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Collective Risk-Taking in the Commons
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April 7, 2019

Abstract

The management of natural commons is typically subject to threshold effects.
If individuals are risk-averse, some of the recent economic literature holds that
uncertainty on the threshold may have a positive impact by lowering incentives
to over-consume. By contrast, this intuitive result may unravel when uncertainty
is modeled as a discrete or multimodal distribution. Using a variant of the Nash
demand game with two thresholds, two types of Nash equilibria typically coexist:
cautious (respectively, dangerous) equilibria in which agents coordinate on the low
threshold (resp. the high threshold). When both types of equilibria coexist, the
symmetric dangerous equilibrium is always Pareto dominated by the symmetric
cautious equilibrium, and the latter is always Pareto efficient. We use an experi-
mental setting to assess the severity of the coordination and equilibrium selection
problem. While cautious (resp. dangerous) play is decreasing (resp. increas-
ing) in the probability that the threshold is high, coordination failures are salient
for intermediate probabilities where the likelihood of coexistence of both type of
equilibria is high. We find that there is a U-shaped relationship between overall
coordination and the probability that the threshold is high.
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1 Introduction

It is well known since the works of Olson (1965) and Hardin (1968), on the one hand,
and of Schelling (1978), on the other hand, that (i) group behavior can lead to inef-
ficient outcomes in the form of wasted resources (over-harvesting, over-pollution) or
forgone opportunities (under-provided public good), and (ii) attributes (like risk aver-
sion) shared by most individual group members might not apply to the group as a whole.
As it turns out, both problems can appear simultaneously when the commons problem
is compounded by the presence of uncertainty about what is really available.

Speaking of such commons, the global climate immediately comes to mind: climate
scientists point to irreversible harm that may occur past a given accumulation of green-
house gases in the atmosphere, but they also disagree on the precise threshold. Similar
situations exist elsewhere. In public health, notably, some diseases become epidemic
past a threshold of infected people, but there is uncertainty about this threshold; some
pathogens become resistant to antibiotics past an (uncertain) level of collective use of
a specific drug.1

These examples embody three well-documented stylized facts: first, common-pool re-
sources provide services subject to discontinuities, bifurcations or threshold effects that
may show up rather abruptly following persistent abuses (Scheffer et al. 2001; Rock-
ström et al. 2009); second, the inherent complexity of some common-pool resources
makes the assessment of a precise threshold uncertain; third, individual users can pro-
tect against risk by collectively reducing their consumption. Accordingly, we may see
them as variants of a modified Nash demand game (Nash, 1950; henceforth NDG) in
which there is uncertainty about the amount players can split. In the simplest instance
of this game, uncertainty about the resource is represented as a Bernoulli distribution
which is known to all, with low and high resource amounts bearing respective probabil-
ities (1−ph) and ph.2 The resource truly available is revealed ex post, after agents have
committed ex ante on their respective claim; everyone gets zero if aggregate demand
then exceeds capacity.

In this stylized context, multiple sets of equilibria can coexist (Proposition 1). In
1For more examples we refer the reader to Laurent-Lucchetti et al, 2013.
2Our theoretical results are qualitatively robust to the presence of an arbitrary finite number

of potential thresholds. They hold as well if uncertainty concerning the location of thresholds is
captured by a continuous but multimodal probability distribution. See the online appendix for details,
https://sites.google.com/site/obochet2/onlineappendixcautious.pdf.
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what we call cautious equilibria, agents collectively ask for splitting the lowest amount,
thereby guaranteeing that their respective individual claims are met. In what we call
dangerous equilibria, agents collectively ask for the high resource level, thereby exposing
themselves to a probability ph of collapse.3 When both types of equilibria coexist, every
cautious equilibrium is Pareto efficient and Pareto-dominates all dangerous equilibria
that can be reached from it while increasing every agent’s claim (Propositions 2 and
3). In particular, the symmetric cautious equilibrium always Pareto-dominates the
symmetric dangerous equilibrium. It therefore happens that all agents would be better
off taking less risk, but that strategic interaction prevents them from doing so, even if
they all are risk averse.4

These theoretical conclusion run counter to the existing theoretical literature on com-
mons problems, which holds that widely spread risk aversion should translate into
somewhat cautious collective behavior in the presence of exogenous risk. This depar-
ture can be attributed to representing uncertainty as a discrete or multimodal distri-
bution instead of the more usual continuous unimodal one. Behaviorally, though, it is
subject to one major caveat. A central issue with the standard NDG is that the size
of the set of Nash equilibria entails coordination issues: agents have to settle on claims
which precisely sum up to the available amount. This coordination problem occurs
‘within’ the set of equilibria. Our stochastic NDG now introduces an additional coor-
dination problem ‘between’ sets of equilibria, since dangerous and cautious equilibria
coexist. How agents actually solve both problems at the same time is far from clear,
so we turn to an experiment to test the model’s prediction. A priori, our conjecture
is that, in the lab, coordination problems within equilibria will not be as serious as
coordination problems between equilibria, because agents can alleviate the former by
focusing on an equal split of the resource. To our knowledge, this is the first time these
two coordination issues are identified and investigated simultaneously.

Our experimental results end up confirming the theoretical findings: both types of
equilibria coexist in the lab, even when all agents in a group are risk-averse. Among
the expected findings, we find that cautious (resp. dangerous) play is decreasing (resp.
increasing) in ph. But what about the coordination and equilibrium selection problem?

3A third set of equilibria exists, named dreadful equilibria. In a dreadful equilibrium, agents collec-
tively claim so much of the resource that no unilateral deviation by someone can prevent exhaustion.
These equilibria always exist, even in the standard NDG. Intuitive equilibrium refinements, like the
Strong Nash Equilibrium which allows group deviations, can eliminate them.

4There obviously are parameter constellations for which only dangerous equilibria exist –e.g. when
the probability ph is very high. In this case, dangerous equilibria are always Pareto efficient.
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We run five treatments, each with a fixed probability ph ∈ {0.3, 0.5, 0..7, 0.9, 0.99}.
For the treatments with more extreme values, ph = 0.3 (resp. ph = 0.99), subjects
coordinate on an equilibrium play in 70% (resp. 78%) of the cases. In contrast sub-
jects experience difficulty in coordinating on equilibrium play for intermediate values
of ph, where the likelihood of coexistence of cautious and dangerous equilibrium is
high. Coordination failures are salient for such an intermediate ph = 0.7, where the
rate of coordination failure is around 72% (put differently, equilibrium play whether
it is cautious and dangerous is around 28%). By contrast, such a rate falls down to,
respectively, 50% when ph = 0.5 and 40% when ph = 0.9. The probability ph thus
plays an important role in achieving coordination towards an efficient outcome. In
conjunction with the above discussion, one of our main result is to find a U-shaped re-
lationship between overall coordination and ph. This type of pattern remains for other
type of coordination failures. For instance, the impact of coexistence of equilibria on
coordination is also reflected in the average payoff of subjects which depicts the same
U-shaped relation with ph. Similarly, overshooting (understood as a sum of demands
that exceeds the realized threshold) is inverted U-shaped linked to ph.5

On the policy side, these findings stress once again the key role of information in the
management of common-pool resources. Absolute consensus on the precise threshold
location is not necessary for an efficient outcome to be implemented in a decentral-
ized fashion. What matters is that agents (with possibly different utility functions)
hold the same representation of uncertainty, and that the low threshold be sufficiently
likely.

Related Literature: Our theoretical results depart from the established and some-
what intuitive view that the presence of uncertainty can help discipline risk-averse
agents, thus mitigating the hazards of group behavior. In different frameworks, Eso and
White (2003), White (2004), and Bramoullé and Treich (2009) have indeed shown that,
despite internal strategic interactions, uncertainty leads groups of risk-averse agents to
be more cautious collectively. In a first-price sealed-bid auction, for instance, it is
well-known that risk-averse agents will bid aggressively in order to reduce the risk of
losing the object; but when the value of the object is uncertain, risk-averse agents (of
the DARA type) become less aggressive and are better-off as a result. Eso and White
(2003) call this ‘precautionary bidding.’ Bramoullé and Treich (2009) reach an analo-
gous conclusion in considering a version of the commons problem where the (continuous)

5We thank an anonymous referee for suggesting that we investigate these U-shaped relationships.
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damage function is subject to exogenous risk. They show that risk-averse individuals
would act more conservatively so as to avoid large variances in payoffs, thus mitigating
the tragedy of the commons. The reason our analysis delivers opposite results from
these papers is that their authors consider unimodal distributions, while we postulate
a multimodal one. Multimodal distributions are likely to arise in the contexts men-
tioned above (climate change, epidemiological outbreaks, antibiotic resistance, etc.) as
the outcome of aggregating the assessments of disagreeing experts.6 With multimodal
distributions, the set of equilibria might significantly expand, so equilibrium selection
gets more complicated.

In a setting relatively close to ours, Guth et al. (2004) study an NDG with two players
and an uncertain surplus size. However, they allow each party to choose to ‘wait’ until
uncertainty is resolved before making a claim. Adding the ‘wait’ strategy yields two
equilibria in which one of the players takes almost the whole surplus, provided uncer-
tainty is small. Another related contribution is Barrett and Dannenberg (2012), who
demonstrate theoretically and observe in the lab that the combination of uncertainty
and thresholds effects transforms the traditional free-riding problem of the tragedy of
the commons into a coordination problem. As soon as the value of the threshold is
uncertain, coordination breaks down dramatically and catastrophe cannot be avoided.
Our analysis differs from theirs in at least two important ways: (i) they assume agents
are risk neutral while we highlight the presence of risk aversion, (ii) they suppose the
probability of catastrophe varies uniformly with the group’s activity level while we keep
the probability distribution exogenous and constant. These differences allow us to draw
specific conclusions: namely, that coordination on the safe level of activity is possible
if the probability of catastrophe is sufficiently high, but that such coordination is quite
hard when this probability is low, even if all agents are risk-averse.

Diekert (2017) recently examined a tractable dynamic version of an NDG with threshold
uncertainty, which parallels and completes our study: it highlights the possibility for
agents to collectively experiment and learn about the threshold’s location, while we
focus on coordination issues; it uses a theoretical model with identical agents, while we
resort to an experiment and allow a heterogenous group of players. Conclusions, though,
are in line with the intuitive view: the threat of collapse makes agents collectively more

6Combining estimates, forecasts or probability distributions from experts is a traditional and well-
researched topic in Management Science. For a critical survey of existing mathematical methods and
behavioral approaches, see Clemen and Winkler (1999). The reasonableness and necessity of dealing
with multimodal distributions, in particular, is argued on page 192.
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careful in searching for the threshold. Our own findings suggest that this proposition
may not hold when probabilistic beliefs about threshold location are multimodal.

The division of private goods has already received much attention in the experimen-
tal literature investigating the effects of resource uncertainty on cooperative behavior
(Budescu et al., 1992, 1995; Rapoport et al., 1992; Suleiman et al., 1994). As in our
setting, subjects were free to claim as much as they wanted of a resource, with the
consequence that they got nothing if the group’s total request exceeded the available
resource. The main finding is that, as uncertainty (defined as the range of a uniform
probability distribution) increased, subjects overestimated resource size and requested
more. These findings are in line with the results of experimental papers on threshold un-
certainty in discrete public-good contribution games –McBride (2010) finds that wider
threshold uncertainty may also hinder collective action; on common-resource problems
in a dynamic setting, Fischer at al. (2004) show that an increase in uncertainty leads
to overly optimistic expectations. In these papers and the ensuing literature (see for
example Gustafson et al., 1999, Milinsky et al., 2008, Tavoni et al., 2011, or Barrett
and Dannenberg, 2012), however, it is unclear why resource uncertainty affects cooper-
ation. Gustasfon et al. (1999) state that “a reason for such overestimation may be that
subjects perceive a direct relationship between the central tendency of a probability
distribution and its range. Increasing the interval between the lower and upper bounds
in of resource size would therefore cause subjects to perceive or infer an increase of the
expected value of the resource.” Another explanation (Rapoport et al., 1992) is that
people would base their estimates of resource size on a weighted average of the lower
and upper bounds of its possible realization, with the more desirable upper bound being
overweighted so an upward shift in the estimates would result: this explanation is con-
sistent with research demonstrating that agents tend to weigh the desirable outcomes
more heavily (see Zakay, 1983).

Recent papers also consider variations of the NDG (see Feltovich and Swierzbinski,
2011, Anbarci and Boyd, 2011, Anbarci and Feltovich, 2012, Birkeland, 2013, and An-
dersson et al., 2014, among others). But none focuses on the type of uncertainty we
consider here. Feltovich and Swierzbinski (2011) find, using experiments, that intro-
ducing strategic uncertainty in a NDG has an effect on bargaining outcomes. Anbarci
and Boyd (2011) and Anbarci and Feltovich (2012) introduce random implementation
in the NDG: with an exogenous probability q one bargainer receives her claim, while
the other gets the remainder. More recently, Andersson et al. (2014) study strategic
uncertainty. They model a player’s uncertainty about another player’s strategy as a
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probability distribution over that player’s strategy set. They show that robustness to
symmetric strategic uncertainty singles out the (generalized) Nash bargaining solution.
By contrast, the uncertainty we introduce here is about the size of the resource.

Finally, our paper relates to the vast literature on unstructured bargaining (see Camerer,
2003 for a comprehensive survey). This strand of research mainly seeks to understand
process-free solution concepts of bargaining models, such as the Nash bargaining so-
lution. Many early experimental setups (for example Roth and Malouf, 1979) reveal
that agents coordinate naturally on an equal split of the resource when sharing a pie of
fixed size. According to Roth (1985), “bargainers sought to identify initial bargaining
positions that had some special reasons for being credible,” and equal sharing is one of
them. As in our framework, disagreements may thus occur due to coordination difficul-
ties when multiple focal points exist. In Roth (1985), many of the disagreements boil
down to self-serving differences between which focal points should be adopted. Our re-
sults are in line with some of these non-alternating-offers experiments where more than
one focal point for the division of resources exists. In our experiment, many subjects,
instead of making demands that guarantee a feasible and strictly positive outcome that
is fair, will prefer to make demands that increase the risk of failure but lead to unequal
outcomes favoring them.

2 The Model

We introduce in this section a stochastic version of the NDG for which the value of
the resource to be distributed can take two possible values, high and low. These values
are common knowledge, and their attached probabilities are also known. In the online
appendix, we also present a more general version where multiples values are possible,
and also a continuous version with multimodal distributions.7 The theoretical results
presented in this section are robust to these extensions. Because our focus is on a test
of the predictions of the model, we stick with the simpler version in this section.

Consider a finite set N = {1, ..., n} of agents who must simultaneously decide how
much of a resource they will claim for themselves. Overall demand is sustainable up
to a limit, but uncertainty lies on the tipping point beyond which the intensity of use
becomes unsustainable, which we model as the available resource collapsing to 0.8 Let

7The online appendix is available https://sites.google.com/site/obochet2/onlineappendixcautious.pdf.
8One interpretation is that agents are sufficiently long-lived to deem the utility from immediate
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h > ` > 0 be respectively the high and low values that the stock of resource can take.
With probability ph ∈ [0, 1], the high value h is realized, with probability (1− ph), the
low value ` is realized.

Denote xi ∈ [0, h] agent i’s claim, demand or request (we use these terms interchange-
ably throughout the paper) on the resource, x = (xi)iεN ∈ [0, h]n a request vector or
profile, X =

∑
N xi total demand, and X−i =

∑
j 6=i xj the sum of all agents’ claims ex-

cept agent i’s. Given a profile x ∈ [0, h]n, we also use the notation x−i = (xj)j 6=i for the
profile of demands of agents other than i. Likewise, we use xT for the profile of demands
of agents that belong to T , and x−T = (xj)j∈T for the profile of demands of agents that
belong to N \ T , where T ⊆ N . The utility agent i derives from being delivered her
request xi is given by ui(xi), where the function ui(·) is concave and nondecreasing.
Note that concavity of the utility function implies that agents are risk-averse or risk-
neutral. Reaching consumption level xi is conditional on total demand not exceeding
the threshold; otherwise all agents get zero utility, ui(0) = 0 for all i.

Agent i’s expected payoff in this stochastic NDG is given by:

vi(xi, X−i) = ui(xi)I(X ≤ l) + phui(xi)I(l < X ≤ h), (1)

where I(·) indicates whether the condition within parentheses holds (= 1) or not (= 0).
Notice that the classical NDG is the special case of a stochastic NDG in which ph ∈
{0, 1}.

Nash equilibrium: A profile of claims x ∈ [0, h]n is a (pure-strategy) Nash equilibrium
if for all i ∈ N , and all x′i ∈ [0, h]:

vi(xi, X−i) ≥ vi(x
′
i, X−i). (2)

Strong Nash equilibrium: A profile of claims x ∈ [0, h]n is a (pure-strategy) strong
Nash equilibrium if there does not exist T ⊆ N , and x′T ∈ [0, h]|T | such that,

vi(x
′
T , x−T ) ≥ vi(xT , x−T ) for all i ∈ T , and (3)

vj(x
′
T , x−T ) > vj(xT , x−T ) for some j ∈ T. (4)

unsustainable resource consumption negligible compared to the lifetime utility of sustained consump-
tion.
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This completes the description of the model. We now proceed to the derivation of our
main results.

3 Theoretical results

We first characterize the set of Nash equilibria of the stochastic NDG. Later, we will
analyze the efficiency properties of these equilibria.

3.1 Nash equilibria

Agent i’s best response strategy is as follows. First, consider the case where X−i >
l:

a) If X−i ≤ h, agent i can do no better than to request xi = h − X−i because the
remaining agents already collectively demand more than the sustainable threshold
l.

b) If X−i > h, however, agent i can claim any amount xi ≥ 0, because she will end
up with a payoff of zero anyway.

Next, consider the case where X−i ≤ `:

a) If ui(l − X−i) ≥ phui(h − X−i), agent i does best by claiming xi = ` − X−i.
Requesting the safe amount ` −X−i in this case yields a higher (certain) utility
than demanding the larger but risky amount h−X−i.

b) Similarly, if ui(l−X−i) < phui(h−X−i), agent i’s best response is xi = h−X−i.

This description of the best-response strategies shows that three sorts of Nash equilibria
are possible: (1) cautious equilibria, in which agents collectively demand the highest
safe level, X = `; (2) dangerous equilibria, where agents together request the risky
upper ceiling, X = h, and face a probability 1 − ph of exhausting the resource; and
dreadful equilibria, wherein everyone’s claim is so high, i.e. X−i > h for all i, that no
individual adjustment can avoid their collapse.9 We define these formally below.

9Note that we focus here on pure-strategy Nash equilibria. Although mixed-strategy equilibria
exist, it is questionable whether subjects can or wish to engage in adopting mixed strategies.
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Cautious equilibrium: An equilibrium profile x ∈ [0, h]n is a cautious equilibrium if
X ≤ `.

Notice that for any cautious equilibrium, payoffs are then always positive regardless of
ph because ` is available with certainty—i.e., vi(xi, X−i) = ui(xi) > 0 for all i ∈ N .

Dangerous equilibrium: An equilibrium profile x ∈ [0, h]n is a dangerous equilibrium
if ` < X ≤ h.

Notice that for any dangerous equilibrium, vi(xi, X−i) = phui(xi) for each i ∈ N .

Dreadful equilibrium: An equilibrium profile x ∈ [0, h]n is a dreadful equilibrium if
X−i > h for all i ∈ N .

Dreadful equilibria yield zero utility to all. These equilibria already exist in the classical
NDG and are therefore not the focus of our analysis.

Notice that no Nash equilibrium exists in which agents collectively ask for less than l or
strictly between l and h. Moreover, cautious, dangerous, and dreadful Nash equilibria
can coexist, despite the fact that all agents are risk-averse. This contrasts with the
findings reported so far in the literature (see Bramoullé and Treich 2009, for exam-
ple).

Example 1. Let there be only two agents, with identical utility function ui(xi) =
√
xi

for i = 1, 2. Suppose l = 0.8, h = 1, and ph = 0.8. The strategy profile x = (0.5, 0.5) is
a dangerous equilibrium because vi(0.5, 0.5) = 0.7 · 0.8 = 0.56 > vi(0.3, 0.5) = 0.54 for
i = 1, 2. At the same time, the profile x′ = (0.4, 0.4) is a cautious equilibrium because
vi(0.4, 0.4) = 0.63 > vi(0.6, 0.4) = 0.77 · 0.8 = 0.62 for i = 1, 2; and x′′ = (1, 1) is also
clearly an equilibrium, a dreadful one which brings each agent’s payoff to 0.10 �

We now introduce the conditions underlying the existence of each type of Nash equi-
libria. For this, we introduce an additional piece of notation. Let 0 ≤ X i ≤ ` refer to
the cut-off demand level of the other agents such that:

10Although we exclude such risk attitudes for reasons of tractability, note that all three types of
equilibria may also coexist with only risk-loving agents. To see this, simply modify the example by
supposing that i = 1, 2, ui(xi) = x2

i , and p = 0.4. One can check that x = (0.5, 0.5) is a dangerous
equilibrium, x′ = (0.4, 0.4) is again a cautious one, and x′′ = (1, 1) is a dreadful equilibrium.
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ui(l −X−i) > phui(h−X−i) if X−i < X i,
ui(l −X−i) < phui(h−X−i) if X−i > X i.

(5)

This allows us to make the following preliminary statement.
Lemma 1. For each i, there always exists a unique cut-off demand level, X̄i.

Proof. Let fi(X−i) ≡ ui(`−X−i)− phui(h−X−i). Clearly, f ′i(X−i) = −u′i(`−X−i) +

phu
′
i(h − X−i) < 0 because the function ui is concave. If fi(0) is non-positive, set

X̄i = 0. If fi(0) is positive, the fact that fi(a) < 0 and that fi(.) is decreasing and
continuous entails that there is a unique X̄i > 0 such that fi(X̄i) = 0, fi(X−i) > 0 if
X−i < X̄i, and fi(X−i) < 0 if X−i > X̄i.

The following proposition characterizes the existence of cautious and dangerous equi-
libria.

Proposition 1. The stochastic NDG always admits at least one non-dreadful equilib-
rium. More precisely,

i) A cautious equilibrium exists if and only if
∑

i∈N X̄i ≥ (n− 1)`;

ii) A dangerous equilibrium exists if and only if
∑

i∈N X̄i ≤ (n− 1)h;

iii) Cautious and dangerous equilibria coexist if and only if

(n− 1)` ≤
∑

i∈N X̄i ≤ (n− 1)h.

Proof. Part i): By the above description of best-response strategies, a strategy profile
x is a cautious equilibrium if and only if{

X−i ≤ X̄i for all i ∈ N∑
j xj = `

(6)

Using the fact that X−i = `−xi and adding up all the inequalities in (6), we have that∑
i X̄i ≥ (n− 1)`. Conversely, if

∑
i X̄i ≥ (n− 1)`, one can always find a vector x that

satisfies (6).

Part ii): Similarly, a strategy profile x is a dangerous equilibrium if and only if{
X−i ≥ X̄i for all i ∈ N∑

j xj = h
(7)
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Figure 1: The two-agent case

Using the fact that X−i = h − xi and adding up all the inequalities in (7), we have
that

∑
i X̄i ≤ (n− 1)h. Conversely, if

∑
i X̄i ≤ (n− 1)h, one can always find a vector

x which satisfies (7).

Part iii) follows trivially.

Figure 1 illustrates the sets of equilibria in the two-agent case. These sets depend
on the location of the cut-offs X̄i, which in turn depends on the lower bound `, the
probability ph, and the agents’ respective utility functions ui(·).

We now discuss a few comparative statics regarding the probability ph of the high value
occurring and the intensity of the agents’ risk aversion. From Proposition 1, a higher
value of ph means a lower value of the cut-off X̄i, owing to the fact that claiming the
risky amount of resources, h−X−i, has become relatively more tempting. As a result,
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the set of dangerous equilibria expands, in the sense of inclusion, whereas the set of
cautious equilibria shrinks as ph increases.

Remark 1. Focusing on symmetric equilibria: the symmetric dangerous equilibrium
exists if ui

(
`− (n−1)h

n

)
≤ phui

(
h
n

)
for all i ∈ N . Clearly the inequality does not

hold when ph = 0 and is true when ph = 1. Hence there exists a pi such that

ui

(
`− (n−1)h

n

)
= piui

(
h
n

)
. It follows that for high values of ph, i.e. ph ≥ pi agent i does

not wish to deviate from the symmetric dangerous strategy. Similarly a cautious equilib-
rium exists if ui

(
`
n

)
≥ phui

(
h− (n−1)`

n

)
for all i ∈ N . The inequality clearly holds at

ph = 0 and not at ph = 1. Hence, there exists a pi such that ui
(
`
n

)
= piui

(
h− (n−1)`

n

)
for all i ∈ N . It follows that for low values of ph, i.e. ph ≤ pi agent i does not wish
to deviate from the symmetric cautious strategy. Observe that if ui is concave, then
pi ≤ pi.11 Therefore, in the range pi ≤ ph ≤ pi, a risk-averse agent can be part of both
the symmetric cautious and the symmetric dangerous equilibria. �

Similarly, if agent i becomes more risk-averse—so that the coefficient of absolute risk
aversion u′′i (·)/u′i(·) increases, say—the cut-off X̄i increases because a certain amount
of resources, ` −X−i, is now relatively more attractive. It follows from Proposition 1
that the set of cautious equilibria expands while the set of dangerous equilibria shrinks
as agents become more averse to risk, all else equal.

Example 2. Let ui(xi) = (xi)
α, 0 < α ≤ 1, for all i ∈ N . With this functional

form, a symmetric dangerous equilibrium exists if (ph)
1/α ≥

(
n`−(n−1)h

h

)
. Similarly, a

symmetric cautious equilibrium exists if (ph)
1/α ≤

(
`

nh−(n−1)`

)
.12 It is noteworthy that

(ph)
1/α is increasing in both ph and α. This implies that if ph and α are such that both

types of equilibria coexist, by decreasing ph—and letting α constant—we end up with only
the symmetric cautious equilibrium remaining. Similarly, by decreasing α—letting ph
constant—we eliminate the dangerous equilibrium while keeping the symmetric cautious
one. This last comparative static illustrates the tension between the risk aversion effect
and the coordination effect. Therefore, if risk aversion becomes very pronounced, there
will be a point past which its effect will dominate the coordination effect, leading to the
disappearance of dangerous equilibria. �

11Adding n−1
n (h− `) to the argument on both sides of ui

(
`− (n−1)h

n

)
= piui

(
h
n

)
yields, by con-

cavity of ui that ui

(
`
n

)
> piui

(
h− (n−1)`

n

)
. Therefore, pi ≤ pi.

12These equilibria are ‘symmetric’ in actions, not in payoffs.
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Remark 2. Our analysis ignores non-degenerate mixed strategy Nash equilibria. Such
Nash equilibria are salient in the standard NDG –see for instance Malueg (2010) for
a very nice treatment of the mixed-strategy Nash equilibria case in two players NDG.
The stochastic NDG does not escape this conclusion. For instance, any randomization
over dreadful equilibria would be a mixed-strategy Nash equilibria. There also exist
mixed-strategy equilibria where agents randomize only on the cautious and dangerous
strategies.13 While the characterization of mixed-strategy equilibria is an interesting
problem, it is beyond the scope of this paper.

3.2 Efficiency

We now assess the efficiency properties of each type of equilibria. It turns out that cau-
tious equilibria are not only Pareto-efficient, they are also strong Nash equilibria. The
following proposition determines whether dreadful and cautious equilibria are strong
in this sense.

Proposition 2. Cautious equilibria are strong, but dreadful equilibria are not.

Proof. From a dreadful equilibrium, any group deviation leading to a cautious or a
dangerous strategy profile, be it a deviation by the entire set of players, obviously
brings a higher payoff to all agents in the coalition. Hence, dreadful equilibria are not
strong.

The proof that cautious equilibria are strong proceeds by contradiction. Let x ∈ Rn
+

be a cautious equilibrium, and suppose there exists another strategy profile x′ and a
coalition T ⊆ N such that x′k = xk for all k /∈ T , vi(x′) > vi(x) for some i ∈ T , and
vj(x

′) ≥ vj(x) for all j ∈ T . Because the utility functions uj’s are increasing, it must
be the case that

∑
j∈T x

′
j >

∑
j∈T xj and x

′
j ≥ xj for all j ∈ T . Now, consider an agent

j ∈ T such that X ′−j > X−j. For this agent, demanding x′j = `−X ′−j or less leads to a
lower payoff than before; her best response must be x′j = h−X ′−j. We then have that
vj(x

′
j, X

′
−j) = vj(h −X ′−j, X ′−j) < vj(h −X−j, X−j) ≤ vj(x), where the last inequality

holds because x is a Nash equilibrium. Agent j is thus worse off under x′ than under
x, which contradicts the initial assertion.

13For instance, let n = 3, ` = 6, h = 12, ph = 0.5 and ui(x) = (xi)
1
4 . Under such a parameter

constellation, both a symmetric cautious and dangerous equilibrium exist. It can be shown that there
is a mixed strategy equilibrium in which each agent i randomize on xi = 4 with probability around
0.56, and with the remaining mass on xi = 2.
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This proposition entails that all cautious equilibria are Pareto efficient. Furthermore,
any cautious equilibrium Pareto-dominates all dreadful ones. The status of dangerous
equilibria is not so clear-cut, however. The following result shows that a cautious
equilibrium Pareto-dominates all dangerous equilibria that can be reached from it while
increasing every agent’s claim.

Proposition 3. Let the strategy profile x be a dangerous equilibrium. Any cautious
equilibrium x′ such that, for some subset T ⊆ N ,

x′i = xi − αi for all i ∈ T , and
x′i = xi for all i /∈ T ,

(8)

with αi ≥ 0 for all i ∈ T and
∑

i αi = h− `, Pareto-dominates x.

Proof. Suppose a dangerous equilibrium x and a cautious equilibrium x′ verifying con-
dition (8). For all i ∈ T , we have that

ui(x
′
i) ≥ phui(x

′
i + h− `)

= phui(xi +
∑
j 6=i

αj)

> phui(xi).

The first inequality holds because x′ is itself a Nash equilibrium. The second (strict)
inequality follows from the fact that

∑
j 6=i αj > 0, for

∑
j 6=i αj = 0 would mean that

x is not a Nash equilibrium (since the cautious equilibrium x′ could then be reached
from it through a unilateral move by agent i).

An important consequence of Proposition 3 is the following: if dangerous and cautious
equilibria coexist, not only a symmetric cautious is Pareto efficient and strong, but
then the symmetric dangerous equilibrium is always Pareto inefficient.

4 Experimental Design

The experiment implements the stochastic NDG using a between-subjects design. The
different treatments vary the probability ph that the threshold is high. The following
two parameters are constant across all treatments: the high threshold is h = 24 while
the low threshold is ` = 18. These values are common knowledge among participants,
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Table 1: Experimental Design

Treatment Probability ph Subjectsa Sessions

T03 0.3 36 (6) 3
T05 0.5 36 (6) 3
T07 0.7 72 (12) 6
T09 0.9 36 (6) 3
T099 0.99 36 (6) 3

Sessions were run at the labs of the University of Bern (first wave: 108 sub-
jects, treatments T03-T05-T07) and NYU Abu Dhabi (second wave: 108 sub-
jects, treatments T07-T09-T099 ). (a) Number of independent observations
(matching groups) in parentheses.

only their probabilities of occurrence vary across treatments. Probabilities of occurrence
are also common knowledge among participants within a given treatment. Table 1
summarizes the experimental design. Each subject participated in only one treatment.
We explain below the procedures and provide details on the implementation of the
different treatments.

The first wave of data collection took place at the experimental laboratory of the
University of Bern (Spring 2014) with a total of 108 participants. For the first wave, we
implemented three sessions (12 subjects each) for each of the first three treatments T03,
T05 and T07. The second wave of data collection took place at SSEL, the laboratory
of NYU Abu Dhabi (Fall 2018). We implemented there three sessions (12 subjects
each) for each of the last three treatments T07, T09 and T099. The doubling of T07 at
NYU Abu Dhabi is meant to provide a benchmark for replication of the results initially
obtained in Bern. The results on T07 regarding the main variables of interest cannot
be statistically distinguished across the two locations.14 Since there are no differences
between the two locations on this treatment, we pool the data across locations. In
addition, the replication of the results on T07 allows us to make meaningful comparisons
between the new treatments T09 and T099 with the other treatments.

14For instance there are no statistically significant differences between (average) individual demands
or group demands (p-value= 0.75). This is also confirmed by various random effects regressions using
a location dummy variable (along with some other co-variates) with (i) individual demands xi as
the explanatory variable, (ii)

∑
i xi in groups as the explanatory variable, xi = 6 or xi = 8 as

the explanatory variables. In all regressions, the location dummy variable has a non-statistically
significant effect, thereby showing that there are no statistically significant differences in T07 across
the two locations.
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At each location, each session lasted around 60 minutes and each involved different
participants. In Bern, participants earned an average of 32 CHF for their participation
(including a 5 CHF show-up fee)—roughly $31US. In Abu Dhabi, participants earned an
average of 110 AED for their participation (including a 30 AED show-up fee) —roughly
$29US.15

At the start of a session subjects are informed that the experiment will be composed
of several parts, but are not given any information regarding these until they actually
take place. We distributed the instructions for Part 1 of the respective treatment.
Once the participants finished reading the instructions, a member of the experimenter
team provided a verbal summary. There is no framing and the wording is neutral—see
attached instructions in the online appendix. Participants were also asked to answer
a set of control questions which had to be answered correctly before the experiment
could proceed. The stochastic NDG was played ten times, and we therefore say that
there were ten periods. Each session is composed of twelve subjects who are divided
into two silos (blocks) of six. Subjects in different silos sit in the same room but never
interact with one another when playing the stochastic NDG. At the beginning of each
period, participants in each silo are assigned randomly into groups of three. Groups
are reshuffled each period within each silo and identities are unknown throughout to
minimize reputation effects. Given the silos’ construction, we have six independent
observations per treatment (two per session). In each period, groups play the stochastic
NDG given the probability ph that prevails in the session. In addition, in each period,
before submitting a demand, participants give an estimate of the sum of the demands
that the other two in their group will ask for. We interpret this as the belief that
participants form regarding the behavior of their group members. This belief elicitation
is incentivized.16 Subjects are told in the instructions and by the experimenter that, for
Part 1, they will be paid three randomly chosen periods out of the ten periods played
(belief and payoff from the stochastic NDG combined). With this, we aim at forcing
subjects to be focused on their choices in each period, as well as reducing hedging and
repeated-game effects. The random selection of the payoff-relevant periods is made at

15Participants payments (at the end of the experiment) in Bern were rounded up to the next higher
0.5 CHF, the standard rounding at the University of Bern. Participants payments at NYU Abu Dhabi
are rounded up to the nearest integer AED (no cents are carried out), the standard rounding procedure
at the SSEL lab.

16If a participant correctly estimates the demand of the others in his group, he gets 1.5 extra
experimental dollars. If his estimation deviates by one, he receives only 1 experimental dollar. If
his estimation differs by 2 points, he gets 0.5 experimental dollar. If it differs by more, he/she gets
nothing.
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the end of the experiment.

When moving to the next part, subjects are informed that out of Parts 2 and 3, only
one will be randomly chosen to be payoff-relevant. Parts 2 and 3 each makes use of
some multiple-price list. In Part 2, we elicit subjects’ risk preferences using a stan-
dard multiple price list technique (Holt and Laury, 2002). In Part 3, subjects faced a
tailor-made multiple-price list to evaluate their propensity to play symmetric cautious
equilibria. Subjects have a list of ten decisions to make, each decision involving the
choice between two lotteries—A and B—where A always brings a certain amount of
6 and B brings 12 with some probability q. The probability to obtain 12 in decision
B is equal to q = 0.1 for decision 1, q = 0.2 for decision 2,... and q = 1 for decision
10. We simply record the decision at which a subject switches between lottery A and
B.The number of successive choices is indicative of the attitude towards risks of sub-
jects: the risk-averse switch between lotteries A and B happens after the fifth decision
(the fifth decision presents a decision between getting 6 for sure, or 12 with probability
0.5). This task also allows us to highlight the likelihood of symmetric dangerous and
cautious equilibria per treatment. Notice that an agent switches at the probability
where having 12 with uncertainty brings a higher expected payoff than having 6 with
certainty. This coincides with the probability at which an agent with a belief that the
others collectively play 12 switches away from the cautious play.

5 Experimental Results

5.1 From Theory to Evidence

Our theoretical results reveal that groups of risk-averse individuals may engage in risk-
taking behavior in equilibrium. This adds a new layer to the coordination problem:
not only must players coordinate “within” the set of equilibria whose demands sum to
a given level, say 18, but they must also coordinate between sets of equilibria—those
summing to 18 and those summing to 24—when dangerous and cautious equilibria
coexist. In practice, “within” coordination failures may not be so serious because agents
often focus on symmetric share profiles where each asks for an equal split of the targeted
stock value. However, how agents solve the “between” coordination problem is far from
clear, which is why we turn to an experimental test. We shall investigate the following
three hypotheses:
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1) Cautious and dangerous equilibria can coexist even though all agents are risk-averse
(consistent with Proposition 1): in terms of the experiment this implies that we should
observe both cautious and dangerous behavior inside a silo, irrespective of the risk
aversion of subjects (proxied by the probability at which they switch in Part 3). We
expect this feature of behavior to be more salient for intermediate values of ph where
cautious and dangerous equilibria are more likely to coexist within a silo (T05 and
T07).

2) Cautious equilibria should occur more often for low values of ph and dangerous
equilibria more often at higher values of ph (in accordance with Remark 1). We thus
expect to find a higher rate of cautious equilibria in the treatments with low ph, i.e.
T03 and T05, than in their counterpart treatments with higher ph (and conversely for
dangerous equilibria).

3) Coordination becomes more difficult when coexistence of equilibria is more likely
(consistent with an increase in “between”-coordination failures when both equilibria
exist). Hence, we should observe equilibrium play (both cautious and dangerous) less
often in treatments with intermediate values of ph, i.e. T07 and to some extent T05,
where coexistence of these equilibria is more likely. This coordination problem should
disappear for lower values of ph, where only cautious equilibria typically exist, and for
higher values of ph, where only dangerous equilibria typically exist.

From now on, we will call a demand profile x consistent with a Nash equilibrium when-
ever demands sum to 18 or 24, and this for all of our treatments. Likewise, we will
talk about a symmetric individual Nash strategy for subject i if his demand xi is either
6 or 8, and this for any of our treatments. We often refer to the cautious strategy for
subject i when xi = 6, and to the dangerous strategy for subject i when xi = 8. The
focus of our analysis will be on symmetric Nash equilibria.

5.2 Preliminary Remarks

We give here an overview of important trends coming out of our experiment. This
will help us forming some first intuitions regarding the three central results of the
experiment.
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Figure 2: Average individual demand by period

Average demands First, we observe that behavior differs across treatments, both at
the individual and group levels. Figure 2 shows average individual demands over time
by treatments.17 Treatments T03, T09 and T099 present (relatively) stable individual
demand over the 10 periods (around 6 and 8) while demand in T07 is clearly increasing
towards 8 and T05 stands in the middle with a possible convergence toward 8.

However, average demands are not necessarily the best measure of behavior to consider
since they are silent regarding the type of strategy chosen by participants (as well
as equilibrium versus non-equilibrium behavior). Indeed, Result 1 will confirm that
both types of strategies (cautious and dangerous) coexist in the data, especially in the
treatment T07.

Nash equilibria Across all treatments, almost half of the outcomes are Nash equi-
libria (52.3%). The rate of Nash equilibria (and their type, cautious/dangerous) clearly
differ across treatments. Importantly, the vast majority of these Nash equilibria are
symmetric. We will thus focus on these symmetric equilibria for the rest of the analy-

17The two horizontal lines at 8 and at 6 stand respectively for the dangerous and cautious symmetric
demands.
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Treatment Cautious NE Dangerous NE Coord. failure rate = 100− CNE −DNE
T03 65% 5% 30%
T05 37.5% 11.7% 50.8%
T07 10% 18.3% 72.7%
T09 0.8% 58.3% 40.9%
T099 0% 79.1% 21.9%

Table 2: Equilibria Rates by Treatments

sis.

Table 2 hints at two important features of our results. We can see that two types
of coordination failures are impacted by the probability ph: (i) as we move across
treatments, groups focus less and less on the (Pareto-dominating) cautious equilibrium
(Result 2); (ii) the impact on equilibrium play is non-linear and U-shaped (Result
3).

Risk aversion and predicted play. Recall that in Part 3 the proportion of players
who did not switch at a given probability q is willing to play a symmetric cautious
equilibrium if they expect others to do so. Furthermore, we can also infer a lower
bound of the proportion of players willing to play the symmetric dangerous strategy:
when an agent i switches at a probability q or below we know that ui(6) < q · ui(12).
This condition, coupled with the concavity of ui(.), implies that ui(2) < q · ui(8) holds
when an agent i switches at q or below. Notice that this last condition guarantees
that agent i would play a symmetric dangerous strategy if she expects others to do so.
In other words, the proportion of players switching at q in Part 3 is willing to play a
symmetric dangerous strategy and is not willing to play a symmetric cautious strategy
at any probability γ ≥ q.

This reasoning is illustrated in Figure 3, relating the probability at which subjects
switched in Part 3 and their observed cautious/dangerous play in the stochastic NDG
(averaged per silo). The first figure relates the proportion of subjects who did not
switch at any given probability—the proportion playing cautious in a silo—while the
neighboring figure relates the proportion of subjects who did switch—the proportion
playing dangerous. As predicted, both quantities are quite closely related.18

18They are a bit different because subjects have more strategies at their disposal in the stochastic
NDG (and may thus aim at different equilibria than the symmetric ones).
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Figure 3: Probability switching (Part 3) and type of equilibrium play

5.3 Experimental Results

We now turn to the main findings of the experiment, which we present in the following
four results below.

Result 1: Cautious and dangerous equilibria coexist, irrespective of agents
risk-aversion. We first show that both cautious and dangerous play coexist. We
next show that this is not related to risk-aversion.

Cautious and Dangerous strategies coexistence is maximal for ph = 0.7. In
order to highlight how the treatment probability impacts the type of equilibrium play,
we first compute a variable "type of equilibrium play" equal to the proportion of sub-
jects in a silo playing the cautious demand (6) minus the proportion playing the dan-
gerous demand (8), averaged across all periods per silo. This variable is thus equal
to -1 when all play dangerous in a silo, to 1 when all play cautious, and to 0 when
coexistence is maximal (50% of a silo across all periods play cautious and 50% play
dangerous).
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Figure 4: Type of Equilibrium play and Treatment

Figure 4 shows clearly that the dangerous play dominates for T099 and T09 while
cautious behavior is dominant for T03 (and present in T05). An interesting observation
is that coexistence is maximal when ph = 0.7: on average, in T07, subjects were
equally likely to play cautious than dangerous.19 This pattern is strikingly similar
when we use the "predicted play"—from Part 3—for computing the "predicted type of
equilibria" in each silo, instead of the actual stochastic NDG play (see Figure 11 in the
appendix).

Equilibrium play is uncorrelated with risk aversion. The second observation
is that risk preferences are not statistically related to the individual strategy chosen by
subjects in our sample. This point is consistent with our first theoretical prediction:
Despite agents being risk-averse, cautious and dangerous strategies are played when
both strategy are more likely to coexist.

19Figure 10, in the appendix, shows a Kernel density estimation to analyze the distribution of
individual demands. We observe a clear bimodal distribution in demands when ph = 0.7, confirming
the trend observed in the task described above: agents focus on playing both 6 or 8 in this treatment.
We observe a strong shift at the individual level toward 6 when ph = 0.5 (with a little bump around
"8") and ph = 0.3 and strong shift toward 8 when ph = 0.9 and ph = 0.99.
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Figure 5: Type of equilibrium and risk aversion (average per silo)

We observe in Figure 5 an apparent lack of relationship between type of equilibrium play
and risk preferences (averaged per silo). This observation is supported by a random-
effect regression with the number of safe choices as the unique explanatory variable
(p-value = 0.997).20 Hence, if risk aversion plays a role for determining the existence
of both types of equilibria, it does not impact the choice of a dangerous or a cautious
strategy when both coexist.

Result 2: Individual and group cautious (resp. dangerous) play is decreas-
ing (resp. increasing) in ph. Figure 6 below shows that individual cautious play
(averaged at the silo level) is very high when ph = 0.3 and decreases sharply as ph
increases. In contrast, individual dangerous play increases as ph increases.21 A set
of Jonckheere-Terpstra tests confirm these observations. Cautious play is clearly de-
creasing with ph (p-value< 0.001 at individual and group level) and dangerous play
increasing (p-value< 0.001 at individual and group level).

20As shown in Table (3) in the appendix, this result is robust to the inclusion of beliefs as well as
a set of treatment and periods fixed-effects.

21Figure 12, in the appendix, shows that these patterns remain true at the group level.
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Figure 6: Equilibrium play and treatment (per silo)

Result 3: Coordination on any equilibrium becomes more difficult when co-
existence of equilibria is more likely. The main observation here is that agents’
actions are less and less in line with an equilibrium play when the coexistence of equi-
libria becomes more likely.22

Figure 14 (in the appendix) shows that the rate of equilibrium play (at the individual
and group level) is indeed related in a non-linear way with the probability (the U-shaped
relation is confirmed in a random effects regression, see Table (4) in the appendix).
Coordination on any equilibrium is minimal at T07. We argue that coordination failure
on equilibrium behavior is driven by coexistence. An important aspect of equilibrium
versus non-equilibrium behavior in the stochastic NDG is the extent to which subjects
fail to precisely coordinate on one of the two symmetric equilibrium demands.

Given the anonymity conditions in which the experiment takes place, and despite the
possible learning at play because of repeated interactions, having symmetric (equi-
librium) demand profiles seems focal. This is however not informative regarding the
extent to which subjects may fail to fully coordinate on one of the two of the symmetric
dangerous and cautious demand profiles when they coexist, what we call "between"-
equilibria coordination failure.

Figure 7 highlights that, indeed, it is when coexistence is most likely that the equi-
22As mentioned above, this trend should disappear for very low value of ph, when the dangerous

equilibrium becomes very unlikely, and for very high value of ph, when the cautious equilibrium
disappears.
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Figure 7: Coexistence of equilibria and equilibrium play (averaged per silo)

librium rate is at its lowest. When either the cautious or the dangerous outcomes are
more focal, equilibrium play increases sharply.

Interestingly this pattern stands true for other type of coordination failure. This is
an interesting result that came about from the experiment, which was not expected a
priori. We document this with our last result.

Result 4: Overshooting increases when coexistence of equilibria is more
likely. Let us briefly investigate collective claims beyond either the high or low value
of the resource. We say (i) that a group is overshooting in a given period if its (group)
demand exceeds 24—recall that subjects in the group each gets 0 in this case—. We no-
tice clear differences across treatments (see Figure (15) in the appendix): overshooting
is at its highest (around 10% of individual play) for T05 and T07. Interestingly, this
difference seems to be related to coexistence: Figure (8) highlights that overshooting
behavior (at the individual and group level) is higher when coexistence is more likely
than when dangerous or cautious are more likely (i.e. we here use the predicted play
from Part 3). This inverted U-shape relation is confirmed in a regression with random
effects (see Table (5) in the appendix).
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Figure 8: Overshooting and coexistence (averaged per silo)

Finally, the impact of coexistence on coordination issues is reflected in the average
payoff of subjects: Figure (9) clearly highlights that the average payoff of players
decreases when coexistence is most likely (i.e. for intermediate values of ph).

Remark 3. A conclusion coming out of Results 3 and 4 is that subjects experience
difficulty in coordinating between the two sets of equilibria for intermediate values of
ph, in particular for T07. Notice however that subjects play the stochastic NDG only ten
rounds in the experiment. The between-coordination problem witnessed for T07 may be
resolved more effectively with a longer time horizon –and as such, it is not entirely clear
whether the observed behavior for intermediate values of ph is “asymptotic”. It would
be interesting to see if the dynamic of play changes over different time horizons.23

6 Concluding Remarks

Our experiment raises several interesting questions for future research. First, subjects
played the stochastic NDG for ten rounds. It is important to figure out wether the
coordination failures that become salient for intermediate values of ph survive under
different time horizons. Indeed, solving the between-set of equilibrium coordination
problem may be possible when the time horizon faced by subjects is longer than ten
rounds. We should be clear here that a longer time horizon means additional repetitions

23We thank an anonymous referee for this observation.
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Figure 9: Realized payoff and coexistence (averaged per silo)

of the one-shot stochastic NDG. It could be that the behavior observed in T07 is not
“asymptotic” because solving the “between” problem would require more repetitions.
Next, it would be interesting to see how subjects’ play is affected to shocks. Our
current design is between-subjects and subjects get to experience only one bimodal
distribution. Studying an extension of this paper with a within-subject design in which
subjects experience shifts in the probabilities attached to the bimodal distribution
would shed light on how subjects react to changes in the uncertainty faced in their
environment. Along the same line, we could also confront subjects to a shift from a
situation with certainty (e.g. where the high threshold occurs for sure) to a situation
where both thresholds become likely. It is possible that different risk attitudes play a
role in subjects’ reaction and adaptation to the change in their environment

On the policy side, the existence of uncertain thresholds on the consumption of a
common-pool resource raises several issues. An important one is whether to adopt or
not some precautionary measures. The feasibility and social desirability of such actions
have been widely debated in policy circles and remain an active research topic (see,
e.g., Wiener 2010, Barrieu and Sinclair-Desgagné 2006, and the references therein). In
the present context, taking a precautionary stance would mean to avoid claiming col-
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lectively more than the lowest possible threshold. Contrary to the current literature,
which assumes that this outcome can be implemented by a benevolent planner or repre-
sentative agent with the proper kind of risk or ambiguity aversion (see, e.g., Martimort
and Sand-Zantman, 2016, for a recent contribution to the climate change problem),
Proposition 1 and our experimental results suggest that this outcome might well be
achieved in a decentralized fashion through reaching a ‘cautious’ equilibrium.
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A Complementary Experimental Results
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Figure 10: Average individual demand by treatment

Table 3: Risk aversion and individual demand

(1)
Individual Demand

Belief 0.091***
(0.026)

Risk aversion -0.025
(0.056)

Probability 0.008***
(0.001)

N 2160
Period FE Yes

Notes: The regression includes random effects. Standard errors (clustered at the silo level) in parentheses. ∗ Significant

at the 10 percent level; ∗∗ Significant at the 5 percent level.
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Figure 11: Predicted equilibrium play (Task 3) by treatment
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Figure 12: Cautious and Dangerous equilibrium play at the group level

33



3
4

5
6

7
8

P
ay

of
f (

av
er

ag
ed

 p
er

 s
ilo

)

.3 .5 .7 .9 .99
Treatments

95% CI Fitted values

Figure 13: Realized payoff and Treatment (averaged per silo)
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Figure 14: Equilibrium play per treatment (individual and group level)
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Table 4: Equilibrium play and treatments

(1) (2)
Equilibrium play Equilibrium play

Belief -0.004 -0.005
(0.003) (0.005)

Probability -0.059*** -0.178***
(0.000) (0.001)

Probability2 0.001*** 0.002***
(0.000) (0.000)

Period FE Yes Yes
Subject FE Yes Yes
N 2160 2160

Notes: The regression all include random effects. Standard errors (clustered at the silo level) in parentheses. ∗ Significant

at the 10 percent level; ∗∗ Significant at the 5 percent level.
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Figure 15: Overshooting across Treatments
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Table 5: Overshooting and Treatments

(1) (2)
Overshooting Overshooting

Probability -0.059*** -0.178***
(0.000) (0.001)

Probability2 0.001*** 0.002***
(0.000) (0.000)

N 2160 2160
R2

pseudo R2

Notes: The regressions all include random effects. Standard errors (clustered at the silo level) in parentheses. ∗

Significant at the 10 percent level; ∗∗ Significant at the 5 percent level.
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