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Abstract

In this paper, we discuss the pricing performances of a large collection of GARCH
models by questioning the global synergy between the choice of the affine /non-affine
GARCH specification, the use of competing alternatives to the Gaussian distri-
bution, the selection of an appropriate pricing kernel and the choice of different
estimation strategies based on several sets of financial information. Furthermore,
the study answers an important question in relation to the correlation between the
performance of a pricing scheme and its ability to forecast VIX dynamics. VIX anal-
ysis clearly appears as a parsimonious first-stage filter to discard the worst GARCH
option pricing models.
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Introduction

Over the past three decades, ARCH/GARCH type models, initiated by |[Engle | (1982)
and Bollerslev | (1986]), and their various extensions (see for example |Chorro et al. | (2015))
Chapter 2) have become an important toolkit in the financial literature. Concerning the
pricing of derivatives, Duan | (1995) was the first paper to propose a coherent theoretical
framework, namely the locally risk-neutral valuation relationship (LRNVR), to obtain
risk-neutral dynamics of Gaussian GARCH models. This methodology was popularized
in | Heston & Nandi | (2000) where a discrete time affine GARCH-type model with
Gaussian innovations was able to replicate one of the key features observed in continuous
time literature (Heston | (1993))): the fact that the no-arbitrage price of classical European
options had semi-closed-form expression.! Since then, these two seminal works have been
extended in various directions and, when using GARCH-type models to price options,
the modeler is now facing several important empirical choices namely the volatility
structure, the distribution of the conditional returns, the risk-neutral framework, and
the estimation strategy. What is more, to test the empirical validity of these choices,
cumbersome numerical analysis have to be performed using extensive historical options
data.

The aim of the present study is two-fold. Firstly, based on the most recent ad-
vances in this topic, it attempts to shed light on the interlinkages between the four
key factors of GARCH option pricing models by questioning in details the global
synergy between the choice of the affine/non-affine GARCH specification, the use of
competing alternatives to the Gaussian distribution, the selection of an appropriate
pricing kernel and the choice of different estimation strategies based on several sets
of financial information. Up to our knowledge, this global approach is unique in
the literature where in general one or two factors are questioned ceteris paribus.
Secondly, the paper questions the correlation between the performance of a pricing
scheme and its ability to forecast VIX dynamics and we clearly establish that the
performance of a model in fitting VIX time series gives a very good indication on related
pricing performances at a very reasonable computational cost. VIX analysis appears
in this way as a very interesting and parsimonious first-stage evaluation to discard

the worst GARCH option pricing models without using extensive historical options data.

More precisely, in order to improve the numerical performances of the seminal Duan’s

option pricing model, four complementary areas have been explored in the literature:

1. Use more realistic GARCH processes coping with asymmetric volatility responses,
2. Use non-Gaussian distributions to deal with conditional skewness and kurtosis,

3. Use different risk-neutralization processes compatible with the preceding points,
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4. Use, when it is possible, more information than just that of the log-returns to

estimate the model.

The two first points are now a classic topic and many extensions have been proposed
to cope with these well-documented stylized facts. The asymmetric effects of positive
and negative shocks of equal magnitude on conditional volatility, the so-called leverage
effect, may be captured using a large family of extended GARCH models the most
popular being probably the exponential EGARCH of Nelson | (1991)), the NGARCH
model of [Engle & Ng | (1993), the GJR-GARCH of |Glosten et al. | (1993), the threshold
GARCH of Zakoian | (1994)), and the affine HN-GARCH by | Heston & Nandi | (2000)).
However, the leverage parameter of preceding specifications is not sufficient to capture
all the skewness and kurtosis levels in standardized residuals. Therefore, Gaussian
hypothesis for the conditional distribution of log-returns has to be relaxed and a myriad
of possible choices may be used to take into account all the mass in the tails and the
asymmetry (Chorro et al. | (2015) Chapter 2). Among them, the Generalized Hyperbolic
(Chorro et al. | (2012)), Badescu et al| (2011)) family and its Normal Inverse Gaussian
(NIG) subclass (Stentoft | (2008)), Badescu et al.| (2015))), the Inverse Gaussian (IG)
distribution (Christoffersen et al. | (2006a)), or the mixture of Gaussian (Badescu et al.

(2008)) clearly improve forecasting performances of related GARCH models.

Once a competing model has been chosen, the choice of the so-called stochastic
discount factor (SDF) to obtain risk-neutral dynamics is fundamental. For this third
point, two constraining factors apply: this SDF has to be sufficiently flexible to provide
explicit risk-neutral dynamics for a large variety of GARCH structures and innovation
distributions and rich enough to produce good pricing performances. Since the seminal
paper of Duan, several tools have been developed to select an equivalent martingale

measure (see for example Chorro et al. | (2015) Chapter 3).2

Finally, one of the main advantages of GARCH models, with respect for example

3 is that they may be efficiently estimated using a con-

to stochastic volatility ones
ditional version of the maximum likelihood estimation and a dataset of log-returns.
In particular, since, in the case of exponential-affine or extended Girsanov principle
SDF, the associated risk-neutral dynamics are explicit transforms of the historical ones,
only log-returns information is needed to compute or approximate European option
prices. Even so, when an extra piece of financial information (price of plain vanilla
options, the VIX index for the S&P500,...) is available it can be of interest to integrate
it, in an efficient way, to the estimation process to reduce pricing errors. Therefore,
following |Christoffersen et al. | (2012)) it is now classically possible to build for some

affine GARCH models (at the very least for the HN-GARCH | Heston & Nandi | (2000)
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and the IG-GARCH |Christoffersen et al. | (2006a) where semi-closed form expressions
for option prices are obtained) a joint maximum likelihood based on log-returns and
option prices. In this setting, the affine structure of the model is mandatory: if
prices are evaluated using Monte-Carlo methods, computing the likelihood function
may be cumbersome. In a recent study, | Hao & Zhang | (2013)) have computed VIX
index formulas implied by various non-affine asymmetric Gaussian GARCH models.
They presented closed-form formulas for the VIX index associated with five classical
non-affine Gaussian GARCH models when Duan | (1995) LRNVR is used. Based on
this result, | Kanniainen et al. | (2014]) proposed a fair comparison between affine and
non-affine Gaussian GARCH specifications using log-returns and VIX information
in the estimation.” For two affine GARCH models |Chorro & Fanirisoa | (2019) and
Papantonis | (2016) proved that incorporating both the physical return dynamics of the
index and risk-neutral dynamics of the VIX to estimate the parameters of GARCH op-

tion pricing models provides competitive pricing errors at a very low computational cost.®

This paper attempts to fill several gaps in the GARCH option pricing literature, in

particular, from an empirical point of view.

Firstly, in the spirit of (Christoffersen et al. | (2004) the aim of our study is to pro-
vide an intensive comparison analysis of empirical performances, in VIX index or options
valuation, between different GARCH-type models using Gaussian or non-Gaussian distri-
butions under different classes of risk-neutral measures. Furthermore, particular attention
is granted on the choice of the information set (VIX, options, returns) in the estimation
process. To keep the empirical analysis manageable, we only focus our attention on
four classical parsimonious GARCH(1,1) structures: HN-GARCH by | Heston & Nandi

(2000), GJR-GARCH by |Glosten et al. | (1993), NGARCH by Engle & Ng | (1993),
and IG-GARCH by [Christoffersen et al. | (2006a)).” One advantage of this choice is to
question the difference between affine and non-affine models. As a natural non-Gaussian
alternative we favor the so-called NIG distribution not only because it is known to fit
statistical properties of asset returns remarkably but also because, combined with Esscher
and EGP SDF, pricing equations may be solved explicitly.® Furthermore, monotonic and
non-monotonic pricing kernels (Monfort & Pégoraro | (2012)) and |Chorro & Fanirisoa
(2019)) are considered for Gaussian and IG distributions.

To our knowledge, in the existing literature, empirical studies questioned, in general,
the impact of the distribution (Christoffersen et al. | (2006a)), (Chorro et al. | (2012)),
the choice of the SDF (Badescu et al.| (2011]), Christoffersen et al. | (2013), |Chorro &
Fanirisoa | (2019)) or the estimation strategy ( Hao & Zhang | (2013), | Kanniainen et al.
(2014)), Papantonis | (2016]), |Lalancette & Simonato | (2017))) on pricing performances, but

none of them consider all these factors at the same time. For example, in |Christoffersen
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et al. | (2004) and | Kanniainen et al. | (2014) the authors study different GARCH
structures with different estimation strategies, but restrict themselves to the Gaussian
setting while in (Chorro & Fanirisoa | (2019) the authors focus on different SDF and
estimation strategies only for the IG-GARCH model. Our study is a means of making
a contribution to understand the combined impact of these complementary aspects (21
combinations of GARCH-distribution-SDF-estimation are tested), instead of providing
restrictive pairwise comparisons, and to conclude that the combination of all them is

fundamental to producing competitive valuation errors.

Secondly, we also explore in this paper if it is possible to partly classify a large
family of GARCH option pricing models by their ability to simply reproduce the VIX
index. In fact, the correlation between the option pricing performances of a model and
its ability to compute accurate VIX measures is a natural question that appears in many
talks and discussions among experts but, up to our knowledge, it is not clearly and
rigorously addressed in the literature. Our methodology is inspired by the work of | Hao
& Zhang | (2013) that intuitively explained the poor pricing performances of Gaussian
GARCH models (risk-neutralized using the LRNVR) by their inefficiency to capture the
variance risk premium. In this paper, we not only extend their conclusion exploring its
robustness for non-Gaussian distributions and non-standard SDFY but also supporting
our findings with a deep empirical study based on pricing errors associated with a large
real-world dataset of option prices. Here, a challenging aspect is to make VIX analysis
a first-stage filter to discard the worst GARCH option pricing models. From purely
numerical aspects, such a conclusion would be very interesting to back-test these models
in an efficient way, using only VIX information, when available, instead of complex

option datasets.

This paper is structured along the following lines. In section 1 we first provide a
partial presentation of all competing GARCH frameworks used in the empirical part.
More precisely, we consider four GARCH structures for modeling volatility as a time-
varying process: HN-GARCH, GJR, NGARCH, and IG-GARCH. Then, in section 2, we
recap the main risk-neutralized frameworks adopted in this study. Next, in section 3,
we derive the related VIX index formulas. Section 4 deals with the estimation challenge,
presenting methodologies based on different information sets and the related numerical

results in terms of VIX approximation and option pricing. We conclude in section 5.
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1. Competing GARCH models

We consider a financial asset with a market price at time ¢ given by S; and we denote

by Y; = log

the associated log-returns defined on a complete probability space
t—1

(Q, F,P) where P represents the historical probability measure. Information filtration

{Fi}o<i<r is generated by log-returns supposing that Fo = {0, 2} and Fr = F. In what

follows, we consider a general dynamics for the stock price process:

Yy =r+m+ Vhz

1
ht =F (zt—l) ht—la QV) ( )

where the z; are i.i.d centered and reduced random variables depending on a vector of
parameters 0, m, is the predictable time-varying excess of returns, r is the risk-free
rate and F is a mapping, compatible with realistic GARCH(1,1) volatility models
that depends on a vector of parameters #¥. From now on, the initial value hy of
the conditional volatility is supposed to be constant and fixed at its unconditional

level depending on the persistence of the model ¥ (i.e the coefficient in front of h; in

Ep [hesr | Fiaa]).

For our empirical horse-race we favor four particular GARCH specifications often
used in the literature to cope with volatility clustering and leverage effect. Moreover,
these four GARCH-type models belong to two important families: affine and non-affine
frameworks. While affine GARCH models are often used because they yield a semi-closed
form solution for prices of European equity options, it is now well-documented (see for
example Christoffersen et al. |(2006b)) that non-affine ones provide a better fit to financial
data. One important aspect of our empirical study will be to question once again this
duality. Following | Kanniainen et al. | (2014) we choose the widely recognized NGARCH
Engle & Ng | (1993), GJR-GARCH |Glosten et al. |(1993)), and affine HN-GARCH | Heston
& Nandi | (2000) models and we add the IG-GARCH of (Christoffersen et al. | (2006a) (see
also |Chorro & Fanirisoa | (2019))) that is a notable example of an affine model within a
non-Gaussian setting. In the next sections we briefly recall the definitions and the main

properties of these specifications.

1.1. Affine competitors

Since the seminal work of Heston | (1993), affine models, that led to semi-closed form
expressions for option prices, are the keystone of almost all numerical studies. In the
discrete time literature, the HN-GARCH | Heston & Nandi | (2000) and the IG-GARCH
of |(Christoffersen et al. | (2006a) are two important contributions. More precisely, the

historical dynamics are given by:
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e The HN-GARCH model

Y = 7+ X+ VIz
2
hy = ag+a (Zt—l - ht—1> +bihe—

with ag > 0, a; >0, b; >0

e The IG-GARCH model

Y, = r+vhi+nz
h2_, (3)
hy = w+bhi_1+cz_1+a

Zt

with w > 0,5 >0, c> 0, and a > 0.

In the HN-GARCH model the z; are supposed to be Gaussian while in the IG-GARCH
they follow an Inverse Gaussian distribution with degree of freedom ¢§; = Z—; whose prob-

ability density function is given by

Ot e—(ﬁ—ét/x/?)Q/?' (4)

42(2) = L0 7

The persistence (that will be an important quantity to express associated VIX index
formula) of the HN-GARCH (resp. IG-GARCH) is given by ¥ = b; + a;7? (resp. ¥ =
b+ % +an?). Under these two hypotheses on the distributions of innovations, it is easy to

n
prove for both models that the conditional moment generating function Gﬂg(sﬁ fz(u) =
Ep[S% | Fi] of the log asset price under the physical measure can be written in the
following log-linear form Gy, g )z (u) = Spe? TPt where the coefficients A; and B,
can be obtained by working backward from the maturity date of the option and using
terminal conditions Ay = By = 0. More precisely, for the HN-GARCH model,

{ Ay = ru+ A +agByg — %log(l = 2a1By1) (5)

Bt = —%U + blBt+1 + (u_; - 2awBt+1u + GlBt_H’)/Q) (1 - 2@1Bt+1)_1

and for the IG-GARCH model

(6)

Ay = A tur +wByyy — %109(1 — 2a1"By41)
B, = bBy +uw+n2—n"2/(1 —2an*By1)(1 — 2¢Byy1 — 2un).

Moreover, one important empirical consequence for the pricing of European call options
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is that the very particular form of the conditional moment generating function of log(St)
leads to the existence of semi-closed form expressions for prices which allow us to use
Fast Fourier Transform (FFT) methodology and option information in the estimation

procedure as explained in |Chorro et al. | (2015) Chap 4.

1.2.  Non-affine competitors

In order to propose asymmetric extensions of the original GARCH(1,1) model, one
possibility is to modify the so-called news impact curve (NIC) introduced in |[Engle & Ng
(1993). For this purpose, we may shift a symmetric NIC to the right or consider curves
centered at 0 allowing for slopes of different magnitudes on either side of the origin.
These two approaches were used by Engle & Ng | (1993) and |Glosten et al. | (1993) in
order to introduce respectively the popular NGARCH and GJR models. In both cases, a
single leverage parameter constrains the response of the conditional variance to depend

on the sign of a shock:

e The NGARCH model

Y, = r4+XvVh — log(Ep[e‘/Ez’f]) + Vhz
he = aog+bihe1 +arhe1 (21 — 7)2

Witha0>0,6120,a120
e The GJR model

h
Y, = T+>\ox/h_t—5t+\/h_tzt
he = ag+hi1 [br +ai (z-1)” + ymax (0, — (2,-1))°]

with ag > 0, by >0, a; > 0, and v > 0.

The persistence of the NGARCH (resp. GJR) is given by ¥ = b + a1 (1 +7?) (resp.
v ="b+a+ %) Contrary to models presented in the preceding section, here, conditional
moment generating function is not an exponential-affine function of the one step ahead

volatility. To compute option prices we use in general Mont-Carlo approximations.

To conclude this subsection, let us discuss the main reasons for the choice of the
conditional excess return in and . For the GJR model, we take the classical Duan

h
(1995) specification m; = \gv/h; — Et while in the NGARCH model we follow Badescu
et al. (2019) and take m; = Agv/hy — log(Ep[eY™#]). These choices may appear arbitrary

because in the non-affine setting they are not restricted to having an affine function of
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the conditional variance. Nevertheless, we can first remark that for Gaussian innovations
both coincide. Then, as remarked in | Hao & Zhang | (2013)), VIX implied formulas are
available in this non-affine setting at the very least for Gaussian innovations. Finally, for
the NGARCH model with NIG innovations, this very particular form may lead to a closed
form expression for the model implied VIX as explained in Badescu et al.| (2019). This
property is remarkable because up to our knowledge this is the unique example in the

literature of an explicit VIX index formula within a non-Gaussian and non-affine setting.

1.8. A flexible alternative to Gaussian distribution

It is now a well-known fact that forecasting performances of GARCH-type models are
improved when using non-Gaussian innovations. Historically, several interesting distri-
butions were proposed to better account for the deviation from normality. In the present
section we have decided to mainly focus our attention on the Normal Inverse Gaussian
(NIG) distribution. This four-parameter family of distributions has been extensively used
during the last decade in discrete time literature, especially for pricing issues (Stentoft

(2008), Badescu et al.| (2011), | Guégan et al. | (2013), Badescu et al.| (2019)): for
(e, 8,0, p) fulfilling 0 < |B] < o and 0 > 0, the density of the NIG («, 3,4, 1) is given
by

a 6(\/m+ﬁ<ﬂ>> Ky aé\/1+ <%)2

dN[G (z,oz,ﬁ,(s,,u) =€
T BN
1
\/ ()
(where K is the modified Bessel function of the third kind with index one) and the

associated cumulant generating function by

knia(z) = pz 4+ 0\/a? — B2 —6y/a? — (B + 2)°.

The mean and the variance of this distribution are respectively given by

2
R SR R )

Vo2 =57 (Vaz =)’

Therefore, from the stability of the NIG family under affine transforms, it is possible to

9
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obtain a centered version with unit variance considering

NIG <&7 67 57[1’) _ NIG (O[, ﬂa 57 lu) —m (10)

g

=oa,B=0B,0="2and i="+

(o

where

ars

2. Stochastic discount factors and risk-neutral dynam-
ics

From the beginning of the 80’s (see |Chorro et al. | (2015) Chap 3 and references
therein), general methods providing arbitrage-free price processes via the notion of equiv-
alent martingale measure (EMM) have been investigated both in discrete or continuous
time frameworks. Furthermore, the choice of such an EMM is known to be equivalent to
the specification of the so-called one-period stochastic discount factor (SDF). Since mar-
kets described by GARCH models are incomplete, there is a priori an infinite number of
SDF available for pricing derivatives and a great challenge is to select tractable candidates
for their strong economic foundations and/or empirical performances. In this section, we
present the main paths to risk-neutralization that will be implemented in the numerical
part to obtain arbitrage-free price approximations in Gaussian or non-Gaussian settings.
More specifically, starting from the Duan | (1995) approach particularly well-adapted to
Gaussian residuals, we briefly recall the main lines of the recent advances in modeling
SDF dynamics to cope with non-Gaussian innovations (Elliott & Madan | (1998)) extended
Girsanov principle (EGP) and [Siu et al. | (2004)) conditional Esscher transform) and/or
have better representations of volatility risk (Monfort & Pégoraro | (2012), |Chorro &
Fanirisoa | (2019))). Here, the objective is not to provide a self-contained presentation
of these classical tools but to remind about the main intuitions behind Gaussian (see
Table [Al]in Appendix A) and non-Gaussian (see Table [A2|in Appendix A) risk-neutral
dynamics that will be compared in the empirical part. We refer the interested reader

to the technical Appendix A describing in details all the SDF implicitly used in the paper.

As in the preceding section, we consider a GARCH-type specification for the log-

returns
Y;g :T+mt+\/ht2t

11
hy =F (Zt—l,ht—l,ev) ( )

where the z; are i.i.d centered random variables with unit variance.

e Duan’s Local Risk-Neutral Valuation Relationship

10
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Supposing that the z; are i.i.d N(0, 1), Duan | (1995)) was the first to provide a coherent
theoretical CCAPM framework to obtain risk-neutral dynamics in a GARCH environment
independently of the underlying GARCH structure. More precisely, if Q is an EMM
fulfilling LRNVR (a set of assumptions made on the utility function and the aggregated

consumption growth that preserves both Gaussianity and volatility) then

/ 12
mi—1 ht—1 ’ htilj 6‘/) ( )

where the 2/ are i.i.d N(0,1) under Q. For Gaussian models presented in the pre-
ceding section, risk-neutral dynamics deduced from the Duan’s argument are given
in Table in Appendix A. In the non-affine GJR and NGARCH setting, prices
may be obtained from ([12)) using Monte-Carlo approximations while in the affine HN
case semi-closed form formulas are available. Nevertheless, Duan’s framework relies on

Gaussian hypotheses and cannot be adapted with simplicity to more general distributions.
e The Extended Girsanov principle

Duan’s framework relies on Gaussian hypotheses and cannot be adapted with simplicity to
more general distributions. Based on this observation, Elliott & Madan | (1998)) proposed
a very simple way to select a SDF based on a Girsanov-type transformation that preserves
returns distribution after the change of measure by only shifting the conditional mean
to fulfill the martingale restriction. Such a pricing kernel has also been justified from its
consistency with risk-adjusted cost minimizing hedging strategies, and under the EMM
QFEP we have

K‘,:T‘i‘mt—’/t"‘\/ﬁtzf

ht = F(sz_l — \;th—_t_il’ h/t—la QV)

where z; follows the same law as z; under P and where v, fulfills e”* = e " Ep [er | ]-"t,l}.

(13)

When the z; are assumed to be Gaussian, we recover the same dynamics as in ((12)).
Moreover, following Badescu et al| (2019), for NIG innovations this is a tractable
framework, especially when combined with the NGARCH model to obtain a closed-form
formula for the associated VIX index. In fact, the restriction imposed on the conditional
mean in (7)) provides explicit computations. Nevertheless, one of the major drawback
of this approach, that may explain partly poor pricing performances of this method
for long maturity options (see Badescu et al.| (2008) and Badescu et al.| (2011))), is the
fact that from P to Q" only the conditional mean is affected while the conditional

variance, skewness and, kurtosis are the same.

11
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e Exponential affine SDF': the conditional Esscher transform

The conditional Esscher transform introduced in the GARCH setting by [Siu et al.
(2004) and Gouriéroux & Monfort | (2007)) is probably one of the best-known tool to
select efficiently EMM. The associated SDF M%* is exponential-affine of log-returns and
the predictable associated coefficients of affinity are uniquely determined by the pricing
equations related to the bond and the risky asset. In contrast to Duan’s approach a wide
variety of return innovations may be chosen at the very least within the class of mixture
or infinitely divisible distributions (see (Chorro et al. | (2015) Chap 3.4). Even if this tool
coincides with the LRNVR in the Gaussian case, it allows for strongly non-linear relations
between historical and risk-neutral volatility in the non-Gaussian setting. Furthermore,
explicit risk-neutral dynamics (see Table in Appendix A) may be obtained for the
IG-GARCH model and GARCH-type models with NIG innovations. In particular, if
we suppose in (11) a NIG (&,5,5, ﬂ) for the z;, we obtain (Badescu et al| (2011])) the
following dynamics under the Esscher EMM:

Yt:r—l—mt%—\/ﬁtzt*

14
ht =F (ZZLD htfl, 9‘/) ( )

where 2z follows, under QF*$, a NIG(&, 8 + v/R:07, 8, i) with a predictable parameter 67

having an explicit form (see Appendix A).
e Quadratic and U-shaped SDF

As remarked in Monfort & Pégoraro |(2012), the exponential-affine hypothesis concerning
the SDF only allows for an equity risk premium and it may be interesting to partly
solve empirical puzzles of option prices taking into account a second-order variance risk
premium. To achieve this, the authors introduced an exponential-quadratic SDF M @ue
that extends M**® adding a second moment-based source of risk information. Moreover,
under Gaussian hypothesis, this new change of measure preserves the tractability of the

model with a risk-neutral dynamics given by

Yt:r—%—i-\/h;‘zf

* * me—1 V h:* h;—l
hi =nF <\/?(zt_1 Y i 1),7,9‘/)

where the z; are i.i.d A(0,1) under Q%% and 7 is the proportional wedge between

(15)

risk-neutral and historical volatilities assumed to be constant across time (see Appendix
A for more details). As a consequence, for the HN model , the dynamics under Q%u®
remains in the same family of affine GARCH models, preserving analytic properties of the

HN specification in terms of option pricing. Inspired by this new methodology, (Chorro
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& Fanirisoa | (2019)) (see also Babaoglu et al. (2018)) proposed an exponential-hyperbolic
SDF MUsh? that is able to cope with the same remarkable features in the case of the
IG-GARCH model (see Appendix A).

To conclude this section, let us precisely describe all related GARCH option pricing
models that will be tested in the empirical part: in the affine family, the classical
Heston & Nandi | (2000) and the IG-GARCH model (Christoffersen et al. | (2006)
and (Chorro & Fanirisoa | (2019)) will be combined with exponential-affine and U-shaped
SDF risk-neutralization processes. In these cases, Monte-Carlo methods won’t be used
to approximate the price of plain vanilla options. To relax the constraints on variance
dynamics and conditional distributions related to affine specifications, we will also study
two classical non-affine structures namely the GJR and NGARCH models with Gaussian
or NIG innovations. In the Gaussian case the dynamics will be risk-neutralized using
the LRNVR or the quadratic SDF while under NIG hypotheses, exponential-affine and
EGP assumptions will be favored. This great variety of models and SDF will allow us
to question several key aspects of GARCH option pricing modeling. Finally, for sake of
concision and simplicity all the risk-neutral dynamics used in this study are gathered in

Table [AT] for Gaussian innovations and in Table [A2] otherwise.

3. Model implied CBOE VIX

Considered as the investor’s expectation of volatility (see (Carr & Wu | (2006])), the
CBOE VIX index can be characterized as a forecast of the 30-day risk-neutral volatility
(or 22 working days) of the S&P500 index. In this section, we denote by Vix; a daily-
based proxy for VIX; which is the daily-adjusted expression of the expected arithmetic
average of variance (see | Hao & Zhang | (2013))):

T

, 1 /VIX,\? 1 [T 1 &
Vix; = < 00 ) =Eg [T/t hodu | Fy| ~ TC;E@ [het | Fi] (16)

where 7 = 250, T, = 22 represents the maturity in days and Q is an EMM. Depending
on the choice of the risk-neutral dynamics and using iterative properties of conditional
expectation, the term Eq [hey; | Fi] can be explicitly computed for a large class of Gaus-
sian ( Hao & Zhang | (2013))) and non-Gaussian (Chorro & Fanirisoa | (2019)), |Badescu
et al| (2019)) GARCH models. In general, Eq [hty; | Fi] can be expressed as a linear
function of historical volatility at time ¢ + 1, risk-neutral unconditional variance Bo, and

risk-neutral variance persistence ¥* under the selected EMM. If we can obtain analytic
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expressions, we have the following general form for Eq [h4; | F| and Vix;:

Eq [herj | Fi] = heet [9*) " + ho [1 — (wr)y !
R BT 25 1 (v (17)
Vi = hear g g, e (1 1T,

where expressions of ho and U* for particular models and SDF are reported in
Table in Appendix A. In fact, for Gaussian models under the LRNVR and for

affine models with exponential-affine or U-shaped SDF we have closed form expres-

sions. For example, in the case of the HN model, we obtain hy = Clbo +£j and
U* = by + ai(y + Ao + 3)® when an exponential-affine SDF is used while we obtain
. oo 1)
ho = Go + may and U* = by + m2a4 i + 224 2} under the quadratic SDF.

1— W+ T T 2

Unfortunately, in the case of NIG innovations (a notable exception is the NIG
NGARCH model associated with the EGP of Badescu et al| (2019)) or when an
exponential-quadratic SDF is used with the Gaussian NGARCH and GJR structures
we do not have closed-form formulas for the implied Vix;. However, as explained in
Lalancette & Simonato | (2017) we can still use Monte-Carlo simulations to approximate

conditional expectation Eq [h4; | 7] and Vix;.

4. Methodology and empirical results

In this section, we present the main points emerging from this analysis. First, we carry
out numerical experiments to analyze pricing performances of all competing GARCH
models, focusing on affine/non-affine structures, the risk-neutralization process and the
estimation methodology. A pool of 21 possible combinations (Model/SDF /Estimation)
will thereby be tested to try to understand the impact of underlying factors. Further-
more, a second experiment aims to question the possibility of partly ranking GARCH
option pricing models by their ability to simply reproduce VIX dynamics, instead of us-
ing a heavy set of option data. More specifically, after a brief description of the data,
we present the main lines of classical joint likelihood estimation methodologies based
on Option-Returns or VIX-Returns data (see for example | Kanniainen et al. | (2014)
and reference therein) and that of the two-step estimation strategy recently introduced
in (Chorro & Fanirisoa | (2018)) for NIG-GARCH processes. Then, when closed-form ex-
pressions for option prices are not available, we recall how Monte-Carlo approximations
may be implemented efficiently in the GARCH framework using the powerful and simple
adjustment proposed by Duan & Simonato | (1998). Finally, this section ends with a

presentation of the results based on our empirical findings.
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4.1.  Data description

The present study used S&P500 daily returns and VIX data from January 07, 1999
to December 22, 2010, which are composed of 2718 observations covering about 12 years.
We plotted in Figure [I] the S&P500 and CBOE VIX indexes with their log-returns series
while Table (1| displayed associated summary statistics. This information set was used to
implement both classical conditional maximum likelihood strategies and joint estimation

strategies based on returns and VIX information.

We also used a dataset of options written on the S&P500 obtained from Bloomberg.
Due to the number of option pricing models to test in this section, we restricted ourselves
to Wednesday’s contracts and we classically apply to our dataset the same filters as
described in Bakshi et al.| (1997). Therefore, it concerned 4563 options contracts whose
prices were quoted during the period spanning from January 2nd, 2009 to April 15,
2012. We divided the option data set into two subsets: one in which model parameters
are estimated (to implement for the affine models the joint likelihood estimation based
on returns and options) and another subset used to compare pricing performances
of models. The first subset, used for the in-sample estimation and comparison, is
called Dataset A from January 2nd, 2009 until December 22, 2010 and contains 2714
contracts. However, the second subset for the out-of-sample comparison is called
Dataset B and contains 1849 contracts with 67-Wednesdays from January 03, 2011
until April 15, 2012. This will be used to test the out-of-sample ability to capture the
behavior of the index option smile (VIX data from January 03, 2011 until April 15,
2012 are also used in the empirical part to test the ability of GARCH option pricing
models to forecast VIX dynamics). Summary statistics for option data are reported
in Table [2] for both Dataset A and B: this table shows the number of contracts, the
average price, and the average implied volatility across moneynesses and times to matu-

rity. The patterns in the Dataset B are clearly similar to those in the in-sample Dataset A.

Depending on the chosen estimation strategy, the in-sample dataset of returns is
combined with in-sample VIX data or Dataset A to estimate the model as explained in
the next section. Furthermore, usual in and out-of-sample option pricing performances
are studied: we use in-sample estimated parameters to compute approximate prices
(from FFT or Monte-Carlo approximations depending on the structure of the model)
for the contracts in Dataset A and B to analyze associated errors. In the out-of sample
exercise presented above, we assumed that model’s parameters are constant over the
whole sample period (Dataset B). Obviously, this may appear as unrealistic and unfair
for the simulation and relaxing this assumption will highlight the robustness of our

conclusions. Therefore, in a complementary numerical experiment, we allowed model
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parameters to change over time through a rolling window estimation strategy for the 67
Wednesdays in the Dataset B assuming a constant window of 12 years (resp. 2 years) for
log-returns and VIX data (resp. for options). For each Wednesday in dataset B, we esti-

mated each model and used corresponding parameters to price options next Wednesday.'®

4.2.  Estimation methodologies

In this section we denote by 1 the set of risk-neutral parameters associated with histor-
ical dynamics . When conditional Esscher transform or extended Girsanov principle are
used to obtain risk-neutral dynamics we simply have ¢ = (#P,0") while ¢ = (9P, 0", )
in the case of U-shaped pricing kernels where 67 is the vector of innovation parameters,
6V represents the volatility parameters, and 7 is the proportional wedge between risk-
neutral and historical volatilities supposed to be constant. Moreover, we denote by T’
(resp. N) the number of VIX and log-returns daily observations (resp. N the cardinal
of the set of option market prices) involved in the estimation process. One of the main
advantages of the GARCH machinery is that historical model parameters (67,6") may
be easily obtained, from a simple log-returns dataset, using a conditional version of the

classical maximum likelihood estimator maximizing

where fyp is the probability density function of the model innovations. However,
the proportional wedge between historical and risk-neutral volatility = cannot be
estimated only using returns data. Moreover, during the last decade, several empirical
studies underlined the real interest to incorporate in the estimation process VIX or
option information, when available, to improve related pricing performances. There-

fore, we present below two joint likelihood estimation strategies used in the empirical part:
e Joint estimation strategy using Option-Returns information

We consider a set of option market prices (¢4, ..., ¢y) and define associated weighted
Vega errors ¢; = ﬂ where ¢; and V; are the model prices and the Black and Scholes
Vega associated with ¢;. Following [Trolle & Schwartz | (2009), we suppose that the (¢;)

. . . . . I .
are i.i.d centered Gaussian variables with variance N > i, €. Therefore, the associated

option log-likelihood is given by
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N
1 1 €2
log Lo,(¥) = ) E log (N E ef) + —

and we obtain the joint Option-Returns likelihood (see (Christoffersen et al. | (2013))):

T + Nlog Lp((67,0V)) n T + N log Lo,(9)
2 T 2 N '

One of the major drawbacks of this approach is the requirement to evaluate several

(18)

times the objective function in the maximization process. In the case of affine
GARCH models presented above, independently of the choice of the exponential-affine
or exponential U-shaped SDF, closed-form expressions for option prices are available
and make this process computationally acceptable. As noticed in Section [3] for most of
Gaussian GARCH specifications and for the NIG NGARCH model combined with the
EGP it is possible to obtain closed-form expressions for the implied VIX. Therefore, as
provided by | Kanniainen et al. | (2014)), a similar strategy based on VIX information and

not on options one may be implemented.
e Joint estimation strategy using VIX-Returns information

To build the VIX log-likelihood we suppose with | Kanniainen et al. | (2014) (see
also |Chorro & Fanirisoa | (2019) or Badescu et al.| (2019)) that VIX pricing errors u; =
VIXiw arket _ VIXiMOdel follow autoregressive disturbances u; = ou;_1 + ¢; where (e;); are
i.i.d Gaussian random variables with mean zero and variance $? and where | o |< 1 to

ensure stationarity. Consequently the VIX log-likelihood is given by

(log(1 — 0%))

1 2 v (ug— Qut—l)2 (19)
Toy (WUt D teo T2

and we obtain the joint VIX-returns likelihood (log Lg(67,60") + log Lvix (7, 0)).

N | —

log Lix (9, 0) = — (log(2m) + log(S(1 -~ %)) +

Finally, a last estimation strategy will be used in the empirical part for non-affine
GARCH models with NIG innovations. This strategy, first introduced in [Chorro &
Fanirisoa | (2018), derives from a very simple finding: under Gaussian hypotheses,
non-affine GARCH models have outstanding properties (closed-form expressions for
the model implied VIX) that fail when NIG innovations are involved. Therefore,
inspired by the so-called quasi-maximum likelihood (QML) estimator, a two-step ap-

proach is possible to take benefit of these remarkable features in a Gaussian environment:
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e Two-step estimation strategy using VIX-Returns

As in the QML approach, this two-step strategy estimates separately volatility and
distribution parameters assuming Gaussian innovations in the first step. We start from
a GARCH-type model with NIG innovations

Step 1: We assume that the (z); are i.i.d N'(0,1) under P and that, in this situation, we
have a closed-form formula for the VIX index. Subsequently, we can estimate the

vector of volatility parameters #" using the joint VIX-Returns likelihood.
Step 2: From the i.i.d residuals (21 (év) Jr 2T <év>> that may be extracted from the

previous step, the distribution vector of parameters 6” is obtained maximizing

5 b s (2 )

t=1

where fyp is the density function of a centered NIG random variable with unit

variance as introduced in Section [I.3|

This estimation strategy permits to introduce VIX information in the estimation pro-
cess of NIG-NGARCH and NIG-GJR models without using Monte-Carlo approximation
to compute the objective function of the optimizer. This approach not only reduces the
computational time of estimation but also allows to split an optimization exercise with

10 variables into sub-problems of smaller dimensions!.

o Estimation results

To summarize, in our empirical study, the HN model with Gaussian innovations
and the IG-GARCH model (risk-neutralized using Esscher or U-shaped SDF) will
be estimated using the returns, the joint VIX-Returns and the joint Option-Returns
likelihoods. The GJR and NGARCH models with Gaussian innovations (risk-neutralized
using Esscher SDF) will be estimated using the returns and the joint VIX-Returns
likelihood. The NGARCH with NIG innovations (risk-neutralized using EGP) will be
estimated using the joint VIX-Returns likelihood. The GJR and NGARCH models
with NIG innovations (risk-neutralized using Esscher SDF) will be estimated using the
returns and the two-step estimation strategy. The GJR and NGARCH models with
Gaussian innovations (risk-neutralized using the quadratic SDF) will be estimated using
the joint VIX-Returns likelihood.'? In Table [3| we review the numerical approximations
used in the paper for each model, each SDF and each estimation strategy to compute

the objective function in the estimation process.

The estimated parameter values and their respective standard errors, obtained from
using the different sets of information, are reported in Table [4| (resp. Table for
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Gaussian GARCH models combined with the exponential-affine (resp. the quadratic)
SDF. For NIG parameters, the results of the two-step estimation exercises are presented
in Table [6] while Table [7] shows estimates for the IG-GARCH model under both M s
and MU*"_ Finally, for the NIG-NGARCH model risk-neutralized using the EGP, the
joint VIX-Returns likelihood estimates are illustrated in Table [§ In all cases, results

are roughly in the same range as those obtained in many other previous empirical studies.

We notice for the IG-GARCH model that parameter estimates are remarkably stable
across the different approaches. Concerning the other GARCH specifications, instead of
focusing on the individual values of each parameter, we remark that global features of
each model (persistence, leverage effect parameter) differ only a little from one strategy
to another. For example, we can deduce from Tables [4] and [5] that in the case of the
GJR GARCH specification we obtain historical (resp. risk-neutral) persistences around
0.986 (resp. around 0.996) and a leverage parameter v between 0.022 and 0.023. We
classically obtain high historical persistences and all models and estimation approaches
clearly indicate the leverage effect. Moreover, in the case of the two U-shaped pricing
kernels, the proportional wedge between the risk-neutral and the historical volatilities is
significantly estimated to be greater than 1, with values ranging between 1.24 and 1.72
(see Tables |5 and 7)) for the Gaussian HN and the IG-GARCH models, as observed in
empirical studies. Last but not least, as remarked in | Kanniainen et al. | (2014), for
the joint VIX-Returns estimation strategy, the autocorrelation coefficient p is uniformly
close to 1 with a minimum value of 0.81 for the Gaussian HN model combined with the
quadratic SDF.

Concerning parameters of the NIG distribution, we can see from Tables [6] and [§] that
the observed (negative) values of skewness vary from —0.01 to —0.34 and that observed
excess kurtosis vary from 1.42 to 2.62. These values provide evidence by their departure
from normality and they are in the same range as those obtained in previous studies (see

for example Badescu et al.| (2011))).

4.3. Criteria for the option and VIX pricing analysis

Once a particular GARCH model has been properly estimated using a well-chosen
set of historical financial information, we obtain explicitly from Tables and in
Appendix A the related risk-neutral dynamics depending on the choice of the underlying
SDF. For the HN-GARCH model with Gaussian innovations (| Heston & Nandi | (2000) and
Monfort & Pégoraro | (2012)) and the IG-GARCH model (Christoffersen et al. | (2006a))
and (Chorro & Fanirisoa | (2019)), under both exponential-affine and U-shaped SDF, we

have quasi-closed-form solutions for pricing vanilla European options efficiently from FF'T
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methodology (see for example Chorro et al. | (2015) Chap 4.2) that massively decrease the
required time to price a full option book. For other non-affine specifications, prices are
approximated using Monte-Carlo simulation using 15000 trajectories. To test the quality
of these price approximations we will use, in the empirical part, the in (Dataset A),
out (Dataset B) and Wednesday (rolling window strategy) Implied Volatility Root Mean
Squared Error (IVRMSE') that measure the discrepancy between model and option

prices:

1 C; — C; 2
IVRMSE = — -
VRMS JNZ< = >

where ¢; is the option price given by the model, ¢; the corresponding market price and 1%

the Black and Scholes Vega associated with ¢;. Here, following for example |Christoffersen
et al. | (2012)), the volatility updating rule is simply deduced from returns to get option
prices given by a model. Moreover, another interesting economic criteria will be the mag-
nitude of the average annualized volatility risk premium (VRP) as defined in Papantonis
(2016) in order to understand why an equity risk premium is in general not sufficient to
produce realistic price levels. Finally, in order to discuss the correlation between option
pricing performances and the capacity of implied VIX to fit the market VIX, we will use
the measures of adequacy introduced in |Qiang et al. | (2015, namely, the mean percent-
age error (M PEvyrx), the mean percentage absolute error (M AEyrx) and the root mean
squared error (RM S Evyx) defined below:

1 N < VIX;WOdel

I v
MPEvx = + Xj VIXM“”"’M1>’ MAEVIX:NZj1<
J

Model

VIXjedel 1')
Market

VIX] arre (20)

1 oae arket)2
and RMSEVIX: \/sz\;l (VIX;W dl_VIX‘A;W kt) )

In Table 3| we review in details all the numerical approximations used in the paper
for each model, each SDF and each estimation strategy to compute the out-of-sample

performance measures.

4.4.  Empirical findings

Our study relies on 21 combinations of GARCH-distribution-SDF-estimation. To
make the presentation much more readable, we group them into five different categories:
the Gaussian-GARCH models combined with M %%, the NIG-GARCH models combined
with M, the Gaussian-GARCH models combined with M%*, the IG-GARCH model
and the NIG-NGARCH model risk-neutralized using the EGP. For each group, we
present in a specific table (see Tables @], , and ) option and VIX fitting
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performances based on the criteria introduced in the preceding section. Furthermore, we
report for each model the related estimation time (the CPU time was obtained with a
2,4 GHz Intel Core i9 processor and 32 GB RAM 2400 MHz DDR4) and the variance
risk premium as defined in [Papantonis | (2016). These tables also provide, for a selected
subclass containing more than one element, internal pairwise comparisons in terms of
of out-of-sample and weekly out-of-sample option valuation errors. We complete these
results in the numerical Appendix B giving internal pairwise comparisons in terms of
computational time of estimation and in-sample pricing performances (see Tables ,
, and . Finally, general results are provided to allow for broader conclusions: in
Table [14] out-of-sample performances of the best models in each category are compared
while we can find in Table a summary of VIX and option performance measures of
the 21 competitors and their corresponding rankings. Regarding results presented in
Table , we can easily notice that ranks related to option (resp. to VIX) valuation
are mostly independent of the choice of the underlying criteria selected from in sample,
out-of-sample or weekly out-of sample IVRMSE (resp. from RMSE, MPE or MAE) with
Spearman rank correlation coefficient greater than 0.9. Thus, in the following, numerical
comparisons will rest on out-of-sample IVRMSE and VIX RMSE. We start our analysis

at a group level.

e Pricing performances of Gaussian GARCH models with an exponential-
affine SDF

We deduce from Table [9 that, when they are estimated only using returns, pricing
performances of Gaussian GARCH models seem to be independent of the choice of
the GARCH structure with IVRMSE ranging from 0.07648 to 0.07770 under Duan’s
LRNVR. When an extra piece of financial information is introduced into the estimation
process, we obtain the smallest IVRMSE of 0.065 for the non-affine specifications
especially the GJR model. This is in line with the existing literature that favors
non-affine Gaussian stochastic volatility models (see (Christoffersen et al. | (2006b),
Kanniainen et al. | (2014)) and references therein). Table [10|leads to similar conclusions
in the NIG environment while Table confirms the slight superiority of non-affine
Gaussian specifications when using an exponential-quadratic SDF. Nevertheless, option
valuation errors under Gaussian distribution and exponential-affine SDF are the worst of
all competitors. A plausible explanation comes from the fact that these models generate
very small variance risk premia (see Table @ which are not in line with empirical
observations. In fact, as reported in Tables [10] [11], [12] and [I3] when we use non-Gaussian
alternatives and/or U-shaped pricing kernels we recover VRP between —2.867% (for
the NIG-GJR model estimated using returns only) and —3.75411% (for the IG-GARCH

model estimated using Option-Returns information) that are in line with a bulk of
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empirical studies (Papantonis | (2016)). For Gaussian distribution and exponential-affine
SDF, the variance risk is neglected and an equity risk premium is not sufficient to

produce realistic price levels.
e Pricing performances of GARCH models with NIG distribution

In Table [I0, the overall IVRMSE is between 0.0592 and 0.0690 for NIG-GARCH
models risk-neutralized with the Esscher SDF with values that are all smaller than
corresponding values for Gaussian innovations. The minimal IVRMSE of 0.0592 is
obtained in the case of the NIG-NGARCH model by estimating with the two-step
estimation strategy using VIX-Returns information as introduced in |Chorro & Fanirisoa

(2018). Not surprisingly, a finer modeling approach of conditional skewness improves
considerably the quality of price approximations. The two-step estimation strategy using
VIX-Returns information helps to substantially improve performances at a parsimonious
computational cost. The improvement (of around 14% for non-affine specifications)
from using VIX information is also fundamental in this framework because returns
based estimation strategy only leads to IVRMSE ranging from 0.0689 to 0.0690. This is
confirmed in Table [13] for the NIG-NGARCH model associated with the EGP with an
IVRMSE of 0.05935.

e Pricing performances of Gaussian GARCH models with a quadratic SDF

Working with non-Gaussian residuals is not the only way to generate more realistic
VRP than Gaussian-GARCH ones. We present in table [II] the IVRMSE of different
Gaussian-GARCH models when an exponential-quadratic SDF is used to price options.
It is worth noting that in this approach, it is not possible to directly estimate models
from returns market quotes because the extra parameter 7 is involved in the risk-neutral
dynamics. We obtain good IVRMSE between 0.06006 and 0.06331 that consistently
outperform the Gaussian counterpart with exponential-affine SDF. Even if they are
slightly worse than corresponding values for NIG-GARCH models for out-of-sample
IVRMSE, the hierarchy is reversed when considering the next week pricing errors build
on the rolling window estimation strategy. Both a modeling approach based on realistic
conditional skewness and a modeling approach incorporating a variance premium in
the pricing kernel seem to capture valuable empirical features. Therefore, a natural
question is how is it possible that these two aspects are more complementary rather than
competitive? The IG-GARCH model appears as an interesting candidate to tackle this

issue.

e Pricing performances of the IG-GARCH model
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For the IG-GARCH model, we obtain (see Table out-of-sample IVRMSE between
0.067427 (in the case of the Esscher SDF estimated using returns only) and 0.056641
(for the U-shaped SDF and Returns-Options estimation strategy). Once again, a dataset
of returns is not sufficient to produce competitive results. Furthermore, when the joint
VIX-Returns estimation process is performed we obtain an IVRMSE of 0.057568 that
is much closer to the best value at a considerably shorter computation time. The
U-shaped pricing kernel of (Chorro & Fanirisoa | (2019) outperforms by around 7% the
Esscher SDF in a conditionally Inverse-Gaussian environment and produces the best
performances observed in this section: conditional skewness is a key factor of GARCH op-

tion pricing models that becomes outstanding when associated with a non-standard SDF'.
e Pricing performances: a global analysis

When using GARCH option pricing models, the modeler is faced with four degrees of
freedom: the GARCH structure, the distribution of the innovations, the pricing kernel,
and the estimation strategy. Now we conclude the analysis of option pricing errors brought
together in Table 15 with more general considerations on the impact of each factor caeteris
paribus. Let us start with marginal effects: the impact of the choice of a non-affine
GARCH structure accounting for the leverage effect is small with a 2.2% improvement
in favor of the GJR model. In the same way, in the case of the NIG-NGARCH model
estimated using returns and VIX information, the Esscher and the extended Girsanov
principle SDF give rise to almost identical results with a difference of 1.4% for the benefit
of the exponential-affine parameterization (see also Badescu et al. (2011)) and Badescu et
al.| (2015) that deliver the same conclusion). Finally, using an estimation strategy based
on options and returns information only improves by around 1% the IVRMSE with respect
to its VIX-Returns counterpart (however, this improvement is around 10.5% when using
returns only) as already observed in (Chorro & Fanirisoa | (2019). Nevertheless, for this
latter point we have to keep in mind that this slight 1% upgrade comes at a very high
computational cost as reported in Tables [BI] and [B4] of the numerical Appendix
B. More decisively, the NIG distribution reduces the valuation error of around 11,6% in
comparison to Gaussian innovations while, in the affine family, the IG-GARCH model
outperforms by 10.6% the Gaussian HN model. Concerning, the choice of the SDF, we
clearly observe, both in the Gaussian and in the Inverse-Gaussian case that U-shaped
parameterizations yield respectively to 13% and 7% lower IVRMSE (see |Christoffersen et
al. | (2013)), |[Chorro & Fanirisoa | (2019)), and Badescu et al.| (2017) for similar findings).
In the light of these observations, it is not surprising to see from Table that, when
we compare out-of-sample pricing errors between the best models of each sub-group, the

most interesting performances are delivered by a model with non-Gaussian innovations,
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risk-neutralized using a U-shaped SDF and estimated maximizing the joint VIX-Returns
log-likelihood, namely, the IG-GARCH model. What is more, we can observe (see Table
of the numerical Appendix B) that this conclusion still holds if we compare, for
the best competitors, out-of-sample IVRMSE desegregated by moneynesses and time to
maturities.

We conclude that, when it is possible, the combination of all these factors is
fundamental to producing competitive valuation errors.!* The best model is not the
most richly parameterized but a parsimonious one able to cope with classical stylized

facts in terms of historical dynamics and risk representation.
e Deduce pricing performances from VIX analysis

Even if the ultimate criterion to compare GARCH option pricing models is the value
of the pricing errors associated with a large real-world dataset of option prices, its compu-
tation may lead to large numerical issues in particular when Monte-Carlo approximations
are needed. This is true, not only during the estimation stage, but also to compute the
objective function. To conclude this section, we question the possibility of deducing op-
tion pricing performances of a GARCH model from its capacity to forecast VIX dynamics.
In Table [15] we have reported the ranks of the 21 models considered in this article re-
garding VIX and options adequacy measures introduced in Section For example,!®
when we measure the relationship between rankings obtained from out-of-sample pricing
errors and VIX RMSE we obtain a significant Spearman’s rank correlation coefficient
of 0.90. Moreover, top ten models obtained using VIX RMSE criterion are mainly as
highly ranked as using options based criterion. The most important conclusion is that
the ranking of models is well-preserved independently of the chosen option or VIX ade-
quacy measure: examining the performance of a model in fitting VIX time series gives a
very good indication on related pricing performances at a very reasonable computational
cost. VIX analysis appears in this way as a very interesting and parsimonious first-stage

evaluation to discard the worst GARCH option pricing models.

5. Conclusion

In this paper, we have examined pricing performances of a large collection of GARCH
models by questioning the global synergy between the choice of the affine/non-affine
GARCH specification, the use of competing alternatives to the Gaussian distribution,
the selection of an appropriate SDF and the choice of different estimation strategies
based on several sets of financial information and on standard minimization algorithms.
Therefore, 21 combinations of GARCH /distribution/SDF /estimation are tested using

a large option dataset written on the S&P500. To do this, an intensive empirical
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comparison is performed not only based on in and out-of-sample pricing performances,
but also using a weekly rolling window strategy where the model is estimated each
Wednesday to price options one week later. Uniformly for these three criteria, the
IG-GARCH model risk-neutralized using a U-shaped pricing kernel provides the best
results. This gives evidence for the importance of using a non-Gaussian distribution
combined with a non-standard stochastic discount factor that takes account for the
variance risk premium. Of course, to estimate the variance risk aversion parameter,
historical returns are not sufficient and an extra financial information is required. At
this point, we have found that the joint VIX-Returns likelihood estimation provides
competitive pricing errors at a very interesting computational cost with respect to option
based estimation processes. This latter finding holds for all models considered in this
paper. For non-affine GARCH specifications, we found that, under NIG innovations,
very interesting pricing errors are obtained when, and only when, VIX information is
incorporated into the estimation strategy. This is efficiently possible for the NGARCH
model using the EGP risk-neutralization process or using the two-step estimation

strategy developed in |Chorro & Fanirisoa | (2018]).

Finally, we have questioned in this study the possibility to deduce option pricing
performances of a GARCH model from its capacity to forecast VIX dynamics. When we
ranked models using options or VIX criteria we obtained a highly significant Spearman’s
rank correlation coefficient of 0.90. Therefore, examining the performance of a model
in fitting VIX time series gives a very good indication on related pricing performances
at a very reasonable computational cost. VIX analysis appears in this way as a very
interesting and parsimonious first-stage evaluation to discard the worst GARCH option

pricing models.

Appendix A. Technical Appendix: Stochastic discount
factors, risk-neutrals dynamics and model
implied VIX

We propose in this technical appendix, the primer concerning the different stochastic
discount factors (SDF) used in this paper to obtain the risk-neutral dynamics provided
in Tables and This knowledge may be of interest to compute prices under the
historical probability even if in the present paper all the prices have been computed or
simulated under different risk-neutral probabilities. We refer the interested reader to
Chorro et al. | (2015) (Chap. 3) and |Chorro & Fanirisoa | (2019)) for complete derivations.
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S,
Starting from a financial time series of log-returns Y; = log ( 5 i ) defined on a
t—1

filtered historical probability space (Q, {Fiocrer s IP’) it is well-documented that the exis-
tence of an equivalent martingale measure Q is equivalent to the existence of the so-called

.....

the risky asset:

{ Eple" My | Fi] =1 (A1)

E[[D[@Yt-H Mt-i—l | ft] =1.

For GARCH models, combining discrete time modeling and continuous conditional
distributions, the choice of such a SDF is not unique and several classical candidates are

available in the financial literature.

The conditional Esscher transform

We assume for the SDF a particular parametric form (exponential affine of the log-
returns): Vt € {1,...,T},
M = Hivetsd (A2)

where 6} and & are F;_; measurable random variables.

For the dynamics considered in it is in general possible to find explicitly 67 and &/ that
depend on the conditional distribution. In particular (see |Chorro et al. | (2015) (Chap.
3.4)), when the 2 are i.i.d N(0,1),

& = —0/(r+mi) — (0))*5 —r

{%——@+%> (A3)

and when the z; are i.i.d NIG <d, 8,9, ﬂ) ,

4
2
g -1 apVs 1 (dmtJr OhefS é) 46452
o= 5 - V5 R : —T
Vhid \ ht5§3+(dmt+\/ 6htﬁ§) (A4)

where § = /a2 — 32.

If we consider the IG-GARCH model , we obtain
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q 1 -1 1 V27732

& = (8 + 1) = fwh, — |o (1— VT —207) ) |.

The Extended Girsanov principle

Following |Badescu et al.| (2019)), we can see that for the particular NGARCH model
considered in the paper, when the z; are i.i.d NIG <07, 8,9, ,&) , the SDF coming from

the Extended Girsanov principle is given by

TdNIG (Zt + o, &, 3,0, /1)
dnia <2t7d7575a ﬁ)

where dy g is the density function of the NIG distribution given in section 1.3.

MFPEP = e

(A6)

The Quadratic SDF for Gaussian GARCH models

In Monfort & Pégoraro | (2012)), the authors proposed, for Gaussian GARCH models
of the form (I)), to extend the exponential affine form of the SDF (A2) adding a quadratic
term in the exponential to cope with more general empirical shapes. More precisely, they

supposed that

MO = S0, it 03 Y7 (A7)

where &/, 0, and 03, are F;_; measurable random variables. Obviously, when 6y, = 0
we recover M. This SDF depends on three variables and has to solve the two pricing
equations . In order to obtain a unique solution to this problem, we need to impose
an extra constraint. Supposing a constant proportional wedge m = Z—tt between the risk-
neutral and the historical volatilities we obtain (see (Chorro et al. | (2015) (Section 3.5))

(

eq _ n—1

27t - 27Tht
q __ q 1 mg
hi (09 )242(r+my)0% ,+202  (r+my)?
q _ .. 1.t 1,t 2,t 1 _ q
\ & =—r 21207 ) + 5log(1 — 203 ;hy).

This new risk-neutral parameter m cannot be estimated using only information from the

log-returns.
The U-shaped SDF for the IG-GARCH model
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In |(Chorro & Fanirisoa | (2019), the authors proposed an exponential-hyperbolic SDF
for the IG-GARCH model that may be seen as the analogous of (A7) for the IG
distribution. They considered

q q
q q, Pt q q P
MUstP = fiviteity — hYitety=rog (A9)

and supposing a constant proportional wedge 7 between the risk-neutral and the historical

volatilities we obtain (see |Chorro & Fanirisoa | (2019)) (proposition 2.3))

(
1
=35 {7 (1) 5 (- 1 )

=5 [1— v 2
g [ (1 —20/n) [1 - (VI=27)] ]

el = =1 — (r+vh)8] — 0, + /(67 — 201)(1 — 200]) — log(6;) + 3log (57 — 2p7)).
(A10)

\

Wheren*zi‘/’;—i (—1+./1+287—';>+§/’;—§ (—1—,/1+287—';>,

Tables [AT] [A2] and [A3] provide in details the Gaussian and non-Gaussian risk-neutral
dynamics considered in the paper and the related (when available) closed form expressions
for the model implied VIX.
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Table A3: GARCH implied VIX

GARCH models || ho [ U
HN-GARCH :

Gaussian-Ess Cio_—i_\;: by +ar(y + Ao+ 3)?

Gaussian-Qua % by + m2ay (% + % + %) :
GJR-GARCH :

Gaussian-Ess . fO\p* by + [ar + YN (Ao)] (14 A2) + v on(Ao)
NGARCH :

Gaussian-Ess : fO\p* b+ a1 (1 + (Ao + 7)2)

NIG-EGP — by + as(L+ (o +7)?)
IG-GARCH :

4 x

Ess % b+ (770*)2 + g (77*)2

UShp ﬂ b+ c* + g (77*)2
(1—-9%) (n*)”

Note: We present expressions of the parameters ho and U* associated with the
closed-form expression of Vix; in equation [I7] for different GARCH structures, stochastic
discount factors and conditional distributions. In this table we denote by N (resp. n)
the distribution (resp. the density) function of the standard Gaussian distribution.
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Appendix B. Supplementary numerical results

Table B1: Model comparisons based on computational time of estimation and on in-

sample IVRMSE given in Table [9}

GARCH-type HN GJR NGARCH HN HN GJR NGARCH
Ret Ret Ret Opt-Ret VIX-Ret VIX-Ret VIX-Ret
HN-Ret — —80.00 —150.00 —9.004E +04 20.000 —110.00 —40.00
GJR-Ret 4.072 — —38.888 —4.997TE +04 55.555 —16.666  22.222
NGARCH-Ret 4.561  0.509 — —3.095E +04 68.000  16.000 44.000
HN-Opt-Ret 6.960  3.010 2.513 — 99911  99.767 99.844
HN-VIX-Ret 3.179 —0.930 —1.448 —4.063 — —162.50 —75.00
GJR-VIX-Ret 8.480  4.595 4.106 1.634 5.475 — 33.333
NGARCH-VIX-Ret 7.035  3.088 2.592 0.080 3.982 —1.579 —

Note: The upper triangular part of the matrix illustrates relative difference (in
percentage) of the computational time of estimation between the i-th and the j-th

models, as example: —80% = 100 * (0.010 — 0.018)/0.010. The lower triangular part of

the matrix illustrates relative difference (in percentage) of the in-sample IVRMSE
between the j-th and the i-th models, as example:
4.072% = 100 * (0.059916 — 0.057476),/0.059916.

Table B2: Model comparisons based on computational time of estimation and on in-

sample IVRMSE given in Table

GARCH-type GJR NGARCH GJR NGARCH
Ret Ret VIX-Ret  VIX-Ret
GJR-Ret — —29.16  —50.00 20.833
NGARCH-Ret —3.038 - —16.12 38.709
GJR-VIX-Ret (two-steps) 6.871 9.617 — 47.222

NGARCH-VIX-Ret (two-steps)  15.79 18.27 9.579 —

Note: The upper triangular part of the matrix illustrates relative difference (in
percentage) of the computational time of estimation between the i-th and the j-th

models, as example: —29.16% = 100 % (0.024 — 0.031)/0.024. The lower triangular part

of the matrix illustrates relative difference (in percentage) of the in-sample IVRMSE

between the j-th and the i-th models, as example:
—3.038% = 100 % (0.0550 — 0.0567)/0.0550.
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Table B3: Model comparisons based on computational time of estimation and on in-

sample IVRMSE given in Table

GARCH-type HN-Opt-Ret HN-VIX-Ret GJR-VIX-Ret NGARCH-VIX-Ret

HN-Opt-Ret — 99.816 89.802 90.693
HN-VIX-Ret —0.528 - —5442 —4957
GJR-VIX-Ret 0.626 1.149 — 8.736
NGARCH-VIX-Ret 3.640 4.146 3.033 —

Note: The upper triangular part of the matrix illustrates relative difference (in
percentage) of the computational time of estimation between the i-th and the j-th
models, as example: 99.816% = 100  (10.326 — 0.019)/10.326. The lower triangular
part of the matrix illustrates relative difference (in percentage) of the in-sample
IVRMSE between the j-th and the i-th models, as example:

—0.528% = 100 % (0.05110 — 0.05137)/0.05110.

Table B4: Model comparisons based on computational time of estimation and on in-
sample IVRMSE given in Table

IG-GARCH-type Ess-Ret Ess-Opt-Ret Ushp-Opt-Ret Ess-VIX-Ret Ushp-VIX-Ret

Ess-Ret — —25E+05 —28FE+05 57.777 3.333
Ess-Opt-Ret 15.08 - —12.191 99.836 99.624
Ushp-Opt-Ret 19.89 5.663 — 99.853 99.665
Ess-VIX-Ret 14.49 —0.699 —6.745 — —128.94
Ushp-VIX-Ret 19.29 4.957 —0.748 5.617 —

Note: The upper triangular part of the matrix illustrates relative difference (in
percentage) of the computational time of estimation between the i-th and the j-th
models, as example: —2.564 %% = 100  (0.036 — 9.268)/0.036. The lower triangular
part of the matrix illustrates relative difference (in percentage) of the in-sample
IVRMSE between the j-th and the i-th models, as example:

15.08% = 100 * (0.054358 — 0.046160)/0.054358.
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Notes

In the Duan’s framework, the coefficients of the GARCH risk-neutral dynamics are
just functions of the historical ones, and so may be directly estimated from the log-returns.
Nevertheless, the closed-form expression permits to efficiently use available option infor-
mation to calibrate the model.

2The exponential-affine SDF, M developed by Biihlmann et al. | (1996) and [Siu e
al. | (2004)), which is based on a conditional extension of the pioneering work of [Esscher

(1932), and the SDF given by the extended Girsanov principle of [Elliott & Madan
(1998)) are probably the two best known. In particular, they coincide with Duan LRNVR
in the Gaussian setting. Let us also remark that extended and non-monotonic versions
of the exponential-affine SDF are available for particular choices of distributions as the
exponential-quadratic SDF M@ of Monfort & Pégoraro | (2012)) (see also [Christoffersen
et al. |(2013)) for Gaussian innovations and the exponential U-shaped stochastic discount
factor MY*" proposed by |Chorro & Fanirisoa | (2019) for the Inverse-Gaussian GARCH
model.

3See for example Taylor | (1986) and [Heston | (1993) where information from the
volatility structure is needed to estimate parameters of the model.

4This is not true for M2" or MYs" because, in this case, a risk-neutral parameter
(the constant proportional wedge between historical and risk-neutral volatilities) has to
be evaluated.

"Recently, a large number of studies have further investigated the ability of the VIX
index as an input variable for volatility to forecast option prices. Considered as an
expected volatility series, the VIX was proposed by [Whaley | (1993) and introduced by
the CBOE in 1993 to serve as a market volatility indicator. The VIX captures how much
the investor is willing to pay to deal with investment risks. In previous empirical papers
on the importance of the VIX index, the attention focus has primarily been on the impact
and the correlation of the VIX index with the stock market and returns volatility. |Giot
et al. | (2005) and [Sarwar | (2012) have established empirical results that suggest an
asymmetric relationship between stock market returns and VIX. |Cochrane et al. | (2012)
observed the adequacy of the VIX index as an important factor in the determination of
stock market returns and also of volatility.

When closed-form expressions are not available, two recent studies proposed inter-
esting alternatives. In [Lalancette & Simonato | (2017)) the authors proposed, for the
NGARCH model with Johnson Sy distributed driving noise, numerical approximations
to make possible the computation of the implied VIX index using Monte-Carlo simula-
tions. In |Chorro & Fanirisoa | (2018) a new estimation strategy for some non-Gaussian
GARCH models is presented to include options or VIX information in the joint estimation

at a low computational cost.
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"An equivalent study could be performed in a companion paper for Markov-switching
Elliott et al. | (2006), multi-component (Christoffersen et al. | (2008)) and multiple-shock
Christoffersen et al. | (2012) GARCH models.

8Such a property is not fulfilled if we use, for example, a mixture of Gaussian distri-
butions.

9Recent papers (see for example |Qiang et al. | (2015), Wang et al. | (2017) and |Zhang
& Zhang | (2020)) ) provide new estimation methodologies to improve the VIX forecasting
performance of Gaussian GARCH models observed in | Hao & Zhang | (2013)) while in
Yang & Wang | (2018) the authors favor the IG-GARCH model risk-neutralized using the
conditional Esscher transform. In our study we focus not only on estimation strategies
but also on non-standard distributions and SDF showing that the IG-GARCH model
combined with a U-shaped pricing kernel delivers the best performances in forecasting
the VIX index.

19We particularly use estimated in-sample parameters as initial values for the opti-
mization performed the first Wednesday while we initialize parameters of the following
Wednesday estimation process by using parameters obtained the previous week.

U'We can see, in this situation, that the two-step estimation strategy provides Options
IVRMSE and VIX RMSE with the same order of magnitude as those obtained from a
direct joint estimation strategy using VIX-Returns information where the model implied
VIX is computed from Monte-Carlo simulations under NIG residuals. Results in this
direction are available upon request and will be the objective of a companion paper.

2In this case, and only in this case, the methodology of [Lalancette & Simonato | (2017)
will be used to approximate VIX performance measures using Monte-Carlo methods.

In the bulk of recent studies (Christoffersen et al. | (2012), | Kanniainen et al.
(2014)), Chorro & Fanirisoa | (2019), Badescu et al.| (2017))) this indicator was used to
measure pricing performances because Vega-weighted errors do not vary too much across
maturities and moneyness contrary to price errors.

1t is also important to remark that noteworthy results are obtained with non-affine
GARCH structures in NIG environment when VIX information is used in the estimation
process. In this case, the residual error of around 3% comes from the necessity to use
classical SDF to obtain risk-neutral dynamics.

5In Table , we notice that the rankings related to options (or VIX) valuation are
essentially independent of the choice of the adequacy measures. For example, Spearman’s
rank correlation coefficient between in and out-of sample pricing errors ranking method-
ologies is equal to 0.96 . Consequently, we focus our attention on out-of-sample pricing
performances and VIX RMSE.
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Figures

Fig. 1. S&P500 and VIX closing prices (top) and daily log-returns (bottom) from January
7, 1999 to December 22, 2010.

(a) S&P 500 Index since 1999. (c) S&P 500 VIX-Index since 1999.
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Tables

Table 1: Descriptive statistics of the S&P500 and VIX datasets covering the period
January 7, 1999-December 22, 2010.

Number of Min Max Mean Std Dev  Skewness Kurtosis
observations
Price index 2718 676.53 1565.15 1182.75 190.14 —0.0959 —0.6909
Log-returns 2718 —0.0947 0.1096 —0.0001 0.0139 —0.1214 7.3758
VIX index 2718 9.8900 80.8600 22.1859  9.6098 1.8853 5.6964
Log VIX 2718 —0.3506 0.4960 —0.0001 0.0613 0.5697 4.1682
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Table 3: When to use what: numerical approximations used in the paper for each model
and each estimation strategy to compute the objective function in the estimation process
and the out-of-sample performance measures.

GARCH Estimation strategy Performance measures
Model VIX OPTIONS | VIX OPTIONS
G.HN.Ret.Ess — — CF FFT
G.GJR.Ret.Ess — — CF FFT
G.NGARCH.Ret.Ess — — CF MC
G.HN.Op.Ret.Ess — FFT CF FFT
G.HN.Ret.VIX.Ess CF — CF FFT
G.GJR.Ret.VIX.Ess CF — CF MC
G.NGARCH.Ret.VIX.Ess CF — CF MC
NIG.GJR.Ret.Ess — — MC MC
NIG.NGARCH.Ret.Ess — — MC MC
NIG.GJR.Ret.VIX.Ess (two-step) CF - MC MC
NIG.NGARCH.Ret.VIX.Ess (two-step) CF - MC MC
G.HN.Op.Ret.Qua — FFT CF FFT
G.HN.Ret.VIX.Qua CF — CF FFT
G.GJR.Ret.VIX.Qua MC — MC MC
G.NGARCH.Ret.VIX.Qua MC — MC MC
NIG.NGARCH.Ret.VIX.EGP CF - CF MC
IG.Ret.Ess — — CF FFT
IG.Opt.Ret.Ess — FFT CF FFT
IG.Opt.Ret.Ushp — FFT CF FFT
IG.Ret.VIX . Ess CF — CF FFT
IG.Ret.VIX.Ushp CF — CF FFT

Note: In this table, the acronym CF means that we have used the closed form expressions
provided in Table to compute the model implied VIX, the acronym FFT that we have used
the Fast Fourier Transform machinery with a number of discretization points of 2! to compute
option prices and the acronym MC that we have used Monte-Carlo simulations with 15000
paths to approximate the related expectations. An important point to emphasize here is the
use in our study of the so-called empirical martingale simulation methodology (EMS) proposed
by |[Duan & Simonato | (1998) to reduce drastically the variance of Monte-Carlo estimators. As
remarked for example in Badescu et al. (2015)), EMS is an essential tool to improve numerical
efficiency of Monte-Carlo methods especially in the GARCH setting and to use a reasonable
number of simulations to compute option prices. For the interested reader, results with 125000
Monte-Carlo simulations and 2'6 discretization points are available upon request and do not
change the conclusion of our study.
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Table 6: Parameter estimates and standard errors of the NIG distribution for GARCH
models combined with the Esscher SDF.

GARCH-type GJR NGARCH GJR NGARCH
Information Returns Returns Ret-VIX  Ret-VIX

a 1.1550  1.2702  1.3580  1.4536
Stand.Dev  (0.0108) (0.0036) (0.0001)  (0.0009)

B ~0.1432  —0.0025 —0.0058 —0.0061
Stand.Dev  (0.0057) (0.0015) (0.0023)  (0.0001)

5 1.0623  1.6204  1.5336  1.4538

Stand.Dev  (0.0000)  (0.0005)  (0.0000)  (0.0000)
7 0.1327 1.9734 7.9908 2.0178
Stand.Dev  (0.0076) (0.0055)  (0.0000)  (0.0003)
Note: These parameters have been obtained using the standard maximum-likelihood

algorithm for the residuals extracted from Table [4
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