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USING COLUMN GENERATION TO SOLVE A COAL
BLENDING PROBLEM

STEPHANE AURAY', DANIEL DE WOLF? AND YVES SMEERS®

Abstract. In this paper, we formulate and solve a real life coal blend-
ing problem using a Column Generation Approach. The objective of
the model is to prescribe optimal mixes of coal to produce coke. The
problem is formulated as a mixed integer program. It involves vari-
ous types of constraints arising from technical considerations of the
blending process. The model also incorporates nonlinear constraints. It
results in a large-scale problem that cannot be solved by classical op-
erations research methods. Defining three heuristic methods based on
column generation techniques, this paper proposes reasonable solutions
for the industry.

Keywords. Column generation, coal blending.
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1. INTRODUCTION

In this paper, we consider a real life problem: a coal blending problem for
coke production. The model includes not only quality constraints for the coke but
also all the constraints resulting from the different transportation modes and the
inventory constraints.

Different types of constraints should be considered during the production.
Firstly, the coke is subject to a collection of quality constraints which, in some
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cases, may depend on the clients. These constraints are all linear. But there are
also, for technical reasons, a mazimum number of coal types in the miz. This num-
ber is dependant on the number of gates of the plant. A miz consists simply of
using particular ratios of different coal types during a certain period of time.

There is also, for technical reasons, a minimal proportion for each coal present
in the mix. As we shall see in Section 3, taking these conditions into account
requires the introduction of integer variables and nonlinear constraints. This may
be linearized under a restrictive condition (see Williams [10]).

The coke delivered to the customers can be obtained using different mixes of
coals. However, the total number of mixes used by a plant in a given time period
has an upper bound: there is a significant fixed cost involved in changing the mix
and only two different mixes can be used each month. Finally, we must take into
account capacity constraints as well as minimum production levels.

The industrial problem tackled in this paper is more difficult than the classical
coal blending problem of the Operations Research literature considered by Sarker
and Gunn [6] or Greenberg [4] due to the presence of binary variables. These binary
variables are required to model the minimum and/or maximum level of use of each
coal. Sarker and Gunn [6] solve the tactical planning/coal blending problem. This
leads to a nonlinear nonconvex problem for which solutions are computed using
simple Successive Linear Programming. They used the Lasdon SLP implementa-
tion based on the XLP code of Marsten (see Lasdon [5]). Greenberg [4] looks at
the same pooling problem that arises when blending materials, but considers a dif-
ferent application, namely the blending of crude or refined petroleum. He presents
a new method based upon computational geometry which provides exact answers
to questions of sensitivity analysis for this nonlinear nonconvex problem.

We solve a more complicated problem through the following column genera-
tion technique (see Vanderbeck and Wolsey [7] for an exact algorithm for IP col-
umn generation, Vanderbeck [8] for the branch-and-price algorithm or Desaulniers,
Desrosiers and Solomon [2] for a didactic introduction to the use of column gener-
ation technique in integer programming). For each time period, and each plant, by
fixing the coal delivery prices at the entry of the plant, i.e. a price that represents
the unit purchasing and transportation costs, we determine the optimal coal miz
for one unit of production. This results in subproblems. Then, the Master problem
determines the level of use of these mixes. The Master problem also determines
the coal delivery plan to the plants and the coke delivery plan to the clients. As we
shall see in Section 4, the solution of the Master problem leads to reviewing the
delivery prices at the entry of the plant for each coal. New mixes based on these
new prices are generated by solving the subproblems. Consequently, new columns
are generated for the Master problem. Note that there are also integer variables at
the upper level, since only a limited number of different mixes can be considered
at each time period.

We would like to mention that other types of constraints have been considered in
coal blending problems for coke production. For instance, Vasko et al. [9] consider
coke oven wall pressure or coke stability constraints. They propose candidate coals
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TABLE 1. Choice of indices.

coals

coals coming by boat
coals coming by railways
plants

time periods

mixes

harbours

2 >3 + >3 oo

clients

to produce coke by solving first a mixed integer linear programming model (MILP)
similar to the subproblems that we consider (coal quantity for one ton of mixes) and
then they use a binary decision tree that ensure the production of high-quality coke.
Sample results are presented on hypothetical, but realistic, data. In our model,
however, the set of coals used by the company does not pose significant coke oven
wall pressure or coke stability problems. So we do not take into consideration this
complicating constraints.

The main contribution of this paper is to solve a real world problem encoun-
tered within this industry, which is a large-scale problem intractable by classical
operations research methods. Defining three heuristics methods based on column
generation techniques, we furnished reasonable solutions to the industrial company.

2. PROBLEM DESCRIPTION

The manager of a coke production company wants to determine the operations
schedule for the next three months for the five coke production units situated
in Belgium. We use ¢ as the index for the time periods. The three time periods
correspond to the months of January to March. We denote days; the number of
days for month t.

These five plants, denoted by k, produce different types of coke by mixing differ-
ent types of coals. The mixes are indexed by m. Different type of clients, indexed
by a, are served by the company. This results in different quality constraints on
the mix.

The demand is assumed to be known with accuracy for the first three months
of the year. The different coals, indexed by ¢, are purchased from several countries
and brought to Belgium by means of two transportation modes, namely boat or
rail. The buying prices of the different coals and the transportation costs from
producer to the plant are also given. Table 1 summarizes the indices used in the
model.

2.1. PLANTS DESCRIPTION

Each production plant k is characterized by a daily capacity of plant — capg
— which is the maximum amount of coal that can be handled by the plant (see
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TABLE 2. Plant characteristics.

k  capr minuser gatesy mincoaly Mmaxcoal
1 2300 60% 8 5% 100%
2 2850 60% 4 15% 35%
3 1250 5% 8 10% 100%
4 3500 60% 8 10% 100%
5 3500 60% 8 10% 100%

TABLE 3. Production cost (euro per ton of coal).

prodcost t=1 t=2 t=3

k=1 11.450 11.400 11.350
k=2 18.175 18.100 18.025
k=3 38.150  38.000 37.850
k=4 24.125 24.025 23.925
k=5 11.300 11.250 11.200

Tab. 2). Since the plant can never been stopped, there is also a minimal utilization
rate for each plant, denoted minusey for plant k. To put the coals into the oven,
there is only a limited number of entry gates, denoted gatesy for plant k. This
implies that the number of coal types in the mix is limited. There are also a
minimal and a mazximal proportion for each coal in the mix, denoted respectively
mincoal, and maxcoaly for plant k. Note that these two parameters are function
of the plant and are independent of the coal type: in fact, the minimal and maximal
proportion depend on the charging machinery of the plants. Since the plants were
constructed at different periods, the technology used is different, which explains
the differences from plant to plant.

Plants also differ by their unitary production cost. We denote by prodcosty; the
unitary production cost of plant k at time period ¢ (see Tab. 3).

2.2. COAL CHARACTERISTICS

The firm can use 16 types of coal during this production horizon. These types
differ by their characteristics such as the ash rate, denoted ash. for coal ¢, the
sulfur rate, denoted sul f., the alkali rate, denoted alk., the volatile part, denoted
vol. and the wet part, denoted wet.. The wet part is the unusable part of the coal.
One also distinguishes three classes among the coals: the “High Volume”, denoted
HV, the “Mid Volume”, denoted MV, and the “Low Volume”, denoted LV (see
Tab. 4).
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TABLE 4. Coal characteristics.

c ashe sulfe  alke vol, wete Type
1 4.99% .85% 12%  17.89% 6.63% LV
2 5.53% .70% .09%  17.48% 7.77% LV
3 7.72%  94%  31%  22.711%  10.15% vV
4 830% .67% .14% 21.00%  8.00% LV
5 8.07% .70% 16%  23.60% 9.47% MV
6 4.83% .88% 16%  30.19% 6.80% HV
7T 6.86% 1.15% .24% 29.90%  7.54% HV
8 6.14%  .84% .22% 31.39%  8.66% HV
9 6.01% .82% 19%  32.75% 6.29% HV
10  6.45% .88% A7%  33.08% 7.20% HV
11 7.44% .66% 24%  27.43% 6.45% HV
12 7.70% 11%  .23%  32.09% < 6.81% HV
13 7.00% .98%  .32% 25.10%  8.00% MV
14 760% 5% .18% 19.30% 10.14% LV
15 5.79%  .82% .18% 24.39%  8.99% MV
16 5.30% .72% .13% 33.50%  7.90% HV

2.3. AVAILABILITY, DELIVERY AND DEPARTURE PRICES OF THE COALS

Some of the coals are coming by boat. We index by b these coals (see Fig. 1).
They mainly come from North America and from Australia. There are two possible
arrival harbours that we index by h. There is an initial coal inventory at the
beginning of the year in the two harbours, noted by initstock.; (see Tab. 5). We
denote expq.; deliveries corresponding to already ordered quantities expected for
some of these coals. The landing harbour is not yet decided.

The other coals are delivered by rail. We index by r these coals. They mainly
come from Germany and from Eastern Europe. There is no storage capacity for
these coals. Deliveries, noted expg.;, are also expected for these coals. The final
destination of these quantities is not yet decided (see Tab. 5).

The USD is the reference currency for the coals coming by boat. The euro is
used for the other coals. Expected exchange rates for the next three months are
given in Table 5. Prices are given at the harbour or station of departure in Table 5
where the relevant currency is also given for each coal. By multiplying the price
in foreign currency by the expected exchange rate, we obtain the price of coal ¢ at
time period t in € denoted price ;.
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FIGURE 1. Supply chain for the input to the plants.

Plant &

coke
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TABLE 5. Initial inventory, expected quantities and coal prices.

Coal initstocken (tons) expqet (tons) Price
(c) h=1 h=2 t=1 t=2 t=3
1 b 558 7620 70000 70000 100000 $  46.80
2 b $  46.75
3 t 26000 26000 26000 <€  55.65
4 b 36 655 $ 37.75
5 b 42760 22 570 40000 60000 $  45.75
6 t 49600 49600 49600 € 42.225
7 t 14800 14 800 14800 € 42.225
8 t 10000 10000 10000 € 41.775
9 t 20000 20000 20000 € 43.575
10 b $ 46.65
11 b 5950 $ 49.25
12 b $ 44.10
13 t 16000 16000 16000 € 55.125
14 b 43505 40 000 60 000 $ 40.00
15 t 42400 42400 42400 €  44.95
16 b 6450 25000 25000 $  46.80
Currency rate t=1 t=2 t =3
$ 0.975 0.925 0.875

€

1

1

1
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TABLE 6. Boat or rail transportation costs.

($/ton) boatcosten

c=1 ¢c=2 ¢c=4 c¢c=5 ¢c=10 ¢=11 ¢=12 ¢=14 c=16
h=1 5.1 4.5 10.25 8.15 3.75 3.30 0 7.5 5.10
h=2 5.1 4.5 10.25 8.15 3.75 3.30 0 7.5 5.10
(€/ton)  transpcostpy railcoster, (€/ton)

h=1 h=2 ¢=3 ¢c=6 c¢c=7 ¢c=8 ¢c=9 ¢c=13 c=15
k=1 44675 4.4675 9.155 4.67 4.67 4.67 9.155  9.155 4.67
k=2 26375 3.25 7.39  4.2625 4.2625 4.2625 < 7.39 7.39  4.2625
k=23 400 0 - - - - - - -
k=4 3.86 3.86 8.29 6.08 6.08 6.08 8.29 8.29 6.08
k=5 2460 4.105 7.7475 2.31 2.31 2.31  7.7475  7.7475  2.31

2.4. THE TRANSPORTATION COSTS

The transportation costs by boat to the harbour, denoted boatcost.n, are given
in $ per ton of coal (see Tab. 6). As can be seen, there is no difference for the
transportation costs between the two arrival harbours. Handling costs at the har-
bour, denoted dockcosty, are the same at the two harbours due to the competition
between the harbours: 3.3875 € per ton. Transportation costs from harbours to
plants, denoted transpcostyy are given in € per ton (see Tab. 6).

Note that there is no transportation cost between harbour 2 and plant 3, the
plant being located in the harbour area. Consequently, plant 3 is only supplied
from harbour 2. The four other plants are also supplied by rail. The transportation
costs by rail between the departure station and the plants, denoted railcost., are
given in € per ton by Table 6 for all coals coming directly from the production
site to the plant by rail.

2.5. CHARACTERISTICS OF THE DEMAND

The coke company must satisfy the demand of 13 clients for the next three
months. We use a as index for the client. The demand of client a in time period ¢
is denoted demyg; (see Tab. 7). In order to minimize the coke transportation cost,
the plant requested by each client is given. A few of them (clients 4 and 6) can be
supplied by two plants, the distances to the two plants being similar.

We explain now the quality constraints that the coal mix must meet. The first
one concerns the volatile rate. The wolatile rate of the miz must be between 24%
and 26%. We denote these two parameters as minvol and maxvol. The second con-
straint concerns the ash rate. The mix has a mazimal ash rate depending on the
client. We denote mazxash, this quantity for client a. The third specification con-
cerns the sulfur rate. There is a lower and upper limit on sulfur, denoted minsul f,
and maxsul f,, which also depends on the client. The fourth specification concerns
the alkali rate. There is an upper limit on alkali, denoted maxalk,, which also de-
pends on the client a. The fifth specification concerns the Low Volume rate. The
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TABLE 7. Demand for the next three months.

demay t=1 t=2 t =3 Plant
Client 1 11500 12600 12600 3
Client 2 4000 4000 1

Client 3 45000 45000 45000 1
Client 4 7000 8000 8000 2or3
Client 5 2000 2000 2000 3
Client 6 16500 24800 14400 1lor?2
Client 7 26700 19400 14800 2
Client 8 3500

Client 9 6000 6000 5000
Client 10 16000 16000 14000
Client 11 12000 12000 12000
Client 12 58452 49002 51644
Client 13 68516 68132 71162

T W N =N

lower and upper limits on Low Volume, denoted minlv, and mazlv,, also depend
on the client (see Tab. 8). For these three characteristics (ash, sulfur and alkali),
there is a multiplicative coefficient from the mix to the coke: they are denoted
respectively multash, multsul f and multalk (see Tab. 8).

For all minimal and/or maximal characteristic rates that depend on the client,
we shall consider as specification for the mix of the plant the specification of the
most restrictive client that the plant has to serve.

The sixth specification concerns the rate in “Mid Volume”. Here there are lower
and upper bounds on Mid Volume, denoted minmuv (0.25) and maxmov (0.25)
respectively, which do not depend on the client. In fact, for technical reasons,
there is a fixed rate of 1/4 of Mid volume coals. The seventh specification concerns
the soft rate. There is an upper bound on Soft coal, denoted mazsoft (0.10), which
does not depend on the client. The only soft coal is coal 12. The eighth specification
concerns the Australian coal rate. Here, for commercial reasons, there is an upper
bound, denoted mazaus (0.30), which does not depend on the client. The only
Australian coal is coal 4.

Finally, note that the number of mixes that can be used for each plant per
period, is limited. This maximum number of mixes, denoted maxmizy;, is equal
to 2 mixes per month for each plant. The different mixes will be indiced by m.

3. PROBLEM FORMULATION

We have already introduced the following indices (see Tab. 1): the coals are
indexed by ¢, the plants by k, the time periods by ¢, the mixes by m, the harbours
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TABLE 8. Specifications which depend on the client.

Client maxash, minsulf, mazsulf, maxalk, minlv, maxlv,
Client 1 10. 1. .30 30. 100.
Client 2 10. 1. .30 30. 100.
Client 3 10. 1. .30 30. 100.
Client 4 10. 1. .30 30. 100.
Client 5 10. 1. .30 30. 100.
Client 6 9.5 7 9 .30 30. 100.
Client 7 9.5 .7 .9 .30 30. 100.
Client 8 10. 1. .30 40. 50.
Client 9 10. 1. .30 30. 100.
Client 10 10. 1. .30 30. 100.
Client 11 10. 1. .30 30. 100.
Client 12 9.5 .7 9 .30 30. 100.
Client 13 9.5 7 9 .30 30. 100.
Multiplicative coefficient Ash Sulfur Alkali
from the mix to the coke 1.32 0.92 1.32

by h and the clients by a. To facilitate the notation, we have also introduced the
subindices b for the coals coming by boat and r for the coals coming by rail.

3.1. CHOICE OF DECISION VARIABLES

The first set of variables concerns the production of coke in the different
plants: we denote by COAL gy, the quantity of coal ¢ used in plant k at the time
period t in the mix m. We introduce only for convenience the variable SU My,
which is the total quantity of coals for plant k& in the mix m at the time period t.
These two quantities are given in tons. To account for the limited number of coal
in the mix, we introduce the binary variables COALPRES kit to indicate that
coal ¢ is present in the mix m for plant & at time period t. To account for the
limited number of mixes at each time period, we introduce the binary variables
MIXPRE Sy, to indicate that mix m is used for plant &k at time period t. Table 9
summarizes this choice of variables.

A second set of variables is used to manage the deliveries and inventories
of coals (see Fig. 2).

We denote by ORDQ.; the new ordered quantity of coal ¢ at time period ¢
and assume that the orders placed in period t are also delivered in period t. Con-
sequently, this quantity adds to the expected quantities at time period t, expqe.:
which are given (see Sect. 2). We denote by X BOAT}, the quantity of coal b
coming by boat that is sent to harbour h at time period ¢ and by X RAI L, the
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TABLE 9. Variables for the coke production.

Variable Definition

COAL_ktm quantity of coal ¢ used in the mix m at period ¢ in mix m,
SU Mptm, total coal quantity for mix m at plan k& for period ¢,
COALPRES Ltm indicator that coal ¢ is in the mix m (binary),
MIXPRESytm indicator the the mix m is used for plant k (binary).

ORDQw

STOCKp
OOALD E Lbk,[,h
Harbour h f——»

X BOATwn

()RD62 rt |
X RAILyyt Plant k

Coal r

PRODkta

Client a

FIGURE 2. Decision variables for the coal deliveries and inventories.

quantity of coal r coming by rail that is sent to coke plant k at time period ¢.
We let STOC Ky, be the inventory of coal delivered by boat b at the end of time
period ¢ in harbour h and COALDE Ly, be the coal b deliveries from harbour A
to plant k at time period ¢. Last we denote by PRO Dy, the tons of coke produced
in plant k at time period ¢ for client a. These variables are necessary to compute
the coke transportation plan, since some clients can be supplied by more than one
plant. Table 10 summarizes this choice of variables.

3.2. MATHEMATICAL EXPRESSION OF THE OBJECTIVE

The objective function is the sum of six following terms:

min z = Z Zpricect(exp(kt + ORDQ.) (1)
c t
+ Z Z Z(boatcostbh + dockcosty,) X BO ATy, (2)

b t h
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TABLE 10. Variables for the coal deliveries and inventories.

Variable Definition
ORDQct new ordered quantity of coal ¢ at period ¢,
XBOATbth quantity of coal b sent to harbour h

at the period t,
STOC Kyin inventory of coal b in the harbour A at the end of period ¢,

COALDELpsr,  coal deliveries from harbour h to plant k

XRAIL, 1 quantity of coal r delivered at time ¢ to plant k.
PRODyt, coke produce at plant k for client a at time ¢.
+ Z Z Z rate - delpricepsn STOC Ky, (3)
b t h

+ Z Z Z Z transpcost,xCOALDE Lyktn (4)
b k t h

+ Z Z Z railcost, ; X RAIL, (5)
r k t

+ Z Z ZprodcostktSUMktm (6)
k t m

e the coal purchasing cost (1) where price.; is the coal price ¢ at period t,

e the boat transportation cost and the handling cost at the harbours (2) where
boatcostyy, is the boat transportation cost and dockcosty is the handling cost
at harbour,

e the holding inventory cost for each quantity of coal stored at the arrival harbour
(3) where rate is the monthly opportunity rate (0, 5%) and delpricep, is the
delivery price, i.e the sum of the purchasing cost, the boat transportation cost
and the handling cost at the harbour:

delpricey, = pricey; + boatcostyy, + dockcosty,

e the transportation cost from harbour to plants (4) where transpcostny, is the
unitary transportation cost from the harbour to the plant,

e the transportation cost by rail (5) with railcost,) the unitary rail cost,

e the production costs (6) with prodcosty; the unitary production cost.
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3.3. MATHEMATICAL EXPRESSION OF THE CONSTRAINTS

We have the following relations between theses variables:

SUMktm

COAL:cktm

SUMktm

minusegcaprdaysy
expqpt + ORDQpy
expqrt + ORDQ, ¢
> COALDELy
h
XRAIL,;

Z MIXPRESkim

STOCKw, — STOCKy 411,
Z Z(l —wet.) * COALcpim

>

k delivering «

PROD\gq

= Z COALcktm

< COALPRES .1tmcaprdays;

< MIXPRESyimcaprdaysy
<> SUMym, < caprdays,
=Y XBOATy,

h
=Y XRAIL

k

=Y COALyjm

=Y COALm

< maxrmixy;

= XBOATy,;, — Z COALDE Ly,
k

= > PRODya

2 demat

ZCOALPRESthm < gatesy,

mincoalykCOALPRES .11y, <

COAL:cktm

SU M tm,

COAL_pim
SUMktm

< maxcoal, COALPRES .1tm

(20)

(21)

e Equation (7) computes the sum of coals for each mix and each time period.
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e Equations (8) and (9) are the definition of the binary variables: namely they
indicate the presence of the coal or the use of the mix. Note that capy is the
daily coal entry capacity for plant & and days; is the number of days in time
period ¢. This number of days is needed since capacity is a daily capacity and
the variables are monthly quantities of coal entering the plant.

e Equation (10) concerns the minimal utilization rate and capacities of plants.

e Equation (11) indicates that the total amount of coal delivered by boat must
be allocated between the two harbours since equation (12) indicates that the
total amount of coal delivered by rail must be allocated between the plants.

e Equation (13) is the balance for each coal coming by boat at each plant since
equation (14) is the balance for each coal delivered by rail.

e Equation (15) concerns the maximal number of mixes for each plant and each
time period.

e Equation (16) gives the balance at the end of time period ¢ for coal b at each
harbour h since equation (17) gives the balance at the exit of the plants.

e Equation (18) is the demand satisfaction.

e Equation (19) deals with the maximal number of coal types in the mix.

e Equation (20) defines the minimal use of each coal in a mix since equation (21)
concerns the maximal use of each coal in a mix.

We have two types of variables:

e the continuous variables which must be nonnegative:

COAL¢ktm, SUMptpm, COALDE Lytn, PRO Dy,

XBOATywp, XRAI L, jt, ORDQpt, STOC Ky, > 0
e and the binary variables:
COALPRES cktm, MIX PRE Sk, € {0,1}

Note also that the two last constraints (20) and (21) are nonlinear. All the other
quality constraints on the mix are easy to write. They are listed in Appendix A.

4. SOLUTION METHOD

Except for constraints (20) and (21), all the constraints of the problem are
purely linear. Note that the left hand side of constraint (20) must be multiplied
by the variable COALPRES, otherwise all the coals would be present in the mix.
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The solution technique followed by Sarker and Gunn [6] is to define for each
ratio COALcktm /SU My, a variable, say fegtm, introducing for each ¢, k, t and
m the constraint:

fck:thUMktm = COALck:tm~

They obtain a problem with a nonlinear part of bilinear type (product of vari-
ables). Heuristics for solving such problems have been proposed in the Operations
Research literature. They are related to techniques for solving fractional linear
programs and they resort to successive linear programming (SLP).

However, in our problem, integer variables remain, since constraints (20) and
(21) are written as:

mincoalkCOALPRES ckim < fertm < maxcoalyCOALPRES kim-

This paper proposes three heuristic methods, based on column generation ideas.
The problem formulated in Section 3 has two types of binary variables: one called
COALPRES. iy to indicate the presence of coal ¢ in the mix m for plant & at
time period t. The other one, called MIX PRE Sk, indicates that the mix m is
used for plant k at time period ¢. We know that column generation procedures
solve only LP problems. In our heuristic method, we keep the binary variable in
the subproblem (for limiting the number of coal types in the mix) and in the
main program (for limiting the number of mixes used for each plant and each time
period).

The subproblems are defined as follows. For each plant, and for each time period,
initially we consider the delivery price at the entry of the plant as the sum of the
coal price and the total transportation cost to the plant. We look for a mix of
one ton that satisfies all the quality constraints on the mix. This gives an initial
column of coal proportions for each plant for each time period. Note that imposing
the sum of coals to be equal to one is a simple manner to linearize the two nonlinear
constraints (20) and (21).

In the master problem, we shall determine the level of utilization of these mixes
in order to meet the demand of the several clients at minimal production, trans-
portation and coal purchasing costs. By multiplying the level of use of a mix by
the column of the coal proportions in the mix for a particular plant, we obtain the
coal quantities needed for the plant at the time period.

To update the delivery price at the entry of the plant, we consider the dual price
of the balance at the entry of the plant constraints (13) or (14) depending on the
transportation mode. In fact, these dual variables give the marginal effect on the
objective function of an unitary increase of the delivery of this coal to the plant.

For each subproblem, the initial coal delivery price at the entry of the plant is
computed as the sum of the departure price and transportation costs. One main
iteration is the solution of the 15 subproblems (5 plants x 3 time periods) and
of one main problem. At the end of the first main iteration, we update the initial
delivery price at the entry of the plant by replacing the delivery price by the dual
price of constraints (13) or (14).
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The sub problems SP(k,t) where p(c, k,t) is the delivery price of the coal ¢ to
plant k at time period t are defined as follows:

minz = Zp(c, k,t)COAL
> COAL

> COALPRESc

mincoal,COALPRES 4
COALuy

Z ash. multash COAL_
Z sul fo multsul f COAL_j

Z sul fo multsul f COAL_j

E:aMknmhdkCOALwt

> w0l COALcy
st

> w0l COALcy

> COALu

ce LV

> COALu

ce LV

> COAL

CEMV

> COAL

ceMV
2

c is Soft
Y. COAL
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COAL_t

=1

< gatesy,
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< mazxcoalyCOALPRES 1

< maxashg SU M},

min
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Y
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minsul f, SUMj
o delivered by & Ja ’

A

mazxsul fo SU My

min
a delivered by k

IN

min maxalk, SU My,
a delivered by k

minvol SU M,

Y

IN

maxvol SU My

Y

max minlv, SU M},

a delivered by &
maxlv, SU M,

< min

a delivered by k
< maxmv SU My,
> minmuv SU My,

< mazxsoft SU My,

< mazaus SU My,

Every variables must be nonnegative behalve COALPRES which is binary.

The subproblems correspond to the following task: find, for each time period
and each plant, the optimal miz for one unit of coal miz. The constraints include
all the mix quality constraints, the maximal number of coals and the minimal and
maximal rate for each coal in the mix. The only variables are variables COAL, and
COALPRES.. Recall that the objective coefficients include at the first iteration
the coal purchasing cost, transportation cost, handling cost and the production
cost. At the following iterations, we only consider the sum of the dual variable and

the production cost.
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Consequently, we need to solve as many problems as there are plants and time
periods. We note coal(c, k, t,m) the proportion of coal ¢ used in mix m (initially,
m is set to 1) at plant &k at time period ¢.

4.2. THE MAIN PROBLEM

The main problem corresponds to the determination of the delivery planning
of coals to the plants, the allocation of ordered quantities to the harbours, the
determination of the level of use of the mixes generated by the subproblems for
each plant and each time period and finally the coke transportation plan to the
clients. We obtain the following main problem:

min z = Z Zpricect(equct + ORDQ) + Z Z Z rate - delpricepn

c t b t h
STOC Ky, + Z Z Z(boatcostbh + dockcosty,) X BOAT

+ Z Z Z Zb trcins;costhkCOALDELbkth
+ Z Z Z razlcost sk XRAIL, 1t + Z Z ZprodcostktSUMktm

SUMktm < MIXPRESktmcapkdayst

minuseicaprdaysy < Z SUMptm < caprdays;

expqrt + ORDQp = i XBOATy,

expgri + ORDQ = i XRAIL,

> COALDELyn = Zk: coal (b, k, t,m)SU M,
s.t. )?RAILTM = icoal(r,k,t,m)SUMktm

> MIXPRESkm < mawmizyy

swfrocm,th — STOCKy4—1,h = XBOATy, — Y  COALDE Ly,

Z Z(l — wet.)coal (b, k, t,m)SU My = Z;RODW

" FZ PROD, > demygs. ’

k delivering a

(23)
Every variables must be nonnegative behalve M 1X PRES which is binary.

This gives a mized integer program with binary variables MIX PRES since a
maximal number of different mixes for each plant at each time period must be
imposed. This program can also be solved by GAMS/OSL.

At the first iteration, there are 481 rows and 556 columns. Each iteration adds
15 constraints (15 “rows”) and 30 variables (“columns”) to the main problem
(see Tab. 11). The new variables correspond to the 15 new mixes binary variables
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TABLE 11. Evolution of the MP objective function.

Iteration Objective Execution Number Number
value (€) time (s) of rows  of columns

1 91 569 578.20 3 481 556

2 79 432 349.83 4 496 586

3 75 029 945.98 11 511 616

4 71 579 163.48 48 526 646

5 69 789 373.33 49 541 676

6 68 615 626.73 522 556 706

7 68 514 039.00 52 571 736

8 68 513 503.25 409 586 766

9 68 428 567.03 119 601 796

10 68 393 561.65 4151 616 826

11 68 388 314.23 664 631 856

12 68 361 242.08 4403 646 886

13 68 358 137.05 494 661 916

14 68 349 665.80 2412 676 946

15 68 347 547.93 1865 691 976

16* 68 346 480.40 3184 706 1006

* Stopping criterion satisfied.

and the to 15 new mixes utilization levels. The new constraints correspond to the
computation of the SUM variables corresponding to the 15 new mixes.

4.3. THE GLOBAL PROCESS

The global process includes 3 levels of inner loops in GAMS/OSL (see Brooke,
Kendrick and Meeraus [1]):

e the first loop on the main iterations,
e the second loop on the time periods,
e and the third loop on the plants.

It can be summarized by the following procedure:

Initialize p(c,k,t) as the sum of the unit production cost
and the delivery price of coal;
Form =1, 2, etc..
{
For t =1 to 3
{
For k =1 to 5
{Determine the optimal mix for plant k, time t
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when using p(c,k,t) as objective coefficients
by solving the subproblem SP(k,t);
Let coal(c,k,t,m) be the solution obtained;
b
X
Determine the optimal coal purchases, mix use level and demand
satisfaction plan by solving the main problem MP
using MIP solveur GAMS/O0SL;
Update p(c,k,t) to the sum of the production unit cost
and the dual variable of the balance equation for coal c
at plant k for time period t;
b

The stopping criterion is as follows: stop if there are no columns pricing out.
Before analyzing these results, let us stress the fact that the procedure we pro-
pose is heuristic. In fact, with an alternative organization of the master problem
and subproblem hierarchy, we can achieve a better objective function value (see
Sect. 5).

Let us conclude this section with a few explanations on the “dual prices” used in
the column generation. In fact, our master problem is a mized integer problem due
to the MIXPRES binary variables. It is known in mathematical programming that
the dual information is only valid for a linear program. We explain how this dual
information is generated. We have solved this MIP problem using GAMS/OSL.
After the solver has found the optimal solution, GAMS fixes the levels of the integer
variables and reruns the model as an LP model to obtain the dual variables values.
As an alternative heuristic, one could also use the dual prices of the LP relaxation
of the whole MIP problem. We refer to Section 5 for the comparison of the results
of the two possible choices for generating the dual information.

5. NUMERICAL RESULTS

Table 11 presents the successive objective function values for the main program,
the execution time for GAMS/OSL and the size of the main program.

Two conclusions can be taken from this table. The first one is the important
objective function decrease (about 2500000 € per iteration) during the first five
iterations. This global cost reduction continues at a lower rate during the following
iterations. Secondly, the heuristic converges in only 16 main iterations. Recall also
that, since we use a heuristic method, the solution can be suboptimal.

Now, let us say a few words about two other heuristics that were suggested
to us to solve the problem. The first one is a variant of our column generation
method that was suggested to us by Professor Yves Pochet from CORE, Université
Catholique de Louvain, Belgium. Since the only difficulty in the main program is
the fact that there are binary variables (COALPRES k) in a product with
another variable SU My, (see Eq. 21), one can, for the main program, fix the
coals present in the mix instead of fizing their proportion in the miz. This implies
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TABLE 12. MP objective function for the second heuristic.

Iteration Objective Execution Number Number
value (€) time (s) of rows  of columns
1 89 378 751.35 3 1124 796
2 76 709 252.58 23 1782 1066
3 75 052 581.23 18 2440 1336
4 70 284 765.43 215 3098 1606
5 68 484 730.45 49 541 676
6 68 458 216.33 1497 4414 2146
7 68 408 431.40 543 5072 2416
8 68 374 826.85 1010 5730 2686
9 68 362 017.08 599 6388 2956
10 68 353 850.75 8165 7046 3226
11 68 348 399.20 10803 8362 3766
12 68 345 582.43 10803 646 886
13 68 342 647.50 10803 9020 4036
14* 68 341 879.48 7575 9678 4306

* Stopping criterion satisfied.

that variables sent from the lower to the upper level are not the COAL variables,
but only the COALPRES variables. This also implies that we must impose, in
the main program, all the quality constraints on the mix listed in appendix A.

Table 12 presents the evolution of the objective function value, the execution
time for GAMS/OSL and the size of the main program for this second heuristic
method.

A slightly better solution (68 341 879.48 € instead of 68 346 480.40 €) was
obtained after 14 main iterations but took much longer (14 hours 28 min instead
of 5 hours 6 minutes for the first heuristic). This increase in the execution time
is due to the fact that the size of the main problem is increased (compare the
last two columns of Tables 11 and 12). From this example, one can conclude that
the second method is not competitive, as it gives a similar solution in much more
time. This example also points out the fact that the proposed solution procedure
is heuristic since the second solution method gives a slightly better solution.

Finally, we present a third heuristic that was suggested to us by Professor Eti-
enne Loute from Facultés Universitaires Saint Louis, Brussels, Belgium. The only
difference between this and the first method is the choice of the dual information
to update the coal delivery prices for the subproblem. Instead of using the dual in-
formation given at the optimal solution of the MIP version of the master problem,
the relaxed version of this master problem is solved and the dual information of
this RMIP problem is then used. Table 13 presents the evolution of the objective



34 S. AURAY ET AL.

TABLE 13. MP objective function for the third heuristic.

Iteration Objective Execution time Execution time
value (€) RMIP (s) MIP (s)

1 91 569 578.20 2 2

2 79 432 349.83 2 4

3 75 029 945.98 2 19

4 72 105 817.88 2 24

5 68 835 693.58 3 1071
6 68 503 629.70 2 468

7 68 433 685.88 3 1243
8 68 400 568.13 2 75

9 68 379 477.03 2 624
10 68 358 511.35 2 270
11 68 349 689.18 2 390
12 68 349 689.18 2 385
13 68 348 287.88 2 2458
14" 68 346 804.38 2 555

* Stopping criterion satisfied.

function value, the execution time for GAMS/OSL for the RMIP and for the MIP
version of the master program.

This third solution method is close to the standard column generation technique.
At the end of the procedure, the integrality of variables for the main problem is
restored as follows: after solving the LP-relaxation, a branch and bound procedure
is performed with these columns.

A slightly more expansive solution (68 346 804.38 € instead of 68 346 480.40
€) was obtained after 14 main iterations but in less time (2 h 10 min instead of
5 h 6min with our method). All these run times were in fact acceptable to the
industry since we are determining the planning for three months. The solution
procedure was presented to the industrial company and helped the company in
both directions. On one side, it helps the industrial company to discover the lim-
iting constraints of its production problem. For example, the industrial company
was not aware that the number of entering gates is an important constraint for
the problem. In fact, if we allow as many coal type as we want in the mix, the pro-
duction costs decreases. On the other side, our heuristic has helped the industrial
company to decrease its production cost for the three months.

6. CONCLUSIONS

In this paper, we have formulated and solved a real world problem. It concerns
the integration of the distribution and mixing of coals to satisfy the demand of



USING COLUMN GENERATION TO SOLVE A COAL BLENDING PROBLEM 35

coke of a set of customers throughout a planning horizon. The modelling of the
problem implies a large number of constraints with binary variables. The binary
variables come from the limitation of the number of coals in the mixes at each
plant at each time period and from the limitation of the number of mixes used for
each plant and each time period. Some of the constraints were nonlinear. To solve
this difficult problem, we have presented three heuristics based on the idea of the
column generation technique. The implementation of the heuristics has helped the
industrial company to reduce its production cost.

In the future, we intend to add new quality constraints on the mix which are
nonlinear and that can not be linearized by the present heuristic method. It con-
cerns upper and lower bound on the Gieseler Fluidity, which is a nonlinear function
of the coal quantities in the mix (see Appendix B for a complete presentation of
these new constraints).
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suggesting to us the other solution technique, professor Etienne Loute for valuable sug-
gestions to improve the presentation of the paper and finally, Grdinne Corry of University
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APPENDIX A. LINEAR QUALITY CONSTRAINTS ON THE MIX

e maximal ash rate of the mix:

Z ash. multash COAL ppm < min maxashg SUMpim
- a delivered by &

e minimal sulfur rate of the mix:

Z:sulfC multsul f COALptm > max minsul fo, SU M,
- a delivered by &

e maximal sulfur rate of the mix:

Z sul fe multsul f COALcgpm < min mazsul fo SUMpgim,
- a delivered by &

e maximal alkali rate of the mix:

> alke multalk COALgpm < min  mazalky SUMgim
a delivered by &

C

e minimal and maximal volatiles rate of the mix:

minvol SU M, < ZvolcCOALcktm < maxvol SU My,

e minimal Low Volume rate of the mix:

COAL .ty > max minlv, SUMpim,

¢ is a Low Volume a delivered by &
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TABLE 14. Lower and upper bounds for 710 and 720.

Parameter Lower Upper

limit limit
110 23.
120 76.5

e maximal Low Volume rate of the mix:

COAL 1t < min maxlvg, SUMpim
. a delivered by &
c is a Low Volume

e minimal and maximal Mid Volume rate of the mix:

minmv SU M, < Z COAL oty < mazxmv SUMim
¢ is a Mid Volume

e maximal rate for Soft coal in the mix:

Z COALkim < maxsoft SUMpp,
c is a Soft Coal
e maximal rate for Australian coal in the mix:

Z COAL .1ty < mazaus SU My,

¢ 1s an Australian coal
APPENDIX B. NONLINEAR QUALITY CONSTRAINTS ON THE MIX

Two specifications are related to the coal quantities in the mix by nonlinear
relations: this two indicators are named 10 and 720 and have lower and upper
bounds given by Table 14.

To compute the two indicators 7120 and /10, we need three variables:

e The first one is the miz inert rate, noted TIC M, computed as the weighted
sum of the inert rate of the coal in the mix.

e The second on is the agglutinating power of reactive materials in the miz, noted
RCIM.

e The third one is the mazimal fluidity of Gieseler of the mix, noted LGFM.

The indicator 120 is computed as the following function of TICM, RCIM and
LGFM:
120 = —1.64 x TICM + 209.1 x RCIM + 58.96 x LGFM
+.0168 x TICM? —110.8 x RCIM? —13.16 x LGFM?
—108.66 x RCIM x LGFM + 818 x LGFM x TICM
+1.015 x LGFM? 4 43.34 x (RCIM?) x LGFM
+6.32 x RCIM x LGFM?* — .02028 x (TICM?) x LGFM
+.663 x TICM x RCIM x LGFM —6.1.

—_ O — — O
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The indicator 710 is computed as the following function of TICM, RCIM and

LGFM:
110 = 1.625 x TICM — 200.7 x RCIM —61.90 x LGFM (30)
—.0159 x TICM? +105.8 x RCIM? 4 12.52 x LGF M? (31)
+114.83 x RCIM x LGFM — .654 x LGFM x TICM (32)
—.938 x LGFM?® —47.02 x (RCIM?) x LGFM (33)
—6.03 x RCIM x LGFM? + .01761 x (TICM?) x LGFM  (34)
—.734 x TICM x RCIM x LGFM + 101. (35)

1

2
3

4

[10
[11
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