C. Aliprantis and R. Tourky, Cones and duality, vol.84, 2007.

G. Birkhoff, Lattice Theory, 1948.

J. D. Loera, J. Rambau, and F. Santos, Triangulations. Structures for Algorithms and Applications, vol.25, 2010.

R. Van-den, R. Brink, and . Gilles, Axiomatizations of the conjunctive permission value for games with permission structures, Games and Economic Behavior, vol.12, pp.113-126, 1996.

J. J. Derks and R. P. Giles, Hierarchical organization structures and constraints on coalition formation, International Journal of Game Theory, vol.24, issue.2, pp.147-163

U. Faigle and W. Kern, The Shapley value for cooperative games under precedence constraints, International Journal of Game Theory, vol.21, pp.249-266, 1992.

M. Franz, Convex -a Maple package for convex geometry, 2016.

S. Fujishige, Submodular functions and optimization, Annals of Discrete Mathematics, vol.58, 2005.

M. Grabisch, The core of games on ordered structures and graphs, Annals of Operations Research, vol.204, pp.33-64, 2013.
URL : https://hal.archives-ouvertes.fr/halshs-00445171

M. Grabisch, Set functions, games and capacities in decision making, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372911

M. Grabisch and L. J. Xie, The restricted core of games on distributive lattices: how to share benefits in a hierarchy, Mathematical Methods of Operations Research, vol.73, pp.189-208, 2011.
URL : https://hal.archives-ouvertes.fr/halshs-00583868

T. Ichiishi, Super-modularity: Applications to convex games and to the greedy algorithm for LP, Journal of Economic Theory, vol.25, issue.2, pp.283-286, 1981.

J. Kuipers, D. Vermeulen, and M. Voorneveld, A generalization of the Shapley-Ichiishi result, vol.39, pp.585-602, 2010.

B. Peleg and P. Sudhölter, Introduction to the theory of cooperative games, Theory and Decision Library. Series C: Game Theory, Mathematical Programming and Operations Research, vol.34, 2007.

G. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, vol.2, pp.340-368, 1964.

G. Rota, On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Presented to Richard Rado), pp.221-233, 1971.

J. Rosenmüller and H. G. Weidner, Extreme convex set functions with finite carrier: general theory, Discrete Mathematics, vol.10, pp.343-382, 1974.

D. Schmeidler, Subjective Probability and Expected Utility without Additivity, vol.57, pp.571-587, 1989.

L. S. Shapley, Cores of convex games, International Journal of Game Theory, vol.1, pp.11-26, 1971.

R. P. Stanley, Enumerative Combinatorics, vol.1, 2012.

M. Studený and T. Kroupa, Core-based criterion for extreme supermodular games, Discrete Applied Mathematics, vol.206, pp.122-151, 2016.

B. Van-velzen, H. Hamers, and H. Norde, Characterizing convexity of games using marginal vectors, Discrete Applied Mathematics, vol.143, pp.298-306, 2004.