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Interpretation of multicriteria decision making
models with interacting criteria

Michel Grabisch and Christophe Labreuche

Abstract We consider general MCDA models with discrete attributes. These mod-
els are shown to be equivalent to a multichoice game and we put some emphasis
on discrete Generalized Independence Models (GAI), especially those which are
2-additive, that is, limited to terms of at most two attributes. The chapter studies
the interpretation of these models. For general MCDA models, we study how to de-
fine a meaningful importance index, and propose mainly two kinds on importance
indices: the signed and the absolute importance indices. For 2-additive GAI mod-
els, we study the issue of the decomposition, which is not unique in general. We
show that for a monotone 2-additive GAI model, it is always possible to obtain a
decomposition where each term is monotone. This has important consequences on
the tractability and interpretability of the model.

1 Introduction

Traditionally, MCDA is primarily interested in studying (through characterizations)
various preference models, and learning them thanks to dedicated elicitation ap-
proaches. However, once the model has been obtained, the work is far from being
finished. The end-user is highly interested in having insights on the behaviour of the
model, and cannot be satisfied with only a black-box model. It is necessary to be
able to provide explanations to the user about the reasons behind the decision taken
by the model. We are mainly interested in the interpretability of MCDA model in
this chapter, where by interpretability we mean the ability to provide general in-
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formation on the model (e.g., what are the most important criteria), and not the
explanation of a specific decision.

The interpretability of a MCDA model is all the more difficult when the MCDA
model is rich and captures subtle and complex decision strategies. This is particu-
larly the case when the interaction among criteria is taken into account. Some well-
known MCDA models, such as the Choquet integral w.r.t. a (k-ary) capacity or the
Generalized-Additive Independence (GAI) model can represent interaction among
criteria, and we will focus on these models in this chapter.

We define in Section 3 a general interpretation of a utility-based MCDA model
with discrete attributes, without any restriction on the type of model. More precisely,
this interpretation takes the form of importance indices on the decision attributes,
and we basically define two kinds of importance indices: the signed importance
index and the absolute importance index. The signed importance index computes the
average variation induced by an attribute over the model. It is linear in the MCDA
model and is similar to the concept of value in cooperative game theory. Hence
for a GAI model that takes the form of the sum of utilities over small subsets of
the attributes, the importance index can be computed on each term separately. On
the other hand, the absolute importance index computes the cumulated variation
induced by an attribute over the model. It is in general not linear, but becomes linear
when the overall utility is a linear combination with nonnegative coefficients of
monotone utilities. The question is then whether we have such property for the GAI
model.

We address the question of the monotone decomposition of a GAI model in Sec-
tion 4, focusing on the 2-additive case. More precisely, if we have a nonnegative and
monotone 2-additive GAI model, is it possible without loss of generality to assume
that each term in the GAI decomposition is itself nonnegative and monotone? If such
property is true, this would allow to interpret directly each term in the GAI decom-
position, and as we will explain, the complexity of the learning procedure is greatly
reduced. The main result of this section shows that indeed, such a decomposition
exists (Theorem 5). However, we do not know in general how to obtain a monotone
decomposition, and classical decompositions like the one proposed by Braziunas or
the ANOVA decomposition do not yield in general a monotone decomposition. The
last part of Section 4 is devoted to this question and gives some hints to solve it.

2 Background

2.1 Multicriteria decision making and conjoint measurement

(see, e.g., Bouyssou and Pirlot (2016) for more details) We consider a multicriteria
decision problem described by attributes X1, . . . ,Xn. Potential alternatives are ele-
ments x = (x1, . . . ,xn) of the Cartesian product X1× ·· · ×Xn =: X . We denote by
N = {1, . . . ,n} the index set of the attributes, and suppose throughout the paper
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that n≥ 2. We employ the usual notation for compound alternatives, that is, for any
x,y∈X and A⊆N, by (xA,y−A) we mean the alternative taking value xi for i∈A and
yi otherwise. We write x−i instead of x−{i} and extend this notation to the attributes
as well: XA, X−A, etc.

The preference of the decision maker (DM) is represented by a binary relation
< on X , supposed to be complete and transitive. Ordinal measurement amounts to
finding a numerical representation U : X → R of the preference in the sense that
x < y is equivalent to U(x) ≥ U(y). U is called a value function. A classical and
simple example of value function is the additive value function

U(x) =
n

∑
i=1

ui(xi) (1)

where ui : Xi → R are the marginal value functions on each attribute. It is well
known that this model forces < to satisfy mutual preferential independence: for any
/0 6= A⊂ N, any x,y,z, t ∈ X ,

(xA,z−A)< (yA,z−A)⇔ (xA, t−A)< (yA, t−A).

This strong condition is rarely met in practice, and usually one assume a much
weaker version, where preferential independence is required only for singletons.
Specifically, < is said to satisfy weak preferential independence if for every i ∈ N,
every x,y,z, t ∈ X ,

(xi,z−i)< (yi,z−i) ⇐⇒ (xi, t−i)< (yi, t−i).

Under this condition, it is meaningful to define a preference relation <i over each
attribute Xi as follows: for any xi,yi ∈ Xi, xi <i yi if (xi,z−i) < (yi,z−i) for some
z ∈ X . Then <i is a complete, transitive binary relation on Xi. It is easy to check that
monotonicity holds:

xi <i yi ∀i ∈ N⇒ x < y. (2)

2.2 Generalized Additive Independence (GAI) models

The additive value function model being too restrictive, one must look towards more
general models. The Generalized Additive Independence model, proposed first by
Fishburn (1967) (see also the pioneering work of Bacchus and Grove (1995)), is
a natural generalization where the monodimensional marginal value functions are
replaced by multidimensional marginals:

U(x) = ∑
S∈S

uS(xS) (x ∈ X), (3)
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where S ⊆ 2N \ { /0}. The additive value function model is recovered with S =
{{1}, . . . ,{n}}. There is no specific requirement on the collection S (hence S,T ∈
S may overlap), nor on the marginal terms uS.

The GAI model is very versatile, and may even violate the weak preference in-
dependence property. However, if we suppose that this property is true, (2) implies
that a GAI model satisfying weak preferential independence is monotone:

xi <i yi ∀i ∈ N⇒U(x)≥U(y) (4)

2.3 Discrete GAI models

We suppose from now on that the attributes take a finite number of values (discrete
attributes):

Xi = {a0
i , . . . ,a

ki
i } (i ∈ N),

supposing that a0
i 4i · · · 4i aki

i . Recall that under weak independence, the binary
relations 4i, i = 1, . . . ,n are complete preorders, and monotonicity (4) holds. For
the sake of convenience, we normalize U by letting

U(a0
1, . . . ,a

0
n) = 0, U(ak1

1 , . . . ,akn
n ) = 1. (5)

Let us now simplify the notation. We replace each value a`i of attribute Xi by sim-
ply its index `. Doing so, an alternative (a`1

1 , . . . ,a`n
n ) is represented by (`1, . . . , `n)

without ambiguity. Letting L := L1× ·· · × Ln, with Li = {0,1, . . . ,ki}, i ∈ N, this
amounts to defining a bijection ϕ : X→ L with ϕ(a`1

1 , . . . ,a`n
n ) = (`1, . . . , `n). Thanks

to the ordering a0
i 4i · · ·4i aki

i , v :=U ◦ϕ−1 : L→R is a monotone function, which
by (5) satisfies

v(0N) = 0,v(kN) = 1,

letting 0N = (0, . . . ,0), kN = (k1, . . . ,kn).
From now on, we assume for simplicity that k1 = k2 = · · · = kn =: k (this is

without loss of generality, as the results presented hereafter remain valid for the
general case). Such functions v are nothing other than k-ary capacities (Grabisch and
Labreuche, 2003), which are particular multichoice games (Hsiao and Raghavan,
1990): a multichoice game is a function v : L→ satisfying v(0N) = 0, and hence
does not necessarily fulfill monotonicity. We denote by G (L) the set of multichoice
games defined on L, and by GM(L) the set of monotone multichoice games.

To summarize, we have considered a particular class of GAI models, namely
those satisfying weak preferential independence and having discrete attributes with
k values. Under these assumptions, the GAI model is equivalent to a k-ary capacity.

In Labreuche and Grabisch (to appear), the authors have considered continuous
GAI models with the same assumption of weak preferential independence, by means
of interpolation methods (Choquet integral, multilinear model) applied on a discrete
model.



Interpretation of multicriteria decision making models with interacting criteria 5

2.4 Models based on multichoice games

Thanks to multichoice games, we can be more general and drop the assumption
of weak preferential independence, while keeping discrete attributes. Indeed, let us
consider as above L = L1×·· ·×Ln to be the set of alternatives (up to the mapping
ϕ), with ` ∈ Li corresponding to some value a`i of attribute Xi. As weak preferential
independence does not hold any more, we cannot define an order on each attribute
Xi. As a consequence, the function v =U ◦ϕ−1 is no more monotone and therefore
is not a k-ary capacity but merely a multichoice game. Let us give a simple example
borrowed from (Ridaoui et al., 2017a) to show that the situation is not so uncommon.

Example 1. The level of comfort of humans depends on three main attributes: tem-
perature of the air (X1), humidity of the air (X2) and velocity of the air (X3). Then
v(x1,x2,x3) measures the comfort level. One can readily see that v is not monotone
in its three arguments. For x2 and x3 fixed, v is maximal for intermediate values of
the temperature (typically around 23◦C). Similarly, the value of humidity maximiz-
ing v is neither too low nor too high. Finally, for x1 relatively large, some wind is
well appreciated, but not too much. Hence for any i, and supposing the other two
attributes being fixed, there exists an optimal value ̂̀i ∈ Li such that v is increasing
in xi below ̂̀i, and then decreasing in xi above ̂̀i.

Lack of monotonicity makes the analysis difficult. We will see in Section 3 how
to define an importance index of attributes, which is valid for nonmonotonic models.

2.5 p-additive models

k-ary capacities are generalization of capacities introduced by Choquet (Choquet,
1953), while multichoice games generalize transferable utility (TU) games, intro-
duced by Von Neumann and Morgenstern (von Neumann and Morgenstern, 1947).
In these classical notions, we have k = 1, which amounts to considering set functions
v : 2N→R, with v( /0) = 0 (TU-games), and being monotone and satisfying v(N) = 1
(capacities). For these functions, an important notion is the Möbius transform (Rota,
1964), which permits to define p-additive games and capacities (Grabisch, 1997).
We introduce below these notions for the general case.

The Möbius transform of a multichoice game v is a function mv : L→ R which
is the unique solution of the linear system

v(z) = ∑
y≤z

mv(y) (z ∈ L). (6)

Its solution is shown to be (Grabisch and Labreuche, to appear)

mv(z) = ∑
y≤z : zi−yi≤1∀i∈N

(−1)∑i∈N(zi−yi)v(y) (z ∈ {0,1, . . . ,k}N). (7)
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It follows that any multichoice game v can be written as:

v = ∑
x∈LN\{0N}

mv(x)ux, (8)

with ux a k-ary capacity defined by

ux(z) =

{
1, if z≥ x
0, otherwise.

By analogy with classical games, ux is called the unanimity game centred on x. Note
that this decomposition is unique as the unanimity games are linearly independent,
and form a basis of the vector space G (L). Another basis is given by the Dirac games
δx, with x ∈ L, x 6= 0N :

δx(y) =

{
1 , if y = x
0, otherwise.

For further reference, let us introduce G+(L) the set of games with a nonnegative
Möbius transform. Then any game v ∈ G (L) can be expressed in a unique way as

v = v+− v− (9)

with v+,v− ∈ G+(L).
We say that a multichoice game v is (at most) p-additive for some p ∈ {1, . . . ,n}

if its Möbius transform satisfies mv(z) = 0 whenever |supp(z)|> p, where

supp(z) = {i ∈ N | zi > 0}.

The following result is shown in (Grabisch and Labreuche, to appear).

Lemma 1. Let p ∈ {1, . . . ,n}. A multichoice game v is p-additive if and only if it
has the form

v(z) = ∑
x∈L,0<|supp(x)|≤p

vx(x∧ z) (z ∈ L) (10)

where vx : L→ R with vx(0N) = 0.

Supposing that v is monotone, thanks to the bijection ϕ , the above result says that a
discrete GAI model U is p-additive if and only if each term uS, S ∈S , has at most
p variables, i.e., |S| ≤ p. In Section 4, we will study 2-additive GAI models. These
models are of particular interest, because although they are much more general than
the additive value function model, they remain tractable since each term depends of
at most two variables.
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3 Importance indices for discrete multicriteria decision models

We suppose in this section to have a MCDA model which is a multichoice game v
on L (see Section 2.4).

The first level of interpretation of a MCDA model is to indicate to the user which
attributes are the most important or influential in the decision model. This amounts
to computing importance indices of each criterion in the model. The knowledge of
these values is very important. First, criteria of small importance index can be ne-
glected. Second, the decision maker can rank the criteria by increasing importance
according to his expertise. The comparison of this order with the order obtained
from the importance indices is very informative. When there is some discrepancy,
this means that the model have been underspecified, or there are some misunder-
standing. The elicitation of the model has then to be updated.

The MCDA models we are interested in can represent very rich and diverse de-
cision strategies. The deciphering of complex MCDA models cannot be done from
the sole knowledge of importance indices. One also needs information about how
criteria interact together. We do not describe interaction indices in this chapter. We
recommend reference (Ridaoui et al., 2018) to the interested reader.

This section is based on (Ridaoui et al., 2017a) and (Ridaoui et al., 2017b). We
start by introducing the general idea of how to define an importance index (Section
3.1). Importance indices are closely related to the concept of a value in coopera-
tive game theory. The existing literature in this field is summarized in Section 3.2.
We consider two classes of importances indices. Section 3.3 defines the importance
of criterion i as the average added-value (over all possible situations) of making a
unitary improvement on criterion i. The sign of this index represents the general
monotonicity of the model: U is globally nondecreasing (resp. nonincreasing) if the
index is nonnegative (resp. nonpositive). This index is thus called signed impor-
tance index. It might happen that a function U that is nonincreasing in some area
and nondecreasing in another area has an overall signed importance close to 0, even
though this criterion is very important. We have thus also defined an absolute im-
portance index (Section 3.4) to measure the net contribution of a criterion regardless
of the monotonicity. Finally, we construct a very general class of importance indices
written as a norm over all possible unitary improvement on a criterion (Section 3.5).

3.1 How to define importance indices

The main ingredient behind importance indices, as for example it is defined for
continuous functions of several variables (see, e.g., Grabisch et al. (2009)[§10.3]),
is the average variation induced by a given variable over its domain, or equivalently,
the average of the partial derivative of the function over its domain. We propose as
a starting point to take this approach and to adapt it to v, which is a function defined
over the discrete domain L. To this end, we introduce its derivative w.r.t. i, i ∈ N:
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∆iv(x) = v(x+1i)− v(x) (x ∈ L,xi < k),

where 1i is a shorthand for (1i,0−i). Following the foregoing discussion, the general
form of the importance index of attribute Xi w.r.t. v should read:

φi(v) = ∑
x∈L
xi<k

pi
x∆iv(x), (11)

where pi
x is a real positive constant, for every such x and i. If the weights pi

x depend
only on pi

x−i
, then

ki−1

∑
xi=0

pi
x−i

∆iv(x) = pi
x−i

(v(x−i,ki)− v(x−i,0i)), (12)

i.e., only the variation between ki and 0i matters.
Clearly, if v is a monotone function, then φi(v) is a nonnegative quantity for every

i ∈ N, while it is a nonpositive quantity if v is antimonotonic. For this reason, one
may call φ(v) a signed importance index. What about nonmonotonic models, as the
one given in Example 1? Taking 23◦C as the optimal temperature, the derivative of v
w.r.t. the temperature is positive for temperatures below 23◦C, and becomes negative
above 23◦C. As a consequence, positive and negative variations may cancel each
other, resulting in an importance index for temperature which is close to 0. This is
quite counterintuitive, as surely temperature matters in the evaluation of comfort.

The foregoing discussion shows that a (signed) importance index is not adequate
in any situation. Therefore, another definition seems to be necessary. The simplest
idea to avoid this drawback is to cumulate the magnitude of the variations, regardless
of their sign, instead of summing them algebraically. This leads to the following
formula:

φi(v) = ∑
x∈L
xi<k

pi
x|∆iv(x)|. (13)

We call such an index an absolute importance index. It coincides with the former
one for monotonic games.

At this point of the discussion, one may say that only absolute importance indices
are relevant, the signed ones leading to counterintuitive results. We think, however,
that both are useful and should be used, provided we are aware of its precise mean-
ing: The signed index indicates the overall trend of the model w.r.t. an attribute (in-
creasing or decreasing), while the absolute index measures the amount of variation
of the model induced by an attribute.

Finally, still other definitions can be proposed if one remarks that the absolute
value is the L1 norm, and other norms can be used as well. We define norm-based
importance indices as those of the following form:

φi(v) = ∑
x∈L
xi<k

pi
x‖∆iv(x)‖. (14)
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3.2 Values in game theory

We indicate in this section connections with cooperative game theory. In this field,
a central notion is the one of value. Let us take for simplicity the case of classical
TU-games. Interpreting v(N) as the total benefit achieved by the cooperation of all
players, a value is a way of sharing v(N) among all the players, taking into account
their contribution to the game. Formally, it is a mapping φ : 2N →RN , and the usual
requirement is that the value is efficient, which means that the benefit v(N) is shared
without waste and nothing more can be given: ∑i∈N φi(v) = v(N). The best known
value is the Shapley value (Shapley, 1953), defined by:

φ
Sh
i (v) = ∑

S⊆N\i

(n− s−1)!s!
n!

(
v(S∪ i)− v(S)

)
,∀i ∈ N. (15)

Letting k = 1, the derivative becomes ∆iv(S) = v(S∪ i)− v(S), hence the Shapley
value has the form of a signed importance index. Indeed, in voting games, it is used
as a power index, which is the counterpart of importance index for voting problems.

The Shapley value has been generalized to multichoice games, in different ways
by several authors. We mention here (Hsiao and Raghavan, 1993) (historically the
first one), van den Nouweland et al. (1995), Klijn et al. (1999), Peters and Zank
(2005), Grabisch and Labreuche (2008), etc. The value of Peters and Zank reads:

φ
PZ
i (v) = ∑

x−i∈Γ (L−i)

(n−κ(x−i)−1)!κ(x−i)!
n!

(v(x−i,k)− v(x−i,0)), (16)

where κ(xS) is the size of the kernel of xS, i.e., κ(xS) = |{i ∈ S | xi = k}|, and
Γ (LS) = {0,k}S. Note that only vertices of L−i are used in the computation.

All these values satisfy efficiency, as this is a basic requirement in a cooperation
context. However, in a MCDA context, efficiency is not a relevant notion. Especially
when v is not monotone, satisfying efficiency would lead to strange results. Indeed,
as in Example 1, the value v(kN) is low and even close to 0 since if all three pa-
rameters (temperature, humidity, wind velocity) take their maximal values, there is
no comfort at all. As a consequence, the sum of the importance indices would be
close to zero, and if absolute importance indices are taken (which are nonnegative
by definition), the conclusion is that all criteria have a negligible importance, which
is again quite counterintuitive.

As a conclusion, efficiency as defined in game theory must be abandoned, and
none of the values defined in the literature can be taken as an importance index. In
what follows, we propose and axiomatize different importance indices which are
suitable for our MCDA context.
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3.3 Signed importance indices

ction is to axiomatize the family of signed importance indices given by (11) and to
propose a particular one based on suitable axioms.

The three first axioms we propose are the classical axioms used in the original
axiomatization of Shapley. The first one says that φ is a linear operator on G (L).

Linearity axiom (L) : φ is linear on G (L), i.e., for any v,w ∈ G (L),∀α ∈ R,

φi(v+αw) = φ(v)+αφ(w).

An attribute i ∈ N is said to be null for v ∈ G (L) if

v(x+1i) = v(x),∀x ∈ L,xi < k.

Null axiom (N): If an attribute i is null for v ∈ G (L), then φi(v) = 0.

This axiom says that an attribute for which an increment of 1 does not improve the
evaluation is not important. It turns out that these two axioms are characteristic of
the family of signed importance indices.

Proposition 1. Under axioms (L) and (N), for all i ∈ N, there exist pi
x ∈ R, for all

x ∈ L with xi < ki, such that for all v ∈ G (L),

φi(v) = ∑
x∈L

xi<ki

pi
x
(
v(x+1i)− v(x)

)
. (17)

We try now to refine the family by adding suitable properties. The first one is
related to symmetry or anonymity: the numbering of the attributes should have no
influence on the computation of the importance index.

Let σ be a permutation on N. For all x ∈ L, we denote σ(x)σ(i) = xi. For all
v ∈ G (L), the game σ ◦ v is defined by σ ◦ v(σ(x)) = v(x).

Symmetry axiom (S): For any permutation σ on N, φσ(i)(σ ◦v) = φi(v),∀i ∈
N.

The next axiom is an invariance property. It says that the calculus of the impor-
tance index does not depend on the position on the “grid” L. It is another kind of
symmetry axiom, relative to the levels 0,1, . . . ,k, not to the attributes.

Invariance axiom (I): Let us consider two games v,w ∈ G (L) such that, for
some i ∈ N,

v(x+1i)− v(x) = w(x)−w(x−1i),∀x ∈ L,xi /∈ {0,k}

v(x−i,1i)− v(x−i,0i) = w(x−i,ki)−w(x−i,ki−1),∀x−i ∈ L−i.

Then φi(v) = φi(w).
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With these two additional axioms, we obtain the following result.

Proposition 2. Under axioms (L), (N), (I) and (S), for all v ∈ G (L), for all i ∈ N,

φi(v) = ∑
x−i∈L−i

pn(x−i)

(
v(x−i,ki)− v(x−i,0i)

)
,

where n(x−i) = (n0,n1, . . . ,nk) with n j the number of components of x−i being equal
to j.

The effect of the two axioms is the following: (I) forces pi
x to depends only on x−i

and i, which by (12) implies that only the difference between ki and 0i on attribute
i matters. Then the symmetry axiom makes the constant pi

x−i
to depend only on the

“cardinality” of x−i.
It remains to find a last axiom for determining the constants uniquely. As the

usual efficiency axiom of game theory is not suitable in this context, we propose
instead a substitute which is in the spirit of variation calculus:

Efficiency axiom (E): For all v ∈ G (L),

∑
i∈N

φi(v) = ∑
x∈L
x j<k

(
v(x+1N)− v(x)

)
.

It can be explained as follows: taking an alternative x ∈ L and increasing the value
of each attribute by one unit, i.e., going to x+ 1N , the amount of variation is due
to the contribution of all attributes, and the sum of all importance indices should
be equal to the sum of this variation for all alternatives x. Interestingly, the axiom
is nevertheless not so far from the original efficiency axiom because when taking
k = 1, it reduces to the classical efficiency axiom ∑i φi(v) = v(N).

Finally, we can show:

Theorem 1. Under axioms (L), (N), (I), (S) and (E), for all v ∈ G (L)

φi(v) = φ
s
i (v) := ∑

x−i∈L−i

(n−σ(x−i)−1)!κ(x−i)!
(n+κ(x−i)−σ(x−i))!

(
v(x−i,ki)− v(x−i,0i)

)
,∀i ∈ N.

(18)

3.4 Absolute importance indices

We turn to the axiomatization of the family of absolute importance indices and as
before try to find a particular index of interest.

The major difficulty in axiomatizing (13) is that φ does not satisfy linearity.
Therefore, it is not possible to start from the decomposition of a game on some
basis. We remark that if v is monotone, then |v(x+1i)−v(x)|= v(x+1i)−v(x) for
every x ∈ L,xi < k. However, GM(L) is not a linear subspace of G (L) but a convex
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cone, and we cannot apply directly the linearity axiom on it. The idea is the follow-
ing: using the expression of v in the basis of unanimity games (8), this expression
turns to be a conic combination iff v is in G+(L). As any game can be written as
the difference of two games in G+(L) (see (9)), it is then possible to extend this
expression to monotone games. Hence, φ should commute with conic combination
and differences of games in G+(L).

Conic Combination axiom (CC) : For every v,w∈ G+(L), for every α ∈R+,

φ(v+αw) = φ(v)+αφ(w).

Decomposition axiom (D): If v,v′ ∈G+(L) and v−v′ is monotone, then φ(v−
v′) = φ(v)−φ(v′).

These two axioms permit to obtain the following result.

Proposition 3. Under axioms (CC) and (D), for all i ∈ N, there exists constants
ai

x ∈ R, for all x ∈ L, such that ∀v ∈ GM(L),

φi(v) = ∑
x∈L

ai
xv(x). (19)

Taking two multichoice games v and w for which the marginal contribution of an
attribute i to a game v is the same or the opposite of that to a game w, the average
importance of attribute i shall be the same for v and w.

Marginal contribution axiom (MC): Let i ∈ N and v,w ∈ G (L) such that

|∆i(v)(x)|= |∆i(w)(x)|,∀x ∈ L,xi < k.

Then
φi(v) = φi(w).

The following result shows that the family of absolute importance indices is charac-
terized by the above three axioms.

Proposition 4. Under axioms (CC), (D) and (MC), there exist real constants pi
x,

i ∈ N,x ∈ L,xi < ki, such that for every v ∈ G (L),

φi(v) = ∑
x∈L

xi<ki

pi
x|∆iv(x)|. (20)

Surprisingly, there is no need of the null axiom. This is because it is implied by
(MC) and (CC) (or by (MC) and (D)) as it is easy to check.

As for the signed importance index, the introduction of the two symmetry axioms
(S) and (I) permits to reduce the number of constants, as pi

x is turned into pn(x−i),
where n(x−i) = (n0,n1, . . . ,nk) with n j the number of components of x−i being equal
to j.
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It remains to determine uniquely the constants by imposing some normalization
condition. The first one is based on the Dirac games δx. Observe that if xi 6= 0,k, the
sum of absolute variations along the i axis is 2, otherwise it is 1. Normalizing by the
total number of points in the grid L−i, which is (k+ 1)n−1 so that the result is not
dependent of the size of the grid, we obtain the following:

Calibration axiom 1st version (C1): For every x ∈ L\{0N}

φi(δx) =

{
2/(k+1)n−1 if 0 < xi < k
1/(k+1)n−1 otherwise.

Theorem 2. Under axioms (CC), (D), (S), (I), (MC) and (C1), for all v ∈ G (L)

φi(v) =
1

(k+1)n−1 ∑
x∈L
xi<k

|v(x+1i)− v(x)|,∀i ∈ N,

Another possibility is based on unanimity games.

Calibration axiom 2nd version (C2): For all x ∈ L\{0N}, for all i ∈ S(x),

φi(ux) =
1

s(x)
.

Theorem 3. Under axioms (CC), (D), (S), (I), (MC) and (C2), for all v ∈ G (L)

φi(v) = ∑
x−i∈{0,k}N\{i}

xi∈Li,xi<k

(n− s(x−i)−1)!s(x−i)!
n!

|v(x+1i)− v(x)|,∀i ∈ N.

We observe that (C1) yields an importance index similar to the Banzhaf value, while
the use of (C2) gives a result close to the Shapley value. It is possible, however, to
obtain exactly the coefficients of the signed importance index (see Theorem 1) by
using suitable axioms (Grabisch et al., submitted).

3.5 Norm-based importance indices

We turn now to the family of norm-based importance indices, which have the general
form (5). A fundamental difficulty is that the use of a norm different from L1 forbids
to take an axiomatic approach similar to the one we used for absolute importance
indices, because there would exist no class of games where a property similar to
linearity would hold. Nevertheless, it is possible to obtain a general form through
a number of axioms which are presented below. In the rest of this section i ∈ N is
fixed.
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Nonnegativity (NN) : The importance index takes nonnegative values, i.e.,
φi : G (L)→ R+.

Absolute Homogeneity (AH): For every α ∈ R and every game v ∈ G (L),

φi(αv) = |α|φi(v)

Subadditivity (SA) : For any games v,w ∈ G (L),

φ(v+w)≤ φ(v)+φ(w)

Strong Null axiom (SN) : φi(v) = 0 if and only if i is null for v.

The nonnegativity axiom says that importance indices are nonnegative quantities.
Absolute homogeneity says that multiplying a game be a constant just multiplies
the importance index by the magnitude of this constant. The subadditivity axiom
expresses the fact that summing two games v,w may hinder the importance of an
attribute by some hedging effect: the positive variation of i at some point x for v
can be cancelled by a negative variation at the same point for w. Lastly, the strong
null axiom is a strong version of the usual null axiom, in the sense that only games
whose attribute i is null can lead to a null importance index for i.

We obtain the following.

Theorem 4. Under axioms (NN), (AH), (SA) and (SN), there exists a norm ‖ · ‖ on
Rk(k+1)n−1

and a linear one-to-one mapping h on Rk(k+1)n−1
such that

φi(v) = ‖h◦∆i(v)‖.

4 Monotone decomposition of a 2-additive GAI model and its
interpretation

Following Section 3, a first level of interpretation of a MCDA model consists in
using the generic indices, such as the importance indices. To go further, one needs
to take profit of the particular form (in particular the mathematical expression) of
utility U . We will focus in this section on the GAI model. As it takes an additive
form, it would be convenient to interpret U by interpreting each term uS separately.
We will see that the decomposition of a GAI model is far from being unique, which
makes its interpretation delicate. We focus on the special class of the 2-additive GAI
models that are monotone, as monotonicity is a very natural property in MCDA. We
will see whether monotonicity improves the interpretability of a GAI model.
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4.1 Difficulty of the interpretation of a GAI model

We formalize in this section the intuition given earlier on the difficulty of interpret-
ing a GAI model.

4.1.1 Illustration of the difficulty on an example

A model very similar to the 2-additive GAI model is defined in (Greco et al., 2014).
In this reference, the sign of interacting terms ui, j is interpreted as the sign of inter-
action. This is borrowed from the expression of the Choquet integral with respect
to a 2-additive capacity v, which takes the following form written in terms of the
Möbius transform (Choquet, 1953):

Chv(a1, . . . ,an) = ∑
i∈N

mv({i})ai + ∑
{i, j}⊆N

mv({i, j})ai∧a j,

where mv is the Möbius transform of v (see Section 2.5). The interaction coefficient
between factors i and j is equal mv({i, j}), so that the sign of the interaction is given
by the sign of mv({i, j}). However, this interpretation holds only for the expression
of the Choquet integral with respect to the Möbius transform, that is, the expression
of Ch on the basis {ai , i∈N}∪{ai∧a j , {i, j}⊆N}. This is no more true for another
basis. In order to illustrate this, let us take the following example.

Example 2. Let us take the following function of two variables:

U(x1,x2) = 2x1 + x2−min(x1,x2). (21)

Following the intuition of (Greco et al., 2014), one would say that there is a negative
interaction between the two attributes. However, using the relation max(x1,x2) +
min(x1,x2) = x1 + x2, we obtain an equivalent expression

U(x1,x2) = x1 +max(x1,x2) (22)

in which the bivariate term is now nonnegative.

Apart from the problem of the sign of the interaction, relations (21) and (22) are
two different equivalent expressions of the same model U . If one wants to present
the interacting term ui, j to the user, which one among terms “−min(x1,x2)” and
“max(x1,x2)” shall be shown?

4.1.2 Nonuniqueness of the GAI decomposition

We have already seen that the GAI decomposition (3) is not unique. In the additive
utility model, each utility term is given up to a constant. Comparing (21) and (22),
we see that the terms in the GAI decomposition can take very different expressions.
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This rises the question of the decomposition of a GAI model U(x). Is it possible
to relate all decompositions? Fishburn (1967) has shown that any two equivalent
decompositions U(x) = ∑S∈S uS(xS) = ∑S∈S u′S(xS) are related as follows:

u′S(xS) = uS(xS)+ ∑
S′∈S \{S},S∩S′ 6= /0

fS,S′(xS∩S′)+ cS (23)

where fS,S′ : XS∩S′ → R, and ∑S∈S
[
∑S′∈S \{S},S∩S′ 6= /0 fS,S′(xS∩S′)+ cS

]
= 0. There

is an intrinsic difficulty coming from the nonuniqueness of the GAI decomposition.
In the interpretation of model U , which specific decomposition shall be used? This
raises the question of whether there exists a canonical decomposition, which would
allow for an intuitive interpretation of U . This question will be addressed in Section
4.4.

4.2 Monotonicity conditions

Monotonicity is an essential property in MCDA. We assume that U satisfies mono-
tonicity condition (2). If U is monotone and takes the form (3), it would be counter-
intuitive and misleading for the end-user if we present him some terms uS that are
not monotone in some of their coordinates.

In Example 2, it is apparent from (22) that U is monotone in the two attributes.
Expression (21) is formed of three terms, the first two being increasing while the
third one is decreasing. Presenting this to the user would be confusing because of
the decreasing term. On the other hand, (22) has only two terms, both of them being
nondecreasing. Clearly, the latter expression is more transparent because it has fewer
terms and each term in the expression is both nonnegative and nondecreasing.

We have seen that, in two equivalent expressions (such as (21) and (22)), a sim-
ilar term u1,2 (“−min(x1,x2)” and “max(x1,x2)” respectively) does not have the
same monotonicity. This cannot happen with the additive utility model and shows
in particular that the GAI model does not necessarily satisfy weak independence.
In the Artificial Intelligence community, researchers are interested in the represen-
tation of preferences that may violate weak independence. A well-known example
of such a preference is the following: consider the choice of a menu described by
two attributes X1,X2 where X1 pertains on the type of wine and X2 to the type of
main course in a restaurant. Then usually, one prefers ‘red wine’ to ‘white wine’ if
the main course is ‘meat’, but ‘white wine’ is preferred to ‘red wine’ if the main
course is ‘fish’ (the preference over attribute ‘wine’ is conditional on the value on
attribute ‘main course’) (Boutilier et al., 2001). This can be represented by a GAI
model: U(x1,x2) = u1,2(x1,x2)+u2(x2), where

• preferences over X2: u2(meat) = 1, u2(fish) = 0,
• preferences over X1 conditionally on X2: u1,2(red,meat) = 4, u1,2(white,meat) =

2, u1,2(white,fish) = 3 and u1,2(red,fish) = 0.
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The examples which violate weak independence are far from being the general
case in MCDA. Rather, most of MCDA problems satisfy weak independence, as
there are in general natural preferences on each attribute. For this reason, following
the traditional view of decision theory, we assume in this chapter that weak inde-
pendence holds.

An important consequence of weak independence is that monotonicity holds for
< (see (2)), and consequently for U too - see (4). We note that in (23), due to the
presence of functions fS,S′ , we do not have uS(xS)≥ uS(yS) iff u′S(xS)≥ u′S(yS), for
any two xS,yS ∈ XS (Braziunas, 2012, page 87). Moreover, even if U satisfies weak
independence, it might be the case that uS does not fulfil this condition, or satisfies
it but does not have the same monotonicity as U .

4.3 Representation of monotone 2-additive GAI models

We have seen in Example 2 a situation where, starting from a monotone 2-additive
GAI model (namely expression (21)), we can find an equivalent expression (namely
(22)) such that each term is nonnegative and monotone. The main question we wish
to address in this section is the following one: is the previous repair process working
in all situations?

4.3.1 Main result

The following theorem states that a decomposition of a 2-additive monotone GAI
model into monotone nondecreasing terms is always possible.

Theorem 5 ((Grabisch and Labreuche, to appear)). Let us consider a 2-additive
discrete GAI model U satisfying monotonicity (4) and (5). Then there exist non-
negative and nondecreasing functions ui : Xi → [0,1], i ∈ N, ui j : Xi×X j → [0,1],
{i, j} ⊆ N, such that

U(x) = ∑
i∈N

ui(xi)+ ∑
{i, j}⊆N

ui j(xi,x j) (x ∈ X) (24)

The rest of Section 4.3 is devoted to describing important consequences of this
important result.

4.3.2 Consequence of the main result in the computation of the importance
indices

Let us consider a 2-additive monotone GAI model U (3). The first level of interpre-
tation of U aims at computing the importance indices and showing to the user the
most important attributes. Let us start with the signed importance index φ s

i (U ◦ϕ−1)



18 Michel Grabisch and Christophe Labreuche

(see Section 3.3). The main drawback of formula (18) is that it has an exponential
number of terms in the number n of criteria. Fortunately, we can drastically reduce
this complexity for GAI models. Indeed, as φ s

i fulfills (L), we can write

φ
s
i (U ◦ϕ

−1) = ∑
S∈S

φ
s
i (uS ◦ϕ

−1).

For a 2-additive GAI model, S ∈ S contains at most two elements, which makes
the computation of each term φ s

i (uS ◦ϕ−1) extremely fast. Hence the computation
of φ s

i (U ◦ϕ−1) becomes easily tractable (in O(n2)) even for large values of n.
Two absolute importance indices have been proposed in Section 3.4. These two

expressions have different coefficients compared to φ s
i . As we mentioned in Sec-

tion 3.4, it is possible define an absolute importance index having the same coeffi-
cient as in φ s

i (Grabisch et al., submitted):

φ
a
i (v) := ∑

x−i∈L−i

(n−σ(x−i)−1)!κ(x−i)!
(n+κ(x−i)−σ(x−i))!

∣∣v(x−i,ki)− v(x−i,0i)
∣∣. (25)

Then if U is monotone, we have

φ
s
i (U ◦ϕ

−1) = φ
a
i (U ◦ϕ

−1).

On the other hand, nothing a priori forbids each term uS in the GAI decomposition
to be nonpositive or nonmonotonic. In this case one would have

φ
s
i (uS ◦ϕ

−1) 6= φ
a
i (uS ◦ϕ

−1).

This would be counter-intuitive and misleading for the user. Fortunately, according
to Theorem 5, there exists a GAI decomposition in which each term uS is non nega-
tive and monotone. For such decomposition, we obtain φ s

i (uS ◦ϕ−1) = φ a
i (uS ◦ϕ−1).

4.3.3 A complexity problem in the learning procedure

(see (Grabisch and Labreuche, to appear) for more details) Another very impor-
tant consequence of Theorem 5 concerns the learning of the GAI model. Generally
speaking, a learning procedure consists in collecting information on the preference
relation <, which is then used in an optimization problem, whose aim is to find
a value function U of a given type representing at best the given preference. The
variables of the optimization problem are then the parameters of the model U .

We begin by computing the number of unknowns in a 2-additive GAI model
equivalent to a k-ary capacity. Such a model has the form (3) with S being the set
of singletons and pairs. Since |Li|= k+1, this yields

η(k,n) = (k+1)
(

n
1

)
+(k+1)2

(
n
2

)
=

n(k+1)
2

(
2+(k+1)(n−1)

)
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unknowns. U being monotone nondecreasing, this induces a number of monotonic-
ity constraints on the unknowns, of the type

U(a j1
1 , . . . ,a ji−1

i−1 ,a
ji+1
i ,a ji+1

i+1 , . . . ,a
jn
n )≥U(a j1

1 , . . . ,a ji−1
i−1 ,a

ji
i ,a

ji+1
i+1 , . . . ,a

jn
n ) (26)

for every i ∈ N, j1 ∈ {0, . . . ,k1}, . . . , ji−1 ∈ {0, . . . ,ki−1}, ji ∈ {0, . . . ,ki−1}, ji+1 ∈
{0, . . . ,ki+1},. . . , jn ∈ {0, . . . ,kn}. The number of elementary conditions contained
in (26) is equal to

∑
i∈N

(
ki× ∏

j∈N\{i}
(k j +1)

)
.

In the case where ki = k for every i, this number becomes

κ(k,n) = n× k× (k+1)n−1.

Although the number of variables η(k,n) is still quadratic in n and k, the number of
constraints κ(k,n) is exponential in n. It follows that any practical identification of
a GAI model based on some optimization procedure1, where the variables are the
unknowns of the GAI model and the constraints are the monotonicity constraints
(26) plus possibly some learning data, has to cope with an exponential number of
constraints. The following tables, obtained with k = 4, shows that the underlying
optimization problem becomes rapidly intractable.

n 4 6 8 10
η(4,n) 170 405 740 1175
κ(k,n) 2000 75 000 2 500 000 78 125 000

n 12 14 20
η(k,n) 1710 2345 4850
κ(k,n) 2 343 750 000 68 359 375 000 1.526E +15

However, if a decomposition into nonnegative nondecreasing terms is possible,
one has only to check monotonicity of each term:

∀i ∈ N ∀l ∈ {0, . . . ,ki−1} ui(al+1
i )≥ ui(al

i), (27)
∀{i, j} ⊆ N ∀li ∈ {0, . . . ,ki−1} ∀l j ∈ {0, . . . ,k j}

ui, j(a
li+1
i ,a

l j
j )≥ ui, j(a

li
i ,a

l j
j ), (28)

∀{i, j} ⊆ N ∀li ∈ {0, . . . ,ki} ∀l j ∈ {0, . . . ,k j−1}

ui, j(a
li
i ,a

l j+1
j )≥ ui, j(a

li
i ,a

l j
j ). (29)

Then the number of monotonicity conditions drops to

1 The learning problem can be classically transformed into a linear program, where the training
set is seen as linear constraints on the GAI variables (Bigot et al., 2012; Greco et al., 2014). It
could also be possible to perform statistical learning, like in Fallah Tehrani et al. (2012), where the
underlying optimization problem is a convex problem under linear constraints.
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∑
i∈N

ki + ∑
{i, j}⊆N

(
ki(k j +1)+ k j(ki +1)

)
.

In the case where ki = k for every i, this number becomes

κ
′(k,n) = n× k×

[
(n−1)(k+1)+1

]
,

which is quadratic in n. The following table (k = 4) shows that the optimization
problem becomes tractable even for a large number of attributes.

n 4 6 8 10 12 14 20
κ ′(k,n) 256 624 1152 1840 2688 3696 7680

4.4 Interpretation through a canonical decomposition

The most convenient way to interpret a GAI model is to use a “canonical” decom-
position in some sense. Following Theorem 5, is it possible to always find decom-
position into nonnegative and nondecreasing terms? We review in this section two
existing decompositions of a multivariable function into a GAI decomposition. We
conclude by providing some research directions to construct a canonical decompo-
sition of a GAI model fulfilling the monotonicity of each of its terms.

4.4.1 Braziunas’ Decomposition

Braziunas has proposed a decomposition based on the Fishburn representation
(Braziunas, 2012). Fixing an order on S , say, S = {S1, . . . ,Sp}, the overall value
function reads U(x) = ∑S∈S uC

S (xS) with, for every j ∈ {1, . . . , p}

uC
S j
(xS j) =U(x[S j])+ ∑

K⊆{1,..., j−1} ,K 6= /0
(−1)|K|U (x [∩k∈KSk ∩S j]) (30)

where ·C stands for “canonical”, O ∈ X is any element in X seen as an anchor,
and x[S] ∈ X defined by (x[S])i = xi if i ∈ S and (x[S])i = Oi otherwise (Braziunas,
2012, page 94)). Note that the expression depends on the chosen ordering of the
elements of S . The two equivalent decompositions (21) and (22) were obtained
with a particularly simple example. The previous remark provides a more systematic
way to derive several equivalent decompositions of GAI models, as illustrated in the
next example.

Example 3. Consider the following function U(x1,x2,x3) = x2+x1 x3+max(x1,x2).
We have S = {S1,S2,S3} with S1 = {2}, S2 = {1,3} and S3 = {1,2}. Then the
canonical decomposition gives, with O= (0,0,0):
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uC
S1
(x2) =U(x[S1]) =U(O1,x2,O3) = 2 x2

uC
S2
(x1,x3) =U(x[S2])−U(x[S1∩S2]) =U(x1,O2,x3)−U(O) = x1 (x3 +1)

uC
S3
(x1,x2) =U(x[S3])−U(x[S1∩S3])−U(x[S2∩S3])+U(x[S1∩S2∩S3])

=U(x1,x2,O3)−U(O1,x2,O3)−U(x1,O2,O3)+U(O)

= max(x1,x2)− x1− x2 =−min(x1,x2)

We note that U is nondecreasing in all variables, even though, for the canonical
decomposition, uC

S3
is nonincreasing in its two coordinates.

Let us take now the order S′1 = {1,2}, S′2 = {1,3} and S′3 = {2}. We obtain
uC

S′1
(x1,x2) = x2 +max(x1,x2), uC

S′2
(x1,x3) = x1 x3 and uC

S′3
(x2) = 0. All terms are

now nonnegative and monotone.

The previous example shows that the canonical decomposition does not guaran-
tee to have only nondecreasing terms in the decomposition, and therefore does not
provide an easily interpretable decomposition. Hence there is no well-defined se-
mantics of the value functions uS, contrarily to what is claimed in (Braziunas, 2012,
section 3.2.1.4).

4.4.2 ANOVA

We present in this section ANOVA (Fisher and Mackenzie, 1923), which is a con-
venient way to construct a canonical decomposition of a GAI model.

In statistics, the analysis of variance (ANOVA) is a powerful tool to represent
interaction between variables in a multivariate model (Fisher and Mackenzie, 1923).
Consider n independent random variables Z1, . . . ,Zn uniformly distributed in [0,1],
and a multivariate model Y = F(Z), where Z = (Z1, . . . ,Zn). Let us denote by ZS
and Z−S the groups of variables (Zi)i∈S and (Zi)i6∈S respectively. Hence, we may
write Z = (ZS,Z−S). Moreover, we denote by E[Y ] the expected value of Y taken
over all variables Z1, . . . ,Zn. The expected value of Y can be taken on a subset ZS of
variables, with the corresponding notation EZS [Y ].

Any multivariate function can be decomposed in the following way (ANOVA
decomposition) (Fisher and Mackenzie, 1923):

Y = F(Z) = F∅+
n

∑
i=1

Fi(Zi)+∑
i< j

Fi j(Zi,Z j)+ · · ·+FN(Z) = ∑
S⊆N

FS(ZS),

with
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F∅ = E[Y ]
Fi(Zi) = E[Y |Zi]−F∅

Fi j(Zi,Z j) = E[Y |Zi,Z j]−Fi(Zi)−Fj(Z j)−F∅
= E[Y |Zi,Z j]−E[Y |Zi]−E[Y |Z j]+E[Y ]

... =
...

FS(ZS) = EZ−S [Y |ZS]− ∑
T⊂S

FT (ZT ) = ∑
T⊆S

(−1)|S\T |EZ−T [Y |ZT ]

... =
...

FN(Z) = ∑
T⊆N

(−1)|N\T |EZ−T [Y |ZT ].

We note that the ANOVA decomposition corresponds exactly to a GAI decompo-
sition. If we start with a function U taking a GAI decomposition with a collec-
tion S of represented subsets, then one can easily show that the ANOVA decom-
position applied to U cannot return nonzero terms US where S is a superset of
some terms in S . In other word, the ANOVA decomposition will use subsets in
Ŝ = {S⊆ S′ , S′ ∈S }.

Let us apply the ANOVA decomposition to the example (22): U(x1,x2) = x1 +
max(x1,x2). We have

U∅ = E[Y ] =
∫ 1

0

∫ 1

0
(x1 +max(x1,x2)) dx1 dx2

=
1
2
+
∫ 1

0

∫ x1

0
x1 dx1 dx2 +

∫ 1

0

∫ 1

x1

x2 dx1 dx2

=
1
2
+
∫ 1

0
x1

2 dx1 +
∫ 1

0

1− x1
2

2
dx1 =

1
2
+

1
3
+

(
1
2
− 1

6

)
=

7
6

U1(x1) = E[U |x1]−U∅ =
∫ 1

0
(x1 +max(x1,x2)) dx2−

7
6

= x1 +
∫ x1

0
x1 dx2 +

∫ 1

x1

x2 dx2−
7
6
= x1 + x1

2 +
1− x1

2

2
− 7

6
= x1 +

x1
2

2
− 2

3

U2(x2) = E[U |x2]−U∅ =
∫ 1

0
(x1 +max(x1,x2)) dx1−

7
6

=
1
2
+
∫ x2

0
x2 dx1 +

∫ 1

x2

x1 dx1−
7
6
=−2

3
+ x2

2 +
1− x2

2

2
=

x2
2

2
− 1

6
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U12(x1,x2) =U(x1,x2)−U1(x1)−U2(x2)+U∅

= (x1 +max(x1,x2))−
(

x1 +
x1

2

2
− 2

3

)
−
(

x2
2

2
− 1

6

)
+

7
6

= max(x1,x2)−
x1

2 + x2
2

2
+2

In particular, if x2 > x1,
∂U12(x1,x2)

∂x1
=−x1

so that U12 is not always increasing w.r.t. its two variables.
Hence the question of finding a decomposition into nondecreasing terms (which

we call hereafter a monotone decomposition) is yet unsolved and as far as we know,
its existence has not been studied. The next section tries to answer (at least partly)
this question.

4.4.3 Toward a monotone decomposition of a GAI model

We aim in this section at proposing some hints to define a decomposition of a GAI
model in which all of its terms are nonnegative and nondecreasing.

The idea of ANOVA is valuable: to define decomposition in which Fi is the effect
of moving xi alone in F , and Fi, j is the effect of moving xi and x j simultaneously,
getting rid of the effect of varying only one of these variables. Higher order terms are
defined likewise. This condition of FS representing the sole contribution of varying
all variables in S simultaneously can be put as an orthogonality condition:

EZi [FS|ZS\i] = 0 ∀i ∈ S.

We wish to keep the previous idea of orthogonality but represented in another
way. Orthogonality will be written in terms of the difference with a reference situa-
tion – depicted as alternative O – as in Braziunas’ approach. Following the ANOVA
decomposition, a two-additive GAI model is written as

U(x) = u /0 + ∑
i∈N

ui(xi)+ ∑
{i, j}⊆N

ui, j(xi,x j). (31)

Term ui should be the sole contribution of attribute xi, removing the constant part.
With a reference to option O, we obtain the condition

ui(Oi) = 0. (32)

Term ui, j shall not depict the effect on U of the variation of only xi or x j. Hence

ui, j(xi,O j) = 0 ∀xi ∈ Xi (33)
ui, j(Oi,x j) = 0 ∀x j ∈ X j (34)
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By (32), (33) and (34), the term u /0 is the constant term:

u /0 =U(O). (35)

In order to fulfill (32), (33), (34) and (35), nonnegativity and monotonicity of each
uS (i.e. (27), (28) and (29)), the O alternative shall be the least element on each
attribute. The next example shows that it is not always possible to find a decompo-
sition fulfilling all previous conditions.

Example 4 (Ex. 2 continued). Let us consider (22): U(x1,x2) = x1+max(x1,x2). Let
us try to find a decomposition of U in terms of u /0, u1(x1) = x1 + v1(x1), u2(x2) =
v2(x2) and u1,2(x1,x2) = max(x1,x2)− v1(x1)− v2(x2) (where functions v1 and v2
are unknown) satisfying all previous conditions.

As u2 is monotone, v′2(x2) ≥ 0. For x1 > x2, ∂u1,2
∂x2

(x1,x2) = −v′2(x2) ≥ 0. Hence
v2 is constant. We obtain v2 ≡ 0 by (32).

Hence by (33), u1,2(x1,O2)= x1−v1(x1)= 0, so that v1(x1)= x1 and u1,2(x1,x2)=

max(x1,x2)− x1. For x1 < x2, ∂u1,2
∂x2

(x1,x2) = −1, which violates the monotonicity
of u1,2.

We need to relax hard constraints (32), (33), (34) and (35), and transform them
into an optimization objective. Finally, one aims at finding a decomposition of the
form (31), where variables u /0, ui, ui, j are found by minimizing

|u /0|p + ∑
i∈N
|ui(Oi)|p + ∑

{i, j}⊆N

[
∑

xi∈Xi

∣∣ui, j(xi,O j)
∣∣p + ∑

x j∈X j

∣∣ui, j(Oi,x j)
∣∣p] (36)

where p > 0 is a fixed power factor, under the constraints that (31) shall hold for
every x ∈ X , the ui’s and ui, j’s are nonnegative and monotone (i.e. (27), (28) and
(29)). The minimization of (36) is indeed a relaxation of a weak version of (32),
(33), (34) and (35).

One can enrich (36) with other terms – for instance, the entropy of the unknowns
not represented in (36). If the obtained functional is convex, we get a unique solution
to the optimization problem.
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