures (the only constraint is that the first hidden layer does not

contain sharing weights) but surprisingly, the simplest performs the best.
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the identification of the cause-effect order and the pruning of the spurious relations. We
use a stability measure STAB for the former, that is 1 if the order is correctly predicted and
0 otherwise, and a similarity measure SIM based on the Hamming distance for the latter.
This similarity is defined as:

SIM =
2

n(n− 1)

n

∑
i=2

i−1

∑
j=1

1Pi,j=Ti,j ,

where P and T are the adjacency matrices associated to the constructed DAG and the
ground truth DAG respectively. All those measures are between 0 and 1, 1 being the best.
The results of each method are averaged over 100 runs so that one can estimate the mean
and the variance of both accuracy and similarity.

Numerical results. As shown in Table 1 in the bivariate case, the four variants of our
method (KIKO-TL, KIKO-RT, SKIKO-TL and SKIKO-RT) yield similar results. Whereas
our main goal was to speed up the procedure, KIKO outperforms ANM-pHSIC and achieves
similar results as ANM-pHSIC(R) while being computationally faster. Note that, for all
methods, the accuracy has small variance. In the multivariate case, one can note that
KIKO-based methods are discovering the true ordering, as the stability over the 100 runs
with the true DAG is better than ANM-pHSIC and ANM-pHSIC(R). In the pruning phase,
KIKO-RT and SKIKO-RT yield slightly better results. The fact that SKIKO yields slightly
better results than KIKO on the bivariate datasets may be due to denoising that may lead
to a too aggressive strategy when the number of variables is small. This is a point we plan
to investigate in the future.

Table 1: Results averaged over 100 runs on the Cause-Effect Pairs and the simulated data
sets, in terms of accuracy (ACC) on the 100 bivariate data sets and stability (STAB)
and similarity (SIM) on the simulated data set. Standard deviations are given in
parenthesis and the best results are in bold.

CEP Simulated data
Method ACC STAB SIM

KIKO-RT 62.6% (0.02) 89% 0.86 (0.09)
KIKO-TL 61.2% (0.02) 100% 0.77 (0.08)

SKIKO-RT 64.5% (0.02) 100% 0.86 (0.12)
SKIKO-TL 63.9% (0.02) 100% 0.79 (0.07)

ANM-pHSIC 57.0% (0.03) 63% 0.82 (0.09)
ANM-pHSIC(R) 62.5% (0.01) 88% 0.83 (0.04)

4.2 Time complexity

To illustrate the gain in time we use simulated data9 in two different settings. In the first
one, we neglect the calculation of HSIC

∧

k, which will allow us to demonstrate the advan-

9. This simulated data is obtained from normal distributions and can be generated with the code available at
https://github.com/kassaad/KIKO/.

8

https://github.com/kassaad/KIKO/


SCALING CAUSAL INFERENCE IN ADDITIVE NOISE MODELS

tage of learning 2(d− 1) models, instead of (d2 − 1), by learning one global model, which
is then used to derive specialized regression functions. In the second one, we take into
account the calculation of HSIC

∧

k and show the advantage of relying on latent representa-
tions provided by autoencoders.

Disregarding (for the moment) the computation of HSIC
∧

k, the time complexity of
KIKO10 isO(2(d− 1)Mmlp + (d2− 1)Pmlp), where Mmlp and Pmlp corresponds respectively
to the time complexity of training a single layer MLP and of predicting values using a
single layer MLP. In contrast, the time complexity of ANM-pHSIC is O(MgpPgp(d2 − 1)),
where Mgp and Pgp corresponds respectively to the time complexity of training a Gaussian
process and of predicting values using a Gaussian process. To illustrate this difference,
we first show how the computation times of ANM-pHSIC and of KIKO evolve wrt the
number of variables and the number of observations while disregarding the computation
of HSIC
∧

k (Figure 1). As one can note, KIKO outperforms ANM-pHSIC in both cases. For
example, in the case of 80 variables and 3,000 observations, KIKO is around 6 times faster
than ANM-pHSIC. For 20 variables and 10,000 observations, KIKO is around 5 times faster
than ANM-pHSIC. This gain can be explained by the fact that KIKO relies on less models,
these models being furthermore simpler and faster to estimate.

To illustrate the advantage of using latent-space representation in HSIC
∧

k, we have re-
peated these experiments without disregarding the calculation of HSIC

∧

k (Figure 2). For
the sake of fairness, we calculate in both algorithms HSIC

∧

k and its p-value (although in
KIKO we do not need the p-value). So the only difference between KIKO and ANM-
pHSIC concerning HSIC

∧

k is that the former uses the latent representations provided by
the autoencoders while the latter directly relies on the input variables. As one can note
from Figure 2, here again KIKO is significantly faster than ANM-pHSIC (around 6 times
faster for 80 variables and 3,000 observations, and around 2 times faster for 20 variables
and 10,000 observations). When the number n of observations is important, the compu-
tation of HSIC

∧

k, quadratic in n, becomes the limiting factor. However, due to the use of
latent representations, KIKO can still be used for large-scale data. Lastly, note that ANM-
pHSIC(R) uses more data and is even slower than the version of ANM-pHSIC used in our
experiments.

5. Discussion and Conclusion

Several families of methods have been developed to infer causal relations from observa-
tional data. In this paper we focused on ANMs, a class belonging to the family that uses
causal footprints. ANMs rely on the assumption that the noise is additive and indepen-
dent of the cause. In the literature other methods can be found within the same family.
LiNGAM (Linear Non-Gaussian Acyclic Model, Shimizu et al. (2006)) is an ANM that is
restricted to linear transformations and non-Gaussianity. CAM (Causal Additive Model,
Bühlmann et al. (2014)) is a restricted class of ANMs suited for high-dimensional data that
assumes Gaussian errors and uses maximum likelihood principle.

Generalization of additive noise models have also been introduced. PNL (Post Non
Linear models, Zhang and Hyvärinen (2009)) is a generalization of ANM that allows for a

10. KIKO-based methods have the same time complexity, as only the activation functions are changing.
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Figure 1: Time complexity of KIKO vs ANM-pHSIC by: (Left) number of variables (sam-
ple size fixed to 3000); (Right) sample size (number of variables fixed to 20),
where the independence measure Ĉ is considered as an atomic operation.
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Figure 2: Time complexity of KIKO vs ANM-pHSIC by: (Left) number of variables (sam-
ple size fixed to 3000); (Right) sample size (number of variables fixed to 20),
where the independence measure Ĉ is HSIC.

post-nonlinear transformation of the variables. Different viewpoints have also been con-
sidered. IGCI (Information-Geometric Causal Inference, Janzing et al. (2012)) illustrates a
different class of methods, without noise, and determines the causal relations under a dif-
ferent independence assumption. CURE (Causal inference with Unsupervised inverse RE-
gression, Sgouritsa et al. (2015)) is based on the idea that the distribution of the cause does
not help to infer the effect, contrarily to the distribution of the effect which does help to
infer the cause. RCC (Randomized Causation Coefficient, Lopez-Paz et al. (2015)) phrases
causal inference as a supervised learning problem in a kernel mean embeddings frame-
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work. RECI (Regression Error based Causal Inference, Blöbaum et al. (2018)) is based on
an asymmetry in the prediction error and allows a dependency between cause and noise.

Within the class of additive noise models, ANM-pHSIC is known to be the best per-
forming method (Blöbaum et al., 2018). Our goal here was to show that this algorithm
could be made simpler and faster through the use of MLPs and intervention-like mecha-
nisms. To do so, we introduced a procedure, which we refer to as KIKO, that uses autoen-
coders, which are then specialized to behave as regression functions. This specialization
allows to dispense with the training of many regression functions, which explains, to-
gether with the use of MLPs in lieu of Gaussian regression processes and the use of the
latent representations in the computation of HSIC, the gain obtained by our method, that
can be used, unlike ANM-pHSIC, in large-scale settings when the number of variables and
observations are important.
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