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March 4, 2021

Abstract

We study multi-period college admission problems where, at each period, a match-

ing is computed and students have the option to either finalize their matches or partic-

ipate to the next period. Students participating to an additional run of the matching

mechanism can submit a new rank order list to the matching clearinghouse. Such grad-

ual matching systems can adequately account for an additional source of heterogeneity

among participants, like withdrawals. We identify the conditions under which such

systems first ensure that participating to additional runs of the matching mechanism

is safe for participants (in the sense that they can secure the spot they obtained at

the previous round) and second yield to stable matchings (with a stability concept

adapted to this environment). We use our results to evaluate the former French college

admission system, where students could finalize their matches at different dates up to

two months ahead the end of the admission campaign.
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1. Introduction

In the matching literature the standard design for a mechanism consists of first asking

participants to submit a rank order list (ROL) over potential matches and then run an

algorithm to compute a matching. It is then assumed that the matching is implemented,

thereby implicitly ending the mechanism. In contrast, real-life matching mechanisms are

not always exactly akin to one-shot games; participants are often offered the option to

participate again in the mechanism, possibly by submitting a new ROL. There are often

obvious reasons to do so. For example, in school choice or college admission systems it is

indeed typical to see some students ending up unmatched and some schools not filling their

capacities. Students may also sometimes participate in several, distinct matching markets

(e.g., for private and public schools) and, since students eventually attend only one school,

overlapping matching markets often entail in having wasted seats. Allowing for additional

runs of a matching mechanism may give students the opportunity to improve their matches

and can also mitigate the waste. In all such cases the “final” matching is not constructed

at once but gradually, across several runs or periods. That is, participants may not get all

their final match in the same run; some may be matched in the first run while others are

matched at later runs. The objective of this paper is to offer a new framework to study such

gradual matching mechanisms in the context of a many-to-one college admission problem.

The general structure of a gradual matching mechanism is thus a multi-period matching

mechanism where,

(i) at each period there is a one-shot matching mechanism;

(ii) at the end of each non-terminal period each participant can either finalize his match

or continue by participating in the next period’s matching mechanism;

(iii) there is a unique matching that is implemented, where each participant’s match is

given by his last match (i.e., his match when he finalized or the last period match

otherwise).

Our description of a multi-period matching mechanism deliberately mixes centralized

and decentralized aspects. The calculation of the matching at each stage is centralized (it

is done by the clearinghouse using the submitted ROLs), but the decisions to continue or

finalize one’s match are decentralized. Throughout the paper we do not address students’
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strategic decisions regarding the ROLs they submit at each period and their participation to

additional periods.1 That is, we take students’ submitted ROLs and periods at which they

finalize their match as given. Our work is thus very much in the spirit of Gale and Shapley’s

original work in the sense that we investigate under which conditions a gradual matching

mechanism outputs matchings that satisfy certain properties for any possible profile of ROLs

submitted by the students.

There are a number of real-life instances of gradual matching mechanisms. A prominent

case is the two-round New York City school choice system for middle and high schools

that was in place until 2019, where both rounds consisted of running a standard school

matching mechanism (see Abdulkadiroğlu et al., 2005). Students who were unassigned at

the end of the first round, as well as students who were not satisfied by their first-round

assignment were offered the opportunity to participate again to the school choice mechanism

in a second round. Those students could put in their ROL any school that had available seats,

independently of whether they included those schools in their first round ROL.2 Another

example, which we analyze in more details in this paper, is the college admission mechanism

used in France until 2017.3 This mechanism was matching students in three rounds and

was similar in spirit to the two-round mechanism used in New York City. That is, at the

end of the first and second rounds students had to decide whether to finalize their match

or participate to an additional run of a “static” matching mechanism. Interestingly, for

the second and third rounds students in France could only consider schools that were in

their ROL in the previous round. Students were allowed, however, to modify the relative

ranking of those schools. Some of the motives for allowing preference updating were because

students’ preferences over colleges may be affected by factors such as where their friends have

been admitted at previous runs, the evolution of housing opportunities or simply additional

information about colleges or career prospects.4 The New York and French cases are not the

only examples. For instance, Andersson et al. (2018) comment extensively on the Swedish

1We discuss strategic incentives in Appendix B. See also Doğan and Yenmez (2018).
2The seats that were available for the second round are those that were either unfilled in the first round

or made available by the students who were assigned to them but who opted for participating to the second

round.
3In 2018 college admissions in France became a decentralized system.
4Antler (2015) analyzes the structure of equilibria in presence of endogenous preferences in the context

of a standard one-to-one matching model where participants can be influenced by the assignments and/or

preferences of others.
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and Turkish systems, which also propose students to participate to an additional run of a

matching mechanism.

Following the French college admission example, a key assumption we make in this paper

is that, at each period, students are allowed to submit a new, different ROL. However, we

impose that the new ROL does not make acceptable a college that was previously declared

unacceptable.5 ROL updating is modeled through a refitting rule, which describes for each

student the set of permitted ROLs that can be submitted at every period.

To state our results, we maintain throughout the paper the assumption that the one-shot

matching mechanism used at every period is stable. That is, the mechanism always produces

an assignment satisfying the standard conditions of individual rationality, non wastefulness,

and absence of justified envy. The assumption is strengthened afterward by considering

the two most prominent stable mechanisms, namely the Student-Optimal Stable mechanism

(SOSM) and the College-Optimal Stable mechanism (COSM). For instance, SOSM and

COSM, obtained via Deferred Acceptance algorithms, are/were executed at every period of

the NYC school choice system and of the French college admission system, respectively.

One of the key issues in gradual matching mechanisms is whether students can safely

participate to additional runs of the matching mechanism, that is, whether participants can

at each additional period somehow secure the match from their previous period. Without

such a guarantee the incentives to be part of an additional run of the matching mechanism

wanes, thereby undermining the motive to run a gradual matching mechanism. We capture

such a guarantee with the concept of gradual safety, which simply states that a any period

a participant’s match is ranked weakly higher than the match of the previous period. Our

first objective is to study the interplay between gradual safety and the degree of freedom left

to students as they update their ROLs through the refitting rule.

A simple policy to implement gradual safety would be to alter each college’s priority

ranking by moving to the top the students matched to it at the previous period. Our main

results show under which conditions gradual safety can be ensured without such a policy. We

identify the restrictions on the refitting rules such that any gradual mechanism consistent

with those restrictions is gradually safe. Those restrictions depend on the way students

are assigned, at each period, by the one-shot matching mechanism. The results are thus

established for three different configurations: any generic stable one-shot mechanism, SOSM

5Note that this restriction was not satisfied for the New York City school choice system.
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and COSM. Besides technical conditions that we do not discuss here, the main restriction

we impose on any refitting rule is based on the condition of regularity (or a declination of

it). The regularity condition roughly states that any college c that has been ranked below

one’s match v cannot be ranked above v at the next period. Regarding colleges that are

ranked above one’s match, the regularity condition does not impose anything; the relative

ranking of these schools can be reshuffled and any of them can be declared as unacceptable.

We show that the regularity condition is necessary and sufficient for gradual safety to hold

when, at each period, the matching mechanism is SOSM (Theorem 1). Our results are

also used to derive by-product results in the case of gradual matching mechanisms without

refitting. In those mechanisms of practical interest, each student submits his ROL only once

at the first period and, from period 2 onwards, the period at which the match is finalized is

the only remaining degree of freedom left to the students. Our results show how the choice

of one specific one-shot mechanism, typically SOSM or COSM, may affect the benefits of

participating to additional periods.

The notion of stability needs to be adapted to the context of gradual matching because

agents may not all be matched at the same period. We thus introduce a concept of gradual

stability, which is built upon the following principle: when a student finalizes his match

he exits the mechanism, thus waiving all the claims he could have about the matchings

that could arise after he left. In other words, student’s claims are legitimate only for the

matchings that arose while the student was participating, that is, claims will necessarily be

backward looking. Although gradual stability is clearly more demanding than the standard,

static stability concept, we show that under the regularity condition gradual stability is in

fact equivalent to gradual safety together with (static) stability (Theorem 2).

We also consider in the paper the case of withdrawals, that is, situations where students

may renounce to their assignments after having finalized them (but before the last period).

The presence of withdrawals introduces a minor complication because if the newly vacant

seats are made available to the students for the next periods colleges’ capacities are no longer

decreasing over periods. Nevertheless, we show that our main results are still valid in this

environment.

Finally, we use our framework to examine the college admission system that was in place

in France until 2017, which corresponds to a three-period gradual matching mechanism.6

6By college admissions we mean the allocation of high school students to any institution of higher

education to pursue undergraduate studies, which covers many different kinds of institutions in France.
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Students in France were allowed to update their ROLs across periods, and for each of the

three periods the static matching mechanism used the Deferred Acceptance algorithm with

colleges proposing. It is easily shown that the refitting rule used in France satisfies a strong

version of regularity, thereby implying that it is a gradually safe and gradually stable mech-

anism.

The rest of the paper is organized as follows. We outline in Section 2 the basic college

admission model we consider in the paper, which we extend in Section 3 by defining gradual

matching problems. Sections 4 and 5 contain the main results identifying gradually safe

mechanisms and gradual stability, respectively. We address in Section 6 the issue of students’

withdrawals. In Section 7 we apply our results to the French system for college admissions

and we conclude in Section 8. In Appendices A and B we offer a short discussion on gradual

safety and strategic behavior, respectively. Proofs are relegated to Appendix C.

Literature

With respect to the existing literature, gradual matching problems differ substantially from

dynamic matching problems, which generally consist of situations where participants, and

thus matching opportunities, arrive sequentially, and/or where agents may possibly “con-

sume” different matches at different periods. For those models, agents’ preferences are

usually defined over sequences of matches. Dynamic problems with irreversible matches can

be found in Doval (2019), Baccara et al. (2020), Bloch and Cantala (2017) or Akbarpour

et al. (2020). Models with limited commitment, i.e., where agents can be matched multiple

times across periods are studied by Combe et al. (2018), Kadam and Kotowski (2018a,b),

Kotowski (2019), Kennes et al. (2014, 2019) and Pereyra (2013).

In contrast, in gradual matching problems all participants are present at the outset

and, like for static matching problems, there is only one matching that is implemented. The

dynamic nature of gradual matching mechanism comes rather from the fact that the matching

mechanism is run several times, assigning participants progressively. This class of problems

has been studied in separate analytical frameworks by Andersson et al. (2018), Manjunath

and Turhan (2016), Doğan and Yenmez (2018), Dur and Kesten (2019) and Westkamp

(2012).7 Doğan and Yenmez (2018) consider a gradual mechanism similar to ours, but their

7Gradual matching also arises when participants can contract bilaterally before the job openings, as

identified first by Roth (1984) and documented by Roth (1991) and Kagel and Roth (2000) in different labor
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work differs from ours in several important aspects. First, they only consider two-period

gradual mechanisms and, second, they study the equilibrium outcomes of their mechanism.

That is, they do not study like us the outcome properties for all possible ROLs submitted by

the students (we comment more on their findings in Appendix B). The other aforementioned

contributions are not directly comparable to ours. A major difference between these works

and ours is that, contrary to our modeling, subsequent periods of matching are designed to

make available new seats or positions on the side of universities/colleges/schools. It can be

either seats in private schools (versus public schools in the first round) as in Andersson et al.

(2018) or seats in other distinct enrollment procedures as in Manjunath and Turhan (2016),

or positions non tenured any more after the first period as in Dur and Kesten (2019), or

seats released purposely only in the second period as in Westkamp (2012).

Participants in a gradual matching mechanism face two strategic issues: a preference

revelation decision at each period and whether to finalize or participate to the next period’s

matching mechanism. Those two issues are obviously connected; strategic choices in terms of

preference revelation may affect one’s match, which in turn may affect one’s decision about

participating to an additional run of the matching mechanism. Doğan and Yenmez (2018)

examine precisely the students’ behavior in that context and identify the profiles of priorities

and capacities of colleges under which an additional period of matching benefits students

in equilibrium. Regarding incentives, we show in Appendix B that gradual mechanisms

are not strategyproof, even if a strategyproof mechanism is used at each period. Papers

discussing the non-existence of strategyproofness in related frameworks include the studies

of Dur and Kesten (2019) or Andersson et al. (2018). This feature is also present in the case

of multi-period matching with long-lived participants and limited commitment, as shown

by Kennes et al. (2014, 2019) and Pereyra (2013). Similar opportunities for manipulations

were already identified by Kesten (2010) for the Efficient Adjusted Deferred Acceptance

mechanism (EADAM) that is based on the removal of specific students during the rounds of

the static Deferred Acceptance algorithm.

markets. Halaburda (2010) and Echenique and Pereyra (2016) define general matching models to address

this issue. Avery and Levin (2010) consider decentralized admissions with early periods of admissions, used

by students to signal their interest to colleges.
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2. Preliminaries

We consider in this paper the problem of matching students to colleges in the limit of their

capacities. Throughout the paper we will consider a finite set I of students and a finite set

C of colleges.

Each college c ∈ C is endowed with a fixed capacity of seats qc ≥ 0, and a strict priority

ordering Pc over the set of students. We write iPcj to say that that student i has higher

priority than student j at college c.

Each student i ∈ I has a strict rank order list (ROL) Pi over the colleges and the option

of remaining unassigned, i.e., Pi is a linear ordering over C ∪ {∅}, with cPic
′ to denote that

college c is ranked above college c′ by student i. A college c is acceptable for a student i

under the ROL Pi if c is ranked above being unmatched, i.e., cPi∅. We sometimes use the

following notation Pi = [c1, c2, . . . , cj, ∅, . . .] to denote that student i’s first choice is c1, his

second choice c2 (i.e., c1Pic2), and so on. Given a ROL relation Pi we denote by Ri the

weak relation associated to it, i.e., vRiv
′ ⇔ vPiv

′ or v = v′. Hereafter we will often drop

the subscript when referring to a ROL, i.e., we will write P to denote a linear ordering over

C ∪ {∅}.
A college admission problem is a 5-tuple

Γ = (I, C, (Pc, qc)c∈C , (Pi)i∈I) .

We denote by P the set of all ROLs over C ∪ {∅}. Given a ROL P ∈ P , we denote also

by AP the acceptability set, i.e., AP := {c ∈ C : cP ∅}.
A matching for a college admission problem (I, C, (Pc, qc)c∈C , (Pi)i∈I) is a mapping µ :

I ∪ C → 2I ∪ C such that, for each i ∈ I and each c ∈ C,

• µ(i) ∈ C ∪ {∅},

• µ(c) ∈ 2I ,

• µ(i) = c if, and only if, i ∈ µ(c),

• |µ(c)| ≤ qc.

For v ∈ C ∪ I, we call µ(v) agent v’s assignment. For i ∈ I, µ(i) = c for some c ∈ C
means that student i is matched to college c under µ, µ(i) = ∅ means then student i is not

matched to any college under µ.
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Students’ ROLs can be straightforwardly extended to ordering over matchings. We say

that matching µ is ranked above matching µ′ for student i if his assignment under µ is

ranked above his assignment under µ′. Formally, µPiµ
′ if µ(i)Piµ

′(i), and µRiµ
′ if µPiµ

′ or

µ(i) = µ′(i). If µRiµ
′ we say µ is ranked weakly above µ′ by student i.

A matching is stable if each student is matched to an acceptable college and all the colleges

ranked in his ROL above his assignment have exhausted their capacities with students that

all have higher priority. Formally, a matching µ is stable for a college admission problem Γ

if µ is a matching for Γ and

(a) it is individually rational, i.e., for all i ∈ I, µ(i)Ri∅;

(b) it is non wasteful, i.e., for all i ∈ I and all c ∈ C, cPiµ(i) implies |µ(c)| = qc;

(c) there is no justified envy,i.e., for all i, j ∈ I with µ(j) = c ∈ C, cPiµ(i) implies jPci.
8

It is well known that for any college admission problem the set of stable matchings is

non-empty (Gale and Shapley, 1962). A matching mechanism ϕ maps college admission

problems to matchings. It is stable if for each college admission problem Γ, ϕ(Γ) is sta-

ble. Given a college admission problem Γ, we denote the student-optimal (resp. pessimal)

stable matching by SOSM(Γ) (resp. COSM(Γ)), obtained through the implementation of

the student-proposing (resp. college-proposing) Deferred Acceptance algorithm.9 The short-

hands SOSM and COSM denote the associated mechanisms.

3. Gradual matching

3.1. An illustrative example

The next example aims at capturing some of the key aspects of a mechanism that integrates

additional periods of assignment.

Example 1 Consider a college admission problem with five students and four colleges, each

with a capacity equal to one. The ROLs submitted by the students and the priorities of

the colleges are described in Table 1. We consider the matching of students during two

8Notice that the way we define stability implicitly assumes that colleges priorities over sets of students

are responsive (Roth, 1985).
9See Gale and Shapley (1962) and Abdulkadiroğlu and Sönmez (2003).
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periods. At each period SOSM is computed according to the college admission problem at

that period.

Students

Pi1 Pi2 Pi3 Pi4 Pi5

c2 c1 c1 c3 c1

c1 c3 c2 c4 c4

∅ ∅ ∅ ∅ ∅

Colleges

Pc1 Pc2 Pc3 Pc4

i1 i2 i2 i1

i2 i3 i1 i2

i3 i1 i3 i3

i4 i4 i4 i4

i5 i5 i5 i5

Table 1: A college admission problem

At period 1 we obtain the matching µ1 (indicated by the boxes in Table 1),

µ1(i1) = c1, µ
1(i2) = c3, µ

1(i3) = c2, µ
1(i4) = c4, µ

1(i5) = ∅ .

We now consider three possible scenarios at period 2. These scenarios illustrate the

different ways the gradual matching of students can differ from the outcome of the classic

one-period matching mechanism. For simplicity, we assume that students i1 and i3 will

always participate to period 2 matching mechanism, submitting the same ROL in both

periods.

• First scenario

Due to scheduling constraints student i2 does not take part to the second round. He

thus finalizes his first period match with c3. That is, i2 is removed from the

problem and is permanently matched to c3. In the second period the other students

submit again the same ROLs and obtain a new match given by µ2,

µ2(i1) = c2, µ
2(i3) = c1, µ

2(i4) = c4, µ
2(i5) = ∅ .

Students i1 and i3 are strictly better off in the second period. That is, even if students

do not update their ROLs the very fact that some students finalize their match before

others can affect the match of the students who participate to an additional matching

period. Note that the final matching (for the five students) is not stable since i2 has

a justified envy at c1. That is, gradual matchings may not be stable even if at each
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period a stable matching mechanism is used to match students and colleges. This is

not surprising given the lack of consistency of the stable matching operator in gradual

matching problems.10 This fact motivates a conceptual reconsideration of the stability

concept that accounts for the sequentiality of the procedure, which we do in Section 5.

• Second scenario

Student i2 remains among the active students. But in the second period he submits

a new ROL, [c2, c1, c3, ∅]. All other things remaining equal, the students obtain a new

match, µ̂2 given by

µ̂2(i1) = c1, µ̂
2(i2) = c2, µ̂

2(i3) = ∅, µ̂2(i4) = c3, µ̂
2(i5) = c4 .

Here, the change of i2’s ROL is harmful for student i3 who gets no seat. In the

remainder, we will identify conditions on gradual matching mechanisms that never

produce such outcomes. We will see later in the paper that this requires to control

precisely to which extent the students can resubmit new ROLs (see Section 4).

• Third scenario

A good outside option for student i2 emerges at the very end of the first period. He

withdraws from his assignment c3 and he is removed from the problem.11 Here, the

new vacant seat after the first period is put back into the pool of available seats so

that all the active students can possibly take advantage of i2’s withdrawal. All other

things remaining equal, the final matching is

µ̃2(i1) = c2, µ̃
2(i3) = c1, µ̃

2(i4) = c3, µ̃
2(i5) = c4

We account for withdrawals in Section 6.

3.2. The base model

We consider a finite number of periods t = 1, . . . , T . A sequence of T college admission

problems Γ1,Γ2, . . . ,ΓT is nested if for each Γt = (I t, Ct, (P t
c , q

t
c)c∈C , (P

t
i )i∈I), t = 1, . . . , T ,

the following properties hold:

10See Ergin (2002).
11If the second period were a secondary scrambling session available only to the unmatched students, c3

should be assigned to the student i5 who is unmatched. But since c3 is not acceptable for i5 the seat would

remain vacant under SOSM.
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• I t+1 ⊆ I t for each 1 ≤ t < T ;

• Ct = C for each 1 ≤ t ≤ T ;

• For each college c ∈ C, P t
c := P 1

c |It for each 2 ≤ t < T , where P 1
c |It is the restriction

of P 1
c to the set of students I t.

A nested sequence of college admission problems does not necessarily consist of identically

repeated college admission problems for two reasons.

First, some students may leave the problem before the final period T . We will often refer

to the students in I t for some given t as the active students (at period t). Given a sequence

(Γt)t≤T , for each student i ∈ I1, we denote by ti the latest period at which the student is

in the set of students, i.e., ti = argmax1≤t≤T{i ∈ I t}, and thus say that i finalizes his match

at period ti.

A second reason, and perhaps more interesting for us, is that students may have different

ROLs from one period to the other, i.e., for some t 6= t′ we may have P t
i 6= P t′

i for some

student i ∈ I t, I t
′
. Recall, however, that colleges’ priorities over active students are fixed

across periods.

To each nested sequence of problems (Γt)t≤T we can naturally associate a sequence of

matchings (µt)t≤T . A sequence (Γt, µt)t≤T is feasible if (Γt)t≤T is a nested sequence of college

admission problems and µt is a matching for Γt, for each 1 ≤ t ≤ T . A gradual outcome

describes the feasible sequences of problems and matchings that are mutually consistent

across periods.

Definition 1 A feasible sequence (Γt, µt)t≤T is a gradual outcome if for each 1 ≤ t < T ,

and each college c ∈ C,

qt+1
c =

(
qtc −

∣∣µt(c)∣∣)+
∣∣{i ∈ I t+1 : µt(i) = c

}∣∣ . (1)

For convenience, whenever there is no confusion we will use the shorthand outcome in-

stead of gradual outcome.

Equation (1) links each problem in a sequence with the match of the previous period. For

every college, the capacity at each college consists of adding the number of seats previously

left vacant to the number of seats assigned previously to students still active at the current

period. Equivalently, the seats assigned to the students who left the problem at a previous

period are deducted from the capacity the college had at the previous period.

12



An outcome (Γt, µt)t≤T implicitly defines a matching ν of particular interest,

ν(i) = µti(i), ∀ i ∈ I . (2)

For each student i, ν(i) describes the assignment of the student i at the time he leaves

the problem, i.e., his finalized match. Note that, by construction, ν is a matching for the

initial problem Γ1. The matching ν is called the gradual matching of (Γt, µt)t≤T .

Equations (1) and (2) capture together what makes the matching of students gradual :

some students “leave with their assignment” at a given period and, by doing so, may affect

the assignments of remaining students that can arise at later periods.

3.3. Refitting rules

The scenarios developed in Section 3.1 show that we need to impose some restrictions on

which ROLs students can submit in order to guarantee that outcomes satisfy certain prop-

erties. We do this using the concept of refitting rule, which delimits, for each period (except

for the first period) each active student’s domain of permitted ROLs. We will see that it

is sufficient to have a refitting rule depending on two parameters only: the ROL used by a

student and the match of that student at the previous period.

Definition 2 A refitting rule is a set-valued mapping F : P × (C ∪ {∅}) ⇒ P .

We will use a refitting rule as follows. Let i be student i who participated at some period

t to the matching mechanism with the ROL Pi and let v be i’s match at that period. If i is

still an active student in period t + 1 then the only ROLs that can be used in that period

must belong to the set F (Pi, v). In a refitting set F (P, v) we call v the proposal.

Throughout the paper we assume that any refitting rule satisfies the following two ele-

mentary properties,

(i) For every (P, v) ∈ P × (C ∪ {∅}), if v ∈ AP then AP ′ 6= ∅ for some P ′ ∈ F (P, v);

(ii) For every (P, v) ∈ P × (C ∪ {∅}) and P ′ ∈ F (P, v), it holds that AP ′ ⊆ AP .

We denote by F the set of all refitting rules satisfying conditions (i) and (ii) above. Condition

(i) says that if a college is proposed to a student at some period then at least one college is

acceptable in some permitted ROL for the next period. Condition (ii) states that a student

cannot add a new college in his acceptable set at any permitted ROL for the next period,
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i.e., the acceptability sets are nested across time.12 This condition is for instance satisfied

in the French college admissions system, where students can only remove colleges from their

former acceptable sets from one period to another. However, condition (ii) is not satisfied

for instance in so-called “scramble markets,” where additional runs are only open for colleges

that haven’t filled their capacities. In such cases students rank new colleges. This case is

studied by Andersson et al. (2018). This assumption is also violated in dynamic matching

problems where new colleges are added to the problem at some subsequent periods (e.g., see

Westkamp, 2012).

The possibility to resubmit a new ROL has a bite only if the refitting is a set-valued

mapping, that is, when the student can choose among at least two ROLs. Indeed, if the

rule is single-valued then the outcome are fully determined by the first period’s ROLs and

players’ finalization periods, (ti)i∈I .
13

We now define two conditions that will play a key role in our analysis.

Definition 3 The rule F ∈ F is regular if for every (P, v) ∈ P × (C ∪{∅}) and c ∈ C\{v},

vPc ⇒ vP ′c if c ∈ AP ′ , ∀ P ′ ∈ F (P, v) . (3)

A regular refitting rule imposes that any college c ranked below the proposal v must still

be ranked below the proposal at the next period whenever college c is declared acceptable

at the next period. A simple regular single-valued rule is the identity mapping F ID: for

every (P, v) ∈ P × (C ∪ {∅}),
F ID(P, v) = {P} .

Another example is the following regular set-valued refitting rule: for every (P, v) ∈ P×(C∪
{∅}),

F (P, v) =
{
P ′ ∈ P : AP ′ ⊆ AP ; v ∈ AP ⇒ v ∈ AP ′ ;∀c, c′ ∈ AP ′ , cPc′ ⇒ cP ′c′

}
.

That is, students maintain every acceptable proposal in the next ROL and are allowed

to remove other colleges, without changing the relative ranking among acceptable colleges.

Definition 4 The rule F ∈ F is strongly regular if for every (P, v) ∈ P × (C ∪ {∅}) and

c ∈ C\{v}
vPc ⇒ ∅P ′c, ∀ P ′ ∈ F (P, v) . (4)

12The role of that assumption appears more clearly in the next section.
13We analyze single-valued refitting rules in Section 4.3.

14



Strong regularity requires any college ranked below the current period assignment to be

unacceptable in the next period’s permitted ROLs. A simple strongly regular single-valued

rule is the truncation mapping F TR, for instance, if Pi = [c1, c2, v, . . . , ck, ∅, . . .] then

F TR(Pi, v) is the singleton set {[c1, c2, v, ∅, . . .]}. Note that the identity mapping is not a

strongly regular rule.

A final simple instance of refitting rule is the MT rule, proposed by Manjunath and

Turhan (2016). As they consider the assignments of students in separate centralized en-

rollment systems, Manjunath and Turhan (2016) define a new class of matching mechanism

based on a full fledged refitting rule, which works as follows. At every period, the permitted

ROLs are defined, in each enrollment system, accordingly to a bimodal rule. The new ROL is

either the previous ROL truncated below the previous student’s assignment or the previous

ROL truncated above the previous student’s assignment (which can be ∅ in both cases),

truncating below or above is determined by the assignments the student obtains in the other

systems (he keeps the best one). The MT rule FMT can be formally defined as follows (in

each enrollment system): for every (P, v) ∈ P × (C ∪ {∅}) with P = [c1, c2, . . . , cj, v, ck, . . .],

FMT (P, v) =
{

[c1, c2, . . . , cj, v, ∅, . . .], [c1, c2, . . . , cj, ∅, . . .]
}
.

The rule FMT belongs to F and has two interesting features in our context. First, it is a

meaningful instance of a non single-valued refitting rule. Second, FMT is obviously strongly

regular.

3.4. Gradual matching mechanisms

We define in this section gradual matching mechanisms. Roughly speaking, such mechanisms

work as follows. We start with a college admission problem where each student participates

to a matching mechanism by submitting a ROL. Once the matching is announced students

can either finalize their match or participate to another matching mechanism. The set of

students that remain active, together with their new ROLs (permitted under the refitting rule

F ) define the next college admission problem. Repeating the procedure for T − 1 additional

periods yields a gradual outcome as defined in Section 3.2. Our main objective is to study

the mechanisms that produce gradual outcomes.

To distinguish between multi-period mechanisms and the (more traditional) matching

mechanism that matches students at each period we will refer to this latter as a spot
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mechanism, i.e., a mechanism for a standalone college admission problem.

In an outcome the ROLs submitted by a student i consist of a list Pi of all the submitted

ROLs from period 1 until the period at which the student finalized his match, ti. So,

Pi = (P t
i )1≤t≤ti . For any nonempty set J ⊆ I, we denote by PJ the profile of submitted

ROLs of by students in J , PJ = (Pi)i∈J . Note that since students may not finalize their

match at the same period the lists of two students may not have the same length. Hence, a

profile PI implicitly includes the period at which each student finalized his match, which is

simply equal to the length of his list in PI .

Besides the spot mechanism and the refitting rule, the initial problem Γ1 and the sequence

of submitted ROLs, PI , thus contain all the relevant information that is needed to construct

outcomes.

A gradual matching mechanism maps college admission problems and sequences of

submitted ROLs to outcomes. A generic gradual matching mechanism is denoted by Mϕ
F ,

where ϕ is the spot college admission mechanism and F is the refitting rule. For each problem

Γ = (I1, C, (Pc, q
1
c )c∈C ,PI1), Mϕ

F (Γ) is the outcome (Γt, µt)t≤T such that

(i) µt = ϕ(Γt) for each period t = 1, . . . , T ;

(ii) P t
i ∈ F (P t−1

i , µt−1(i)) for all i ∈ I t, for each period t = 2, . . . , T .

Remark 1 Our description of a multi-period college admission mechanism deliberately

mixes centralized and decentralized aspects. The calculation of the matching at each period

is centralized (it is done by the clearinghouse using the submitted ROLs), but whether stu-

dents remain active or finalize their match is decentralized in the sense that is not part of

the matching mechanism. A fully centralized version would require students to also submit

schedules of ROLs and accept/decline decisions for each period (possibly conditional on the

matching obtained at a given period).

Also, note that we are agnostic about students’ decisions regarding the period at which

they finalize their match. We take students’ sequences of submitted ROLs (and thus the

period at which they exit the mechanism) as given, our only concern being what are the

conditions on the mechanism (the spot matching mechanism and the refitting rule) that

guarantee some properties for any input (students’ sequences of submitted ROLs).
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4. Gradually safe mechanisms

We restrict our attention to the class of gradual matching mechanisms for which the spot

mechanism is assumed to be stable, as it is often the case in practice or advocated in the

matching literature.

Example 1 (scenario 2) already shows that gradual matching mechanisms do not always

guarantee that participating in an additional round cannot make the students worse off.

An elementary property one would thus require for a gradual matching mechanism is to

somehow guarantee each student the spot at the college they have been assigned at the

previous period. There are several ways to implement such a property.

A first approach is, at the beginning of each period, to lock students’ seats at their

former assignments. This is clearly not a satisfactory solution because it would eventually

entail in wasteful assignments (and also, at each period only only colleges that did not filled

their capacities would be available). A second approach would be instead to modify, at

each period t ≥ 2, each college’s c ∈ C priority ranking by moving to the top qtc position

all the active students who were matched to c at the period t− 1. This modified matching

mechanism can be viewed as a natural option to guarantee participants their former positions

for problems like the re-assignment of teachers with tenured positions, as studied by Combe

et al. (2018) and Pereyra (2013). Such seniority based rules are fully adapted to environments

like teachers’ assignment problems, where agents do “consume” their matches at every period

and inherit a seniority priority at the end of each period (say, after one year). However,

assigning property rights (and thus modifying priorities) across periods is not appropriate

here since we consider a procedure that is delimited to only one enrollment campaign. Our

framework is also adapted for situations where priority rankings of colleges or schools cannot

or should not be modified throughout the execution of the matching mechanism.14

Our approach to guarantee students their former assignments takes a different route and

requires instead that at each period in which a student is active (except the first one), he is

matched to a college that is ranked weakly higher in the current period’s ROL. Under such a

property, the previous period’s match would play the role of a safety college. Our objective

in this section is to identify refitting rules such that this is indeed the case, without the need

14Such seniority rules can also generate confusion and discontentment among participants when they are

regularly updated about their rank in each college’s priority ranking. Take the case of a college c such that

Pc : i1, i2, i3, and assume that i3 is matched to c in the first period. In the second period c′ priority ordering

would be P 2
c : i3, i1, i2, i.e., students i1 and i2 would see their rank going down from one period to the next.
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to alter colleges’ priorities.

Definition 5 An outcome (Γt, µt)t≤T is gradually safe if, for each 2 ≤ t ≤ T and i ∈ I t,

µt Rt
i µ

t−1 . (5)

Let ϕ and F ∈ F be a spot mechanism and a refitting rule, respectively. The gradual

matching mechanism Mϕ
F is gradually safe if, for every Γ = (I1, C, (Pc, q

1
c )c∈C ,PI1), the

outcome Mϕ
F (Γ) is gradually safe.

Remark 2 Gradual safety is a backward looking concept in the sense that the previous

assignment is appraised using the current ROL. An alternative approach would be to have

a forward looking approach, that is, appraising the next period’s assignment wit the current

ROL. Formally, for each 2 ≤ t ≤ T and i ∈ I t,

µt Rt−1
i µt−1 . (6)

Considering condition (6) instead of condition (5) turns out to be without difficulty. We

indeed show in Appendix A that, under a mild condition, Eq. (5) implies Eq. (6).

It is relatively straightforward to see that condition (ii) in the definition of a refitting

rule (the sets of acceptable colleges are nested across periods) is a minimal requirement to

guarantee gradual safety. Consider for instance the case of two students, i1 and i2, and two

colleges c1 and c2 with i2Pc1i1 and i2Pc2i1, and ϕ is a stable matching mechanism. Suppose

that in the first period i1 and i2 submit Pi1 : [c1, ∅] and Pi2 = [c2, ∅]. Both students participate

in the second period mechanism. Student i1 submit the same ROL as in the first period but

i2 submits [c1, ∅]. Student i1 then ends up being unmatched, i.e., gradual safety does not

hold.

4.1. The case of stable spot mechanisms

We first consider the case where the spot mechanism is any stable mechanism (i.e., not

necessarily SOSM or COSM).

Proposition 1 Let ϕ be a stable spot mechanism. If Mϕ
F is gradually safe for some F ∈ F

then F is regular.
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Proof See Appendix C. �

The next example shows that the converse implication does not hold. If F is the identity

rule (hence regular) then gradual safety may fail when the spot mechanism ϕ is stable.

Example 2 There are three colleges and three students. The capacity of each college is

equal to one. There are two periods. The first period college admission problem is described

in Table 2. At period 1 there is a unique stable matching, µ1, indicated by the boxes:

µ1(i1) = c1, µ1(i2) = c2 and µ1(i3) = c3. Suppose that i1 and i2 remain active in the second

period while i3 finalizes his match at the end of the first period.15 Under the identity rule,

students’ ROLs are again P 1
i1

and P 1
i2

at period 2. Since the seat at c3 is already assigned to

i3, q2
c3

= 0. Suppose that ϕ selects the matching µ2 defined by µ2(i1) = c2 and µ2(i2) = c1.

That matching is stable for the second period problem. Clearly the outcome is not gradually

safe.

P 1
i1

P 1
i2

P 1
i3

Pc1 Pc2 Pc3

c1 c2 c3 i2 i1 i1

c3 c1 i1 i2 i3

c2 i3 i3 i2

Table 2: A college admission problem

Nevertheless, the sufficient condition holds if one restricts the refitting rule to being

strongly regular, instead of regular.

Proposition 2 Let ϕ be a stable spot mechanism. If F ∈ F is strongly regular then Mϕ
F is

gradually safe.

Proof See Appendix C. �

15Recall that we are agnostic about students’ decisions, i.e., what triggers them to finalize their match a

given period or remain active at the next period. The fact that i1 and i2 do not finalize their match when

getting their top choices makes the example simple; it is an easy matter to embed the same example in a

larger market (with more students and colleges) such that the proposals c1 and c2 are not any more the top

choices of i1 and i2, respectively.
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A straightforward corollary can be obtained if one looks at the MT rule defined in

Section 3.3.16

Corollary 1 Let ϕ be a stable spot mechanism. It holds that Mϕ
FMT is gradually safe.

4.2. The case of SOSM and COSM

Until now we have only required the spot mechanism to be any stable mechanism. Example 2

illustrates how the choice of a specific stable spot mechanism may have incidence on whether

the gradual safety property holds. In period 2, the resulting matching µ2, where µ2(i1) =

c2 and µ2(i2) = c1, corresponds to the case where ϕ = COSM . Hence, the regularity

assumption is not sufficient to obtain gradual safety under COSM. On the contrary, if ϕ =

SOSM then the assignments of two remaining students are unchanged, i.e., the outcome is

gradually safe. This observation may suggest that the required restrictions on the refitting

rule differ depending on the choice of the spot mechanism. Our next results precisely address

this issue.

Theorem 1 MSOSM
F is gradually safe if, and only if, F is regular.

Proof The proof of the only if part is given by Proposition 1. The proof of the if part is

in Appendix C. �

With respect to COSM, we deduce the following result from Proposition 2.

Proposition 3 If F ∈ F is strongly regular then MCOSM
F is gradually safe.

To get the converse implication we need to impose more structure on the refitting rules,

requiring that refitting rules satisfy a neutrality and an independence of irrelevant colleges

conditions. The neutrality property simply states that refitting rules do not depend on

college’s labels. The other property requires that if for some ROL P and proposal c1 a

school c2 is acceptable for some permitted P ′, then it is also the case for any other ROL that

does not alter the relative ranking of the same proposal and c2.

16The proof is omitted since it simply relies on the fact that FMT is strongly regular. Without entering

into the details of their model, Corollary 1 can be used to show that the so-called L-iterated child optimal rule

defined by Manjunath and Turhan (2016) satisfies the gradual safety property, in line with their Proposition 2.
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Definition 6 A rule F ∈ F is neutral if, for every (P, v) ∈ P × (C ∪ {∅}), P ′ ∈ F (P, v)

implies σ(P ′) ∈ F (σ(P ), σ(v)) for any permutation σ : C ∪ {∅} → C ∪ {∅}.17

Definition 7 A rule F ∈ F satisfies the independence of irrelevant colleges if c2 ∈ AP ′
for some P ′ ∈ F (P, c1) implies c2 ∈ AP ′′ for some P ′′ ∈ F (P̂ , c1), for any P̂ such that

c1P̂ c2 ⇔ c1Pc2.

Proposition 4 Let F ∈ F be a refitting rule satisfying neutrality and independence of

irrelevant colleges. Assume that |C| ≥ 3. If MCOSM
F is gradually safe then F is strongly

regular.

Proof See Appendix C. �

4.3. The case of single-valued refitting rules

Single-valued refitting rules correspond to environments where ROLs are submitted once

and for all in the first period. Once the ROL is submitted the sole degree of freedom left to

the students is when to finalize their matchs. Note that single-valued refitting rules do not

necessarily imply that the same ROL is used at each period. Single-valued refitting rules

are of particular importance in practice. For instance, New York City recently announced

that the two-round system used for middle and high school admissions will be replaced in

2020 by a one-round system with waiting list. Under this new system students will be put

on a waiting list for any school that is ranked above their assignment in their submitted

ROL. When seats become vacant (e.g., because of some students’ withdrawals —see Section

6), waiting lists will be cleared using student’s ROLs. It is not too difficult to see that

this system is in fact akin to a gradual matching mechanism where the refitting rule is the

truncation mapping, a single-valued refitting rule.18

In what follows we consider more specifically the identity mapping and the truncation

mapping, as defined in Section 3.3. Recall that the identity mapping (resp. truncation

17As usual, σ(P ) is defined as vσ(P )v′ if, and only if σ(v)Pσ(v′).
18The procedure used in New York City does not perfectly match our model because schools’ priority

rankings may change slightly between rounds. Under some conditions students are allowed to be put in the

waiting list for a school ranked below their proposal. Also, priority rankings may also be updated depending

when taking into account the enhanced priority that low income students and students from minorities may

benefit.
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mapping) is regular (resp. strongly regular). We start with a corollary of Theorem 1 and

Proposition 2.

Corollary 2 MSOSM
F ID and MCOSM

FTR are gradually safe.

To go further we observe that imposing one of those two rules implies that the relative

order of acceptable colleges are unchanged in the sequences of ROLs. It allows us to make

comparisons between the gradual matching obtained and the matching that would result

from the static matching mechanism (i.e., the one obtained in the first period). It turns out

that MSOSM
F and MCOSM

F perform very differently on that matter.

The next result establishes that gradual mechanisms have no raison d’être when the spot

mechanism is COSM and the refitting rule is the truncation mapping.19 For every student,

the first period assignment turns out to be the sole achievable one.

Proposition 5 For every problem Γ = (I1, C, (Pc, q
1
c )c∈C ,PI1), the gradual matching of

MCOSM
FTR (Γ) is the matching COSM(I1, C, (Pc, (q

1
c )c∈C), (P 1

i )i∈I1).

Proof See Appendix C. �

A superficial reading of Proposition 5 would lead the reader to conclude that COSM is

consistent, where consistency of a matching mechanism means that once we have removed

from the problem a subset of agents (together with their match) the match of the remaining

agents (with the same mechanism) should not change if we re-run the matching algorithm.

The type of situations considered by the consistency property is thus similar to the problem

studied here because under single-valued refitting rules a gradual matching mechanism simply

implies of running over and over again the spot mechanism where some students may be

withdrawn (together with their match) from the problem between two runs. Interpreting

thus that Proposition 5 establishes the consistency of COSM would then be at odds with the

well-known fact that the stability operator is not consistent (e.g., see Ergin, 2002). The key

difference here is the presence of the refitting rule, which implies that the ROLs of students

present in period 2 are not the same as the one they had in period 1.20

We now turn to SOSM and recover an existing result of the literature. With an abuse

of language we say that MSOSM
F Pareto-dominates SOSM if the two matching mecha-

nisms do not always produce the same final matchings and if, for any problem Γ1 =

19Unless some withdrawals occur, see Section 6.
20Example 2 shows that Proposition 5 does not hold if the refitting rule is the identity mapping.
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(I1, C, (Pc, q
1
c )c, (P

1
i )i∈I1) and any list of ROLs PI such that P t

i = P 1
i and 2 ≤ t ≤ ti for every

i ∈ I1, the gradual matching ν associated to the outcome MSOSM
F (I1, C, (Pc, q

1
c )c∈C ,PI1) is

such that, for every i ∈ I1, νR1
iSOSM(Γ1).21

Though stated differently, it is an easy matter to verify that the next result is equivalent

to Theorem 1 of Doğan and Yenmez (2018), which states that if students’ only variable

decision is when to finalize their match (i.e., at each period their submitted ROLs are their

true preferences) then any gradual matching weakly Pareto dominates the student-optimal

matching when the spot mechanism is SOSM. Here, it is obtained as a restatement of Corol-

lary 2 by simply rephrasing the notion of gradual safety in terms of Pareto dominance, in

this environment.

Corollary 3 MSOSM
F ID Pareto-dominates SOSM.22

Proposition 5 shows that, without the ability to revise their ROLs, under COSM students

do not gain by finalizing their match at later periods, for the final assignments are fully

determined in first period. In contrast, Corollary 3 shows that under SOSM, even if ROLs

are fixed, exiting at later periods may pay off.

Corollary 3 also permits us to make the link with Kesten (2010). Both gradual matching

mechanisms and Kesten’s EADAM mechanism consist of several iterations of a matching

mechanism (SOSM in the case of EADAM) where student’s ROLs are updated after each

iteration. Recall that in EADAM a student’s ROL is updated only if he is an interrupter and

the school for which he is an interrupter is simply dropped from his ROL, leaving the relative

ordering of the other schools unchanged. This updating would thus entail in a single-valued

refitting rule if EADAM were framed as a gradual matching mechanism. However, further

scrutiny shows that in fact EADAM substantially differs from gradual mechanisms. First,

in EADAM the number of rounds (periods in our model) is not fixed, for it depends on the

profile of ROLs. Second, in EADAM all students only finalize their match at the last period.

Therefore, that students’ decisions do no longer have an impact on the final outcome past

the first period (i.e., there is only one possible execution path after the first period). Finally,

EADAM as a gradual mechanism with a single-valued refitting rule does not entirely fit our

model because the identity of an interrupter (and the corresponding school) does depend on

21Recall that we consider the profiles of ROLs as lists submitted by the students and not as their (genuine)

preferences.
22Example 1 (scenario 1) shows that the final matchings of SOSM andMSOSM

F ID are not always identical.
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the complete profile of ROLs and priorities, and not on the interrupter’s ROL only.

5. Gradual stability

So far we have only considered the problem of dynamic incentives that students may face

in a system with gradual admissions; the question of stability was only a concern for the

spot mechanism. In this section we explore the question of stability in gradual matching

problems. Since students in a gradual outcome may not all be matched at the same period

and, above all, since students ROLs may change from one period to the next, the concept

of stability for static matching problems is obviously not suited for gradual outcomes, and

not satisfied in general (see Example 1). We propose here a concept of gradual stability, an

extension of the static stability concept to the case of gradual matching problems.

In static matching mechanisms stability considers only the final matching. For instance,

the intermediate matchings that arise when running the Deferred Acceptance algorithm are

not taken into account when checking stability. For gradual matchings this is not quite the

case because of the mix centralized-decentralized nature of gradual matching mechanisms:

the periods at which students finalize their matches are not decided by the mechanism. In

other words, a student’s match at any non-terminal can potentially be his final matching.

Consequently, claims by a student (relative to justified envy or wastefulness) must be checked

at all periods that student is active and not only with respect to his final match.

Our concept of gradual stability relies on the following principle: when a student finalizes

his match in a gradual mechanism he exits the mechanism, thus waiving all the claims he

could have about the matchings that could arise after he left. In other words, students’

claims are legitimate only for the matchings that arose while the student was participating.

That is, claims will necessarily be backward looking. However, non-contemporeanous claims

will only be made with the realized matchings of the other students. That is, for i and j such

that tj < ti, justified envy by i against j is checked for all periods tj ≤ t ≤ ti using i’s ROL

and match at period t and j’s match at tj (and not j’s match for some period t′ < tj). For

instance, if we consider the period t just after j finalized his match, i.e., t = tj + 1, justified

envy takes the following form,

µtj(j)P t
i µ

t(i) and iPµ(j)j . (7)
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If, however, i remains active at t+ 1 the justified envy condition becomes

µtj(j)P t+1
i µt+1(i) and iPµ(j)j . (8)

The adaptation of the non-wastefulness criterion to our environment follows the same

principle, i.e., at any period t where i is active (i.e., t ≤ ti) we check non-wastefulness with

respect to all schools and all previous periods t′ ≤ t with respect to the school’s capacity at

period t′.

Individual rationality takes a particular twist in gradual matching problems. In the

standard, static case individual rationality is defined by comparing a matching with the

empty matching, which is usually interpreted as some (unspecified) “outside option.” This

is fine for static problems that are taken in isolation: being not matched is the same as

being matched with an “outsider.” In a dynamic problem making this equivalence is a bit

dicey because matches from previous periods do represent outside options. If, at any period,

the current matching satisfies some notion of optimality, i.e., gradual stability, it must be

that each student’s match is ranked higher than his (past) outside options. Our concept of

gradual stability is given by the following definition.23

Definition 8 An outcome (Γt, µt)t≤T is gradually stable if

(i) For each i ∈ I1, µt(i)Rt
i ∅, ∀ t ≤ ti;

(ii) For each i ∈ I1, µt(i)Rt
iµ
t′(i), ∀ t′ ≤ t ≤ ti;

(iii) For each i ∈ I1 and c ∈ C, cP tµt(i) implies |µt′(c)| = qt
′
c , ∀ t′ ≤ t ≤ ti;

(iv) For each i, j ∈ I1 such that tj ≤ ti and c ∈ C, µtj(j) = c and cP t
i µ

t(i) imply jPci, ∀ tj ≤
t ≤ ti.

Let ϕ and F ∈ F be respectively a spot mechanism and a refitting rule. The gradual

matching mechanism Mϕ
F is gradually stable if, for every Γ = (I1, C, (Pc, q

1
c )c∈C ,PI1), the

outcome Mϕ
F (Γ) = (Γt, µt)t≤T is gradually stable.

Our notion can be related to the one used in the context of seniority based rules as in

Pereyra (2013). Indeed, in teachers’ assignment problems, a meaningful notion of stability

23Note that if there is only one period gradual stability is identical to the static stability defined in

Section 2.
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does not usually consider justified claims over assignments made in past periods. In such

environments, stability is merely based only on spot stability (period per period) and on

a condition that guarantees the seniority rights, a requirement akin to gradual safety. The

existence of stability is achieved through priorities, which are modified according to seniority

rules, without assuming any restriction on the refitting rules (see the beginning of Section 4

for more details). This does not allow to keep track of backward justified claims, which is

precisely the additional property we consider in Definition 8 (condition (iv)).24

The next theorem is our second main result. It clarifies the new notion of gradual stability

by establishing a direct connection with gradual safety, when it is associated to a stable spot

matching mechanism.

Theorem 2 Let F ∈ F be a regular refitting rule. A gradual matching mechanism Mϕ
F is

gradually stable if, and only if, it is gradually safe and ϕ is a stable spot mechanism.

Proof See Appendix C. �

The next result is deduced from Proposition 2 and Theorems 1 and 2.

Corollary 4

• If F ∈ F is strongly regular and ϕ is a stable spot mechanism then Mϕ
F is gradually

stable.

• If F ∈ F is regular then MSOSM
F is gradually stable.

• If F ∈ F is strongly regular then MCOSM
F is gradually stable.

6. Withdrawals

In practice, it may happen that at a non-terminal period a student, who finalized his match at

a previous period, frees the seat at the college he has been assigned to. From the perspective

24Different contexts may motivate reversed conceptual viewpoints. For instance, forward looking notions

of stability appear in the contexts of a multi-time matching process or overlapping long-lived agents. Kennes

et al. (2014) consider agents who, at any given date of their lifetimes, consume their “spot” matches and

need also to evaluate what will be their matches in the future periods. In Doval (2019), in a model with

irreversible matches, forward looking is inherent to the fact that the opportunities come from the arrival of

new participants in the subsequent periods.
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of the initial problem that student ends up being unmatched. However, the seat that was

occupied becomes then available for the students who are still active. Such situations can

occur for instance when some students are involved simultaneously in separate competing

matching mechanisms and leave some of them at some period or withdraw from the least

preferred assignments. This is the type of situation analyzed by Manjunath and Turhan

(2016), Doğan and Yenmez (2019) or Ekmekci and Yenmez (2019).25 Withdrawals can also

occur when students have to pass an exam to get access to colleges but the gradual matching

mechanism starts before the test. Withdrawals then happen when a student is assigned to a

college but fails the entry exam. This is what happened for instance in France (see Section 7).

Remark 3 In static matching settings students’ withdrawals are usually taken into account

through a “scrambling” session, where unassigned seats and seats left vacant because of

withdrawals are usually (but not always) offered to any participant who remained unmatched

at the end of the main session. The two sessions together correspond to a gradual matching

but does not fit our model. The key differences lies in the refitting rules and whether students

participate to the matching mechanism of the next period. First, students who are assigned

to a school in the main session are usually not allowed to participate to the scrambling

session. Second, students’ permitted ROLs in the scrambling session do not depend on their

main session ROLs. That is, the refitting rule for those students is obviously not regular,

and thus the mechanism is neither gradually safety nor gradually stable.

Withdrawals can be easily encoded into our modeling. The general structure is unchanged

except that we now allow any student i who finalized his match at period ti, to notify a

withdrawal at a later period, which we denote ti. When this happens the student remains

inactive but his seat now becomes vacant. An illustration is provided in Example 1 (scenario

3).

Definition 9 A gradual outcome with withdrawals is given by
(
(Γt, µt)t≤T , (ti)i∈I1

)
where:

25Manjunath and Turhan (2016) propose a multiple stage assignment process to deal with the vacant

seats, where students withdraw from all the enrollment systems but one, at every period. As indicated in

sub-Section 3.3, it follows that every system can be viewed as a gradual mechanism with the refitting rule

FMT . Doğan and Yenmez (2019) compare the performance of unified and divided enrollment systems in

terms of efficiency. Ekmekci and Yenmez (2019) analyze the coexistence of multiple enrollment systems from

the strategic viewpoint of the colleges.
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(a) for each i ∈ I, ti = 0 (no withdrawal) or ti > ti (withdrawal at period ti),

(b) the sequence (Γt, µt)t≤T is feasible,

(c) for each period 1 ≤ t < T and each college c ∈ C,

qt+1
c =

(
qtc −

∣∣µt(c)∣∣)︸ ︷︷ ︸
#vacant seats

+
∣∣{i ∈ I t+1 : µt(i) = c

}∣∣}︸ ︷︷ ︸
#seats previously assigned to current active students

+
∣∣{i ∈ I : ti = t+ 1 and µti(i) = c

}∣∣︸ ︷︷ ︸
#seats left by withdrawals

(9)

The main novelty in Definition 9 is Eq. (9). At each period, a college’s capacity is updated

by first adding the vacant seats at the previous period and the number of students who were

assigned to that college and have not yet finalized their match, and second by adding the

number of students who were previously assigned to that college (and have finalized their

matched earlier) but who just withdrew from the problem.

The sequence of submitted ROLs of every student i is described by a pair P̃i = ((P t
i )t≤ti , ti).

Given a spot mechanism ϕ and a refitting rule F , the gradual matching mechanism is now

denoted byWMϕ
F ; it maps the sequence college admission problems and sequences of ROLs

to gradual outcomes with withdrawals.

The key difference between a gradual matching mechanism and a gradual matching mech-

anism with withdrawals is how colleges’ capacities evolve from one period to the next. How-

ever, our solution concepts being essentially backward looking, withdrawals do not jeopardize

our previous results. The reason is twofold. First, a student’s withdrawal makes no change

for those who have accepted earlier a proposal. Second, for the remaining students, the with-

drawal offers a new vacant seat that can be assigned if needed. Intuitively it should benefit

the students. Hence gradual safety and gradual stability can be obtained under identical

(strong) regularity conditions.

Proposition 6 Let ϕ be a stable spot mechanism and let F ∈ F be a strongly regular refitting

rule. Then WMϕ
F is gradually safe and gradually stable.

Proposition 7 Let F ∈ F be a regular refitting rule. Then WMSOSM
F is gradually safe and

gradually stable.
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The proof that WMSOSM
F is gradually safe is similar to that of Theorem 1 and is thus

omitted. Similarly, the proof that WMϕ
F is gradually safe for any strongly regular refitting

rule and any stable spot mechanism is almost identical to that of Proposition 2. The unique

difference in both cases relies on Equation (1). If the equation is replaced by Equation (9),

i.e., the one describing the capacities of colleges in the gradual outcomes with withdrawals, it

is an easy matter to check that all the arguments of the proofs go through. Gradual stability

in Proposition 6 and Proposition 7 follows from a straightforward adaptation of the proof of

Theorem 2, which is also omitted.

7. The French college admissions system

Until 2017, the French Ministry of Higher Education used a matching mechanism to assigning

students to the higher education programs, “Admission Post-Bac” (APB), that had both

centralized and decentralized parts.26,27

The APB mechanism consisted of three periods, running from early June to mid-July. At

each period students were matched to a school through a college-proposing Deferred Accep-

tance algorithm, hence COSM, and were given the option to accept or decline their match

(if any).28 Students declining their match could participate to the next period mechanism

by submitting a new ROL over colleges.

Under APB withdrawals were substantial. The main reason is that, APB’s first period

was before students knew whether they passed the qualifying exam to enroll a higher edu-

cation program (the baccalauréat) and usually around 20% of the students fail that exam.

Another reason is that APB did not include all higher education programs. For instance,

Université Paris-Dauphine, Sciences-Po, or nursery schools were not participating to APB.

Hence, a non-negligible number of the students who participated to APB and got assigned

to a program through APB eventually withdrew after having been admitted to a program

26The mechanism was open to all students in their last year of high school. In 2017, over 800,000 French

high-school students used the platform.
27APB is no longer in place in France and is now replaced by a sequential matching system akin to a

decentralized implementation of the Deferred Acceptance algorithm (with colleges proposing).
28We focus only on the multi-period aspect of the French system. Among other aspects, we disregard the

details about the program’s priority rankings over students. They contain large indifference classes where

tie-breaking is depending among other things on the programs’ rank in students’ ROLs. See Bonkoungou

(2017) for an in-depth analysis of different tie-breaking rules (although in a static setting).
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outside APB.

Students participating to the second and third round were constrained with respect to

which new ROL they could submit. To identify precisely the properties of APB, we need first

to identify the properties of the refitting rule used by APB. The rule was in fact relatively

simple. For both the second and the third period, a new ROL was built from the ROL of the

previous period by removing any program that was ranked below the proposal. In addition

students were permitted to

(i) remove from the ROL of the previous period the proposal of the previous period;

(ii) remove from the ROL of the previous period some of programs that were ranked higher

than the proposal;

A formal description is the following.29

Definition 10 The APB rule FAPB is such that, for each (P, v) ∈ P × (C ∪ {∅}) and

P ′ ∈ F (P, v),

(i) For each c, c′ ∈ AP ′ , cP ′c′ ⇒ cPc′.

(ii) For each c such that vPc, c /∈ AP ′ .

(iii) There is no refitting rule F ′ that satisfies (i) and (ii) and such that FAPB(P, v) ⊂
F ′(P, v) for some (P, v) ∈ P × (C ∪ {∅}).

Hence, FAPB must satisfy a truncation property together with the fact that the relative

ordering of colleges is unchanged among the remaining acceptable colleges. For instance,

if P = [c1, c2, c3, c4, ∅, . . .] and c3 is proposed at some stage the permitted ROLs are given

by: FAPB(P, c3) = {[c1, ∅, . . .], [c2, ∅, . . .], [c3, ∅, . . .], [c1, c2, ∅, . . .], [c1, c3, ∅, . . .], [c2, c3, ∅, . . .],
[c1, c2, c3, ∅, . . .], [∅, . . .]}. Clearly, the APB refitting rule is strongly regular. Applying Propo-

sition 6, we obtain thus the following result.

29In practice, students choose among those options at every round: YES: you accept definitely the proposal

and you are removed from the pool of candidates; YES BUT (not available in the last round): you accept

temporarily the proposal, but you wish to remain in the pool of candidates to obtain a college at least as

good as the proposal (as long as the latter remains acceptable in your ROL); NO BUT (not available in

the last round): you decline the proposal, which is removed definitely from your ROL list, but you wish to

remain in the pool of candidates in the next periods, you might end up with no college; NO: you withdraw

from APB. It can be shown that those options are encapsulated into the definition of the APB refitting rule.
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Proposition 8 The French college admissions system is gradually safe and gradually stable.

Our results suggest possible adjustments of the French system. First, the properties of

gradual safety and gradual stability can be achieved by using different stable spot mecha-

nisms. Instead of COSM, the use of SOSM also guarantees both properties. Second, the

APB refitting rule is restrictive and can be relaxed, allowing students to submit among a

larger set of ROLs without affecting the main properties of the system.

8. Conclusion

We analyze a new class of matching mechanisms. Their specificity relies on the conjunction

of at least two original aspects. First, the one-time matching system allows the students to

be matched at a chosen period of time. Second, students have the opportunity to update

their ROLs at every period. Our main results identify the degree of freedom we can leave to

students to maintain incentives to participate (gradual safety) and fairness (gradual stability),

according to the submitted ROLs. Most remarkably, those restrictions are consistent with

those observed on a real-life, large-scale market like the French college admissions system

that compels the students to a strongly regular refitting rule.

Not surprisingly, those mechanisms are not immune against the misrepresentations of

preferences. Even worse, bad incentives are more pervasive in this context and materialize

into more dimensions (strategic decision timing and preference revelation across periods).

Doğan and Yenmez (2018) have identified this limitation even in the specific case of gradual

admissions with no refitting. Despite this issue, gradual matching mechanisms, in contrast

to one-shot mechanisms, provide an adequate framework to account for withdrawals, to offer

students the possibility to adjust their preferences or ROLs, or to allow students to express

time preferences about the date at which they are matched.
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A. Gradual safety: backward and forward looking

A spot mechanism ϕ is individually rational if, for every college admission problem Γ, the

matching ϕ(Γ) is individually rational.

Lemma 1 Let ϕ be an individually rational spot mechanism and F ∈ F be regular. If an

outcome (Γt, µt)t is gradually safe then, for each 2 ≤ t ≤ T and i ∈ I t,

µt−1(i) ∈ AP t ⇒ µt Rt−1
i µt−1 (10)

Proof Suppose on the contrary that µt−1P t−1
i µt with µt−1(i) ∈ AP t , it follows that

µt−1(i) 6= µt(i). Since ϕ is individually rational, we know that µtRt
i∅. If µt(i) ∈ C then,

from regularity, it must be the case that µt−1(i)P t
i µ

t(i), which contradicts gradual safety

(Eq. (5)). If µt(i) = ∅, Eq. (5) implies that µt−1 /∈ AP t , which is again a contradiction. �

The condition µt−1(i) ∈ AP t in Eq. (10) is crucial and necessary. If it were not satisfied,

that is, if µt−1(i) is not acceptable for the ROL P t, one cannot guarantee that, at the end of

each non-final period, students are incentivized to participate to the next period’s matching,

in the sense of Eq. (6). A trivial counter-example is the situation where a student gets

a college at period t − 1 and P t = [∅, · · · ]. Such a ROL is consistent with our regularity

condition, but for any individually rational spot mechanism we then have µt(i) = ∅, which

violates Eq. (6).

A natural way to guarantee the condition µt−1(i) ∈ AP t is by modifying condition (i) we

impose on every F ∈ F .

(i′) For every (P, v) ∈ P × (C ∪ {∅}), if v ∈ C then v ∈ AP ′ for every P ′ ∈ F (P, v).

Denote by F̃ be the set of all refitting rules that satisfy conditions (i′) and (ii). By using

Lemma 1 and our former results we easily obtain the following corollaries.

Corollary 5 Let ϕ be a stable spot mechanism and F ∈ F̃ be strongly regular. Then the

mechanism Mϕ
F satisfies Equation (6).

Corollary 6 Let F ∈ F̃ be regular. Then the mechanism MSOSM
F satisfies Equation (6).

Finally, consider the case of the so-called scrambling markets, where only participants

that are unmatched in the initial (main) period are allowed to participate in a second run of
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the matching mechanism. In such cases only colleges with unfilled capacities are available.

Provided the spot mechanism is non-wasteful the second period match will be necessar-

ily weakly better than the first period matching. That is, such mechanisms are trivially

gradually safe. However, note that Eq. (6) is not satisfied.

B. Strategic behavior in gradual matching mechanisms

The strategic issues associated to the setting of gradual matching mechanisms are set aside

in the paper. Doğan and Yenmez (2018) provides a thorough analysis of incentives in this

environment. Before reviewing the main insights of their contribution, recall that, contrary

to standard static mechanisms, strategy sets in a gradual matching mechanism do not boil

down to submitting a ROL once and for all, for students may submit several ROLs and

have also to decide at each non-terminal period whether to finalize their match. That is, the

strategy sets are more complex and much larger than in the static case.

Doğan and Yenmez (2018) main focus is to compare students’ welfare between gradual

matching mechanism over two periods and the matching from a static mechanism. The

spot mechanism used in the multi-period setting and the static mechanism are the same,

namely SOSM. Another important difference is that they conduct an equilibrium analysis;

they consider subgame-perfect Nash equilibria of the gradual mechanism.

Their first result, in line with our Corollary 3, shows that if the students are not strategic

in their preferences (i.e., they submit their true preferences at every period), then the gradual

mechanism Pareto dominates the static mechanism (with students submitting their true

preferences, too). In addition, they show that strict Pareto improvement can be realized

only if the priority profile of colleges admits a cycle à la Ergin, for otherwise SOSM is

consistent and thus students’ matches under SOSM are not affected by the early departure

of other students (i.e., the outcomes are all the same for any profile of exit decision). In the

case of fully strategic students, i.e., the students can report strategically their preferences

in the first period, submit their true preferences in the second period and decide whether

to move to the second period, they obtain two contrasted results. If the priority profile

admits a cycle, there exists an outcome of the gradual mechanism that Pareto dominates

the truthful equilibrium given by SOSM in the static case. If the priority profile is acyclic,

then the truthful equilibrium given by SOSM in the static case is always weakly preferred

to any outcome of the gradual mechanism. Hence, their welfare comparisons lead to sharp
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conclusions.

We want to emphasize that there is another complication related to strategies, which is

rather implicit in the contribution of Doğan and Yenmez (2018). Gradual mechanisms are

essentially not strategyproof even in the case where students can report only once their pref-

erences during the multi-period procedure. The following example illustrates a manipulation

from a student in the case where the spot mechanism is SOSM (and thus strategyproof for

the students in a static mechanism). Interestingly, it does not rely on the possibility of re-

fitting across periods but only on the exogenous differentiated acceptance dates. That sole

detour from the static model is sufficient to give room for manipulation in the first period.

Example 3 We assume for simplicity that the students have time-independent preferences

over colleges. That is, each student has a true ROL over colleges given once and for all at

the beginning of the procedure. Note that here we deviate here from the model in the paper

because we consider students’ preferences and not their submitted ROLs.

Consider three colleges, c1, c2, c3, and three students, i1, i2, i3. Each college has one seat

to offer. Let the students’ true preferences and colleges’ priorities be summarized by Table 3.

Under SOSM the first period matching is (i1, ∅), (i2, c2), (i3, c1).

Pi1 Pi2 Pi3 Pc1 Pc2 Pc3

c1 c2 c1 i2 i1 i3

c1 c2 i3 i3

c3 i1 i2

Table 3: Simple manipulation, without refitting

Suppose that i3’s strategy consists of leaving at the end of period 1, while i1 and i2 plan

to remain until the end of period 2, and consider the following strategy for i1: submitting

P ′i1 = [c1, c2, ∅, . . .] (and still planning to participate in period 2’s mechanism). In the first

period, the computation of SOSM gives µ′ = ((i1, c2), (i2, c1), (i3, c3)). In the second period,

i1 obtains the seat in c1 and i2 obtains the seat in c2 (recall that i3 is gone). Hence, by using

P ′i1 during the two periods she gets her first choice instead of remaining alone in the case of

sincere submitted preferences. The intuition is straightforward. Manipulating cannot make

the student i1 better off in the first period (from the strategyproofness of SOSM). However

by doing so student i1 modifies the assignments of other students at period 1, which can be
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beneficial in the next period.

Observe that the example entirely relies on the fact that the participants do not leave

the market at the same period. It is a necessary condition in general to make a deviation

profitable in gradual matching problems where the spot mechanism is SOSM and the refitting

rule is the identity rule. Suppose on the contrary that the termination periods are all equal.

Under the identity rule, the outcome of the mechanism must be such that the matchings

generated at every period are all equal to the one of period 1. Thus there is no profitable

deviation for the students in the gradual matching mechanism since SOSM is strategyproof

for the students.

C. Proofs

Proof of Proposition 1 Suppose by way of contradiction that F is not regular, that

is, there exist (P, c1) ∈ P × (C ∪ {∅}) and a college c2 ∈ AP for some P ′ ∈ F (P, c1) such

that c1Pc2 and c2P
′c1 with c2 ∈ AP ′ . Note that c1, c2 ∈ AP by condition (ii) of a refitting

rule F ∈ F .

Let Γ1 = (I1, C, (Pc, q
1
c )c∈C , (P

1
i )i∈I1) be a (first period) college admission problem with

I1 = {i1, i2, . . . , in} and C = {c1, c2, . . . , cm}, where P 1
i1

= P , P 1
i2

= [c2, ∅, . . .], Pc1 =

[i1, i2, . . .], Pc2 = [i1, i2, . . .], and for each c 6= c1, c2, student i1 has the lowest priority in Pc,

and for each i 6= i1, i2, every college except c1 and c2 is acceptable at P 1
i . For each c ∈ C,

q1
c = 1, and let I1 be such that |I1| ≥ |C|.

Since ϕ is a stable mechanism, µ1 := ϕ(Γ1) is necessarily such that µ1(i1) = c1 and

µ1(i2) = c2. Let Γ2 = (I2, C, (Pc, q
2
c )c∈C , (P

2
i )i∈I2) be the second period problem such that

I2 = {i1, i2} (i.e., all the other students finalize their match in period 1). Note that q2
c = 0

for each c 6= c1, c2, by construction. Conditions (i) and (ii) of a refitting rule F ∈ F imply

that a permitted ROL for student i2 is P 2
i2

= [c2, ∅, . . .] ∈ F (P 1
2 , c2). The ROL P 2

i1
= P ′ is

permitted for student i1 since P ′ ∈ F (P, c1). Since c2P
′c1, this yields under ϕ the matching

µ2 where µ2(i1) = c2 and thus µ2(i2) = ∅. Therefore, µ1(i2)P 2
i2
µ2(i2), and thus Mϕ

F is not

gradually safe, the desired result. �

Proof of Proposition 2 Consider the problem Γ = (I1, C, (Pc, q
1
c )c∈C ,PI1). Let (Γt, µt)t≤T

be the outcome ofMϕ
F for that problem. Suppose by way of contradiction that µt−1(i)P t

i µ
t(i)

for some t > 1 and i ∈ I t. Since ϕ is a stable spot mechanism, it holds that µt is stable
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for the problem Γt at every period. From the individual rationality of µt for Γt we have

µt(i)Rt
i∅, hence µt−1(i) is necessarily a college. Let c be that college.

From the non-wastefulness of µt for Γt, cP t
i µ

t(i) implies that |µt(c)| = qtc. From Equation

(1), qtc ≥ |{i ∈ I t : µt−1(i) = c}|. That is, the number of students assigned to c at period t

is greater or equal to the number of seats of the college c assigned at period t−1 to students

still active at period t. Since µt(i) 6= µt−1(i) = c, there exists a student j ∈ I t \{i} such that

µt(j) = c and µt−1(j) 6= c.

From the no justified envy condition, it holds that jPc i since cP t
i µ

t(i). If µt−1(j)P t−1
j c

then ∅P t
j c under the strong regularity of F , but this contradicts that µt is individually

rational for Γt. Since µt−1(j) 6= c, it follows necessarily that cP t−1
j µt−1(j). But µt−1(i) = c

and jPci imply together that µt−1 does not satisfy the no justified envy condition for Γt−1,

a contradiction. �

Proof of Theorem 1 (if part) Let (I1, C, (Pc, q
1
c )c∈C ,PI1) be the input of MSOSM

F and

consider the resulting outcome (Γt, µt)t≤T . Let 1 < t ≤ T . For each college c, define the sets

Uc and Vc as follows:

Uc = {i ∈ I t : µt(i) = c and µt−1(i)P t
i c} , (11)

Vc = {i ∈ I t : µt−1(i) = c and cP t
i µ

t(i)} . (12)

Claim |Uc| = |Vc|, ∀c ∈ C.

Proof of the claim We first show that |Uc| ≥ |Vc| for each c ∈ C. To this end, suppose by

way of contradiction that for some college c we have |Vc| > |Uc|. So Vc 6= ∅, and thus there

exists a student j0 ∈ Vc. Note that this does not necessarily mean that j0 ∈ Uc′ for some

college c′ (if µt(j0) = ∅ then there is no such college c′).

Define the following sets,

A1 = {i ∈ I t : µt−1(i) = µt(i) = c}

A2 = {i ∈ I t : µt(i)P t
i µ

t−1(i) = c}

From Equation (1) we know that:

qtc = |A1|+ |A2|+ |Vc|︸ ︷︷ ︸
# seats assigned at t− 1 to active stud.

+ qt−1
c − |µt−1(c)|︸ ︷︷ ︸

# vacant seats

(13)
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Define the following set,

A3 = {i ∈ I t : c = µt(i)P t
i µ

t−1(i)} .

Observe that µt(c) = A1∪A2∪Uc and that the three sets are mutually disjoint. It follows

that

|µt(c)| = |A1|+ |A3|+ |Uc| (14)

Since µt is stable for Γt, µt is non-wasteful. It follows thus that |µt(c)| = qtc since j0 ∈ Vc.
From Equations (13) and (14), it holds that

|A3|+ |Uc| = |A2|+ |Vc|+ qt−1
c − |µt−1(c)|.

By construction, qt−1
c − |µt−1(c)| ≥ 0. Hence, if |Vc| > |Uc| then we must have |A3| > 0.

Let k ∈ A3. Since µt is stable for Γt and cP t
j0
µt(j0), it must hold that kPcj0 (recall that

j0 ∈ Vc). Since c is a college and c ∈ AP t
k
, it must hold that cP t−1

k µt−1(k) because F is regular.

Since µt−1(j0) = c, this implies in turn that µt−1 is not stable for Γt−1, a contradiction. So

|Uc| ≥ |Vc| for each c ∈ C.

Since SOSM is a stable mechanism, µt is individually rational for Γt. Thus we have

µt−1(j) ∈ C for each j ∈ Uc. So j ∈ Uc implies j ∈ Vµt−1(j). Therefore, ∪cUc ⊆ ∪cVc. Since

|Uc| ≥ |Vc| for each c ∈ C, we have |Uc| = |Vc| for each c ∈ C as was to be proved. �

Suppose the conclusion of the proposition is not true at period t for the outcome (Γt, µt)t≤T .

So Uc 6= ∅ for some c. Let Ĩ = ∪cUc, and let µ̃ be the matching such that

• for each i ∈ Ĩ, µ̃(i) = µt−1(i),

• for each i /∈ Ĩ, µ̃(i) = µt(i).

Note that for each c, µ̃(c) is obtained by “replacing” the Uc students by Vc students.

Since |Vc| = |Uc|, college c is matched to |µ̃(c)| = |µt(c)| different students under µ̃. As for

the students, observe that, for each i ∈ ∪cUc, there exists only one college c′ such that i ∈ Uc′
and only one college c′′ such that i ∈ Vc′′ . So, each student i ∈ I t is matched to at most one

college under µ̃, therefore µ̃ is a matching for Γt.

We claim that µ̃ is stable for Γt. To see this, suppose that there exist (i, c) so that

cP t
i µ̃(i) and j ∈ µ̃(c) such that iPcj. If µ̃(c) = µt(c), that is, µt(c) ∩ Ĩ = ∅, then (i, c)

is such that cP t
i µ

t(i) and µt is not stable for Γt, a contradiction. So, we can assume that
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j ∈ Ĩ. Suppose first that i ∈ Ĩ. Note that µ̃(i) = µt−1(i), so the application of the regularity

assumption implies that cP t−1
i µt−1(i). Since j ∈ Ĩ, we have µ̃(j) = µt−1(j). So i has

justified envy against j at period t − 1, i.e., µt−1 is not stable for Γt−1, a contradiction.

Hence i /∈ Ĩ. So µt(i)Rt
iµ
t−1(i), for otherwise we would have i ∈ Vµt−1(i) and thus i ∈ Ĩ.

It follows that cP t
i µ

t−1(i). Using again the fact that F is regular, we obtain cP t−1
i µt−1(i).

Since µ̃(j) = µt−1(j), student i has thus a justified envy against j, which contradicts again

the stability of µt−1 for the problem Γt−1.

So at period t we obtain two stable matchings, µ̃ and µt. By construction, for each

student i ∈ Ĩ, µ̃P t
i µ

t, and µt(i) = µ̃(i) if i /∈ Ĩ. So µt cannot be the student-optimal student

matching of Γt, a contradiction. So, Uc = ∅ for each c ∈ C, which completes the proof. �

Proof of Proposition 4 Suppose by way of contradiction that F is not strongly regular,

that is, for some set of colleges C there exist (P, c1) ∈ P×C and c2 ∈ C such that c1Pc2 and

c2 ∈ AP̃ for some P̃ ∈ F (P, c1). Note that we do not know how P ranks the other schools,

that is, we only know that c1 is ranked above c2. We claim that we can assume without loss

of generality that there exists c3 6= c1, c2 such that c1Pc3Pc2 and there is no college c such

that c1PcPc3 (i.e., c3 is ranked just below c1). To see this, note first that since |C| ≥ 3, such

a college c3 exists. If c1Pc3Pc2 with c3 just below c1 does not hold then consider the ROL P̆

where c1P̆ c3P̆ c2 (and c3 just below c1). By the independence or irrelevant colleges, c2 ∈ AP̃
for some P̃ ∈ F (P, c1) implies c2 ∈ AP̃ for some P̃ ∈ F (P̆ , c1), i.e., F is not strongly regular

for the ROL P̆ and proposal c1.

Case 1: c2P̃ c1 with c2 ∈ AP̃ . This corresponds to the case where F is actually not even

regular. The proof for that case is identical to that of Proposition 1.

Case 2: c1P̃ c2P̃ ∅. Assume that, for each c ∈ C, q1
c = 1. Let I1 be such that |I1| = |C|

and let c3 6= c1, c2. Since |I1| = |C| ≥ 3, there exists i3 6= i1, i2. We follow a construction due

to Segal (2007) to define the profile (P 1
I1 , PC) as follows. Let Γ = (I, C, (P c, qc)c∈C , (P i)i∈I)

be an auxiliary college admission problem where I = I1\{i3}, C = C\{c3}, qc = 1 for every

c ∈ C, and ((P i)i∈I , (P c)c∈C) is any profile such that P i1 is obtained from P by dropping c3,

and P i2 is the ROL obtained from P by swapping c1 and c2 and dropping c3 (i.e., P i2 is P i1
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where c1 and c2 are swapped). The profile (P i)i∈I\{i1,i2} is any profile such that

SOSM(Γ)(i1) = COSM(Γ)(i2) = c1 ,

COSM(Γ)(i1) = SOSM(Γ)(i2) = c2 ,

SOSM(Γ)(i) = COSM(Γ)(i) for i 6= i1, i2 .
30

Note that since c1P i1c2 and c2P i2c1, the above outcomes imply i2P c1i1 and i1P c2i2.

Let µ1 be a matching for I1 and C defined by µ1(i3) = c3 and µ1(i) = SOSM(Γ)(i)

for every i 6= i3. By Lemma 5 of Segal (2007) there exists (P 1
I1 , PC) such that µ1 is the

unique stable matching for Γ1 = (I1, C, (Pc, q
1
c )c∈C , (P

1
i )i∈I1) and such that P I (resp.PC) is

obtained from P 1
I1 (resp. PC) by simply dropping c3 (resp. i3) from the ROLs (P 1

i )i∈I (resp.

priorities (Pc)c∈C). Note that Segal’s construction requires that c3 is ranked just below c1 in

P 1
i1

. Hence, P 1
i1

= P . Note also that c3 is ranked just below c2 in P 1
i2

(which follows from our

construction of P i2). It follows that P 1
i2

is simply obtained from P 1
i1

by swapping c1 and c2.

Let Γ2 = (I2, C, (Pc, q
2
c )c∈C , (P

2
i )i∈I2) be the second period problem such that I2 = {i1, i2}

(i.e., all the other students finalize their match in period 1). Note that q2
c = 0 for each

c 6= c1, c2. Let P 2
i1

= P̃ . So, c1P
2
i1
c2. Since P 1

i2
is obtained from P 1

i1
= P by swapping c1

and c2 there exists, by neutrality, P ′′ ∈ F (P 1
i2
, c2) such that c1 ∈ AP ′′ . So, let P 2

i2
= P ′′.

Under COSM we then have µ2(i1) = c2 and µ2(i2) = c1. We then have constructed a gradual

outcome ((Γ1, µ1), (Γ2, µ2)) for the mechanism Mϕ
F . However, since µ1P 2

i1
µ2 we obtain that

Mϕ
F is not gradually safe, the desired result. �

Proof of Proposition 5 Consider the problem Γ = (I1, C, (Pc, q
1
c )c∈C ,PI1) and its

outcome (Γt, µt)t≤T . By assumption, for every student i and all 2 ≤ t ≤ ti, P
t
i is truncation

of P t−1
i just below the proposal µt−1(i). To prove the proposition, it suffices to show that

µt(i) = µ1(i) holds for each t > 1 and i ∈ I t, where µ1 is the COSM of Γt. The property is

obviously true for t = 1.

Consider the second period and denote by µ1
I2 the matching µ1 restricted to the set of

students I2. From the definition of an outcome, µ1
I2 is a well-defined matching for Γ2. We

claim that µ1
I2 is a stable matching for the problem Γ2. To see this, we observe that for each

i ∈ I2, µ1(i)R2
i ∅ since P 2

i is the truncation of P 1
i below µ1(i). That is, µ1

I2 is individually

rational for Γ2. Let i ∈ I2 and c ∈ C be such that cP 2
i µ

1(i). Hence, cP 1
i µ

1(i), which implies

30It suffices for example to have ch being ranked top in P ih and student ih ranked top by ch, for h ≥ 4.
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|µ1(c)| = q1
c because µ1 being a stable matching for Γ1. By construction, Γ2 is such that

q2
c = q1

c − (|µ1(c)| − |{i : ti > 1 and µ1(i) = c}|). Since µ1
I2(c) = {i : ti > 1 and µ1(i) = c},

q2
c = |µ1

I2(c)|, i.e., the matching µ1
I2 is non-wasteful. Finally, let i, j ∈ I2 with µ1(j) = c ∈ C

and suppose that cP 2
i µ

1(i). Since F is the truncation mapping and µ1
I2 is individually rational

for Γ2, we have cP 1
i µ

1(i). Since µ1 is stable for Γ1, it holds that jPci. This implies in turn

that µ1
I2 satisfies also the no justified envy condition in the problem Γ2. So µ1

I2 is a stable

matching for Γ2, which proves the claim.

Consider µ2 (that is, COSM(Γ2)) and any student i ∈ I2. If µ1(i) ∈ C, then since P 2
i

is the truncation of P 1
i just below µ1(i), there is no college c such that µ1(i)P 2

i cP
2
i ∅, i.e.,

µ1(i) is the least preferred acceptable college in P 2
i . Since µ1

I2 is stable for Γ2 and µ1(i) 6= ∅,
by the Rural Hospital Theorem (Roth, 1986) there is no stable matching µ̂ for Γ2 such that

µ̂(i) = ∅. We can conclude that µ1 is i’s least preferred match in a stable matching for

Γ2. If µ1(i) = ∅ then µ1 is also necessarily i’s least preferred match in a stable matching

for Γ2 since any stable matching is individually rational. Hence, for each student i ∈ I2,

µ2(i) = µ1(i). It follows that COSM(Γ2) = µ2 = µ1
I2 (recall that COSM(Γ2) is the pessimal

stable matching for the students in the problem Γ2). The same arguments can be used for

the subsequent periods. �

Lemma 2 Let (Γt, µt)t≤T be a gradually safe outcome of Mϕ
F , where ϕ is a stable spot

mechanism and F is a regular refitting rule. Let i ∈ I1 and t′ be such that, for some t′ ≤ ti,

cP t′
i µ

t′(i). Then cP t
i µ

t(i) for all t < t′.

Proof Suppose that t′ ≥ 2 (otherwise there is nothing to show). Since Mϕ is gradually

safe, it holds that µt
′
(i)Rt′

i µ
t′−1(i). Thus, cP t′

i µ
t′(i) implies cP t′

i µ
t′−1(i) and cP t′

i ∅. Since

P t′
i ∈ F (P t′−1

i , µt
′−1(i)) and F is regular, we must have cP t′−1

i µt
′−1(i). From gradual safety,

we have µt
′−1(i)Rt′−1

i µt
′−2(i), which implies that cP t′−1

i µt
′−2(i) and cP t′−1

i ∅. Since P t′−1
i ∈

F (P t′−2
i , µt

′−2(i)) we must have cP t′−2
i µt

′−2(i). Continuing this way we eventually obtain

cP t
i µ

t(i) for all t < t′. �

Proof of Theorem 2 Observe that gradual safety follows directly from condition (ii) in

Definition 8. We first show that ifMϕ
F is gradually stable then ϕ is a spot stable mechanism.

To this end, let (Γt, µt)t≤T be a gradually stable outcome. Without loss of generality, assume

that IT 6= ∅, i.e., some students participate in the spot mechanism until the last period.
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Note that the conditions (i), (iii), and (iv) imply that µT is a stable matching for ΓT .

Consider now the outcome (Γ
t
, µt)t≤T defined as follows,

Γ
t

= Γt for all t ≤ T − 1

µt = µt for all t ≤ T − 1

I
T

= ∅

That is, (Γ
t
, µt)t≤T is identical to (Γt, µt)t≤T up to period T − 1, and all the students who

would opt to play the spot mechanism in period T in (Γt, µt)t≤T are now finalizing their

match in period T −1 in (Γ
t
, µt)t≤T . So, ti = T −1 for each student i ∈ IT . Since (Γt, µt)t≤T

is gradually stable, so is (Γ
t
, µt)t≤T . Hence, µT−1 is a stable matching for Γ

T−1
, and since

(Γ
T−1

, µT−1) = (ΓT−1, µT−1), the matching µT−1 is stable for ΓT−1. Continuing this way

until t = 1 implies that µt is a stable matching for Γt, for t = 1, . . . , T . That is, ϕ is a stable

spot mechanism.

Let Mϕ
F be gradually safe and ϕ a stable spot mechanism. Let (Γt, µt)t≤T be the out-

come of Mϕ
F (Γ) for some Γ = (I1, C, (Pc, q

1
c )c∈C ,PI1). We show that the four conditions of

Definition 8 are satisfied by (Γt, µt)t≤T . Condition (i) in Definition 8 is immediate since ϕ is

a stable spot mechanism and is thus individually rational. To show condition (ii), assume by

way of contradiction that µt̄(i)P t′
i µ

t′(i) for some t̄ < t′. By Lemma 2, µt̄(i)P t
i µ

t(i) all t ≤ t′.

But this contradicts µt̄+1Rt̄+1
i µt̄, which holds since the mechanism is gradually safe. To show

condition (iii), let c ∈ C and i ∈ I1 be such that cP t′
i µ

t′(i). From Lemma 2, cP t
i µ

t(i) for

all t < t′. This implies that |µt(c)| = qtc for all t ≤ t′ since the spot mechanism satisfies non

wastefulness at every period t ≤ t′. Finally, we show condition (iv). Let i, j ∈ I1 and t such

that tj ≤ t ≤ ti and c ∈ C. such that µtj(j) = c and cP t
i µ

t(i) and suppose that iPcj. By

Lemma 2, it holds that cP
tj
i µ

t(i), but this contradicts that the spot mechanism satisfies the

no justified envy condition at period t. �
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Doğan, B. and Yenmez, B. (2019). Unified versus Divided Enrollment in School Choice:

Improving Student Welfare in Chicago. Games and Economic Behavior , 118, 366–73.

Doval, L. (2019). Dynamically Stable Matching. mimeo.

Dur, U. and Kesten, O. (2019). Sequential versus Simultaneous Assignment Systems and

Two Applications. Economic Theory , 68, 251–83.

Echenique, F. and Pereyra, J. S. (2016). Strategic Complementarities and Unraveling in

Matching Markets. Theoretical Economics , 11(1), 1–39.

Ekmekci, M. and Yenmez, B. (2019). Common Enrollment in School Choice. Theoretical

Economics , 14, 1237–70.

42



Ergin, H. I. (2002). Efficient Resource Allocation on the Basis of Priorities. Econometrica,

70(6), 2489–2497.

Gale, D. and Shapley, L. (1962). College Admissions and the Stability of Marriage. American

Mathematical Monthly , 69(1), 9–15.

Halaburda, H. (2010). Unravelling in Two-Sided Matching Markets and Similarity of Pref-

erences. Games and Economic Behavior , 69(2), 365–393.

Kadam, S. V. and Kotowski, M. H. (2018a). Multiperiod Matching. International Economic

Review , 59(4), 1927–1947.

Kadam, S. V. and Kotowski, M. H. (2018b). Time Horizons, Lattice Structures, and Welfare

in Multi-Period Matching Markets. Games and Economic Behavior , 112, 1 – 20.

Kagel, J. and Roth, A. (2000). The Dynamics of Reorganization in Matching Markets: A

Laboratory Experiment Motivated by a Natural Experiment. The Quarterly Journal of

Economics , 115(1), 201–235.

Kennes, J., Monte, D., and Tumennasan, N. (2014). The Day Care Assignment: A Dynamic

Matching Problem. American Economic Journal: Microeconomics , 6(4), 362–406.

Kennes, J., Monte, D., and Tumennasan, N. (2019). Strategic Performance of Deferred Ac-

ceptance in Dynamic Matching Problems. American Economic Journal: Microeconomics ,

11(2), 55–97.

Kesten, O. (2010). School Choice with Consent. The Quarterly Journal of Economics ,

125(3), 1297–1348.

Kotowski, M. H. (2019). A Perfectly Robust Approach to Multiperiod Matching Problems.

mimeo.

Manjunath, V. and Turhan, B. (2016). Two School Systems, One District: What to Do

when a Unified Admissions Process is Impossible. Games and Economic Behavior , 95,

25–40.

Pereyra, J. S. (2013). A Dynamic School Choice Model. Games and Economic Behavior ,

80, 100 – 114.

43



Roth, A. E. (1984). The Evolution of the Labor Market for Medical Interns and Residents:

A Case Study in Game Theory. Journal of Political Economy , 92(6), 991–1016.

Roth, A. E. (1985). The College Admissions Problem is not Equivalent to the Marriage

Problem. Journal of Economic Theory , 36(2), 277–288.

Roth, A. E. (1986). On the Allocation of Residents to Rural Hospitals: a General Property of

Two-Sided Matching Markets. Econometrica: Journal of the Econometric Society , pages

425–427.

Roth, A. E. (1991). A Natural Experiment in the Organization of Entry-Level Labor Markets:

Regional Markets for New Physicians and Surgeons in the United Kingdom. American

Economic Review , 81(3), 415–40.

Segal, I. (2007). The Communication Requirements of Social Choice Rules and Supporting

Budget Sets. Journal of Economic Theory , 136(1), 341–378.

Westkamp, A. (2012). An Analysis of the German University Admissions System. Economic

Theory , 53(3), 561–589.

44


	Introduction
	Preliminaries
	Gradual matching
	An illustrative example
	The base model
	Refitting rules
	Gradual matching mechanisms

	Gradually safe mechanisms
	The case of stable spot mechanisms
	The case of SOSM and COSM
	The case of single-valued refitting rules 

	Gradual stability
	Withdrawals
	The French college admissions system
	Conclusion
	Gradual safety: backward and forward looking
	Strategic behavior in gradual matching mechanisms
	Proofs

