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Preface 
 

Microsoft Excel is a general-purpose application that is taught to engineering students 

in the introductory courses on computer applications. The powerful tools of Excel for 
data analysis and visualisation, together with its wide availability and simplicity, 

encouraged its use as an educational tool in various engineering subjects. With respect 

thermofluid analyses, a number of articles and research papers have been presented in 
this regard at various conferences and specialised publications over the past two 

decades. The lack of built-in functions in Excel for fluid properties also motivated a 

number of academic institutions and individual researchers to develop relevant Excel 

add-ins. However, a textbook that presents a general pedagogical approach for using 
Excel as a platform for computer-aided thermofluid analyses and provides the lecturers 

and students with sufficiently detailed examples and exercises has, so far, been missing. 

The aim of this book is to complement the previous efforts by gathering the information 
needed for using Excel as an effective modelling platform for various types of 

computer-aided thermofluid analyses. 

 

The Excel-based modelling platform described in the book has four elements; (i) Excel 
with its user-interface and built-in functions, (ii) the integrated programming language 

Visual Basic for Applications (VBA), (iii) the Solver add-in that comes with Excel, and 

(iv) an Excel add-in for fluid properties called Thermax. While Excel and Solver are 
adequate for most fluid mecanics and heat-transfer analyses, the Thermax add-in helps 

the students to perform thermodynamic analyses with Excel in an effective and accurate 

manner. VBA is needed for the development of custom functions when the analytical 

model cannot be executed by only using Excel‟s built-in functions and Thermax 
functions. Proper use of the Excel-based modelling platform minimises the effort of 

developing the analytical model so that more attention can be paid to the application of 

the physical and economic principles in thermofluid analyses. 
 

The first three chapters of the book review the basic principles of thermofluid analyses 

and describe the four components of the Excel-based modelling platform. Chapter 4 is 

also a general chapter that shows how Excel and its iterative tools can be used for 
performing iterative solutions in the three thermofluid areas. The following six chapters 

apply the platform for particular types of thermofluid analyses. Chapters 5 and 6 are 

dedicated to the hydraulic analyses of pump-pipe systems and pipe-networks, while 
Chapters 7 and 8 deal with heat-transfer analyses by focussing on the numerical 

solution of the heat-conduction equation by using the finite-difference method. The 

application of the Excel-based platform for thermodynamic analyses is demonstrated in 
Chapters 9 and 10 that use the property functions provided by the Thermax add-in for 

ideal gases and refrigerant fluids for dealing with the analyses of power-generation and 

refrigeration cycles.  

 
The book adopts a learning-by-example approach and most of its examples are based on 

relevant cases or examples given in popular thermofluid textbooks so that the students 
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can verify their Excel solutions and look for additional applications. Exercises are given 
at the end of each chapter that help students to sharpen their skills related to the 

particular topic.  

 
The material covered in the book is adequate for a stand-alone course on computer-

aided thermofluid analyses, but the book can also be used to supplement the existing 

relevant courses by selecting certain chapters or sections from it. Although the book is 
primarily meant for educational purposes, it is hoped that the material covered in the 

book can also be useful for practicing engineers in the area of thermofluid systems. 
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Nomenclature 
 

A  Area 

C Friction coefficient in Hazen-Williams equation, Equation (1.28) 

cp  Specific heat at constant pressure, kJ/kg·
o
C  

cv  Specific heat at constant volume, kJ/kg·
o
C  

D  Diameter 

E  Total energy of the system 

e Energy per unit mass of the system 
EG  Total energy generated in the system 

eG  Energy generated per unit volume 

f  Darcy friction factor, defined by Equation (1.21) 
f  Manning friction factor, defined by Equation (1.27) 

FD  Drag force, defined by Equation (B.2) 

g  Acceleration of gravity 
h  Average heat-transfer coefficient 

h  Enthalpy, kJ/kg 

hf  Major friction in a pipe system 

k   Thermal conductivity, W/m·
o
C  

k  Isentropic exponent, dimensionless (k=cp /cv) 

K Minor losses friction coefficient in a pipe system, defined by Equation (1.29) 

L  Length 
m  Mass ̇   

m   Mass rate of flow  

P  Pressure, usually in kPa 

Pr  Relative pressure (for an ideal gas) 
q  Heat-transfer per kg of the working fluid, usually kJ  

Q  Heat, usually in kJ 

Q  Volume flow rate 

Q   Rate of heat transfer, W or kW  

r  Radius or radial distance 

R  Gas constant, kJ/kg.K 

Rth  Thermal resistance, usually 
o
C/W 

Ru  Universal gas constant kJ/kmol.K 

s  Entropy 

T  Temperature 
u  Internal energy per unit mass, kJ/kg 

U  Overall heat-transfer coefficient of a heat-exchanger 

v  Specific volume, m
3
/kg 

V  Velocity, usually m/s 
w  Work-done per kg of the working fluid, usually kJ  

W   Power, W or kW  

x,y,z  Space coordinates in the Cartesian system  
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Greek Characters 
γ  Specific weight of a fluid 

δ Thickness (e.g. of insulation)   

∆ Difference (e.g. temperature)   
ε  Roughness of surface material 

ε  Heat-exchanger effectiveness 

η  Efficiency  
μ Dynamic viscosity, kg/m.s 

ν  Kinematic viscosity, m
2
/s 

ρ  Density, kg/m
3
 

  Time, annual operating hours of a system 

   Mesh Fourier number in the finite-difference method, defined by Equation (8.6) 

 

Dimensionless Numbers and Groups 

Bi  Biot number 

Cf  Friction coefficient, defined by Equation (B.3) 

Fi  Fourier number 
Nu Nusselt number 

Pr Prandtl number  

Re Reynolds number  
 

Subscripts 

f  Saturated liquid condition  
fg  Difference in property between saturated liquid and saturated vapour  

g  Saturated vapour condition 

lm Log-mean 

s  Saturation temperature or pressure 
s  Evaluated at the surface  

∞  Evaluation at free-stream ambient conditions 
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Cars, refrigerators, and air-conditioners have become indispensible items for families in 
both developed and developing countries. The energy required to operate these systems 

mainly comes from burning fossil fuels in power-generation plants. Apart from being 

non-renewable energy sources, large-scale combustion of fossil fuels is the main cause 
for global warming and its increasingly devastating effects at different parts of the 

world. Therefore, proper design and operation of these and other energy-demanding 

devices are required for minimising these effects. The design methods of these systems 
are mainly based on the principles of thermodynamics, fluid mechanics, and heat 

transfer. This chapter reviews the main principles of these three thermofluid subjects 

with the objective of showing how they can be used to reduce the losses and minimise 

energy consumption. For a number of reasons the equations involved in thermofluid 
analyses are difficult to solve without using computer-aided methods. Therefore, these 

analyses introduce many simplifications that reduce their accuracy. In this respect, the  

chapter highlights the advantages of computer-aided methods for thermofluid analyses 
and describes the Excel-based modelling platform used in this book for these analyses. 

 

1.1. A review of thermofluid principles 

The two main principles that form the framework for thermofluid analyses are the 
conservation of mass (the continuity equation) and the conservation of energy (the first-

law of thermodynamics). These principles take different mathematical forms depending 

on whether the system under consideration is open or closed and on whether the flow is 
steady or unsteady, compressible or incompressible, laminar or turbulent, etc. 

Numerous auxiliary relationships are needed in order to quantify the various parameters 

involved in the resulting equations such as pressure-variations, friction losses, and rates 

of heat-transfer. In what follows, the main concepts of thermodynamics, fluid 
dynamics, and heat-transfer are reviewed by considering typical applications.  

 

1.1.1. Thermodynamics 

The principles of engineering thermodynamics allow us to determine the amount of 
energy transfer in the form of work or heat between any system and its surroundings. 

They also allow us to determine the efficiency and effectiveness of the system if energy 

conversion is involved. There are four basic laws for thermodynamics the most 
important of which are the first and the second laws of thermodynamics. To apply these 

two basic laws, thermodynamic analyses use many property relationships, tables, and 

charts that determine the properties of the particular fluid involved and its phase (a 
liquid, a liquid-vapour mixture, a gas, or a gaseous mixture). To illustrate the 

application of thermodynamic laws and relationships in a typical analysis, consider the 

air-compression system shown in Figure 1.1.a. Air enters the system that has two stages 

of compression separated by an intercooler at a temperature T1 and pressure P1. The 
first-stage compressor, C1, compresses the air adiabatically to state 2, after which it 

enters the intercooler where its temperature is reduced to T3. The second-stage 

compressor, C2, then increases the air pressure to P4 at which the temperature increases 
to T4. Figure 1.1.b shows the compression process on a temperature-entropy diagram. 
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Figure 1.1. Schematic and T-s diagrams of a two-stage air compressor with inter-stage 

intercooling 

 
How the total compression work is divided between the two compressor stages depends 
on their compression ratios and there is a certain value of the intermediate pressure (Pi) 
that minimises the total compression work. The principles of thermodynamics help us 
to determine this optimum pressure as shown below.  
 
Treating the two compressor stages as steady-flow processes and neglecting changes in 
kinetic and potential energy, the first-law of thermodynamics is expressed as [1]: 
 

 inout hhwq          (1.1) 

 

Where q and w are the amounts of heat transfer and work transfer per unit mass flow of 
air, respectively, and (hout –hin) is the resulting enthalpy change over the stage. Equation 
(1.1) adopts the usual sign convention that heat into the system is positive, while work 
into the system is negative. Assuming the compression processes in both stages to be 
isentropic as shown in Figure 1.1.b means that they are adiabatic (q=0) and reversible. 
Therefore, using an average specific heat for air at constant pressure (cp), the 
compression work per unit mass flow of air in stage 1 (w1) and in stage 2 (w2) can be 
determined from Equation (1.1) as follows: 
 

   12121 TTchhw p         (1.2) 

 

   34342 TTchhw p         (1.3) 

 

The total compression work (wtotal) is then given by: 
 

    341221 TTTTcwww ptotal       (1.4) 

 

Assuming perfect intercooling, i.e., T3 = T1, Equation (1.4) can be rearranged as: 

(b) (a) 
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Since the two compression processes are assumed to be isentropic and the specific heat 
cp for air to be constant, the temperature ratios in Equation (1.5) can be converted into 
pressure ratios by using the following approximate relationships: 
 

k

k

P

P

T

T

1

1

2

1
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
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
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
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


            (1.6) 
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            (1.7) 

 

Where k  is the ratio of specific heats (k=cp/cv; cv is the specific heat for air at constant 

volume). With the assumption that there is no pressure loss in the intercooler, P3 = P2= 
Pi. Substituting from Equations (1.6) and (1.7), Equation (1.5) becomes: 
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To see how the total compression work varies with the intermediate pressure Pi, a 
specific case was considered in which T1= 300K, P1=100 kPa, and P4 = 900 kPa. Using 
Equation (1.8), the total compression work in the system was calculated for different 
values of Pi and Figure 1.2 shows the result. The figure shows that the value of Pi at 
which the total compression work is minimal is around 300 kPa. Increasing and 
decreasing Pi from this value both increase the compression work. 
 

 
Figure 1.2. Variation of the total compression work with the intermediate pressure 
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The principles of thermodynamics are particularly useful for performance evaluation 
and optimisation of power-generation and refrigeration systems. For example, consider 

the regenerative steam-turbine power plant shown in Figure 1.3. This plant consists of a 

boiler house for producing superheated steam, a high-pressure steam turbine (HPT), a 
low-pressure steam turbine (LPT), a condenser, an open feed-water heater (FWH) and 

two feed-water pumps. A fraction of the steam (y) is extracted after the HPT for 

preheating the feed-water before going back to the boiler house.  

 
Figure 1.3. Schematic diagram of a regenerative steam-turbine power plant 

 

Although extracted steam reduces the work output from plant, it reduces the amount of 
heat added in the boiler and its net effect is to increase the thermal efficiency of the 

plant. There is also a certain extraction pressure for the steam at which the plant‟s 

thermal efficiency attains a maximum value. As shown below, the principles of 

thermodynamics can be used to determine this optimum steam-extraction pressure.  
 

The total specific work output from the two turbines (wout) and the total work input to 

the two pumps (win) are given by: 
 

LPTHPTout www            (1.9) 

 

21 PPin www          (1.10) 

 
Where wHPT and wLPT are the specific work output from the high-pressure turbine and 

the low-pressure turbine, respectively, and wP1 and wP2 are the specific work inputs in 

pump 1 and pump 2, respectively. Assuming the two turbines and the two pumps to be 
adiabatic and neglecting the changes in kinetic and potential energies, the work output 

or input for each device can be determined from the enthalpy difference across the 

device. Per each kg of steam generated in the boiler, these are given by: 
 

 21 hhwHPT          (1.11) 
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  321 hhywLPT          (1.12) 

 

  451 1 hhywP          (1.13) 

 

 672 hhwP          (1.14) 

 

Mass and energy balance over the open feed-water heater gives: 

 

  652 11 hhyyh          (1.15) 

 

The net specific work output from the plant (wnet) is then given by: 

 

inoutnet www          (1.16) 

 

Similarly, the specific heat input to the boiler (qin) is determined by the relevant 

enthalpy change as follows:  

 

 71 hhqin           (1.17) 

 

Finally, the thermal efficiency of the plant (η) can be calculated from: 
 

innet qw /          (1.18) 

 

Both wnet and η depend on the fraction of steam extracted for regeneration (y); which in 
turn depends on the extraction pressure (P2). Figure 1.4 shows the variation of y and η 

with P2 for an ideal cycle in which P1 = 15 MPa, T1 = 600
o
C, and P4 = 10 kPa. The 

figure shows that the cycle‟s efficiency attains a maximum value of 45.55% when P2 is 

in the range of 1000 kPa. 
 

It should be mentioned that the working fluid in the above power plant, which is water, 

changes its phase from a liquid to superheated steam in the boiler, to a saturated 
mixture of water and steam in the low-pressure turbine, and returns to liquid water in 

the condenser. Therefore, appropriate property tables or charts are needed for 

determining the thermodynamic properties of water at the different states. In general, 

thermodynamic analyses use many tables and charts for various working fluids. The 
principles of thermodynamics are also needed for the analyses of air-conditioning 

systems and processes and for the analyses of the processes that involve combustion 

and other chemical reactions. For such analyses, thermodynamics provides the basic 
relationships needed to quantify the effects of fluid mixing and chemical reactions on 

the properties of the working fluids and to determine the transfer of energy and 

effluents to or from the system.  
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Figure 1.4. The effect of intermediate pressure (P2) on the fraction of extracted steam 

(y) and thermal efficiency (η) of a regenerative steam-turbine power plant 

 

1.1.2. Fluid dynamics 
In addition to pipes and ducts, fluid-transporting systems require various equipment 

such as pumps, compressors, control valves, and flow-measuring devices. The 

principles of fluid dynamics help us to estimate the power needed for overcoming 
friction in these equipment and to determine suitable types and sizes for them. To 

illustrate the application of these principles, consider the pump-pipe system shown in 

Figure 1.5 that conveys a liquid between two non-pressurised tanks A and B through a 

pipe of known length L, diameter D, and roughness ε. Suppose that we want to 
determine the needed pump power for transporting the liquid at a certain flow rate Q. 

 
Figure 1.5. Schematic diagram of a simple pump-pipe system 

 

The required pump power (W ) can be determined from the following “power 
equation”: 

 

 /phQW   [W]       (1.19) 

 
Where γ is the specific weight of the transported liquid (N/m

3
), Q is the volume flow 

rate of the liquid (m
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the pipe from A to B, and η is the combined efficiency of the pump and the electric 
motor. For a steady flow of an incompressible fluid, hp can be determined from the 

following “energy equation”: 

 

 
g

VV
ZZhh AB

ABtotalfp
2

22

,


  [m]     (1.20) 

 

Where hf,total is the total head loss through the system due to friction (m), ZA and ZB are 

the elevations (m) at points A and B, respectively, and VA and VB are the corresponding 
fluid velocities (m/s). If the two tanks are not open to the atmosphere, the energy 

equation should also include a term for the pressure difference between the tanks. 

 
The total friction head loss hf,total consists of two parts: the major friction loss (hf), 

which is the part lost in the pipe itself, and the minor friction head loss (hc), which is 

the part lost in other components of the system like nozzles, elbows, valves, etc.  The 

major friction loss can be determined from the following Darcy-Weisbach equation [2]: 
 

g

V

D

L
fh f

2

2

   [m]       (1.21) 

 

Where f is the dimensionless Dracy friction factor, V the fluid velocity (m/s), L the total 
length of the pipe (m), and D the internal diameter of the pipe (m). The value of the 

friction factor, which depends on the roughness of the pipe surface and on whether the 

flow is laminar or turbulent, can be obtained from a Moody diagram [2] or calculated 
from a relevant formula. For laminar flows, f can be calculated from: 

 

Re/64f   Re < 2300                                   (1.22) 

 

Where Re is the Reynolds number defined as: 
 

/Re VD                                  (1.23) 

 

Where ν is the kinematic viscosity of the flowing fluid (m
2
/s). For a turbulent flow in 

rough pipes, f can be obtained from the following Swamee-Jain formula [2]:  
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Re > 4000                                    (1.24) 

 
For more accuracy, the friction factor for a turbulent flow can be determined by using 

the following Colebrook-White formula (frequently referred to as the Colebrook 

equation): 
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The Colebrook equation is an example of the implicit equations met in thermofluid 

analyses that need to be solved iteratively. For turbulent flows in smooth tubes, f can be 
determined from the first Petukhov formula [2]: 

 

  2
64.1Reln790.0


f  10

4
 < Re  < 10

6
                              (1.26) 

 
Chemical engineers usually determine the pipe friction by using the following Chezy-

Manning equation instead of the Darcy-Weisbach equation: 

 

g
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2

2   [m]       (1.27) 

 

Where f is the Fanning friction factor. Comparison with Equation (1.21) reveals that the 

value of the Fanning friction factor is 4 times the corresponding value of the Darcy 

friction factor. Civil engineers determine the friction head loss in water-transporting 
pipes by using the following Hazen-Williams equation: 

 

8704.4852.1

852.167.10

DC

LQ
h f    [m]       (1.28) 

 
Where C is a coefficient that depends on the roughness of the pipe. Unlike Equations 

(1.21) and (1.27), Equation (1.28) is applicable for both laminar and turbulent flows.  

 
The minor friction losses, hc, can be determined from the following equation: 
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 [m]        (1.29) 

 
Where n is the total number of components in the fluid system and K is a coefficient the 

value of which can be found for each component in relevant tables. 

 
Given the values of the pipe length and diameter, flow rate, fluid viscosity, and pipe 

material or roughness, the equations described above can be used to determine the 

required pump power. The equations can also be used to determine the maximum flow 

rate of the fluid to be delivered via a pipe of a certain diameter such that the friction 
loss in the system or the needed pump power does not exceed a specified limit. 

Moreover, by taking into consideration the initial cost of the pump-pipe system that 
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increases with D, and the cost of electrical energy needed by the pump that decreases 
with D, the equations can be used to determine the economic pipe diameter Dopt that 

gives the lowest total owning cost for the system over its entire life-time. In general, the 

equations are also applicable for analysing and optimising pipe-networks. 
 

The principles of fluid dynamics also enable us to select the appropriate type and size of 

the pump for a given pump-pipe system by matching the “pump curve” with the 
“system curve”. This is achieved with the help of pump characteristic curves usually 

provided by the manufacturers. In many situations a single pump or compressor may 

not be adequate for the required flow rate or delivery pressure and more than one pump 

or compressor have to be used. In this situation, the principles of fluid dynamics help us 
to decide when to arrange the pumps/compressors in parallel or in series.  

 

1.1.3. Heat transfer 
The design practices of energy-conversion equipment that deal with the transfer of 
thermal energy such as boilers, condensers, and heat exchangers are mainly based on 

the principles of heat transfer. Three independent physical laws are used in heat-

transfer analyses to quantify the rate of heat transfer between an object and its 
surroundings depending on whether the heat transfers by conduction (Fourier‟s Law), 

convection (Newton‟s law of cooling), or radiation (Stefan-Boltzmann law). The 

physical properties that determine the rate of heat transfer by conduction, radiation, and 

convection are the thermal conductivity (k), the surface emissivity (ε) and absorptivity 
(α), and the heat-transfer coefficient (h), respectively. 

 

While k , ε, and α are material or surface-specific, h depends on both the fluid and the 
flow. Numerous analytically-obtained relationships and empirical formulae are used for 

determining h depending on whether the flow is forced or natural and whether the flow 

is internal or external to the system being considered. These formulae usually give the 

Nusselt number (Nu) which is related to h as follows:  
 

Nu
D

k
h     [W/m

2
.K]       (1.30) 

 

Where D is the pipe diameter and k  is the thermal conductivity of the transported fluid. 
Many analytical or empirical formulae are used for determining the Nusselt number for 

forced or natural flows over single tubes, bank of tubes, plates, etc. For example, the 

following Dittus-Boelter equation is used for determining Nu inside a fluid-transporting 
pipe due to forced convection [3]: 

 
nNu PrRe023.0 8.0           (1.31) 

 
Where Re is the Reynolds number, Pr the Prandtl number, and n is a constant that takes 

a value of 0.4 when the pipe is being heated and 0.3 when it is being cooled. 
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The subject also describes the methods that can be used to minimise or maximise the 
rate of heat-transfer between the system‟s components or between the system and its 

surroundings by means of thermal insulation, fins, heat-pipes, etc. To illustrate the use 

of heat-transfer concepts in thermal-insulation analyses, consider the metal pipe shown 
in Figure 1.6 that has an internal radius r1 and external radius r2. The pipe carries a fluid 

at a temperature Ti, while the surrounding air is at a different temperature T∞.  

 

 
Figure 1.6. Schematic for an insulated metal pipe 

 

The temperature difference between the pipe and the surroundings will cause heat gain 
or heat loss to/from the pipe and, in order to reduce this heat gain or heat loss, the pipe 

has to be covered by an insulating material. The principles of heat transfer help us to 

account for the effect of thermal insulation on the rate of heat-transfer to/from the pipe. 

The rate of heat transfer ( Q ) can be calculated from [3]: 

 

  thi RTTQ /  [W]       (1.32) 

 

Where Rth is the combined thermal resistance to heat-transfer by conduction, 
convection, and radiation, which is given by [3]: 
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Where hi and A1 are the heat-transfer coefficient and surface area inside the pipe, 

respectively, ho and A3 are the heat-transfer coefficient and surface area outside the 

insulated pipe, respectively, L is the length of the pipe, and k1 and k2 are the thermal 
conductivities of the pipe and the insulation, respectively. To simplify the analysis, ho 

in Equation (1.33) takes into account the heat-transfer by both convection and radiation 

to/from the insulation surface. The thickness of the metal pipe is usually small 

compared to its diameter, while its thermal conductivity is much higher than that of the 
insulation material. Therefore, the equation can be simplified further by neglecting the 

term that represents the thermal resistance due to conduction through the pipe.  
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Equations (1.32) and (1.33) can be used to determine the required thickness of 
insulation (δ) for reducing the rate of heat transfer to the required tolerance or for 

controlling the surface temperature within a range that is dictated by safety or other 

practical considerations. Although the thicker the insulation the lower will be the rate 
heat transfer, the cost of insulation increases with its thickness and, therefore, adding 

more insulation will not be economically profitable beyond a certain thickness. By 

extending the above heat-transfer model so that the cost of insulation and the value of 
the saved thermal energy can be calculated and compared, the above equations can also 

be used to determine the economically optimal thickness of insulation (δopt).   

 

Figure 1.7 shows a metal pipe with circular fins attached to its surface so as to boost the 
rate of heat-transfer between the fluid being transported with the pipe and the 

surrounding medium, usually air. The principles of heat transfer can be used to develop 

the required mathematical equations that determine the the rate of heat transfer from the 
pipe and, therefore, to evaluate the effectiveness and efficiency of the fin. 

 

 
Figure 1.9. Circular fins attached to a metal pipe 

 

Another important application of heat-transfer principles is that related to the design 
and selection heat-exchangers. A heat-exchanger is any device that allows the transfer 

of thermal energy between two fluids through a separating surface usually a pipe, a 

duct, a tube, or a plate. Figures 1.8 and 1.9 show two types of heat-exchangers 
commonly used in industries and power-plants. Figure 1.8 shows a shell-and-tube heat-

exchanger while Figure 1.9 shows a cross-flow heat-exchanger. Heat-exchanger 

analyses either aim at determining the required size (i.e., surface area) for a specified 

heat-transfer duty or determining the exit temperatures of the two streams from a 
specified heat-exchanger type and size. Two methods are used for these two types of 

analyses which are the log-mean temperature difference (LMTD) method and the 

effectiveness-number of transfer units (ε-NTU) method. Complex thermal systems use 
heat-exchanger networks [HENs] and finding the configuration that minimises the 

annual cost of the network is based on the principles of heat transfer. 
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Figure 1.8. A parallel-flow shell-and-tube exchanger 

 

 
Figure 1.9. A cross-flow exchanger with both streams unmixed 

 

1.2. Advantages of computer-aided thermofluid analyses  
Apart from saving time and eliminating possible human errors, computer-aided 

thermofluid of analyses offer a number of advantages over traditional methods that use 
property tables and charts. An important advantage of computer-aided methods is their 

ability to give more realistic results by avoiding unnecessary simplification of the 

models and by using more accurate estimations of fluid properties. Moreover, they offer 
reliable techniques for iterative solutions, optimisation analyses, and the analyses of 

complex thermofluid systems. In what follows, these advantages are illustrated by 

means of relevant examples. 

 
A. Avoiding excessive simplification of the model 

In many situations, traditional analytical methods adopt excessive simplifications of the 

analytical models; which makes their results grossly deviate from the behaviour of real 

systems. A good example of this situation is given by the models of internal-
combustion (IC) engines. Traditional air-standard models of IC engines, such as the 

Otto cycle and the Diesel cycle, neglect heat-transfer and friction losses, treat the 

combustion process as heat-addition from an external source, and use constant specific 
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heats for the working fluids. These assumptions enable the engine processes to be 
represented by simple closed-form relations for calculating the amount of heat added to 

the engine and net work from the engine [4]. However, air-standard models usually 

overestimate the engine‟s output and thermal efficiency.  
 

By comparison, computer-aided models of IC engines closely mimic the behaviour of 

actual IC engines by taking into consideration the geometrical as well as the 
thermodynamic characteristics of the engines. Therefore, these models can be used to 

investigate the effect of important design and operation factors such the ignition or 

injection timing on the engine performance or the effect of engine speed on the specific 

fuel consumption. However, the formulation of these models leads to a set of ordinary 
differential equations that need to be solved simultaneously by using a numerical 

method such as the Newton-Raphson method [5]. 

 

B. Accurate representation of fluid properties and processes  

The ideal-gas law can be used with reasonable accuracy for determining the specific 

volume of a superheated vapour, but when the temperature approaches the saturation 

line, the value of the specific volume determined by the ideal-gas law departs 
significantly from the actual volume. More accurate estimates can be obtained by using 

the following Soave-Redlich-Kwong (SRK) equation of state [1]: 

 

)~(~~ bvv

a

bv

TR
P u







         (1.34) 

 

Where P is the absolute pressure of the gas, v~ is the molar specific volume, Ru is the 

universal gas constant, T is the absolute temperature of the gas, and the constants a, b 

and  are fluid-dependent. Figure 1.10 shows the deviations from the tabulated values 
by those obtained from the ideal-gas law and the SRK equation of state for refrigerant 

R134a at 0.2 MPa. The figure shows that the error of the ideal-gas law is more that 2% 

even at high temperatures and increases as the temperature approaches the saturation 

value, but the accuracy of the SRK equation remained higher than 99% even close to 

the saturation line. However, since the SRK equation is implicit in v~ it cannot be used 

directly to determine the specific volume. A number of standard iterative procedures 

(e.g. Newton-Raphson method) can be used to solve the equation, but they are more 
suitable for computer-aided analyses than hand calculations.  

 

Another important implicit equation for thermofluid analyses is the Colebrook-White 

equation, Equation (1.25), that determines the friction factor (f) for turbulent pipe-
flows. Since the equation involves f on both sides and needs to be solved iteratively, the 

explicit relationships such as the Swamee-Jain formula are preferred even though the 

Colebrook-White equation is more accurate. Many other nonlinear equations like the 
SRK equation and the Colebrook-White equation give advantage to computer-aided 

thermofluid analyses by enabling more realistic and accurate estimations. 
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Figure 1.10. Errors in the specific volume of R134a by the ideal-gas law  

and the SRK equation of state 

 

C. Dealing with iterative solutions  and optimisation analyses 

A good example of thermofluid analyses that require iterative solutions is found in 

pipe-flow analyses. Pipe flow problems that require the friction head loss to be 

determined when both the diameter and flow rate are known can be solved in a 
straightforward manner by using Equation (1.21). However, in design analyses of 

pump-pipe systems we may need to find the flow rate in a given pipe that gives a 

specified head loss or to find a suitable pipe diameter for specified head loss, flow rate, 
and pipe length. In these two cases, the friction factor f cannot be determined in 

advance because it depends on the Reynolds number. Therefore, these two types of 

pipe-flow problems, referred to as type-2 and type-3 problems, need to be solved by 

iteration. It is much easier to carry out the iterative process to the required level of 
accuracy by using a computer-aided method than by doing it manually. Other types of 

thermofluid analyses that also require iterative solutions include rating analyses of heat 

exchanger and the determination of the adiabatic flame temperature by first-law 
analysis of the combustion process.  

 

Optimisation analyses are needed for determining the best design for a thermofluid 
system such as the optimum intermediate pressure for a two-stage air-compression 

system, the optimum steam-extraction pressure for a regenerative Rankine cycle, and 

the economic thickness of insulation for a pipe. While simple optimisation analyses that 

involve a single design parameter can be performed by means of calculus techniques 
and graphic tools, optimisation analyses of complex systems that involve multiple 

design variables require the use of computer-aided techniques.  

 

D. Analyses involving complex models 

The complexity of modelling certain thermofluid systems makes their analyses only 

possible with the help of computer-aided methods. The model complexity can be either 
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due to the complexity of the physical structure of the system itself or the complexity of 
its mathematical representation. An example of physically complex systems is the pipe 

network shown in Figure 1.11 that consists of four pipe loops and four consumption 

points and fed by two water tanks; tank A and tank B. Suppose that the flow rates from 
the two supply tanks are specified together with the pipe diameters and lengths and it is 

required to determine the discharges at the four consumption points.  

 
Figure 1.11. A looped pipe network supplied by two tanks 

 

Although the solution is mainly based on the two well-known principles of 

conservation of mass and conservation of energy, it is difficult to solve the problem by 
using manual analytical methods especially when a minimum or a maximum pressure 

level is to be met at the discharge points. In this case, a computer-aided method, such as 

the Hardy-Cross method presented in Appendix C, has to be used [6, 7]. The 

optimisation analyses of heat-exchanger networks give another example of the models 
that deal with physically complex systems [8]. 

 

Mathematically complex thermofluid models that need computer-aided numerical 
methods are found in multi-dimensional fluid-flow and heat transfer analyses. This type 

of analyses involves coupled and nonlinear partial differential equations that have to be 

solved by using computational fluid dynamics (CFD) methods such as the finite-volume 

method or the finite-difference method. Many commercial CFD applications are 
available nowadays that offer great flexibility and user-friendliness. 

 

1.3. The Excel-based modelling platform for thermofluid analyses 
Microsoft Excel is commonly used for data visulation and for dealing with simple 
computer-based operations like matrix inversion and matrix multiplications [3,9]. 

However, Excel is equipped with other features that make it a capable modelling 

platform for a wide range of engineering “What-if” analyses [10-12]. In addition to its 
Goal Seek command and the Solver add-in, the “Developer” ribbon in Excel provides a 

programming language called Visual Basic for Applications (VBA) that can be used for 

developing customised user-defined functions (UDFs) not provided by Excel. The 
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Developer ribbon also allows the use of macros to remove the tedium of parametric 
studies and repetitive calculations. The main limitation of Excel with respect to 

thermofluid analyses, which is the lack of built-in functions for fluid properties, could 

be solved by developing suitable add-ins for this purpose [13-15].  
 

This book uses an Excel-based modelling platform for thermofluid analyses that 

includes in addition to Excel, Solver, and VBA, an educational Excel add-in called 
Thermax. Thermax provides seven groups of property functions for ideal gases, 

saturated water and superheated steam, synthetic and natural refrigerants, atmospheric 

humid air for psychrometric analyses, two aqua solutions for vapour-absorption 

refrigeration, chemically-reacting substances, and air at standard atmospheric pressure. 
Thermax also provides two interpolation functions and a Newton-Raphson solver for 

nonlinear equations that enhance the usefulness of the Excel-based modelling platform. 

Table 1.1 summarises the roles of the four components of the Excel-based modelling 
platform as used in this book.  

 

Table 1.1. Roles of the four components of the Excel-based modelling platform  

Component Role 

Excel 

 Provides the basic functions needed for thermofluid analyses 
including the general mathematical functions and the matrix-

operation functions 

 Provides the Goal Seek command needed for performing 

unconstrained iterative solutions involving a single parameter 

 Allows circular calculations which can be a convenient method for 

dealing with parameter dependency in certain analyses 

 Provides graphical tools needed for data visualisation and analyses  

 Allows macros to be recorded for repetitive calculations 

Solver 

 Allows constrained iterative solutions involving multiple parameters 

 Allows optimisation analyses with single and multiple design 
variables 

 Offers three solution options that suit different types of analyses 

Thermax 

add-in 

 Provides the physical properties of various fluids 

 Provides two interpolation functions for tabulated data and a Newton-

Raphson solver for non-linear equations such as the Colebrook-White 

equation and the SRK equation  

VBA 

 Needed for developing custom functions for the non-linear equations 

involved in iterative solutions and optimisation analyses 

 Needed for developing numerical solvers for large systems of linear 
equations 

 Can be used to develop additional fluid property functions or other 

functions not provided by Excel or the Thermax add-in 
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1.4. Closure 
The following two chapters describe the Excel-based modelling platform in more 

details. While Chapter 2 focuses on the features of Excel that are mostly needed for 

thermofluid analyses such as its matrix functions and its Goal Seek command, Chapter 

3 introduces the other three components of the modelling platform. Chapter 3 gives 
examples of using the three solution methods offered by Solver, describes the 

development of user-defined functions with VBA, and shows how the property 

functions provided by Thermax can be used in Excel formulae. Chapter 4 deals with 
iterative solutions of thermofluid problems and gives examples of using Excel‟s Goal 

Seek command and Solver for this type of analyses in the fields of fluid dynamics, heat-

transfer, and thermodynamics. The Excel-based platform is then used in Chapters 5 to 
10 for various types of thermofluid analyses. 

 

Chapters 5 and 6 deal with fluid systems and illustrate the use of Excel and Solver for 

the analyses of multi-pipe and pump-pipe systems and pipe-networks. Different pipe 
and pump arrangements are analysed in Chapter 5 to determine the system‟s friction 

losses, power requirement, or operating point. Chapter 6 uses Solver for the analyses of 

gravity-driven pipe-networks with looped, branched, and mixed configurations. Both 
Chapters 7 and 8 deal with the numerical solution of the heat-conduction equation by 

using the finite-difference (FD) method. While Chapter 7 focuses on the steady 

conduction equation, Chapter 8 focuses on the transient equation. Two approaches are 

presented in these chapters for applying the explicit and implicit formulations of the FD 
method by using Excel‟s matrix functions and iterative calculations.  

 

Chapters 9 and 10 deal with thermodynamic analyses by using the property functions 
provided by the Thermax add-in. Chapter 9 that deals with the analyses of power-

generation cycles focuses on the Brayton cycle for gas-turbines and the Otto cycle for 

the spark-ignition internal-combustion engines. Using air standard assumptions, this 

chapter presents both energy and exergy analyses of the Otto cycle. Chapter 10 that 
deals with the analyses of refrigeration cycles focuses on the vapour-compression 

refrigeration (VCR) cycle with refrigerant R134a as the working fluid. The chapter 

considers both the simple single-stage cycle and the multi-stage cycle with two and 
three stages of compression and shows how the Solver add-in provided by Excel can be 

used for optimisation analyses of the multi-stage VCR cycles. 
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Comouter-Aided Thermofluid Analyses Using Excel                                                          

 

With its user-interface, built-in functions, iterative tools, and graphical tools, Excel 
forms the backbone of the modelling platform used in this book for thermofluid 

analyses. This chapter is not intended to review all the features and built-in functions 

provided by Excel, but to focus on those needed for building analytical models for 
thermofluid analyses. In this respect, the chapter highlights the use of cell-labelling in 

writing formulae instead of the usual referencing by location. The chapter also 

illustrates the use of Excel‟s matrix functions for the solution of linear systems of 
equations and the use of Goal Seek and circular calculations for the solution of 

nonlinear equations. The final section on Excel‟s graphical tools demonstrates the use 

of the trendline feature for curve-fitting of tabulated data. 

 

2.1.  Elements of Excel‟s user-interface 

Excel‟s user-interface allows us to manipulate the stored data by providing a large set 

of built-in functions and a number of analytical tools. It also provides numerous 
commands for adjusting the appearance of the workspace and presenting the primary 

data and the results in various forms. Figure 2.1 shows a screenshot of an Excel sheet 

that stores the scores obtained by a group of students in one semester. 

 

 
Figure 2.1. The main elements of Excel‟s user-interface 

 

To allow easy access to the large number of functions, tools, and commands provided 
by Excel, its interface is divided into a number of elements with different purposes. 

Figure 2.1 shows four of these elements which are: 

 
1. The ribbon 

2. The name box 

3. The formula bar 

4. The workspace 
 

The Ribbon, which occupies the upper part of the sheet, organises the numerous 

commands provided by Excel into nine “tabs”, e.g., the File , Home , and Insert tabs. 

1 

2 

4 

3 
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Each tab consists of a number of command-groups that have a common purpose. The 
Workspace , which is the main part of the sheet, is divided into a grid of columns and 

rows that form separate “cells” at their intersections. A cell is referred to by a letter and 

a number, e.g., A1, B3, H2, etc. The lettert represents the cell‟s column while the 
number represents its row. The Name box shows the location of the current cell. 

 

As Figure 2.1 shows, a cell can simply contain a character data, such as “Saeed” and 
“Salim”, or a numerical data, such as 62.5 and 70. A cell can also contain a formula for 

data manipulation using the numerous built-in functions provided by Excel. The 

formula bar in Figure 2.1 reveals the formula typed in cell H2 that uses the built-in 

function “AVERAGE” to determine the average score of the first student in the list 
(Saeed) in the five subjects as 64.0. Note that, unlike simple numerical or character 

cells, a cell that includes a formula must include the equal sign “=”. The role of the 

Formula bar will be explained in more details in the following section. 
 

2.2.  Excel‟s formulae 

In general, Excel‟s formulae include mathematical or logical operators, built-in 

functions, and cell references. Excel provides two ways to refer a particular cell; either 
by its location in the sheet, e.g., A2, C10, etc., or by giving it a relevant name, e.g., 

efficiency, diameter, etc. The two methods will be illustrated below. 

 

2.2.1. Cell reference by location 

To illustrate this method, let us write a formula that calculates the area of a circle from 

its radius. To do this, open a new Excel sheet and type the number 5, which is the radius 

of the circle, in cell A1 as shown in Figure 2.2.  

 
Figure 2.2. Writing an Excel formula to determine the area of a circle  

 

Now, go to cell A2 and type the following formula:  
 

=PI()*A1^2/4  
 
The function “PI()” is a built-in function that returns the value of Archimedes‟ constant 

π. The formula also contains a reference to cell A1 that stores the value of the circle‟s 

radius, the multiplication operator *, the division operator /, the power operator ,̂ and 

Formula 

bar 
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the constants 2 and 4. Note that the formula is shown in the formula bar which can also 
be used to edit the formula. Pressing the Enter key after typing the formula, you will 

obtain the result shown in Figure 2.3; which is 19.63495 square metres.  

 

 
Figure 2.3. The Excel sheet with a formula that determines the area of a circle  

 

The following example shows how Excel‟s formulae and built-in functions can be used 
in a simple thermodynamic analysis. 

 

Example 2-1. Determining the specific volume of R134a by using the ideal-gas law 
Develop an Excel sheet that calculates the specific volume (v) of refrigerant R134a 

from the ideal-gas law at a pressure of 200 kPa (Tsat = -10.09
o
C) and temperatures in the 

range 0
o
C to 100

o
C (273 to 373 K). Compare your results with the tabulated data. 

 

Solution 

Figure 2.4 shows the Excel sheet prepared for this example. The pressure (P), the gas 

constant (R), and the temperature (T) are stored in columns A, B, and C, respectively. 
Column D stores the values of v obtained from relevant property tables and column E 

stores the corresponding values obtained from the ideal-gas law: 

 

PRTv /            (2.1) 
 

Where, P and T are the absolute pressure and temperature, respectively, and R is the gas 

constant for R134a (R = 0.08149 kJ/kg.K). The percentage error of the ideal-gas law in 
estimating the specific volume is given by: 

 

100



Table

TableIdeal

v

vv
Error          (2.2) 

 

To determine the percentage error at 273K, go to cell F2 and type the following formula 

which is equivalent to Equation (2.2): 

 
 =(E2 – D2)/D2*100 
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Figure 2.4.The sheet developed for determining error in the ideal-gas law for R134a 

 

Note that the formula bar in Figure 2.4 reveals the above formula. When you press the 

Enter key, the number 6.566 will appear in cell F2 as shown in the figure. To find the 
percentage errors at other temperatures you can simply copy the formula in cell F2 and 

paste it on cells F3 to F12. The calculated values of the errors show that the maximum 

error occurs at the lowest temperature, which is 273K. The error decreases gradually as 
the temperature increases. 

 

2.2.2. Use of cell labels  
The usual reference to cells by their columns and rows suits perfectly statistical 

analyses in which the same formula is applied to a large body of data that is stored 

column-wise or row-wise. For example, we may want to determine the average value, 

maximum value, or minimum value of the tabulated data. Example 2-1 illustrated this 
situation. However, thermofluid analyses usually involve numerous formulae but a 

small set of data, e.g. the diameter of a pipe, the density or viscosity of a fluid, the 

effectiveness of a heat exchanger, etc. For such analyses, it is more convenient to give 
the cell a meaningful name or “label” that matches its content. The cell can then be 

referred to by its label instead of its relative location. This method makes it easier to 

recognise the quantities involved in the Excel formulae.  

 
For the purpose of illustration, let us develop an Excel sheet to compare the density of 

air before and after an isentropic compression process from an initial condition of P1 = 

100 kPa and T1 =300K to a final pressure of P2 = 800 kPA. The two air densities 
involved can be calculated from the ideal-gas law as follows: 

 

111 / RTP            (2.3) 

 



Comouter-Aided Thermofluid Analyses Using Excel                                                          

 

222 / RTP            (2.4) 

 

Where R is the gas constant for air (R = 0.287 kJ/kg.K). For an isentropic process, T2 is 

related to T1 according to the following approximate relationship: 
 

  k

k

PPTT
1

1212 /


           (2.5) 

 

Where k  is the ratio of specific heat at constant pressure (cp) and at constant volume 
(cv). For air, k  can be taken as 1.4. Note that in Appendix A, Table A.1, k  is used for the 

thermal conductivity. 

 

Figure 2.5 shows the sheet prepared for this analysis in which the respective cell labels 
are typed in the column to the left of the different pressures and temperatures, while the 

corresponding units are written in the column to the right of each quantity. This is also 

done to the other quantities in the calculations. The sheet also shows the units of the 
different properties involved for more clarification. 

 

 
Figure 2.5. Excel sheet for calculating the air densities before and after compression 

 

Placing the cursor on cell F4 makes the formula bar reveal the formula used in the 

calculation of the temperature T2 according to Equation (2.5) which is: 

 

=B4*B7^((B8-1)/B8)  
 

The above formula can be made more understandable by using familiar labels to refer 
to the different cells involved. To do that, select the cells in columns A and B as shown 

in Figure 2.6, then go to Formulas  and, at the Name Manager, select Create  from 

Selection. When the form shown in Figure 2.6 appears to you, tick the “Left column” 
option. Pressing the “OK” button will make Excel create names for the different values 

in the selection box according to the labels written on the left column. The cell F3 that 

stores the value of P2 can also be associated with its corresponding label in cell E3.  
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Figure 2.6. Creating names for a selected group of cells 

 

Now, retype the formula in cell F4 that determines T2 as follows:  

 

=T_1*P_r^((k_-1)/k_)  

 

The formula bar in the sheet shown in Figure 2.7 reveals the formula with the 
corresponding labels instead of location references.  

 

 
Figure 2.7. Formulae using cells labels instead of locations 

 

Labelled formulae are easier to edit than those using location referencing particularly 

when intricate formulas are involved. Another advantage of cell-labelling is that if you 
copy a labelled formula and paste it in any other cell you will get the same answer, but 

if you copy a formula that uses the usual referencing by location in another cell you will 

get a different answer. To reveal or hide all the formulae in the sheet, press the control 

key (ctrl) with the tilde key (~). When naming your cells, choose suitable representative 
names for the variables involved, e.g. P_1 and T_1 for P1 and T1. Note that Excel does 

not accept “P1” or “T1” as labels since these can be confused with usual cell references 
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by locations. Therefore, Excel automatically changes these labels to “P1_” and “T1_”. 
More information about Excel formulae can be found in Walkenbach [1]. 

 

2.3.  Excel‟s built-in functions 
Excel provides a large library of built-in functions for data manipulation, like the 

AVERAGE function, and other functions commonly used in engineering analyses like 

the PI, SIN, and COS functions. To view the full range of Excel‟s functions, type “=” 
in any Excel cell as shown in Figure 2.8 and then place the cursor on the “Insert 

Function” fx button in the formula bar and click it. The dialog box shown in Figure 2.9 

will appear to you. List all the categories via the “Select a category” slot.  

 

 
Figure 2.8. Exploring Excel‟s built-in functions 

 

 
Figure 2.9. The various categories of Excel‟s built-in functions 
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The Math & Trig group includes the mathematical and trigonometric functions used in 
different types of engineering analyses. Figure 2.10 shows some of the numerous 

functions in this group. Note that the dialog box gives a brief explanation of each 

function. For example, the explanation given to the ABS function is that it returns the 
absolute value of a number. The functions ACOS, ASIN, and ATAN apply the familiar 

inverse trigonometric functions: cos
-1

, sin
-1

, and tan
-1

, respectively. By scrolling down 

the list, you can find many other familiar functions. The following discussion focuses 
on two types of functions that are needed for the development of analytical models in 

subsequent chapters of the book, which are (a) the logical functions and (b) the 

functions for matrix operations.  

 

 
Figure 2.10. Common mathematical functions supported by Excel 

 

2.3.1. Logical functions 
To determine the major friction loss (hf) in a pipe by using the Darcy-Weisbach 

equation we have to establish whether the flow is laminar or turbulent so as to select the 

relevant formula for the friction factor (f). The flow remains laminar before the 
Reynolds number (Re) reaches a certain value, which can be taken as 2,000, but the 

flow can only be considered fully turbulent beyond Re = 3000. There is a transitional 

region between laminar and turbulent flows when 2000 < Re < 3,000. Suppose that we 
want to write an Excel formula that determines the type of flow from the given value of 

the Reynolds number. Using a simple IF function, we can write the following formula: 

 

=IF(Re<=2000, “Laminar”, “Turbulent or transitional”) 
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Note that the above IF-formula does not differentiate between a turbulent and a 
transitional flow. Therefore, we need to use a second logical test inside the first logical 

test. This can be done by using the following nested IF function:  

 
=IF(Re<=2000, “Laminar”, IF(Re>=3000, “Turbulent”, “Transitional”)) 

 

Figure 2.11 shows an Excel sheet containing the above formula (shown in the formula 
bar) and the response of the formula when Re = 500, which is “Laminar”. Depending 

on the value of Re stored in cell C2, the result of the If-formula can be “laminar”, 

“Turbulent”, or “Mixed”. Excel supports six other logical functions; AND, FALSE, 

IFERROR, NOT, OR and TRUE that can be combined in the same formula so as to 
handle more intricate choices. 

 

 
Figure 2.11. A formula using the nested IF function to determine the type of flow 

 

2.3.2. Functions for matrix operations  

Adjacent cells can be treated as a matrix or a vector and a group of Excel‟s formulae 
allow for the addition, subtraction, and multiplication of these matrices and vectors 

according to the established rules of matrix operations. Figure 2.12 shows a 3x3 matrix 

(A) stored in the cells B3:D5 and a vector (b) stored in cells F3:F5.  

 

 
Figure 2.12. Step 1 of using the matrix multiplication function 

 

Matrix (A) and vector (b) can be multiplied and the result stored in a third vector (c) by 
using the matrix function MMULT. The procedure is as follows: 

 

1. After keying in the data of matrix (A) and vector (b) as shown in Figure 2.12, 

position the cursor at cell H3 and type the formula: =MMULT(B3:D5;F3:F5).  
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2. Now press ENTER key and cell H3 will take the value 14, which the result of 
multiplying the first row of the matrix with the vector (b) as Figure 2.13 shows.  

 

 
Figure 2.13. Step 2 of using the matrix multiplication function 

 

The other two elements of the result vector will not appear automatically. To view the 

complete solution vector, do as follows:  
 

1. Select the cells H3:H5  as shown in Figure 2.14,  

2. Press the function key F2 once and then simultaneously hold the (SHIFT + 

CONTROL) keys together and press ENTER. The complete solution vector (c) 
will now appear as shown in Figure 2.15. 

 

 
Figure 2.14. Step 3 of using the matrix multiplication function 

 

 
Figure 2.15. Step 4 of using the matrix multiplication function 

 
An important matrix-operation function provided by Excel is the matrix-inversion 

function MINVERSE which is needed for the solution of linear systems of equations. 

The following example illustrates the use of this function. 
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Example 2-2. Using the matrix inversion function 
By using the MINVERSE function, find the inverse of matrix [A] given by: 

 

[A] = 

















507

650

301

 

 

Solution 

The first step is to enter the elements of the matrix as shown in Figure 2.16. After 

entering the data, go to cell F2 and type the formula “=MINVERSE(B2:D4)”. When 
you press ENTER, this cell will have the value -0.3125, which is the first element of 

the inverse matrix [A]
-1

 shown in Figure 2.17.  

 

 
Figure 2.16. Step 1 of using the MINVERSE function 

 

 
Figure 2.17. Step 2 of using the MINVERSE function 

 

Starting with the formula in cell F2, select the range F2 to H4 as shown in Figure 2.17. 

Press and release the function key F2 and then simultaneously hold the CTRL+SHIFT 

keys and press ENTER. Other elements of the inverse matrix [A]
-1

 will then appear as 
shown in Figure 2.18. You can check the solution by multiplying matrix [A] with its 

inverse by using the MMULT functions. The procedure is illustrated by Figures 2.19 to 

2.21. As should be expected, Figure 2.21 shows that the resultant matrix is the identity 
matrix. 
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Figure 2.18. The complete inverse matrix [A]

-1
 

 

 
Figure 2.19. Multiplying matrix [A] by its inverse [A]

-1
 

 

 
Figure 2.20. The first element of the product (identity) matrix 

 

 
Figure 2.21. The complete solution which is the identity matrix 
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2.4.  Solution of linear system of equations  
An example of thermofluid analyses that involve systems of linear equations is the 
solution of the heat conduction equation with the finite-difference method. Linear 
systems of equations can be solved with Excel by applying the matrix-inversion 
method. For illustration, consider the following linear system written in matrix notation: 
 

    yxA             (2.6) 

 
Where [A] is the coefficient matrix, {x} the vector of unknowns, and {y} the right-side 
or “load” vector. By applying the matrix-inversion method, the solution vector {x} can 
be obtained as follows: 
 

     yAx
1

            (2.7) 

 
Where [A]

-1
 is the inverse of matrix [A]. The following example illustrates the 

procedure of applying the method by using Excel‟s matrix functions. 
 

Example 2-3. Solution of a system of linear equations  

Find the values of xi in the following system of linear equations:  

 

































794916325

4947523

16536159

322155214

5391414



























5

4

3

2

1

x

x

x

x

x

=































463

329

106

100

15

      (2.8) 
 

Solution 
Note that the system is symmetric; which is typically the case with linear systems that 
arise in the solution of heat-conduction problems by the finite-difference method. For 
larger systems of equations, the symmetry of the system can be utilised for reducing the 
required computer memory by storing only one half of the coefficient matrix. However, 
this requires a complicated computer programming. For small systems like the one 
considered here, it is more convenient to use Excel‟s matrix inversion and 
multiplication functions. Figure 2.22 shows the Excel sheet that stores both the 
coefficient matrix [A] and the load vector {y}. The inverse matrix [A]

-1
, which is 

obtained by following the procedure described in the previous section, is stored below 
the coefficient matrix as shown in the figure. The inverse matrix [A]

-1
 is then multiplied 

with the load vector {y} and the result stored below the load vector as shown in Figure 
2.23. The complete solution is shown in Figure 2.24. The first element is practically 
zero and, therefore, the solution vector is{x} = (0, 1, 2, 3, 4). 
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Figure 2.22.The coefficient matrix [A], the load vector {y}, and the inverse matrix [A]

-1
 

 

 
Figure 2.23. Multiplying the inverse matrix [A]

-1
 with the load vector {y} 

 

 
Figure 2.24. The complete solution vector {x} 
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It should be mentioned that the procedure described above by using Excel‟s functions 
suits best one-dimensional fluid-flow and heat-transfer analyses. This is because the 

linear systems generated in multi-dimensional analyses are usually too large to be 

solved efficiently by using the matrix-inversion method.  

 

2.5.  Itearative solutions with Excel 

Excel offers its user two methods to perform iterative solutions: (i) by using the Goal 

Seek command and (ii) by using circular calculations . In what follows the two 

methods will be illustrated with the help of simple examples.  

 

2.5.1. Itearative solutions with Goal Seek 
The Goal Seek command is used for finding the value of an independent variable (x) 

that yields a specified value of a dependent variable (y). It is a simple, yet very useful 

tool for “What-if” analyses. The following example illustrates how this command can 
be used to solve a nonlinear equation.  

 

Example 2-4. Solution of a nonlinear equation by Goal Seek 

A centrifugal pump is used for lifting 
water from the utility network at the 

ground level to a tank at the top of a 

building that is 30-m high as shown in 
Figure 2.25. The pump‟s characteristic 

curve can be represented by the 

following formula: 

 
32

0 cQbQaQhhp            (2.9) 

 

Where hp and Q are the pump‟s head (m) 

and discharge (m
3
/s), respectively, and 

h0, a, b, and c are constants the values of 

which are 47.22, 2.985x10
3
, 1.549x10

5
, 

and 2.348x10
8
, respectively.  

 

Neglecting friction losses in the pipe, 

determine the water flow rate (m
3
/s) that 

can be delivered by the pump. 

 
Figure 2.25. Schematic for Example 2-4 

 

Solution 

Figure 2.25 shows the Excel sheet prepared for this example in which the values of the 
four constants in Equation (2.9) are stored at the top of the sheet. The pump‟s discharge 

is calculated at various values of the discharge and plotted as shown in the figure. We 

can see from the plot that the value of Q that yield hp = 30 m is approximately 0.003 
m

3
/s.  

  

     

     

      

     

      

      

      

      

      

 

30 m 

Pump 
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Figure 2.25. Excel sheet for Example 2-4 
 

To solve the problem by using Goal Seek, enter an initial guess for Q in cell B7, say 0, 

and then enter the following formula that uses Equation (2.9) to calculate hp in cell B9: 
 

=$B$2-$B$3*B7-$B$4*B7^2-$B$5*B7^3 

 
Note the dollar sign ($) that has been added to the references of the four constants, e.g. 

B2 has become $B$2. The formula bar in Figure 2.25 reveals the above formula by 

placing the cursor at cell B9.  

 
To activate the Goal Seek command, go to the Data tab, select the What-If-Analysis  

option in the Data Tools  group and then select Goal Seek, as shown in Figure 2.26. 

The Goal Seek dialog box shown in Figure 2.27.a will then appear to you. The dialog 
box asks you to select the “Set cell”, i.e. the cell that contains the dependent variable, 

which is B9 in this case. You also have to specify the value sought for this cell and the 

adjustable cell that stores the parameter to be changed. In this case, we seek the value in 

the cell B9 to be 30 by changing the value of the cell B7. The completed form is shown 
in Figure 2.27.b. 

 
Figure 2.26. Activation of the Goal Seek command 
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 (a)       (b)  

Figure 2.27. Goal Seek Set-up for Example 2-4: (a) before completion (b) the 

completed box 

 
By pressing the “OK” button after completing the Goal Seek form, Excel will change 

the value in the adjustable cell (B7) until the Set cell (B9) acquires the required value. 

As shown in Figure 2.28, the answer obtained  is Q = 0.003 m
3
/s which agrees with the 

estimated value from the plot in Figure 2.25. 

 

 
Figure 2.28. Goal Seek solution for Example 2-4 

 

2.5.2. Iterative solution with circular calculations  

A circular reference occurs when an Excel formula tries to refer to its own cell in a 
direct or indirect manner. In standard programming  this is not allowed, but Excel gives 

its user the option to use “circular calculation” if intended. In this case, Excel will 

itearate until all the formulae involved are satisfied. The following example illustrates 

this special feature which is useful for thermofluid analyses.  
 

Example 2-5. Determining the final temperature of heated air 

Heat is added to a piston-cylinder device that contains one kg of air initially at 300K. If 
100 kJ of heat is added to the air at constant pressure, determine the final temperature of 
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air taking into consideration that its molar specific-heat ( pc~ ) varies with temperature 

according to the following formula: 

 
32~ dTcTbTacp   [kJ/kmol]      (2.10) 

 
Where a = 28.11, b =1.97x10

-03
, c = 4.80x10

-06
, and d = -1.97x10

-09
.  

 

Solution 
From the defenition of specific heat, the final temperature (T2) is given by: 
 

 McQTT p /~/12          (2.11) 

 
Where T1 is the initial temperature, Q is the amount of heat added, and M is the molar 

mass for air (M=29). If the variation of pc~  with temperature is ignored and its value at 

T1 alone is used, Equation (2.11) determines T2 as 399.73K. However, we can be more 

accurate by using Equation (2.10) to determine pc~  at the average temperature, Tavr = 

(T1+T2)/2. Figure 2.29 shows the Excel sheet developed for this method which reveals 

the formulae inserted in cells F2, F4, and F6. 

 

 
Figure 2.29. Excel sheet developed for Example 2-5 

 

As soon as we type Equation (2.11) in cell F6, Excel will make the warning message 
that there is a circulare refernce as shown in Figure 2.30.  

 

 
Figure 2.30. The circular-reference prompt 
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The circular reference occurs because T2 depends on pc~  according to Equation (2.11) 

while pc~  itself depends on T2 according to Equation (2.10). If we press the “OK” button 

shown in Figure 2.30, the cells involved in the circular reference whill be identified as 

shown in Figure 2.31. In this case, three cells are involved in the circular reference, 

which are F2, F4, and F6.  
 

 
Figure 2.31. The cells involved in the circular reference 

 

Excel can iterate to determine the values of both T2 and pc~  that satisfy the relevant 

equations if permitted because the iterative-calculation option is not allowed by default. 

To allow it, go to File  and select Options . The Backstage View form shown in Figure 

2.32 will appear to you. Select Formulas , then the form will appear as shown in Figure 
2.33. Enable iterative calculations by ticking (√) the box indicated in the figure and 

press the “OK” button. Excel can now iterate to find the values of T2 and cp that 

simultaneously satisfy Equations (2.10) and (2.11). Figure 2.34 shows the solution 
found by this method, which is T2 =398.976K.  

 

 
Figure 2.32. Selecting Excel's option (Formulas) 
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Figure 2.33. Enabling iterative calculations from Excel's Formulas option 

 

 
Figure 2.34. Solution of Example 2-5 by circular calculations 

 
This example can also be solved by using the Goal Seek command. In this case, we 
have to start the iterative solution by providing Excel with a guessed value for T2, call it 
T2o, based on which a new value for T2 is calculated, called it T2c. Since the guessed 
value T2c is unlikely to be correct, it will be different from T2o. Goal Seek is then used to 
adjust the value of T2o until the difference (Diff = T2c - T2o) vanishes.  
 
Most iterative solutions in this book are obtained by using the Goal Seek command. 
However, the circular-calculation option is more useful in certain situations as 
demonstrated in Chapters 8 and 9 that deal with the numerical solution of the heat- 

conduction equation with the finite-difference method.  
 
2.6.  Excel‟s graphical tools for data presentation and analysis  

Excel has numerous graphical tools that can be used to present the stored data in a 
variety of charts. Figure 2.35 shows one type of Excel charts that displays the annual 
variation of temperature and relative humidity at one location in a certain day. The 
figure shows a line chart in which the temperature is scaled on the primary y-axis (on 
the left) while the humidity is scaled on the secondary y-axis (on the right). This 
arrangement is useful for displaying two or more types of data that differ significantly 
in magnitude such as the net specific work and thermal efficiency of a power cycle.  
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Figure 2.35. An example of line charts 

 

Excel supports other types of charts that allow the user to select the most appropriate 

way to display his/her data in the form of bar, area, or scatter charts. For more 
information about the different types of Excel‟s charts, the reader can refer to 

specialised references such as Walkenbach [2]. A number of tutorials and videos that 

show how to create different types of charts can also be found in the internet. 

 
Excel‟s charts provide a curve-fitting capability of numerical data by using the 

Trendline  feature. This capability is particularly useful for computer-aided thermofluid 

analyses because it can be used to convert tabulated fluid-properties and other data into 
analytical equations that make the data more suitable for iterative solutions and 

optimisation analyses. To illustrate the use of this feature, consider Table 2.1 that shows 

properties of saturated water in the range 0.001
o
C – 60

o
C. These values of the saturation 

pressure (Psat) and saturated liquid enthalpy (hf) are used in psychrometric analyses of 
air-conditioning applications. For computer-aided analyses, it is useful to convert these 

data into relevant equations.  

 
The trendline feature provides a number of options, which include exponential, linear, 

logarithmic, polynomial, and power equations as shown in Figure 2.36. To fit a 

trendline to the data, we have to create line charts for the two properties as shown in 

Figures 2.37.a and 2.39.b. Trendlines can then be added on the line charts. Figures 
2.37.a and 2.39.b also show the corresponding trendline equations of the tabulated data 

as determined by using polynomial equations. As Figure 2.37.b shows, a linear equation 

is adequate for the hf data since its variation over the given temperature range is mild. 
However, a third-order polynomial is required to represent the variation of Psat with 

temperature as shown in Figure 2.37.a. 
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Table 2.1. Properties of saturated water at temperatures in the range 0
o
C- 60

o
C taken 

from Cengel and Boles [3] 
ToC Psat 

[kPa] 
v f  
[m3/kg] 

vg 
[m3/kg] 

uf 
[kJ/kg] 

ug 
[kJ/kg] 

hf 
[kJ/kg] 

hg 
[kJ/kg] 

sf 
[kJ/kg.K] 

sg 
[kJ/kg.K] 

0.01 0.6117 0.001000 206.00 0.000 2374.9 0.001 2500.9 0.0000 9.1556 

5 0.8725 0.001000 147.03 21.019 2381.8 21.020 2510.1 0.0763 9.0249 

10 1.2281 0.001000 106.32 42.020 2388.7 42.022 2519.2 0.1511 8.8999 

15 1.7057 0.001001 77.885 62.980 2395.5 62.982 2528.3 0.2245 8.7803 

20 2.3392 0.001002 57.762 83.913 2402.3 83.915 2537.4 0.2965 8.6661 

25 3.1698 0.001003 43.340 104.83 2409.1 104.83 2546.5 0.3672 8.5567 

30 4.2469 0.001004 32.879 125.73 2415.9 125.74 2555.6 0.4368 8.4520 

35 5.6291 0.001006 25.205 146.63 2422.7 146.64 2564.6 0.5051 8.3517 

40 7.3851 0.001008 19.515 167.53 2429.4 167.53 2573.5 0.5724 8.2556 

45 9.5953 0.001010 15.251 188.43 2436.1 188.44 2582.4 0.6386 8.1633 

50 12.352 0.001012 12.026 209.33 2442.7 209.34 2591.3 0.7038 8.0748 

55 15.763 0.001015 9.5639 230.24 2449.3 230.26 2600.1 0.7680 7.9898 

60 19.947 0.001017 7.6670 251.16 2455.9 251.18 2608.8 0.8313 7.9082 

 

 
Figure 2.37. The Format Trendline window 
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(a)      (b) 

Figure 2.37. Fitting trendlines on tabulated data for water of  

(a) saturation pressure and (b) saturated liquid enthalpy  

 

2.7.  Closure  

This chapter described the main features of Excel needed for thermofluid analyses. The 

chapter highlighted the importance of using cell labelling with Excel‟s formulae and 
illustrated the use of Excel‟s general mathematical functions, logical functions, and the 

functions for matrix operations. The chapter also demonstrated the use of Excel‟s two 

iterative tools: Goal Seek and circular calculations. In spite of its simplicity, the Goal 

Seek command is very useful for iterative solutions as shown in later chapters of this 
book. Finally, the chapter illustrated the usefulness of Excel‟s charting tools for the 

presentation of tabulated data particularly the trendline feature. 

 
It should be mentioned that the Developer tab in Excel‟s user-interface provides a 

number of other useful features that have not been mentioned in the chapter but needed 

for enhancing the effectiveness of Excel as modelling platform for thermofluid 
analyses. One of these features is the ability to record macros  for conducting repetitive 

calculations and parametric analyses as illustrated in Appendix F.  
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Exercises 
1. The following table shows measured values of the temperature by two different 

methods compared to the correct corresponding values. Find the average error for 

each method. 
 

Correct T (
o
C) Method 1 Method 2 

0 0.1044 0.1112 

10 10.1092 10.1153 

20 20.1139 20.1194 

30 30.1186 30.1235 

40 40.1231 40.1275 

50 50.1276 50.1316 

60 60.1320 60.1357 

70 70.1364 70.1397 

80 80.1407 80.1438 

90 90.1450 90.1479 

100 100.1493 100.1520 

 
2. The following table shows the data for the saturation pressure of a certain fluid. Use 

a nested IF statement to develop an interpolation formula that determines the 

saturation pressure of the fluid at any temperature in the range 5
o
C ≤ T ≤ 30

o
C. 

 

T(
o
C) Psat (kPa) 

5 0.872 

10 1.228 

15 1.705 

20 2.339 

25 3.169 

30 4.246 

 

3. A system of algebraic equations can be expressed in matrix form as follows: 

 


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c

b

a

 

 

Solve the system of equations to determine the values of the three unknowns a, b, 

and c. This exercise is based on Example 9.11 in Chapra and Canale [4]. The 
answer is: a = 8.5941, b=34.4118, and c = 36.7647. 

4. Figure 2.P4 shows a triangular fin attached to the surface of a wall. Solution of the 

conduction heat transfer equation with the finite-difference method resulted in the 
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following system of linear equations the solution of which gives the temperatures 
in 

o
C at different distances from the fin base as shown in the figure: 

 

 
Figure 2.P4. Trianangular fin 

 
-8.008 T1 + 3.5 T2 = -900.209 

 

3.5 T1 -6.008 T2 + 2.5 T3 = -0.209 
 

2.5 T2 -4.008 T3 + 1.5 T4 = -0.209 

 

1.5 T3 -2.008 T4 + 0.5 T5 = -0.209 
 

T4 - 1.008 T5 = -0.209 

 
Use Excel functions to solve the above system of linear equations. 

5. Adopting suitable names in your formulae, prepare an Excel sheet for calculating 

the frictional loss (hf) in a circular pipe of diameter D, length L, and roughness k s. 

Use your sheet to determine hf in the following cases:  
 

(a) D = 25 cm, L = 150 m, V = 2 m/s, k s = 0.045 mm, carrying water at 20
o
C. 

(b) D = 25 cm, L = 150 m, V = 0.2 m/s, k s = 0.045 mm, carrying oil at 20
o
C. 

(c) D = 25 cm, L = 150 m, V = 7 m/s, k s = 0.045 mm, carrying air at 20
o
C. 

 

Use the Dracy-Weisbach equations and determine the values of the kinematic 

viscosity from relevant property tables. 

6. Using a line chart, plot the variation of sine θ for -180 ≤ θ ≤ 180 in steps of 10
o
then 

add cosine θ on the same chart. 

7. Using the data shown in Table 2.1, make a line chart for vf and vg. Add polynomial 

trendlines for both and comment on the trendlines equations.   
8. The table below shows some of the thermo-physical properties of air at 

atmospheric pressure and different temperatures. Use Excel charts to show the 

1 2 3 4 5 0 
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variation of the properties ρ, β, cp, k, α, μ, ν, and Pr with temperature and use 
trendline to obtain suitable equations for these properties.  

 

T 

(K) 

  

(kg/m
3
) 

310
 (1/K) 

pc

(J/kg.K) 

k
(W/m.K) 

  

(m
2
/s) 

610  

(N S/m
2
) 

610  

(m
2
/s) 

 

Pr  

273 1.252 3.66 1011 0.0237 19.2 17.456 13.9 0.71 

293 1.164 3.41 1012 0.0251 22.0 18.240 15.7 0.71 

313 1.092 3.19 1014 0.0265 24.8 19.123 17.6 0.71 

333 1.025 3.00 1017 0.0279 27.6 19.907 19.4 0.71 

353 0.968 2.83 1019 0.0293 30.6 20.790 21.5 0.71 

373 0.916 2.68 1022 0.0307 33.6 21.673 23.6 0.71 

473 0.723 2.11 1035 0.0370 49.7 25.693 35.5 0.71 

573 0.596 1.75 1047 0.0429 68.9 29.322 49.2 0.71 

673 0.508 1.49 1059 0.0485 89.4 32.754 64.6 0.72 

773 0.442 1.29 1076 0.0540 113.2 35.794 81.0 0.72 

 
9. The volume V of liquid in a spherical tank of radius r is related to the depth h of the 

liquid by: 

 
V = πh

2
(3r −h)/3  

 

Using the Goal Seek command, determine the value of h for the tank with r=1 m 
and V = 0.5 m

3
.  

 

This exercise is based on Problem 8.9 in Chapra and Canale [4]. Answer: h = 0.431 

m. 
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Solver, VBA, and Thermax 
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As the main component of the present modelling platform for thermofluid analyses, 
Excel provides the user-interface and built-in functions, two iterative tools, and graphic 

tools. However, what make Excel an effective platform for thermofluid analyses are the 

three auxiliary components; Solver, VBA, and Thermax. This chapter focuses on these 
three components and illustrates their use by means of relevant examples. With respect 

to Solver, the chapter shows how its three solution methods can be used for performing 

optimisation analyses and solving systems of linear and nonlinear equations. The 
chapter also shows how VBA can be used for developing custom functions and how 

Thermax functions can be used in Excel formulae. 

 

3.1.  Solver 
Solver is a multi-purpose iterative tool developed by Frontline Systems [1] as an Excel 

add-in for “What-if” analyses. Compared to Excel‟s own iterative tool, which is the 

Goal Seek command described in Chapter 2, Solver offers the following advantages: 
 

1. While Goal-Seek can only be used for simple problems that involve only one 

decision variable, Solver can deal with more difficult problems in which the 

objective cell is affected by numerous decision variables.  
2. Goal Seek allows only a required value of the objective cell to be achieved, but 

Solver also enables Excel to perform an optimisation analysis by finding the 

maximum or minimum value for the formula in the objective cell.  
3. Solver allows constraints to be applied on the solution, which is not possible 

with Goal Seek. The ability to impose constraints is needed for both 

optimisation analyses and iterative solutions. 

4. Solver offers three solution methods that suit different types of problems and 
gives the user a number of numerical options for applying the same method. 

 

3.1.1. Activation of Solver 
Like the Goal Seek command, Solver is found in the Data tab as shown in Figure 3.1. 

If it doesn‟t appear in your Data tab, then go to File  and then click Options  and select 

Add-Ins . From the Manage  option at the bottom of the menu select Excel Add-ins  and 

then klick “Go”. The Add-Ins  dialog box shown in Figure 3.2 will be shown. To add 
Solver to the add-ins menu, tick (√) on the “Solver” option and return to the Data tab. 

When you click the Solver button from the Data tab, the Solver Parameters  dialog 

box shown in Figure 3.3 will be shown. 

 
Figure 3.1. The Solver add-in in the Data tab 
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Figure 3.2. Activating Solver from the menu of Excel add-ins 

 

 
Figure 3.3. Solver Parameters dialog box  
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Solver Parameters  dialog box helps the user to select a formula in one cell, called the 
objective cell, and a group of other cells, called decision variables  or variable cells, 

which are directly or indirectly related to the formula in the objective cell. By adjusting 

the decision variables , the objective cell can be maximised, minimised, or made to 
acquire a certain value. As shown in Figure 3.3, constraints  can be applied on the 

decision variables. To suit different types of problems, Solver offers three solution 

methods which are: 
 

1. The GRG Nonlinear method, 

2. The Evolutionary method 

3. The Simplex LP method. 
 

The GRG Nonlinear method involves the determination of the function‟s gradient like 

the Steepest Descent method [2, 3]. The Evolutionary method adopts a variety of 
genetic algorithms and local search methods [4, 5]. While both the GRG Nonlinear 

and the Evolutionary methods are suitable for non-linear problems, the Simplex LP 

method, which is a linear-programming method, is suitable for linear problems. As 

shown in Figure 3.3, Solver uses the GRG Nonlinear method by default. The 
following sections give examples of using the three solution methods. 

 

3.1.2. The GRG Nonlinear method 
In an optimisation analysis we may require the objective function to be maximised or 

minimised depending on the situation at hand. For example, the optimisation of pipe 

insulation requires its total cost to be minimised, while the optimisation of a thermal 

power plant requires its thermal efficiency to be maximised. The following example 
illustrates the use of the GRG Nonlinear method in optimisation analyses. 

 

Example 3-1. Finding the minimum value of a quadratic function  
Find the minimum value of the following quadratic function in the specified range. 

 

 f (x) =x
2
 −2x – 1; −2 ≤ x ≤3     (3.1) 

 

Solution 

Figure 3.4 shows the Excel sheet developed for this example. The line chart inserted in 

the figure shows the variation of f with x from which we can see that the minimum 
value of f is -2 and occurs at x =1. An initial value for x is entered in cell B3 based on 

which the function f(x) is calculated in cell B6 according to Equation (3.1). Note the 

curser is placed on cell B6 to reveal the following formula typed in the cel: 
 

= B3^2-2*B3−1  
 

We can now use Solver to determine the minimum value of the function. To do so, 
select Solver from the Data tab and fill its parameters dialog-box as shown in Figure 

3.5 that shows the top part of the completed box.  

javascript:AppendPopup(this,'xldefFormula_2_2')
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Figure 3.4. Excel sheet for determining the local minimum of the quadratic function 

 

 
Figure 3.5. The completed Solver dialog box for Example 3-1 

 
The dialog box in Figure 3.5 has been filled as follows: 

 

Set Objective:  B6 and Min have been selected for this option since 

want the value of the function in cell B6 is to be 
minimised 

By Changing Variable Cells:  B3 which is the cell that stores the value of the 

independent variable x 
Subject to the Constraints:  Two constraints have been added that specify the 

minimum and maximum values of x, e.g. x ≥ -2 and 

x ≤ 3  

Select a Solving Method:  The GRG Nonlinear method (the default option) 
 

Pressing the “Solve” button of the completed parameters box sparks Solver to find the 

required solution. As shown Figure 3.6, shows, the answer found by Solver, which is x 
= 1, f = -2, agrees with the graphical solution shown in Figure 3.4. 
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Figure 3.6. Solver solution for Example 3-1 

 

3.1.3. The Evolutionary method   

When the function to be optimised has more than one point of inflection, the solution 
found by the GRG Nonlinear method may only be a local minimum or maximum. The 

following example illustrates the capability of the Evolutionary method to find the 

global optimum solution for a simple function. 

 

Example 3-2. Finding the global minimum of a function  
Determine the global minimum value for the following function: 

 

  )cos(xxxf     3 ≤  x ≤ 14     (3.2) 

 

Solution 

Figure 3.7 shows the Excel sheet developed for solving this example. The insert shows 
that the function has two minima in the specified range of x; one at x ≈ 5 and another at 

x ≈ 11. Let us first try to solve the problem with the GRG Nonlinear method. An initial 

value for x has been entered in cell B2 based on which the function f is calculated in 
cell B4. The formula bar in Figure 3.7 reveals the formula entered in the cell B4. Figure 

3.8 shows the completed Solver parameters dialog-box with two constraints that specify 

the upper and lower limits for x. From Figure 3.9 that shows the solution found by 

Solver it is clear that it found the local minimum (y = − 4.81) which is nearer to the 
initially specified value and not the global minimum.  

 

In order to locate the global minimum by the GRG Nonlinear method, the solution has 
to be started with an initial guess that is closer to the global minimum, e.g., x = 9. The 

advantage of the Evolutionary method is that such an arrangement is not required. The 

set-up shown in Figure 3.8 only needs the solution method to be changed to 

“Evolutionary”. Figure 3.10 that shows the solution obtained by this method confirms 
that the method produced the global minimum (y = − 11.041). 
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Figure 3.7. The Excel sheet for Example 3-2 

 

 
Figure 3.8. Solver set-up for Example 3-2 with GRG Nonlinear method 

 

 
Figure 3.9. Solver solution for Example 3-2 with the GRG Nonlinear method  
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Figure 3.10. Solver solution for Example 3-2 with the Evolutionary method 

 

The Evolutionary method is useful for optimisation analyses that involve non-smooth 

and discontinuous functions, which are difficult to solve with the GRG Nonlinear 
method. However, its disadvantage is that it takes long computer times. While the GRG 

Nonlinear method took less than a second to solve the above problem, the 

Evolutionary method took one minute and 35 seconds. 
 

3.1.4. The Simplex LP method  

This option provides a method for solving small systems of linear equations that can be 
used instead of the method described in the Chapter 2 by using Excel‟s matrix 

functions. The method will be illustrated by reconsidering the problem of Example 2-3. 

Figure 3.11 shows a new Excel sheet for solving the problem with the present method.   

 

 
Figure 3.11. Excel sheet for solving Example 2-3 with Solver 

 

The top part of the sheet stores the coefficient matrix [A] and the right-hand vector {y} 
of the system of linear equations to be solved. The procedure starts with a guessed 

solution which is stored as vector {x0} in cells F9:F13. All the elements of this vector 
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are given a value of 1 as shown in Figure 3.11. The coefficient matric [A] is then 
multiplied by the guessed vector {x0} using Excel‟s ”MMULT” function and the result 

stored in cells H9:H13. If this initial guess is the correct answer, the multiplication 

[A]{x0} will be the same as the true right-hand side vector, i.e,: 
 

[A]{x0} = {y}          (3.3) 

 
However, Figure 3.11 shows that the vector [A]{x0} is different form the true right-

hand side vector {y} stored in cells H2:H6. Solver can now be used to adjust the 

variable cells D9:D13 so that all elements of the vector [A]{x0} become equal to their 

counterparts in vector {y}, i.e: 
 

H9 = H2 

H10 = H3 

H11 = H4 

H12 = H5 

H13 = H6 

 
Solver set-up for this task is shown in Figure 3.12.  

 

 
Figure 3.12. Solver set-up for Example 2-3 with the Simplex LP method 

 
Note that the objective cell is left blank and the Simplex LP method is selected as the 

solution option. In this case, Solver will iterate to find the values of the decision 
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variables that satisfy all the imposed constraints. The solution found by Solver using the 
above set-up is shown in Figure 3.13.  

 

 
Figure 3.13. Solution of Example 2-3 with the Simplex LP method 

 

All the elements of the [A]{x0} are now equal to their corresponding elements in the 

vector {y}. The first element of the solution vector, which is -6.6x10
-16

, is practically 

zero. Therefore, the solution is [0,1,2,3,4], which is the same as that obtained in 
Example 2-3 by using the matrix-inversion method. The advantage of Solver compared 

to the matrix-inversion method is that it can be used for solving systems of nonlinear 

equations by following a similar procedure (Refer to Problem 3.5 in the Exercises). 
 

3.1.5. The default settings of Solver options  

Solver gives it user the chance to improve the performance of its three solution methods 

by allowing alternative options for applying these methods. While some options are 
common to all three solution methods, others are particular to the GRG Nonlinear or 

the Evolutionary method. By clicking the “Options” button in Solver‟s parameters 

dialog box shown in Figure 3.14, the dialog box shown in Figure 3.15 will be shown.  
 

 
Figure 3.14. Solver options in the Properties dialog box 
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Figure 3.15. Default Solver options adopted in the analyses for all solution methods  

 

Figure 3.15 shows the default settings of the options that are common to all three 

solution methods. Some of these default settings may have to be changed in order to 
reduce the computation time or increase the precision of the solution in certain 

situations. Sometimes, Solver fails altogether to find the solution if the default options 

are used. For example, certain analyses require the automatic-scaling (AS) option to be 
used while others require it not to be used. AS enables Solver to handle a poorly-scaled 

model, i.e. a model in which the values of the objective and constraint functions differ 

by several orders of magnitude. By using AS, the values of the objective and constraint 
functions are scaled internally in order to minimise the differences between them.  

 

Figures 3.16.a and 3.16.b show the default settings which are particular to the GRG 

Nonlinear method and to the Evolutionary method, respectively. The GRG Nonlinear 
method uses by default the forward difference (FD) approximation of derivatives. Most 

of the analyses presented in later chapters of the book used the GRG Nonlinear 

method for which the default FD approximation is used.  
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(a)       (b) 

Figure 3.16. The default Solver options specific to: (a) the GRG Nonlinear method and 

(b) the Evolutionary method 

 
Figure 3.16.b shows the default settings used by the Evolutionary method. Note that 

this method has more adjustable parameters than the GRG Nonlinear method. 

According to the default set-up, the population size is 100 and the maximum allowable 
time without improvement is 30 seconds. The few cases in this book solved with the 

Evolutionary method show that, with this set-up, the method needs long computer 

times. Although the time required by the Evolutionary method can be reduced by 
reducing the population size, number of iterations, or the maximum allowable time, the 

optimsation analyses presented in later chapters to do not show a clear advantage to this 

method over the GRG Nonlinear method which is easier to apply.  

 

3.2. VBA and the development of user-defined functions 

Although Solver and the Goal Seek command enable Excel to deal with a wide range of 

thermofluid analyses, there are situations where the analytical model requires the 
development of a customised user-defined function (UDF) that is not provided by 

Excel. This arises, for example, in thermodynamic analyses that require functions that 

determine the properties of fluids at various pressures and/or temperatures. This section 

illustrates the process of activating VBA and using it to develop simple UDFs.  
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3.2.1. Activation of VBA 
As shown in Figure 3.17, VBA is found on the left side of the Developer tab. This tab 

gives many other development tools. If the Developer tab is not shown in the ribbon of 

your Excel sheet, then go to File , select Options , and then select to Customise Ribbon 
from the Backstage View shown in Figure 3.18. 

 

 
Figure 3.17. Selection of VBA from the Developer tab 

 

 
Figure 3.18. Adding VBA to the Developer tab 
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From the Main Tabs , select the Developer check box and then click “OK”. The 
Developer tab will now be shown in the ribbon of your Excel sheet. To start writing 

the UDF, go to Developer tab menu and select Visual Basic. The Visual Basic editor 

will appear to you as shown in Figure 3.19. Select Insert → Module  and the blank 
page shown in Figure 3.20 will be open for you to type the VBA code.  

 

 
Figure 3.19. Inserting a new module 

 

 
Figure 3.20. A new VBA module 
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3.2.2. Development of UDFs 
As a first example let us write a VBA function for determining the area (A) of a circle 

given its diameter (D) using the following mathematical equation: 

 

4/2DA             (3.4) 

 

The following UDF determines the circle‟s area according to Equation (3.4): 

  
Function Circ_area(Dia) 

Pi = 3.141593 

Circ_area = Pi * Dia ^2 / 4 
End Function 

 

Note that the first line in the code starts with the word “Function” followed by the 

name given to the function, which is “Circ_area”. The required input parameters are 
specified between two brackets after the function name. The present function has only 

one input parameter, which is the diameter (Dia). As soon as you type the first line of 

the code and press the “Enter” key, the editor will automatically add the End line of 
the function. Now, type the rest of the code as shown in Figure 3.21.  

 

 
Figure 3.21. A UDF for caclcuating the area of a circle with a given diameter 

 

After typing the code correctly, the function can be used via Excel UI just like any 

built-in function as shown in Figure 3.22. Note that the formula bar in Figure 3.22 

reveals the formula in cell B2 as:  
 

= Circ_area(10)  

 
Where the number 10 refers to the diameter of the circle, which is the only input to the 

UDF. You can now check the answer of your user-defined function by calculating the 

circle‟s area with a normal Excel formula by typing in any cell “=pi()*10^2/4”.  



                                                Mohamed M. El-Awad (UTAS) 

 

 
Figure 3.22. Using the “Circ_area” function in Excel 

 

For thermodynamic analyses, VBA is useful for developing UDFs for fluid properties. 

As an example, let us develop a UDF that determines the molar specific-heat at constant 

pressure ( pc~ ) for air. For an ideal gas, pc~
 
is given by the following polynomial [6]: 

 
3

3
2

210
~ TaTaTaac p    [kJ/kmol.K]    (3.5) 

 
Where T is the absolute temperature and a0, a1, a2, and a3 are constants that have 

different values for different gases. For air, the constants‟ values are 28.11, 0.1967x10
-2

, 

0.4802 x10
-5

, and -1.966 x10
-9

 in this order.  
 

The following VBA function, called “cp_air”, determines pc~ for air based on Equation 

(3.5). The only input for the function is the absolute temperature (TempK). 

 
Function cp_air(TempK) 

a0 = 28.11 

a1 = 0.00196 

a2 = 0.000004802 
a3 = -0.000000001966 

M = 28.97 

cpbar = a0 + a1 * TempK + a2 * TempK  ̂2 + a3 * TempK  ̂3 
cp_air = cpbar / M 

End Function 

 
Figure 3.23 shows the VBA function and the formula bar in Figure 3.24 shows how the 

function can be used in an Excel formula to determine pc~  for air at 300K. The value 

returned by the function is 29.0771 kJ/kmol.K. By making suitable extensions, the 

function can easily be used to determine the values of pc~ for other ideal gases in 

addition to air (Refer to Exercise 3.8). The various functions provided by Thermax for 
the thermo-physical properties of water, refrigerants, etc., have been developed by 

writing similar functions with VBA. 
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Figure 3.23. A UDF for caclcuating the molar specific-heat for air 

 

 
Figure 3.24. Using the cp_air function in Excel 

 
In writing the UDF for the circle‟s diameter shown in Figure 3.21 we assigned a value 

for the constant π because VBA does not provide a built-in function for it like Excel. 
However, this is not necessary since it is possible to use the built-in functions PI 

provided by Excel within the VBA function. This is very useful when built-in functions, 

like MIN and MAX, can be used to minimise the programming effort needed for 
developing the required UDF. More information about this and other features of the 

VBA language can be found in specialised references [7-9].  

 

3.3. Thermax installation and use  
By providing custom functions for fluid properties, Thermax enables Excel to be used 

as an educational platform for a wide range of thermofluid analyses [10]. Before 

Thermax can be recognised by Excel you have to install it in your computer. To do that, 
open the Thermax.xla file and then save it as an “Excel Add-in”. Recent Excel 

versions locate all add-ins in a certain folder in the computer and automatically direct 
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you to that location when you want to save a new add-in. Save the Thermax add-in in 
the specified location and restart Excel in order to activate it. Open a new Excel sheet 

and then do the following: 

 
1. Go to File  and then click Options .  

2. Select Add-Ins . From the Manage  ribbon at the bottom of the menu select 

Excel Add-ins  and then press Go. The pull-down menu shown in Figure 3.25 
will appear to you.  

3. To add Thermax to the add-ins menu, tick (√) the corresponding box.  

4. If for any reason you saved the add-in in a location that is different from the 

default folder, then click on Browse  and search for it in the destination folder 
and select it.  

 

 
Figure 3.25. Adding Thermax to the menu of Excel add-ins 

 

Once installed, Thermax functions can be used in Excel's formulae just like the built-in 

functions. For illustration, let us start a formula by entering the equal sign (=) in any 
cell (say cell B2). If you now press the fx button in the formula ribbon, the Function 

Wizard shown in Figure 3.26 will be shown. The Function Wizard first lists the various 

categories of built-in functions provided by Excel. Scroll down the list of function 

categories and select the User-defined functions. Then, all the functions provided by 
Thermax will be listed alphabetically as shown in Figure 3.27.  
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Figure 3.26. Finding the add-in user-defined functions in the Function Wizard 

 

 
Figure 3.27. Thermax functions listed alphabetically in the User Defined category 
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The first function in the list, Air_Data, is the auxiliary function that stores the data for 
the thermo-physical properties of air at standard atmospheric pressure. This function is 

called by other functions in the same to obtain the values of these properties at the 

required temperature.  
 

To start using the add-in functions, scrol down the list and select the function Airk_T 

that determines the thermal conductivity (k) of air at a given temperature. Upon 
pressing the OK button, the Function Arguments  box shown in Figure 3.28 will be 

shown.  

 

 
Figure 3.28. The Function Arguments box for the “Airk_T” function 

 

Figure 3.28 shows that this function has one input parameter, which is the temperature 

in 
o
C “TempC”, and gives a brief description of its intended use. Let us use the function 

to determine the thermal conductivity for air at 25
o
C. Fill the form by entering the value 

of the temperature, 25, as shown in Figure 3.29.  

 

 
Figure 3.29. Using the function “Airk_T” to determine the thermal conductivity of 

atmospheric air at 25
o
C 
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Note that the formula ribbon now shows the formula in cell B2, which is 
“=Airk_T(25)”. The form also shows the calculated value of k , which is 0.02551 

W/m.
o
C. When you press the “OK” button, this value will appear in the cell B2. You 

can check this value with that given in Table A.1 and try other Thermax functions. 
 

In certain situations the confinement of Excel‟s formula to one cell becomes too 

restrictive for developing the analytical model. This situation arises, for example, when 
an iterative process involves a non-linear equation such as the Colebrook-White 

equation or the Soave-Redlich-Kwong equation of state. In this case, a UDF is needed 

solve the nonlinear equation and return the result to Excel‟s formula like any built-in 

function. For such a case, Thermax provides a Newton-Raphson solver for nonlinear 
equations in addition to its property functions. Appendix B shows how to use this tool. 

Appendix B also describes two interpolation functions provided by Thermax for 

tabulated data which are useful for including additional fluid properties or other 
tabulated data needed in a thermofluid analysis.  

 

3.4. Closure 

This chapter introduced the three auxiliary components of the Excel-based modelling 
platform, Solver, VBA, and Thermax, that make it an effective platform for thermofluid 

analyses. The chapter gave Examples of using the three solution methods provided by 

Solver to deal with different types of problems. It also showed how VBA can be used 
for developing user-defined functions not provided by Excel and explained the 

procedure for installing Thermax and using its functions in Excel formulae. Appendix B 

demonstrates the use of the Newton-Raphson solver provided by Thermax for solving 

nonlinear equations and its two interpolation functions for tabulated data.  
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Exercises 
1. A system of algebraic equations can be expressed in matrix form as follows: 

 


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Solve the system of equations by using Solver to determine the values of the three 
unknowns a, b, and c. This exercise is based on Example 9.11 in Chapra and 

Canale [11]. The answer is: a = 8.5941, b=34.4118, and c = 36.7647. 

2. Draw a line chart with Excel to show the variation of the following function in the 

range 0 ≤ x ≤4: 
 

f(x) = 2 sin x − x
2
/10 

 
Use Solver to find the maximum of the function in the same range. Based on 

Example 13.1 in Chapra and Canale [11]. The answer is:  f(x) = 1.7757 at x 

=1.4276. 

3. The curve shown in Figure 3.P3 is a plot of the function: 
 

  2sinef 
 

 

 
Figure 3.P3 A composite function  
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Use Solver to find: 
 

a) The minimum value of the function and the corresponding angle 

b) The maximum value of the function and the corresponding angle 
c) The angle at which value of the function equals 4.0 

 

4. Using the Excel sheet developed to solve Example 3-1 by the GRG Nonlinear 
method, study the effect of using central-difference approximation of derivatives 

instead of the default forward-difference approximation on the solution.  

 

5. Consider the following set of simultaneous nonlinear equations:  

 

x
2
 + xy = 10           (A) 

 
y +3xy

2
 = 57          (B) 

 

To solve the system with Solver, rearrange the equations as follows:  

 
u(x, y) = x

2
 + xy−10 = 0         (C) 

 

v(x, y) = y + 3xy
2
 −57 = 0        (D) 

 

Create two cells (B1 and B2) to hold initial guesses for x and y. Enter the function 

values themselves, u(x, y) and v(x, y) into two other cells (B3 and B4). The initial 

guesses may result in function values of u and v that are far from zero. Determine 
the sum of the function squares, i.e. u

2
 + v

2
, and store it in cell B5.  

 

Use Solver to find the values of x and y in cells B1 and B2 (the Changing cells) 
that make the value in cell B5 (the objective cell) equal to zero. Using this 

procedure, find the roots of the above system starting with initial guesses of x =1 

and y = 3.5.  

 
This exercise is based on Example 7.5 in Chapra and Canale [11]. The correct pair 

of roots are x=2 and y=3. 

 
6. The volume V of liquid in a spherical tank of radius r is related to the depth h of 

the liquid by: 

 
V = πh

2
(3r −h)/3  

 

Using VBA, develop a user-defined function that determines h at any given values 

of r [m] and V  [m
3
]. Check your function with r=1 m and V = 0.5 m

3
. Answer: h = 

0.431 m.  
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7. Extend the UDF developed in Section 3.2 for determining the specific heat for air 
so that it can be used for other ideal gases as well. Note that in this case, the 

function will have two input parameter: the name of the gas and the temperature. 

8. Using suitable formulae for the thermodynamic properties of superheated steam, 
develop user-defined functions with VBA for determining the specific enthalpy 

and entropy of superheated steam from its pressure and temperature. 

9. Using suitable formulae for the thermodynamic properties of superheated 
refrigerant R134a, develop user-defined functions with VBA for determining 

properties, e.g., enthalpy and entropy, of superheated R134a from its temperature 

and pressure.  
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Iterative solutions  
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The need for computer-aided iterative solutions is common to all three types of 
thermofluid analyses and arises for a number of reasons. This chapter gives examples of 

such analyses and shows how they can be handled by using the two iterative tools 

provided by Excel; the Goal Seek command and Solver. While the Goal Seek command 
can be used for the simplest type of iterative solutions that involve a single parameter, 

Solver is needed for those involving multiple variables and requiring certain constraints 

to be satisfied by the iterative solution. When the analytical model involves a nonlinear 
equation, such as the Colebrook-White equation, it becomes difficult to use only Goal 

Seek and Solver. For such problems, the chapter shows how the Newton-Raphson 

solver provided by Thermax can be used to deal with the nonlinear equation, leaving 

the main iteration to Goal Seek or Solver.  
 

4.1. Iterative solutions by using Goal Seek 

Most thermofluid problems that require iterative solutions can be solved by using the 
Goal Seek command. This section presents three examples that demonstrate its use for 
typical analyses that require iterative solutions in fluid-dynamics, thermodynamics, and 
heat-transfer. 

 
4.1.1. Type-2 and type-3 pipe-flow analyses 
The frictional head loss (hf) in a pipe depends on a number of factors that characterise 

the pipe itself as well as the fluid being transported. For a straight pipe with no fittings 

carrying a viscous Newtonian and incompressible fluid, the frictional head loss is 
determined by the following Darcy-Weisbach equation: 

 

g

V

D

L
fh f

2

2

             (4.1) 

 
Where f is the Darcy friction factor, L the length of the pipe, D its diameter, V the fluid 

velocity, and g the gravity acceleration constant. The friction factor can be obtained 

from Equation (1.22) if the flow is laminar and from Equation (1.24) or (1.25) if it is 

turbulent. Practical pipe-flow problems that involve Equation (4.1) can be divided into 
three types [1]:  

 

1. Type-1 problems – require the determination of hf when both the pipe‟s 
diameter and fluid velocity (or flow rate) are known.  

2. Type-2 problems – require the flow rate to be determined for a specified hf and 

pipe diameter.  

3. Type-3 problems – require the pipe diameter to be determined for a given hf 
and flow rate.  

 

Type-1 problems can be solved in a straight-forward manner by using Equation (4.1) to 
determine the friction head loss. However, both type-2 and type-3 problems require 

iterative solutions because the Reynolds number and, therefore, the friction factor, f, 
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cannot be determined without knowing D or V. For type-2 problems (i.e. unknown flow 
rate), the iterative procedure can be avoided by using extended Moody diagrams that 

require the determination of the following dimensionless parameter [2]: 

 
5.0

5.1
5.0

2
Re 















L

ghD
f

f


.          (4.2) 

 

Apart from the inaccuracy of visual chart interpolation, the procedure is difficult to 

adopt in optimisation or parametric analyses. By using the Goal Seek command, both 
type-2 and type-3 problems can be solved more accurately. The following example, 

which is based on Example 8.4 in Cengel and Cimbala [1], shows how Goal Seek can 

be used to solve a type-3 problem. 
 

Example 4-1. Solution of type-3 pipe flow problems 

Heated air at 1 atm and 35°C is to be transported in a 150-m-long circular plastic duct 

(ε=0.045 mm) as shown in Figure 4.1 at a rate, Q, of 0.35 m
3
/s. If the head loss in the 

duct is not to exceed 20 m, determine the smallest required diameter for the duct. 

 

 
Figure 4.1. Schematic for Example 4-1 (adapted from Cengel and Cimbala [1]) 

 

Solution with Goal Seek 

The problem can be solved by calculating the friction head loss at different diameters of 
the duct and then selecting the diameter that gives the required head loss which is 20 m. 

The iterative solution proceeds as follows: 

 

1. Select a diameter for the inner pipe (D) 
2. Calculate the velocity of the hot air (V), V=Q/A, A=πD

2
/4 

3. Calculate the Reynolds number in the pipe (Re), Re=VD/ν 

4. Calculate the friction factor (f) using Equation (1.22) or (1.24) 
5. Calculate the friction head loss (hf) from Equation (4.1) 

6. If hf ≠20 m, repeat steps 1 to 5  

 

Figure 4.2 shows the Excel sheet developed for this example which is divided into three 
parts: (i) problem data (ii) calculations, and (iii) results. The data part shows the 

information given in the question. The value of the kinematic viscosity of air at 35°C (ν 

= 1.655x10
-5

 m
2
/s) was obtained from Cengel and Cimbala [1] and fixed throughout the 

0.35 m
3
/s 

air 

150 m 

D 
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calculations. Cell-labelling is applied in the formulae and Figure 4.2 reveals the 
formulae used in each cell of the calculations part. Note the If-function in cell F10. 

 

 
Figure 4.2. Excel sheet and Goal Seek set-up for Example 4-1 

 

As Figure 4.2 shows, for an assumed duct diameter of 0.1 m the friction head loss 

exceeds 2761 m. Figure 4.2 also shows the completed Goal Seek dialog box that 
requires Goal Seek to change the diameter in cell F2 and iterate until the friction head 

loss in cell J2 attains the required value of 20 m. Figure 4.3 shows the answer found by 

Goal Seek, which is D ≥ 0.27 m. This answer agrees with that given by Cengel and 
Cimbala [1]. A similar procedure can be used to solve type-2 flow problems by iterating 

over the flow rate instead of the diameter. 

 

 
Figure 4.3. Goal Seek solution for Example 4-1 

 

4.1.2. Thermodynamic analyses involving ideal-gas mixtures 

Without the usual simplifications and idealisations applied in thermodynamic analyses 
most of these analyses, if not all, would require iterative solutions. A commonly used 

thermodynamic approximation is treating air as a pure gas even though it is known to 

be a mixture of nitrogen, oxygen, and water vapour with small traces of other gases. 
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Computer-aided analyses with fluid property functions such as those provided by 
Thermax enable more realistic models to be used by treating air as a mixture of gases 

instead of a single gas. However,  if the temperature of the gas mixture is not known but 

has to be determined, an iterative solution will be required by this model. The following 
example shows how the problem can be solved by using Goal Seek.  

 

Example 4-2. Constant-pressure expansion of air 
Figure 4.4 shows a piston-cylinder device that initially contains a mixture of 21% 

oxygen and 79% nitrogen by volume. Initially at 100 kPa, 330K, the gas mixture 

occupies 0.1 m
3
. Fifty kJ of heat is then transferred to the gas causing it to expand at 

constant pressure. Treating oxygen and nitrogen as ideal gases, determine the final 
temperature of the gas inside the cylinder. 

 

 
Figure 4.4. Schematic diagram for Example 4-2  

 

The analytical model 

The solution procedure applies the first-law of thermodynamics to the expansion 
process. For a mixture of O2 and N2, the first law reads: 

 

      (4.3) 

 

Where Q is the amount of heat added, mO2 and mN2 are the masses of oxygen and 
nitrogen in the device, h1_O2 and h2_O2 are enthalpies of oxygen at the initial and final 

temperatures, respectively, and h1_N2 and h2_N2 are the corresponding enthalpies for 

nitrogen. The correct value of the final temperature is that at which the amount of heat 
added as obtained from Equation (4.3) is equal to the given value, which is 50 kJ. 

 

The values of enthalpy for O2 and N2 in Equation (4.3) can be determined by using the 

relevant Thermax function for ideal gases, Gash_TK, and the masses mO2 and mN2 can 
be obtained from the ideal-gas law using the corresponding partial pressures as follows: 

 

O2 21%, N2 79%  

T1 = 330K 

P1 = 100 kPa 

V1 = 0.1 m
3
 

Heat 50 kJ 
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Where RO2 and RN2 are the gas constants for oxygen and nitrogen, which are 0.2598 
kJ/kg.K and 0.2968 kJ/kg.K, respectively.  

 

Solution with Goal Seek 
Figure 4.5 shows the Excel sheet developed for this example. The data part includes the 

initial pressure, temperature, and volume of the gas mixture together with the mole 

fractions and gas constants of oxygen and nitrogen. The initial partial pressures of 

oxygen and nitrogen, P1_O2 and P1_N2, are calculated from the total initial pressure 
(P_1) and the respective volume fractions, y_O2 and y_N2, as shown in cells E2 and 

E3, respectively. The masses of the two gases in the mixture (m_O2 and m_N2) are 

calculated in cells E5 and E6, respectively, and the total mass (m_total) in cell E8.  
 

 
Figure 4.5. The Excel sheet developed for Example 4-2 by using Thermax functions 

 

Starting with a guessed value for the final temperature, T_2g, which is 500K, the initial 
and final enthalpies of oxygen and nitrogen are determined by using Thermax function 
Gash_TK at the corresponding temperatures. Equation (4.3) is then used to determine 
the total amount heat added in the process (Q_g). With the guessed final temperature, 
Equation (4.3) determined the total amout of heat as 18.4 kJ, which is less than the 
actual values of 50 kJ. To find the appropriate final temperature, the guessed 
temperature T_2g has to be adjusted by Goal Seek so that the value of Q_2g equals 50 
kJ. Figure 4.5 shows the required Goal Seek set-up and Figure 4.6 shows the solution 
obtained by Goal Seek, which  is 780.444K. The value determined for T2 by treating air 
as a single pure gas and using the approximate constant specific-heat method (cp = 
1.005 kJ/kg) is 801.2K, which is significantly different, but the value determined by 
using the exact method is 781.6K. Although these results confirm the accuracy of 
treating air as a single pure gas with the exact method of analysis, the deviation from 
the present model is expected to increase as T2 increases.  
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Figure 4.6. Goal Seek solution for Exampe 4.2 by using Thermax functions 

 

4.1.3. Convection heat-transfer analyses 
Like the friction factor (f) in pipe-flow analyses, the convection heat-transfer coefficient 

(h) is not constant but depends on the flow itself. Therefore, convection heat-transfer 

analyses frequently involve iterative solutions. The following example shows how 
Excel‟s Goal Seek command can be used for such analyses. The example is based on 

Example 10.1 in Holman [3].  

 

Example 4-3. Overall heat-transfer coefficient for pipe in air 

Hot water at 98
o
C flows through a 2-in schedule 40 horizontal steel pipe (k =54 

W/m·◦C) and is exposed to atmospheric air at 20
o
C as shown in Figure 4.7. The water 

velocity is 25 cm/s.  

Figure 4.7. Schematic for Example 4-3 (adapted from Holman [3]) 

 
Calculate:  

 

(a) the rate of heat-transfer through the pipe,   

(b) the temperatures at the inside and outside surfaces of the pipe, and  
(c) the overall heat-transfer coefficient based on the outer area of the pipe.  

 

Properties of water at 98
o
C are: ρ = 960 kg/m

3
, μ = 2.82 x 10

-4
 kg/m.s, k  = 0.68 W/m.

o
C, 

Pr = 1.76. For a 2-in schedule 40 pipe, Di = 5.25 cm and Do = 6.033 cm. 

 

The analytical model 

Using the thermal-resistance concept, the rate of heat-transfer through the pipe, Q, is 
given by: 

Water 
98

o
C 

V = 25 cm/s 

hi 

Air, 20
o

C, ho 
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  thw RTTQ /          (4.6)

  

Where Tw and T∞ are the water temperature and air-temperature, respectively, and Rth is 

the total thermal resistance that consists of the thermal resistances due to heat-transfer 

by convection inside the pipe (Ri), by conduction through the steel pipe (Rp), and by 
convection outside the pipe (Ro). The three resistances are given by: 

 

il

i
hA

R
1

           (4.7)

 

 
k

DD
R oi

p
2

/ln
          (4.8)

 

oo

o
hA

R
1

           (4.9) 

 
Where Ai and Ao are the inside and outside areas of the pipe and hi and ho are the 

corresponding heat-transfer coefficiens. The internal heat-transfer coefficien hi is 

determined from the corresponding Nusselt number (Nu): 

 

i

w
i

D

k
Nuh           (4.10)

 
 

Where, kw is the thermal conductivity of water. The Nusselt number is determined from 

emprirical equations depending on the type of the flow, i.e., natural or forced, laminar 
or turbulent. For the turbulent forced internal flow (to be confirmed later), Nu is 

obtained from the Dittus-Boelter equation, Equation (1.31), with n = 0.4 [3]:  

 
4.08.0 PrRe023.0Nu           (4.11) 

 

Where, Re and Pr are the Reynolds number and Prandtl number, respectively. For the 

external flow, Holman [3] used the following simplified equation for free laminar 
convection from a horizontal pipe to air at atmospheric pressure: 

 
4/1

32.1 








 
 

o

o
o

D

TT
h         (4.12)

 
 
Both Ri and Rp can be determined directly from the given data, but Ro depends on ho 

which cannot be determined directly since To is not known. Therefore, the problem has 

to be solved by adopting an iterative approach by assuming a value for To based on 
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which ho is determined and, consequently, Q. The value of Q thus obtained can be used 
to calculate corresponding values for Ti and To from: 

 

iwi RQTT .             (4.13) 

 

pio RQTT .            (4.14) 

 

If the guessed value for To is correct, then it will be the same as that obtained from 
Equation (4.14). Otherwise, a new guess for To has to be made repeatedly until this 

condition is met. Once this is achieved, the overall heat-transfer coefficient (Uo) based 

on the outside area (Ao) can be obtained from: 

 

 poio

o
RRRA

U



1

         (4.15) 

 

Solution with Goal Seek 

The Excel sheet developed for this example is shown in Figure 4.8. The given 
information about the pipe, water, and air properties are entered in the data part on the 

left side of the sheet. The cells are labelled and the figure shows the formulae used in 

the calculations. The calculations part at the central part of the sheet starts with a 
guessesd value for the pipe‟s outside temperature (T_og) of 50

o
C. Based on this value, 

the sheet determines the outside heat-transfer coefficient (h_o) from Equation (4.12) 

and the thermal resistance associated with it (R_o) from Equation (4.9). Following the 

analytical model described above, the sheet determines the three thermal resistances 
(R_i, R_p, and R_o), and then calculates the rate of heat-transfer (Q), inside 

temperature (T_i), outside temperature (T_o), and overall-heat transfer coefficient (U).  

 

 
Figure 4.8. Excel sheet developed for Example 4-3 

 

As Figure 4.8 shows, the value of T_o calculated from Equation (4.14) is 97.876
o
C, 

which is different from the initially guessed value (T_og = 50
o
C). The formula bar 

reveals the formula entered in cell H12 that calculates the difference between the 
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calculated exit temperature (T_o) and the guessd value (T_og) as a fraction of T_og. 
The exit temperature that makes the difference vanishes can be found by using the Goal 

Seek command and Figure 4.8 shows the required set-up. The solution found by Goal 

Seek is shown in Figure 4.9. Table 4.1 comapres the presents results with those given 
by Holman [3] to confirm the accuracy of the iterative solution with Goal Seek. 

 

 
Figure 4.9. Solution obtained by Goal Seek for Example 4-3 

 

Table 4.1. Comparison of the presnt Goal Seek solution with that given by Holman [3] 

 Holman 

[3] 

Goal Seek 

solution 

iT  97.65 97.64 

oT  97.6 97.59 

ih  1961.0 1960.56 

oh  7.91 7.90 

oU  7.87 7.86 

 

4.2. Constrained iterative solutions  with Solver 

Solver offers greater flexibility than Goal Seek for dealing with iterative solutions 

because it allows for multiple changeable cells and for constraints to be imposed on the 

iterative solution. This section illustrates the need for these additional features in 
thermofluid analyses by means of two examples from the areas of fluid-dynamics and 

thermodynamics.  

 

Example 4-4.  Determining the maximum water flow rate to avoid cavitation  

Water at 20
o
C (γ = 9810 N/m

3
 and ν =1.006x10

-6
 m

2
/s) is to be pumped from a large 

reservoir via a pump-pipe system as shown in Figure 4.10. The pump is positioned 
vertically at a level which is 9 m above the surface of the reservoir and horizontally at 1 

m from the vertical section of the pipe. The pipe is made of commercial steel pipe (ε = 

0.046 mm) and has a 2″ nominal diameter.  
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Figure 4.10.  Schematic for the pump-pipe system in Example 4-4 

 

Determine the maximum allowable water flow rate (Q) such that: 

 
1. The water velocity (V) is to be in the range 1.4-2.8 m/s for economic 

considerations.  

2. The pressure at the pump inlet must be greater than the saturation pressure 
of water at 20

o
C, which is 2.338 kPa, to avoid cavitation.  

 

This example, which is basically a type-2 pipe flow problem, is based on a similar 
example given by Schumack [4]. 

 

The analytical model 

The energy equation between the pipe inlet (point 1) and the pump inlet (point 2) is: 
 

fh
g
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g
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p
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2
2
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1

1
1

                                                                  (4.16) 

 

Where γ stands for the specific weight of water, z for the elevation, V for the water 
velocity, g for the gravitational acceleration, and hf for the friction loss in the pipe. For a 

large reservoir V1 = 0. Taking point 1 as a reference, i.e. Z1 = 0, and noting that the 

water velocity in the pipe is uniform, i.e. V2 = V, the energy equation reduces to:  
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                                                                          (4.17) 

 

9 m 

1 m 

Q 

1 

2 

2″ commercial steel pipe 
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The velocity V is related to the pipe diameter (D) and water flow rate (Q) as follows: 
 

2/4 DQV            (4.18) 

 

Neglecting minor losses, the friction loss can be calculated from the Darcy-Weisbach 
equation, Equation (4.1), which needs an auxiliary formula to determine the friction 

factor (f) depending on whether the flow is laminar or turbulent.  

 

Solution with Solver 

Figure 4.11 shows the Excel sheet developed for this example. The data part on the left 

side stores the problem data such as the diameter, roughness, and length of the pipe, etc. 
The central part stores a guessed value for the water velocity (V=1.0 m/s) in cell E2. 

Based on the guessed water velocity, the sheet performs the necessary calculations 

according to the analytical model given above. Figure 4.11 reveals the formulae used in 

these calculations. Note that an IF-statement is used to calculate the friction factor (f) 
depending on the value of the Reynolds number (Re). Cell E6 calculates the friction 

loss (hf). Based on the calculated value of friction loss, the pressure at point 2 (P_2) is 

calculated from Equation (4.17) and stored in cell E7. The right side of the sheet 
contains the single cell I2 that determines the flow rate (Q). The formula in this cell is 

shown in the formula bar. 

 

 
Figure 4.11.  Excel sheet developed for Example 4-4 

 

Based on the assumed water velocity of 1.0 m
/
s, the calculated values of hf and P_2 are 

0.2295 m and 8.958 kPa, respectively. Since the pressure at point 2 is higher than the 
minimum desired level of 2.338 kPa, while the water velocity (V) is less than the 

minimum economic value of 1.4 m, there is room to increase the flow rate. The task can 

be left to Solver and Figure 4.12 shows the set-up that requires Solver to maximise the 
value of the flow rate Q while satisfying the three constraints shown in the figure. The 

first constraint on the iterative solution requires the value of P_2 in cell E7 to be higher 

than or equal to 2.338 kPa. The two other constraints are to satisfy the limits on the 

water velocity imposed by economic limits, i.e., 1.4 m ≤ V ≤ 2.8 m. 
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Figure 4.12.  Solver parameters dialog box for Example 4-4 

 
Pressing the “Solve” button will trigger Solver to search for the solution. The solution 

found by the GRG Nonlinear method is shown in Figure 4.13. The value determined 

for the water velocity is 1.90 m/s. Note that this velocity lies within the limits imposed 

by the economic constraint. The pressure at point 2 is equal to 2.338 kPa which is the 
minimum pressure level required to prevent cavitation. Therefore, the corresponding 

flow rate, which is 0.00413 m
3
/s, is the maximum flow rate to be recommended. 

 

 
Figure 4.13. Solver solution for Example 4-4 

 

Example 4-5. Restrained expansion of air inside a piston-cylinder device 

Figure 4.14 shows a piston-cylinder device that initially contains 0.05 m
3
 of air at 200 

kPa and 317K. At this state, a linear spring is touching the piston but exerting no force 

on it before 72.7 kJ of heat is transferred to the air, causing the piston to rise and 

compress the spring. If the cross-sectional area of the piston is 0.25 m
2
 and the spring‟s 

constant (k) is 150 kN/m, determine the final volume, pressure, and temperature of the 
air inside the cylinder after the heat-addition. 
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Figure 4.14. Schematic and pressure-volume diagrams for Example 4-5 (adapted from 

Cengel and Boles [5]) 

 

Treat air as an ideal gas with a specific heat at constant volume (cv) that varies linearly 
with the temperature according to the formula:  

 

cv = 0.645+0.0002T          (4.19) 
 

Where T is the temperature in K and cv is in kJ/kg.K.  

 

Comment 

This example is based of Example 4-4 given by Cengel and Boles [5]. However, unlike 

the present example, Cengel and Boles [5] specified the final volume to be 0.1 m
3
 

instead of specifying the amount of heat added. When the final volume (or final 
pressure) is given, the problem can be solved in a straightforward manner without 

iteration. However, in the present example T2, V2, and P2 at the final state depend on the 

amount of heat added. Another factor that makes the present example more difficult 
than that given by Cengel and Boles [5] is the use of Equation (4.19) to determine the 

value of the specific heat cv for air. The specific value of 72.7 kJ given in this example 

has been chosen such that the final volume will be 0.1 m
3
 as specified by Cengel and 

Boles [5] so that the present final pressure on the piston and total work will be close to 
their corresponding values even though the data of the two examples are different. 

 

The analytical model 
Like Example 4-2, the problem can be solved by using the first-law of thermodynamics 

together with the ideal-gas law, but the variation of the specific heat with temperature 

makes it necessary to adopt an iterative solution. Moreover, the addition of the linear 

spring in this example introduces a new factor, which is the variation of pressure with 
air expansion. Since the present iteration process involves both the temperature and the 

volume (or pressure), the Goal Seek command cannot be used. Therefore, this example 

requires Solver to start the iterative procedure with assumed values for both the final 

temperature (
*

2T ) and the final volume (
*

2V ).  

T1 = 317K 
P1 = 200 kPa 

V1 = 0.05 m
3
 

Heat 72.7 kJ 

k  =150 

kN/m 
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The final pressure 2P  is given by: 

 

A

xk
PP


 12           (4.20) 

 

Where A is the base area of the piston and Δx is the reduction in the spring‟s length 
given by: 

 

A

VV
x 1

*

2 
                (4.21) 

 
The total work (W), i.e., the summation of the air expansion work and the work done 

against the spring, can now be obtained from: 

 

   1
*

2
21

2
VV

PP
W 


         (4.22) 

 

The final temperature can be determined by applying the first-law of thermodynamics 

to the piston-cylinder device as a closed system: 
 

   1212 TTmcuumWQ v         (4.23) 

 

Where Q is the amount of heat added, u is the internal energy, m is the mass of air 

inside the cylinder, and vc  is the average specific heat of air at constant volume. The 

mass and specific heat of air can be obtained from: 

 

111 / RTVPm            (4.24) 

 

  2/0002.06.0 *
21 TTcv          (4.25) 

 

Rearranging Equation (4.23), the final temperature 2T  is given by: 

 

vcm

WQ
TT


 12

         (4.26) 

 

Using the values obtained for T2 and P2, the final volume V2 can be determined from the 

ideal-gas law: 
 

222 / PmRTV            (4.27) 
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If the initially guessed volumes of 
*

2T and 
*

2V  are correct, then they will be the same as 

T2 and V2 obtained from Equation (4.24) and Equation (4.26), respectively. Otherwise, 

new values for 
*

2T and 
*

2V  have to be used until the differences between the calculated 

and guessed values become negligibly small. This multi-variable iterative process can 

be performed with Solver as shown below. 
 

Solution with Solver 

Figure 4.15 shows the Excel sheet developed for this example and reveals the formulae 
used in it. The left side of the sheet accommodates the problem data. The calculations 

part start by an assumed values for the final temperature (T_2g = 500K) and final 

volume V_2g = 0.15 m
3
. Based on the assumed final volume, the sheet determines the 

compression of the spring (Δx), spring force (Fspring), final pressure (P_2), and total 
work involved (Work). The final temperature (T_2) is then calculated from the first-law 

according to Equation (4.26), and the final volume (V_2) from the ideal-gas law, 

Equation (4.27). As Figure, 4.15 shows, the calculated values T_2 and V_2 are different 
from the initial values T_2g and V_2g. Solver can now be used to adjust the guessed 

value of T_2g and V_2g until they become the same as the calculated values.  

 

 
Figure 4.15. Excel sheet developed for Example 4-5 

 

Figure 4.16 shows the set-up that requires Solver to change the values of T_2g and 

V_2g in cells F2 and F3, respectively, until the two specified constraints are satisfied: 
(i) T_2 = T_2g and (ii) V_2=V_2g. Note that the “Set Objective” option has been left 

blank. The “Changing Variable Cells” are F2 and F3. Figure 4.17 shows the solution 

obtained by the GRG Nonlinear method of Solver, which is T_2g = 1014.864K and 
V_2g = 0.1 m

3
. At this state, the final pressure on the piston is 320.0 kPa and the total 

work is 13.0 kJ. These values agree with their corresponding values given by Cengel 

and Boles [5] whose analysis also gave P2 = 320 kPa and W = 13 kJ. 
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Figure 4.16. Solver set-up for Example 4-5 

 

 
Figure 4.17. Solver solution for Example 4-5 

 

4.3.  Iterative solutions involving nonlinear equations  

To determine the head loss due to friction (hf) in Example 4-1, the friction factor (f) for 

the turbulent pipe flow was obtained from Equation (1.24) which is an explicit 

equation. However, for a turbulent pipe flow f can be determined more accurately by 
using the Colebrook-White equation [1]: 
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       (4.28) 

 
Since the equation involves the friction factor f in both sides, it needs to be solved 

iteratively in order to determine f. Therefore, for type-2 and type-3 flow problems using 

this equation involves two nested iterations; an inside iteration to determine f and an 
outside iteration to determine the pipe‟s diameter or flow rate.  
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The Newton-Raphson solver (NRM) provided by Thermax has been developed so as to 
allow nonlinear equations such as the Colebrook-White equation to be used in iterative 

solutions and optimisation analyses. Appendix B illustrates the use of the NRM solver 

by considering another nonlinear equation which is the Benedict-Webb-Rubin equation. 
In the present situation, the NRM solver will be used to solve the Colebrook-White 

equation leaving the main iteration for Solver or Goal Seek. For illustration, let us 

reconsider Example 4-1 and solve it by the using Equation (4.28) to determine f instead 
of Equation (1.24).  

 

The NRM solver requires the intended nonlinear equation to be provided as a separate 

user-defined function. The one needed for the Colebrook-White equation is listed 
below: 

 

 Function colebrook(x, e, Re) 
 „ Colebrook equation for the friction factor 

  colebrook = 1/Sqr(x) + (2/log(10))*Log(e /3.7 + 2.51/Re/Sqr(x)) 

 End Function 

 
Note that in VBA syntax the term “log” is used for the natural logarithm “ln” which is 

different from Excel. Figure 4.18 shows the Excel sheet developed for solving Example 

4-1 with the Colebrook-White equation.  
 

Figure 4.18. Excel sheet for Example 4-1 using the Colebrook-White equation 

 

The only difference from the sheet shown in Figure 4.2 is the content of the cell F10 
that calculates friction factor. Figure 4.18 shows the formula typed in this cell as:  

 

=IF(Re<2300,64/Re,NRM("colebrook",0.004,ε_by_D,Re)) 

 
The first input to the NRM solver, “colebrook”, refers to the function that contains the 

Colebrook-White equation while the second input, 0.004, is an initial guess for f. The 

last two arguments, ε_by_D and Re , respectively, are labels for the cells F8 and F9 that 
store values of the roughness-diameter ratio (ε/D) and the Reynolds number (Re) at 
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which f is to be determined. Figure 4.18, which shows the calculations for a selected 
diameter of 0.1 m, shows that the value of the friction factor obtained by the Colebrook-

White equation is 0.018075 and the corresponding friction loss is 2744.2 m. These 

values are slightly different from those obtained with Equation (1.24) as shown in 
Figure 4.2. The diameter that keeps the loss below 20 m can be determined by using 

Goal Seek and Figure 4.18 also shows Goal Seek set-up for finding the value of D that 

makes the friction head loss equal to 20 m. As Figure 4.19 shows, the answer found by 
Goal Seek is D ≥ 0.27 m, which is the same answer obtained earlier in Example 4-1. 

 

 
Figure 4.19. Goal Seek solution for Example 4-1 using the Colebrook-White equation 

 

4.4. Closure 

This chapter dealt with thermofluid analyses that require iterative solutions and showed 

how Excel‟s Goal Seek command and Solver can be used for solving typical problems 
from the areas of fluid dynamics, thermodynamics, and heat-transfer. While the Goal 

Seek command can easily perform the simple type of iterative solutions that involve a 

single parameter, Solver can perform the more difficult iterative solutions that involve 

multiple changeable cells and require constraints to be applied to the iterative solution. 
The chapter also showed how the Newton-Raphson solver provided by Thermax can be 

used to deal with the solutions that involve nonlinear equations such as the Colebrook-

White equation.  
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Exercises 

1. Consider the case in Example 4-1. Suppose that the only available pipe diameter is 
20 cm and we want to maintain the same maximum limit on the friction head loss 

of 20 m by reducing the water flow rate. Using the Goal Seek command, determine 

the water flow rate that gives the required result. Answer: 0.157 m
3
.  

2. Using the Excel sheet developed for Example 4-2, determine the final temperature 

for air when the amount of heat added is 50, 100, 150, and 200 kJ. Also calculate 

the final temperature from Equation (4.3) by using a constant specific heat (cp) of 

1.043 kJ/kg.K. Plot the values obtained for the final temperature (T2) with the 
amount of heat added by the two methods and comment on the result. 

3. A gas mixture consisting of O2 and CO2 with mole fractions 0.2 and 0.8, 

respectively, expands isentropically and at steady state through a nozzle from 700 
K, 500 kPa to an exit pressure of 100 kPa as shown in Figure 4.P3. Determine the 

temperature at the nozzle exit, in K. 

 

 
Figure 4.P3. Isentropic expansion in a nozzle 

 

This exercise is based on Example 12.4 in Moran and Shapiro [6]. Using the 

approximate constant-specific heat method, the exit temperature (T2) can be 
determined from: 

 

  k

k

PPTT
1

1212 /


             (A) 

 

Where k  is the ratio of the specific heats for the mixture. Using k  = 1.304, the 

resulting exit temperature is 480.9K. Using the exact variable specific heat 

method, T2 is determined by requiring the total entropy change to be zero, i.e: 
 

 

P1 = 500 kPa 

T1 = 700K 
P

2
 = 100 

kPa 

http://sie.scholasticahq.com/article/4657
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Where yO2 and yCO2 are the volume fractions of O2 and CO2, respectively, and RO2 

and RCO2 are the molar masses for O2 and CO2, respectively. The values of 0
2Os  and 

0
2COs  can be determined by using the relevant function provided by Thermax. 

Equation (B), that requires an iterative solution, can be solved by using the Goal 

Seek command. Answer: T2 = 514.05K. 

4. Steam is be condensed at 30°C on the shell side of the multi-pass shell-and-tube 
heat exchanger shown in Figure 4.P4. The condenser has 8-tube-passes with 50 

tubes in each pass. Its overall heat transfer coefficient is 1000 W/m
2
·°C. Cooling 

water (Cp = 4180 J/kg·°C) enters the tubes at 15°C at a rate of 55,000 kg/h. The 

tubes are thin-walled, and have a diameter of 1.5 cm and length of 2 m per pass. 
Develp and Excel shhet to determine the outlet temperature of the cooling water by 

using Goal Seek and the LMTD method instead of the ε-NTU method [7]. 

 

 
Figure 4.P4. A multi-pass shell-and-tube heat exchanger 

 

5. Reconsider the case in Example 4-5. Show that an alternative solution of this 
problem that also takes into consideration the variation of specific heat for air with 

temperature can be obtained by using the ideal-gas property functions provided by 

Thermax instead of Equation (4.19). Show that this solution can be obtained by 

using the Goal Seek command instead or Solver and compare your solution with 
that given in Example 4-5. 

Hot 

 

Cold 
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6. Consider the semi-infinite slab shown in Figure 4.P6 that is suddenly exposed to 
convection environment at T∞. The temperature (T) at a depth x from the surface at 

any time is given by [3]: 
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Where α and k  are the diffusivity and thermal conductivity of the slap material, 

respectively, Ti is the initial temperature of the solid, T∞ is the environmental 

temperature,  is the elapsed time in seconds, and  2X . 

 

 
Figure 4.P6. Semi-infinite slab with convection heat-transfer 

  
Equation (A) requires an iterative procedure because the time (τ) appears in both 

terms on the right-hand side of the equation.  

 

A large slab of aluminium (k  = 215 W/m.
o
C, 5104.8  m

2
/s) at a uniform 

temperature of 200
o
C is suddenly exposed to a convection-surface environment of 

70
o
C with a heat-transfer coefficient of 525 W/m

2
·

o
C. Calculate the time required 

for the temperature to reach 120
o
C at the depth of 4.0 cm for this circumstance.  

 
This problem is based on Example 4-5 in Holman [3] whose answer is 

approximately 3000 seconds. 

7. Water at 60
o
C enters a tube of 3-cm diameter at a mean flow velocity of 1.2 cm/s. 

If the tube is 3.0 m long and the wall temperature is constant at 80
o
C, what will be 

the exit water temperature?  

 
Use Goal Seek to perform the iterative solution of this problem. To determine the 

viscosity of water at any temperature, develop a user-defined function based on the 

data shown in Table A.2 in Appendix A. This exercise is based on Example 4-2 in 

Holman [3].  Answer: 73.0
o
C.  
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The pump-pipe systems used in various applications usually consist of multiple pipes 
and pumps connected in parallel or in series. The hydraulic analyses of multi-pipe 

systems are based on the same principles of mass and energy conservation applicable 

for a single pipe, but simultaneously satisfying the continuity and energy equations in 
all the pipes usually requires an iterative solution. An iterative solution is also needed 

for determining the operating point for any pump-pipe system whether it involves a 

single pump or multiple pumps. This chapter shows how Excel with its iterative tools, 
Goal Seek and Solver, can be used for analysing multi-pipe systems and determining 

the operating point for a single pump with various pipe arrangements and for multiple 

pumps arranged in parallel or in series.  

 

5.1. Analyses of multi-pipe systems 

Figure 5.1 shows three multi-pipe arragements in which three pipes are connected (a) in 

series, (b) in parallel, and (c) at a junction. In general, the pipes may have different 
lengths, diameters, and roughness. The pipes may also have different elevations at their 

entrance and exit points.  

 

 
Figure 5.1. Three typical pipe arrangements in a pipe system (adapted from White [1]) 
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5.1.1. Type-1 flow analyses 
As for the case of a single pipe discussed in Chapter 4, three types of flow problems can 

arise with multi-pipe analyses depending on whether the pipe diameters and flow rates 

are known in advance or to be determined. If both the pipe diameters and flow rates are 
known then the problem is classified as a type-1 flow problem, but if one of these is to 

be determined, then the problem is classified as a type-2 or a types-3 flow problem. 

Unlike the case a single pipe, type-1 flow problems for multi-pipe system also require 
iterative solutions. The following example, which is based on Example 8-7 in Cengel 

and Cimbala [2], shows how Solver can be used to perform the iterative solution. 

 

Example 5-1. Pumping water through two parallel pipes 
Water at 20°C is to be pumped from reservoir A to reservoir B through two 36-m-long 
pipes connected in parallel as shown in Figure 5.2. The elevation of reservoir A is 5 m 
while that of reservoir B is 13 m. The two pipes are made of commercial steel and their 
diameters of the two pipes are 4 and 8 cm as shown in the figure. Water is to be 
pumped by a 70% efficient motor-pump combination that draws 8 kW of electric power 
during operation. The minor losses and the head loss in the pipes that connect the 
parallel pipes to the two reservoirs can be neglected. Determine the total flow rate of 
the pump and the flow rate through each of the two parallel pipes.  

 
Figure 5.2. The piping system in Example 5-1 (adapted from Cengel and Cimbala [2]) 

 

The analytical model 

Since the fluid at both points A and B are open to the atmosphere, PA = PB = Patm. Also, 
the fluid velocities at both points are zero (VA = VB = 0) and, therefore, the energy 

equation, Equation (1.20), between these two points simplifies to: 

 

 ABfp ZZhh            (5.1) 

 

Where hp is the pump head and hf is the total friction loss between the two reservoirs. 

Since the pressures at the entrance and exit points of the two pipes are the same, the 
friction head losses in the two pipes must be the same: 

 

 

A 

B 
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2
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fff hhh  21            (5.2) 

 

The friction head loss in each pipe is given by the Darcy-Weisbach equation: 

 

g

V

D

L
fh f

2

2
1

1

1
11                       (5.3) 

 

g

V

D

L
fh f

2

2
2

2

2
22                        (5.4) 

 

Given the two flow rates Q1 and Q2, the water velocities in two pipes, V1 and V2, can be 
calculated from: 

 

111 / AQV                       (5.5) 

 

222 / AQV                       (5.6) 

 

For steady flow of an incompressible fluid, the total flow-rate given by the pump (Q) is 

the summation of the flow-rates in the two parallel pipes (Q1 and Q2), i.e.: 
 

21 QQQ             (5.7) 

 

Finally, the power of the pump ( pW ) is given by the following power equation: 

 

 /pp hQW            (5.8) 

 

Where γ is the fluid‟s specific weight and η is the combined pump-motor efficiency. In 
the present case, the pump-power is known to be 8 kW. This can be used to determine 

the unknown flow rate (Q) and the pump head (hp) by adopting the following iterative 

procedure: 
 

1. Assume the pipe flow rates Q1 and Q2  

2. Calculate the corresponding velocities V1 and V2 from Equation (5.5) and 

Equation (5.6), respectively. 
3. Based on the two velocities, calculate the friction factors and friction head 

losses in the two pipes from Equation (5.3) and Equation (5.4), respectively. 

4. Calculate the pump power from Equation (5.8) 
5. Compare the resulting pipe friction losses to each other, Equation (5.2), and 

pump power to the specified value of 8 kW. If the pipe friction losses are 
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different or the pump power is not equal to 8 kW, go back to step 1 and repeat 
the procedure until the pump power becomes approximately zero. 

 

Cengel and Cimbala [2] determined the friction factors f1 and f2 from the Colebrook-
White formula. Chapter 4 showed how this implicit equation can be handled within an 

iterative solution by using the Newton-Raphson solver provided by Thermax.  

 

Excel implementation 

Figure 5.3 shows the Excel sheet developed for this example. The data part, positioned 

on the left-side of the sheet, shows the given information about the pump-pipe system 

such as the lengths and diameters of the two pipes, density and viscosity of water, pump 
efficiency, etc. The calculations part begins at column E with assumed values for the 

two pipe flow rates (Q_1 = Q_2 = 0.01 m
3
/s). Based on these assumed flow rates, the 

sheet determines the corresponding velocities in the two pipes (V_1 and V_2), the 
Reynolds numbers (Re_1 and Re_2), and the friction factors (f_1 and f_2 ). For a 

turbulent flow, the friction factor is obtained from the Colebrook-White formula. The 

pipes friction losses, hf_1, and hf_2, are then calculated and the total pump power 

(P_pump) is determined from Equation (5.8).  
 

 
Figure 5.3. Excel sheet for Example 5-1 

 
With the guessed pipe flow rates, Figure 5.3 shows that the pump power is only 2.734 

kW, which is considerably less than the required value. Moreover, the values of hf1 and 

hf2 are different and, consequently, Equation (5.2) is not satisfied. Solver can now be 
used to find the correct values of Q1 and Q2. Figure 5.4 shows the required set-up for its 

parameters dialog-box. Note that the pump power is specified as the Set Objective  and 

required to have a value of 8 kW. In this case, Solver will iterate to satisfy the imposed 

constraint, which is requirement to satisfy Equation (5.2). The solution found by Solver 
with this set-up is shown in Figure 5.5. According to this solution, the flow rates are Q1 

= 0.0258 m
3
/s and Q2 = 0.00415 m

3
/s, giving a total pump flow rate of 0.03 m

3
/s. Table 

5.1 compares the present solution with that obtained by Cengel and Cimbala [2]. The 
small deviations of the present values confirm the accuracy of the present solution. 
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Figure 5.4. Solver‟s set-up for Example 5-1 

 

 
Figure 5.5. Solver‟s solution for Example 5-1 

 

Table 5.1. Comparison of the solution determined by Solver with their corresponding 

values given by Cengel and Cimbala [2] 
 

 

 

 
 

 

 
 

 

 
 

 

Parameter Cengel & 
Cimbala [2] 

Present 
solution 

Deviation 
(%) 

Q1 0.0259 0.025861 -0.151 
Q2 0.00415 0.004151 0.024 

Re1 410,000 409,944.5 -0.014 
Re2 131,600 131,615.3 0.012 

f1 0.0182 0.018216 0.088 
f2 0.0221 0.02209 -0.045 

hf 11.1 11.05861 -0.373 
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5.1.2. Type-2 and type-3 flow analyses 
The recommended value for water velocity in commercial pipes lies in the range 

between 1.4 and 2.8 m/s [3], but Figure 5.5 shows that the velocities in both pipes 

exceed the upper limit particularly that in pipe 1. Therefore, the values obtained for the 
pipe flow rates are not acceptable for economic considerations even though they are 

physically correct based on the given data. Suppose that we decided to replace pipe 2 

by a new pipe that has a larger diameter so that the water velocities in the two pipes do 
not exceed the economic range while maintaining same total water flow rate. The 

following example shows how Solver can be used to solve this type-3 flow problem. 

 

Example 5-2. Determining the economic diameter for a pipe 
Pipe 2 in the system shown in Figure 5.2 is to be replaced by a new pipe which is also 

36 m long and made of commercial steel. It is required to select the diameter of the new 

pipe such that the water velocities in both pipes do not exceed 2.8 m/s. For the same 
data given in Example 5-1 for pipe 1, determine the diameter of pipe 2 and the required 

pump power for the same total water flow rate of 0.03 m
3
/s. 

 

Solution 
Figure 5.6 shows the Excel sheet developed for this example with minor modifications 

to that developed for the previous example. Note that the data part now includes the 

total flow rate, which is 0.03 m
3
/s. Also note that there are now two changing variables 

which are Q_1 and D_2 given initial values of 0.01 m
3
/s and 0.04 m, respectively. The 

sheet calculates the velocities, Reynolds numbers, friction factors, and friction head 

losses in the two pipes and then determines the pump power (Power).  

 

 
Figure 5.6. Excel sheet for Example 5-2 

 

Note that the initial water velocities in the two pipes are above the recommended value 

while hf1 ≠ hf2. Solver can be used to find the solution that satisfies the energy equation 

while reducing the water velocities in the two pipes to the economic range. Figure 5.7 
shows Solver‟s parameters dialog box for this task. By leaving the Set Objective  slot 
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blank, Solver will iterate to satisfy the three imposed constraints. Figure 5.8 shows the 
solution determined by Solver with this set-up by using the GRG Nonlinear method. 

 

 
Figure 5.7. Solver set-up for Example 5-2 

 

 
Figure 5.8. Solver solution for Example 5-2 

 

According to this solution, the diameter of pipe 2 is 9.0 cm at which the water velocities 

in the two pipes are V1=2.52 m/s and V2= 2.72 m/s. Note that the new diameter for pipe 
2 is more than twice its initial diameter of 4 cm. Also note that, due to reduced 

velocities in the two pipes, the pump power has reduced to 4.52 kW. Although the 

larger diameter increases the pipe‟s initial cost, it reduces the overall lifetime cost by 
reducing the pump power and the required energy cost.  

 

With the water velocities now within the economic range, the objective of our present 

analysis has been achieved. However, the fact that resulting pump power barely 
exceeds half its capacity, which is 8 kW, raises another issue of practical concern. 

Running the pump at half its full capacity is bound to reduce its efficiency because 
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every pump achieves its best efficiency within a certain zone of operating conditions in 
terms of flow rate and head. The determination of the operating point for a pump-pipe 

system is dealt with in the following section.  

 

5,2. The operating point for a pump-pipe system 

The selection of the suitable type and size of a pump for meeting the required fluid flow 

rate and delivery pressure depends on the characteristics of both the pipe-system and 
the pump. The operating point for a pump-pipe system is the point at which the fluid‟s 

flow rate and pressure supplied by the pump match the required demand. To minimise 

electricity consumption of a pump, its operating point should be within the zone of its 

best efficiency. This section deals with the determination of operating point for a single 
centrifugal pump connected to a single pipe, to two pipes that branch at the pump‟s 

discharge, or to a simple branched network that consists of three-pipes. 

 

5.2.1. A centrifugal pump connected to a single pipe  

Figure 5.9 shows a centrifugal pump that is connected to a single pipe. The pump 

supplies the pressure needed to overcome friction losses through the pipe so as to 

maintain the fluid flow.  

 
Figure 5.9. Pump-pipe system with a single pipe 

 

The pump head hp (in m) is defined as the head of fluid delivered by the pump, i.e.: 
 

  /iep PPh          (5.9) 

 

Where Pi and Pe are the inlet and exit pressures, respectively, and γ is the specific 
weight of the fluid. The pump head is not constant for all flow conditions, but depends 

on the discharge. The curve that shows the relationship between the pump‟s head and 

its discharge at a given motor-speed is known as the pump characteristic curve. Figure 
5.10 shows a typical characteristic curve for a centrifugal pump. Pump characteristic 

curves at different motor speeds are supplied by pump manufacturers or can be 

prepared by direct measurement. Figure 5.10 shows that the maximum pump head is 
delivered at zero discharge and the head decreases as the discharge is increased. How 

much pump head is actually needed to overcome the friction loss (hf) and circulate the 

fluid through the pipe connected to it depends on: 
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1. The flow rate of the fluid Q 

2. The viscosity of the fluid ν (which may depend on the fluid‟s temperature)  

3. The diameter of the pipe D 
4. The length of the pipe L 

5. The roughness (ε) of the pipe inside surface which depends on its material and 

surface finish  
 

 
Figure 5.10. The operating point for a centrifugal pump as determined by its 

characteristic curve and the system curve 

 

The relationship between the frictional losses through the pipe and the flow rate of the 
fluid being transported is called the system curve. The system curve is obtained by 

calculating the friction loss hf at different fluid flow rates and plotting it versus Q as 

shown in Figure 5.10. As the figure shows, the friction loss is zero at no discharge and 
increases as the discharge is increased. The operating point for the pump is that at 

which its curve crosses the system curve. At the operating point: 

 

cftotalfp hhhh  ,         (5.10) 

 

Where hf and hc refer to the friction head losses in the pipe and the components, 

respectively, which are given by Equation (1.21) and Equation (1.29), respectively.  

 

The power of the pump W at any given flow rate Q and pump head hp is given by the 

power equation: 

 

 /pp QhW           (5.11) 
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Where is η is the pump efficiency. Although the same pump can be used to meet 
different system curves, the pump efficiency reaches its maximum value at a certain 

flow rate and a certain head. If we try to operate the pump at load requirements (Q and 

hp) which are different those values, then the pump efficiency will drop. Therefore, it is 
important to have the operating point of the pump-pipe system as close as possible to 

the point of its best-efficiency. 

 
The operating point of a pump-pipe system can be determined graphically by plotting 

the pump curve and the system curve on the same graph as shown in Figure 5.10. 

However, the point can be determined more accurately by representing the pump curve 

by a mathematical relationship between the pump head hp and discharge Q. Using this 
hp-Q relationship, together with Equation (5.10), the operation point can be determined 

by iteration. The following example illustrates how Excel‟s Goal Seek command can be 

used to determine the operating point for a pump-pipe system that consists of a single 
pump connected to single pipe. The case is given by Suryanarayana and Arici [4]. 

  

Example 5-3. Operating point for centrifugal a pump connected to a single pipe  

A centrifugal pump is to supply water at (ρ = 1000 kg/m
3
, ν = 1.02x10

-6
) through a 

single pipe that has the following specifications: 

 

Length, 100 m 
Diameter, 2.5 cm 

Roughness, 0.046 mm 

 

According to the manufacturer, the characteristic curve of the pump is given by the 
following table:  

 

Flow rate (m
3
/s) Pump head (m) 

0.0 47.24 

6.3080E-04 45.11 

9.4620E-04 44.2 

1.2316E-03 42.67 

1.5770E-03 41.15 

1.8924E-03 39.62 

2.2078E-03 37.19 

2.5232E-03 35.05 

2.8386E-03 32.00 

3.1540E-03 28.96 

 
It is desired to determine the operating point and the required power for the pump while 

ignoring component losses.  
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The analytical model 
Since there are no component losses, the friction head is obtained from Equation (1.21) 

after we establish whether the flow is laminar or turbulent from the value of the 

Reynolds number. In order to obtain a solution via Goal Seek, the pump head has to be 
expressed as a function of the flow rate. From the pump data shown above, 

Suryanarayana and Arici [4] obtained the following polynomial: 

 
38253 10348.210549.110985.222.47 QQQhp     (5.12) 

 

The sought flow rate (Q) should be such that the calculated friction head loss in the pipe 

is equal to pump head as obtained from Equation (5.12). The iterative solution goes as 
follows: 

 

1. Given an initial guess for the discharge, calculate the water velocity (V = Q/A) 

2. Calculate the Reynolds number and the friction factor f 
3. Calculate the corresponding friction loss hf from Equation (1.21) 

4. Determine the pump head from Equation (5.12) 

5. Calculate the difference between the pump head and the friction losses, which 
is supposed to be zero at the operating point. 

 

It is unlikely that our first guess will be the correct discharge at the operating point. 

Therefore, the above procedure has to be repeated by using a new value for the 
discharge until the difference between hf and hp becomes sufficiently small. 

 

Excel implementation 
Figure 5.11 shows the Excel sheet developed for solving this example. The data part of 

the sheet shows the data provided for the pipe and the fluid which is water. Figure 5.11 

shows how the calculation part of the Excel sheet executes the iterative procedure 

described above with an initial guess for the discharge of Q= 1.0x10
-3

 m
3
/s. The figure 

shows that there is a difference of 21.51 m between the system head (hf) and the pump 

head (h_p).  

 

 
Figure 5.11. Excel sheet and Goal Seek set-up for Example 5-3 
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Goal Seek can be used to find the value of Q at which the difference between hf  and 
h_p becomes approximately zero. Figure 5.11 shows Goal Seek set-up for this task and 

Figure 5.12 shows the solution obtained by it. As the figure shows, Goal Seek finds the 

operating point at Q = 1.395x10
-3

 m
3
/s and h_p = 42.12 m. The corresponding power is 

576.29 W. The flow rate is practically the same as that obtained by Suryanarayana and 

Arici [4] which is 1.407x10
-3

 m
3
/s. 

 

 
Figure 5.12. Solution obtained by Goal Seek for Example 5-3 

 

5.2.2. A centrifugal pump connected to two branching pipes  
Figure 5.13 shows a pump that discharges into two branching pipes of different 

diameters, lengths, and roughness. It is required to determine the operating point for the 

pump and how the pump's discharge will be divided between the two pipes. To simplify 

the analysis, it is assumed that the two pipes lie on a horizontal plane and that the two 
pipes discharge at the atmospheric pressure. This case is also given by Suryanarayana 

and Arici [4]. 

 
Figure 5.13. A centrifugal pump connected to two parallel pipes 

 

The analytical model 

From the values of the flow rate in pipe 1 (Q1) and in pipe 1 (Q2), the total flow rate (Q) 
can be calculated as: 

 

21 QQQ            (5.13) 

Pi = Patm 

Q1, L1, D1, ε1 

Q2, L2, D2, ε2 

P1 = Patm 

P2 = Patm 

Q 
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The friction head loss in each pipe can be obtained from Equation (1.21): 
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Since the pressures at both ends of the two pipes are the same, the friction head losses 

in the two pipes must be the same and equal to the pump head, i.e.: 

 

pff hhh  21          (5.16) 

 

Excel implementation 
Equation (5.16) will be satisfied at the correct values of Q1 and Q2, but both flow rates 

are unknown and, therefore, the following iterative solution is required: 

 

1. Assume values for Q1 and Q2 
2. Calculate the total flow rate Q from Equation (5.12) 

3. Calculate V1 and V2 and determine the Reynolds number in the two pipes, Re1 

and Re2 
4. Determine the friction factors in the two pipes, f1 and f2, from the corresponding 

Reynolds numbers using Equation (1.24) 

5. Determine the friction losses in the two popes, hf1 and hf2 

6. Determine the pump head hp from the pump curve, e.g., Equation (5.12) 
7. If hf1 ≠ hf2, or hf1 ≠ hp, go back to step 1  

 

After the operating point is determined, the power required by the pump can be 
obtained from the power equation as follows: 

 

pp gQhW           (5.17) 

 
Alternatively, the pump power can be calculated from the pipes flow rates and friction 

losses as follows: 

 

 2211 ffp hQhQgW          (5.18) 

 

Suryanarayana and Arici [4] analysed the performance of the pump-pipe systems shown 

in Figure 5.13 by following a slightly different iterative process. They also adopted a 
different formula for the friction factor than Equation (1.24). The data of their example 

will be used to demonstrate the procedure for using Excel-Solver in the analysis. 
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Example 5-4. Operating point for a pump with two parallel pipes  
A pump-two-pipe system as shown in Figure 5.13 has the following dimensions.  

 

D1 = 0.025m   L1 = 500m   ε1=15x10
-6

m 
 

D2 = 0.05m   L2 = 1,000m   ε2=46x10
-6

m 

 
The system carries water (ρ = 1000 kg/m

3
, ν = 1.02x10

-6
). If the pump has the same 

characteristic formula expressed by Equation (5.12), determine the flow rates in the two 

branches and the power required by the pump.  

 

The Excel sheet 

The Excel sheet developed for this example is shown in Figure 5.14. The data part 

contains the data for the two pipes and the transported fluid, which is water. The sheet 
shows the calculations based on assumed values of Q1 = Q2 = 0.001 m

3
/s. The 

velocities, Reynolds number, friction factors and friction head losses are calculated on 

the basis of these assumed flow rates. With the guessed flow rates, the friction losses in 

the tw pipes, hf1 and hf2, and the pump head, hp, have three different values. The formula 
bar shows the formula in cell M5 that calculates the difference between the head losses 

in pipe 1 and the head produced by the pump as 58.066 m. Also, note that Equations 

(5.17) and (5.18) give two different values for the pump power in cells M7 and M9.  
 

 
Figure 5.14. Excel sheet developed for Example 5-4 

 
The required flow rates Q1 and Q2 that satisfy Equation (5.16) can be found by using 

Solver. Figure 5.15 shows the set-up for Solver that requires it to find values of Q1 and 

Q2 that reduces the difference between hf1 and hp to zero while satisfying the constraint 

that the head losses in the two pipes hf1 and hf2 are equal according to Equation (5.16). 
The solution found by the GRG Nonlinear method is shown in Figure 5.16 according to 

which the two values of the power required by the pump at the operating point as 

determined by Equations (5.17) and (5.18) are the same and equal to 894.04 W. The 
flow rates in the two pipes are Q1 = 0.000547 m

3
/s and Q2 = 0.002279 m

3
/s, and hp 

=32.24 m. The corresponding values found by Suryanarayana and Arici [4] are Q1 = 
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0.0005738 m
3
/s, Q2 = 0.002325 m

3
/s, and hp = 32.85 m. The slight differences can be 

attributed to the fact that Suryanarayana and Arici [4] used a different formula for 

calculating the friction factor. 

 

 
Figure 5.15. Solver set-up for Example 5-4 

 

 
Figure 5.16. Solver solution for Example 5-4 

 

It should be mentioned that it was necessary in this example to use the automatic-

scaling option of Solver with the GRG Nonlinear method so as to find the solution. 
Apparently, this is due to the use of Equation (5.12). 

 

5.2.3. A centrifugal pump connected to a simple-pipe network  
Figure 5.17 shows a pump connected to a simple pipe network that consists of three 

pipes meeting at a junction. Some fluid is discharged at the junction J as shown in the 

figure which can either be specified or left to be determined by the analysis. For 

simplification, the three network pipes are assumed to be in a horizontal plane but they 
can have different lengths, diameters, and roughness. The operating point for the pump 
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can be determined by simultaneously satisfying the principles of mass and energy 
conservation and the pump characteristic curve. 

 
Figure 5.17. A centrifugal pump connected to a simple pipe-network 

 

The analytical model 

The conservation of mass for a steady-flow of an incompressible fluid gives: 

 

JQQQQ  321         (5.19) 

 

Where the flow rates Q1, Q2, Q3, and QJ are as shown in Figure 5.17. If three of the flow 

rates are specified, the fourth can be calculated from the above equation. 
 

Since the pressures at the inlet of pipe 2 and pipe 3 are the same, and the pressures at 

their discharge points are both atmospheric, the energy equation leads to: 
 

32 ff hh           (5.20) 

 

At the operating point, the power required by the pump to balance the friction losses in 
the network can be calculated from. 

 

pp hgQW 1          (5.21) 

 
Alternatively, it can be obtained from: 

 

 332211 fffp hQhQhQgW         (5.22) 

 
The requirement that the two values of the pump power determined by Equations (5.21) 

and (5.22) should be equal provides another constraint on the iterative process besides 

Equation (5.20). The following example shows how Solver can be used to solve the 
problem. 

Pi = Patm 

Q2, L2, D2, ε2 

Q3, L3, D3, ε3 

P1 = Patm 

P3 = Patm 

Q1, L1, D1, ε1 

Q
J
 

J 
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Example 5-5. Centrifugal pump connected to a simple-pipe network 
The pump-system shown in Figure 5.17 carries water (ρ = 1000 kg/m

3
, ν = 1x10

-6
) and 

its three pipes have the following dimensions.  

 
D1 = 0.05m   L1 = 500m   ε1=46x10

-6
m 

 

D2 = 0.025m   L2 = 500m   ε2=15x10
-6

m 
 

D3 = 0.03m   L3 = 500m   ε3=46x10
-6

m 

 

The network supplies a demand of 0.0002 m
3
/s at the junction J. If the pump has the 

same characteristic formula expressed by Equation (5.12), determine the operating 

point and the power required by the pump. 

 

The Excel sheet 

The Excel sheet developed for this example is shown in Figure 5.18. The sheet extends 

that developed for Example 5-4 by adding the data and the calculations relevant to the 

third pipe and the flow rate at the junction (Q_J). The calculations start by guessed 
values for Q1 = 0.001 m

3
/s and Q2= 0.0005 m

3
/s. As the formula bar shows, Q3 is 

determined from Equation (5.19). The sheet then calculates the velocities, Reynolds 

numbers, friction factors and friction losses in the three pipes from the Darcy-Weisbach 
equation using the relevant data. At the guessed value of the flow rate (Q = Q1), the 

sheet calculates pump power as “W_pump” on the basis of Equation (5.21) and as 

“W_pipe” on the basis of Equation (5.22).  

 

 
Figure 5.18. Excel sheet developed for Example 5-5 

 

Values of hf1, hf2, hf3, and hp shown in Figure 5.18 indicate that Equation (5.20) is not 
satisfied with the guessed flow rates. The two values of the pump power determined by 

Equations (5.21) and (5.22), i.e., W_pump and W_pipe, are also different. Solver can be 

used in order to find the flow rates that satisfy these two conditions. Figure 5.19 shows 
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the set-up that requires Solver to find the values of Q1 and Q2 that makes the difference 
between hf2 and hf3 diminishes (Equation (5.20)) while making pump power determined 

by Equation (5.21), which is W_pump, equal to that determined by Equation (5.22), 

which is W_pipe.  
 

 
Figure 5.19. Solver set-up for Example 5-5 

 

A third constraint has been added that requires Q2 ≤ Q1 so as to ensure a physically 

acceptable solution. By leaving the Set Objective  blank, Solver will iterate so as to find 
the solution that satisfies the three specified constraints. Figure 5.20 shows the solution 

found by Solver with the GRG Nonlinear method with the automatic-scaling option.  

 

 
Figure 5.20. The solution determined by Solver for Example 5-5 

 

According to this solution, Q1 = 0.001671, Q2 = 0.00058 and Q3 = 0.000892 m
3
/s. 

Judging from the Reynolds numbers in the three pipes, all pipe flows are turbulent. At 
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the flow rates obtained for the three pipes, the friction losses in pipe 2 and pipe 3 are 
both equal to 35.9247 m, while the total friction head to be provided by the pump is 

40.70285 m. As should be the case, both Equations (5.21) and (5.22) determine the 

pump power as 667.31 W. 
 

In this example the discharge at the pipes junction has been specified, but it is also 

possible to allow it to be determined by Solver. In such a case, there will be three 
adjustable cells for the three flow rates, Q2, Q2, and Q3 or QJ. Also note that the method 

can be applied when the pipes are not on the same horizontal plane.  

 

5.3. Centrifugal pumps in serial and parallel arrangements 
Practical considerations may require the use of two or more smaller pumps instead of a 

single large pump. Proper application of the energy equation together with the 

continuity equation and the pump characteristic equations also enables the pumps 
operating point to be determined. This section shows how Excel and Solver can be used 

to determine the operating point for two centrifugal pumps in parallel and in series. 

  

5.3.2. Two centrifugal pumps connected in parallel  
Figure 5.21 shows two identical pumps connected in parallel with the characteristic 

curves for a single pump and for the two parallel pumps. As Figure 5.21.b shows, the 

operating point shifts from point A for a single pump to point B for the two pumps. The 
two pumps give a larger flow rate and a higher head compared to the single pump.  

 

 
Figure 5.21. Two centrifugal pumps connected in parallel and their characteristic curve  

 

Example 5-6. Operating point for two pumps in parallel 
The pump-pipe system shown in Figure 5.21 carries water at 25

o
C in a horizontal pipe. 

The two pumps are identical and have the characteristic curve given by Equation (5.12). 

The length and roughness of the pipe are 100 m and 0.046 mm, respectively. For 

economic reasons it is desired to keep the water velocity in the pipe below 2.8 m/s by 
selecting a suitable diameter for the pipe. Determine the operating point of the system, 

the diameter of the pipe, and the power requirement of the two pumps. 

(b) 

One pump 

Two pumps 

hp 

Q 

A 

B 

(a) 

Check valves 

Q 

Q1 

Q, L, D, ε 

Q
2
 

2 

1 
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The analytical model 
For a steady flow of an incompressible fluid in the common pipe, mass conservation 

leads to: 

 

21 QQQ           (5.23) 

 

Parallel arrangement of pumps is referred to as "flow-rate additive" [3] because the 

combined flow rate in the system is the addition of those of the individuals pump as 
indicated by Equation (5.23). For two identical pumps running at the same speed: 

 

2/21 QQQ           (5.24) 

 
Neglecting the small loss in the pipe joining the two pumps and assuming no losses 

within the two pumps, the energy equation applied between points 1 and 2 leads to: 

 

ppp hhh  2,1,          (5.25) 

 

At the operating point, the friction head loss in the pipe equals the head delivered by 

one pump, i.e.: 
 

2,1, ppf hhh           (5.26) 

 

The Excel sheet 
The data part of the Excel sheet shown in Figure 5.22 gives the length of the main pipe, 

but not its diamater. The calculations start with assumed values for flow rate, Q = 0.001 

m
3
/s, and pipe-diameter, d = 0.025 m. Based on these initial values, the water velocity 

in the pipe and the corresponding Reynolds number are determined.  

 

 
Figure 5.22. Excel sheet developed for Example 5-6 (two pumps in parallel) 
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Since the total flow rate is divided equally between the two pumps as stated by 
Equation (5.24), the heads delivered by the two pumps, h_p1 and h_p2, are equal as 

required by Equation (5.25). However, the friction head loss in the main pipe (hf) is not 

equal to the head supported by the pumps as required by Equation (5.26). Therefore, the 
flow rate, Q, and pipe diameter, d, have to be adjusted to values that satisfy Equation 

(5.25) as well as Equation (5.26) together with the condition that V ≤ 2.8 m/s. This can 

be done by using Solver and the required set-up is shown in Figure 5.23.  
 

 
Figure 5.23. Solver set-up for Example 5-6 (two pumps in parallel) 

 

Figure 5.24 shows the solution found by Solver that satisfied the two constraints. 
According to this solution, the flow rate is 0.001 m

3
/s, the pipe diameter is 0.022 m, and 

the power requirement is 467.08 W. Due to the reduced water velocity, the required 

power is less than that of the single pump in Example 5-3 even though the pipe 

diameter is smaller. 
 

 
Figure 5.24. Solver solution to Example 5-6 (two pumps in parallel) 
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5.3.3. Two centrifugal pumps connected in series  
Two pumps are connected in series when the outlet of the first pump leads directly to 

the inlet of the second one as shown in Figure 5.25.a. As shown in Figure 5.25.b, the 

operating point of this arrangement also increases both the system‟s head and flow rate 
compared to those of a single pump.   

 

 
Figure 5.25. Two centrifugal pumps connected in series and their characteristic curve  

 

Example 5-7. Operating point for two pumps in series  

Two pumps are connected in series to a horizontal pipe that carries water at 25
o
C. The 

characteristic curve for both pumps is expressed by Equation (5.12). The pipe length 

and roughness are 100 cm and 0.046 mm, respectively. For economic reasons, it is 

desired to keep the velocity in the pipe below 2.8 m/s. Determine diameter of the pipe, 

the operating point of the system, and the power requirement of the two pumps. 
 

The analytical model 

For steady flow of an incompressible fluid in the system, mass conservation leads to: 
 

21 QQQ           (5.27) 

 

Neglecting the small loss in the pipe joining the two pumps and assuming no losses 
within the two pumps, the energy equation reduces to: 

 

2,1, ppp hhh           (5.28) 

 
Pumps in series are called "pressure-additive" [3] because the total pressure in the pipe 

system is the addition of those of the individual pumps as indicated by Equation (5.28). 

At the operating point, the friction head loss in the pipe equals the head delivered by the 
two pumps, i.e.: 

 

2,1, pppf hhhh          (5.29) 

(a) (b) 

A 

B 

Two pumps 

One pump 

hp 

Q 

Q, L, D, ε 

Q 

Q 1 

2 
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Excel sheet 
The sheet developed for this example is shown in Figure 5.26. The data and 

calculations parts are similar to those in Example 5-6 but, instead of two flow rates in 

two pipes, in the present sheet the same flow rate Q passes through both pipes. Given 
initial values for the flow rate, Q, and pipe diameter, d, the sheet calculates the velocity 

(V), Reynolds number (Re), friction factor and head losses in the two pipes (hf). The 

sheet then determines the pumps heads h_p1 and h_p2, which are identical in this case.  
 

 
Figure 5.26. Excel sheet developed for Example 5-7 (two pumps in series) 

 

Figure 5.26 shows that there is a difference between the pumps' heads and the friction 

loss in the pipe which indicates that the guessed values are incorrect. Figure 5.27 shows 
the set-up for Solver for finding the values of Q and d that make the friction loss (hf) 

equals the pump head (hp) while keeping the velocity below 2.8 m/s. Figure 5.28 shows 

the solution obtained by Solver according to which the water flow rate is 0.388 litre per 
second, the pipe diameter is 0.013 m, and the pump power is 350.4 kW.  

 

 
Figure 5.27. Solver set-up for Example 5-7 (two pumps in series) 
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Figure 5.28. Solver solution for Example 5-7 (two pumps in series) 

 

5.3.4. A comparison of serial and parallel pumps arrangements  

Some general remarks on the performance characteristics of multiple pumps when they 
are arranged in parallel and in series can be extracted from the results obtained in the 

previous sections. Table 5.2 compares the calculated values for the water flow rate, pipe 

diameter, water velocity, friction loss, and pump power for the two pumps arranged in 
parallel and in series with those of a single pump. The results of shown in Table 5.2 for 

the single were obtained by modifying the sheet developed in Example 5-3 so as to 

determine the operating point and pipe diameter with the additional restriction that the 
pipe velocity does not exceed 2.8 m/s as required for the two pump arrangements. The 

solution was found with a similar Solver set-up to that shown in Figure 5.23.  

 

Table 5.2. Operating conditions for a single pump, two pumps in parallel, and two 
pumps in series  

Arrangement L  
(m) 

Q  
(l/s) 

D 
(m) 

V  
(m/s) 

hp  
(m) 

Power  
(W) 

A single pump 100 1.04 0.022 2.68 43.667 447.295 

Two pumps in parallel  100 1.04 0.022 2.72 45.585 467.078 

Two pumps in parallel (2) 100 2.08 0.002 2.68 43.667 894.590 

Two pumps in series 100 0.34 0.013 2.80 46.025 350.426 

Two pumps in series (2) 181 1.06 0.022 2.80 87.168 910.168 

 
The figures in Table 5.2 show that two pumps connected in parallel as shown in Figure 
5.21give the same flow rate as that of the single pump and do not require the pipe 

diameter to be changed. The slight increase in the water velocity lead to a slight 
increase in the pump head and, therefore, the required pump power increased from 

447.3 W to 467.1 W, i.e., by 4.4 per cent. Since the second pump requires additional 

initial and maintenance costs, these results indicate that this pump can only be used as a 

stand-bye pump. However, the second pump can be allowed to discharge in a separate 
pipe. Table 5.2 shows this option as “Two pumps in parallel (2)”. In this case, the water 
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velocity and pump-head will be the same as those of a single pump, but both the water 
flow rate and pump power will be doubled. 

 

When the second pump is connected in series, the water flow rate dropped from 1.04 to 
only 0.34 litres per second and the required pipe diameter dropped from 22 cm to 13 

cm. Although the pump-head increased by 5.4 per cent, the required pump power 

dropped by more that 21 per cent due to the reduced flow rate in the pipe. These results 
indicate that the two pumps are underutilised with this arrangement under the specified 

conditions. A more logical use for this pump arrangement is to keep the diameter of 

pipe unchanged but allow the length of the pipe to increase. A separate Excel sheet was 

developed for this scenario and its results with the imposed upper limit for the water 
velocity are shown in Table 5.2 as “Two pumps in series (2)”. As the figures show, the 

pipe length in this case can be increased to 181 m with a slightly higher water flow rate. 

However, both the pump head and power will be almost doubled.  
 

5.4. Closure 

This chapter presented hydraulic analyses of multi-pipe and pump-pipe systems that 

require iterative solutions for simultaneously satisfying the continuity equation and the 
energy equation. The analyses that involved a single variable were solved by using 

Goal Seek, while the analyses dealing with multiple changing cells were solved by 

using Solver. All the analyses in this chapter applied the GRG Nonlinear method of 
Solver and required less than 5 iterations. Determining the operating point for a pump-

pipe system by using the third-order pump curve formula in Equation (5.12) required 

the automatic-scaling feature of Solver to be used. In general, iterative solutions with 

the GRG Nonlinear method may also require using the multi-start option. 
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Exercises 

1. Water at 20°C (ρ = 998 kg/m
3
 and μ = 1.002×10

-3
 kg/m⋅s) is to be pumped from 

reservoir A (ZA = 2 m) to reservoir B (ZB = 9 m) through two 25-m-long pipes 

connected in parallel as shown in Figure 5.P1. The diameters of the two pipes are 3 

cm and 5 cm. The motor–pump unit draws 7 kW of electric power during operation 
at 68% efficiency. The minor losses and the head loss in the pipes that connect the 

parallel pipes to the two reservoirs can be considered to be negligible. 

 



Computer-Aided Thermofluid Analyses Using Excel                                                

 

 
Figure 5.P1. Schematic for problem 5.1 

 

Modify Excel sheet developed for Example 5-1 and use Solver to determine the 
total flow rate between the reservoirs and the flow rates through each of the parallel 

pipes for (a) plastic pipes, (b) commercial-steel pipes, and (c) cast-iron pipes.  

This exercise is based on Problem 8-68 in Cengel and Cimbala [2]. 
2. A certain part of cast iron piping of a water distribution system involves a parallel 

section as shown in Figure 5.P2. Both pipes have a diameter of 30 cm and the flow 

is fully turbulent. One of the branches (pipe A) is 1000 m long, while the other 

branch (pipe B) is 3000 m long. The flow rate through pipe A is 0.4 m
3
/s and the 

water temperature is 15°C (ρ = 999.1 kg/m
3
 and μ = 1.138×10

-3
 kg/m⋅s). 

 
Disregarding minor losses, develop an Excel sheet for analysing the system and use 

Solver to determine the flow rate through pipe B. Use the Swamee-Jain formula for 

the friction factor. This exercise is based on Problem 8-82 in Cengel and Cimbala 
[2]. Answer: 0.231 m

3
/s. 

 
  

 
 

Pump 

Reservoir A 

zA = 2 m 

Reservoir B 

z
A
 = 9 m 

3 cm 

5 cm 

30 cm 

3000 m 

30 cm 

1000 m 
0.4 m

3
/s 

A 

B 

Figure 5.P2. Schematic for problem 5.2 
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3. Figure 5.P3 shows a pipeline that transports oil at 40°C (ρ = 876 kg/m
3
 and μ = 

0.2177 kg/m⋅s) at a rate of 3 m
3
/s. The pipeline branches out into two parallel pipes 

made of commercial steel that reconnect downstream. Pipe A is 500 m long and has 

a diameter of 30 cm while pipe B is 800 m long and has a diameter of 45 cm. The 

minor losses are considered to be negligible. Develop an Excel sheet to determine 
the flow rate through each of the parallel pipes. This exercise is based on Problem 

8-123 in Cengel and Cimbala [2]. Solution: QA = 0.91 m
3
/s, QB = 2.09 m

3
/s. 

 
Figure 5.P3. Schematic for problem 5.3 

 

4. The parallel galvanized-iron pipe system of Figure 5.P4 delivers gasoline at 20°C 

(ρ = 680 kg/m
3
 and μ = 2.9×10

-4
 kg/m⋅s) with a total flow rate of 0.036 m

3
/s. If the 

pump is wide open and not running, with a loss coefficient K =1.5, determine: (a) 

the flow rate in each pipe and (b) the overall pressure drop.  

 
Figure 5.P4. Schematic for problem 5.4 

 

This exercise is based on Problem 6-113 in White [1]. 
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5. Solve Problem 5.4 with the following modification. Let the pump be running and 
delivering 45 kW to the flow in pipe 2. The fluid is gasoline at 20°C (ρ = 680 kg/m

3
 

and μ = 2.9×10
-4

 kg/m⋅s). Determine (a) the flow rate in each pipe and (b) the 
overall pressure drop. This exercise is based on Problem 6-114 in White [1]. 

6. For the piping system shown in Figure 5.P6, all pipes are made of concrete with a 
roughness of 0.1 cm. Neglecting minor losses, compute the overall pressure drop p1 

- p2 in kPa if Q = 0.54 m
3
/s. The fluid is water at 20°C (ρ = 998 kg/m

3
 and μ = 

1.002×10
-3

 kg/m⋅s). This exercise is based on Problem 6-118 in White [1]. 

 
Figure 5.P6. Schematic for problem 5.6 

 

7. Modify Problem 5.6 as follows: Let the pressure drop p1 - p2 be 650 kPa. 

Neglecting minor losses, determine the flow rate in m
3
/h.  

8. Figure 5.P8 shows two commercial-steel pipes connected in parallel at points A and 
B. The pipe system transports water at 15

o
C at a flow rate (Q) of 1.2 m

3
/s. The 

length and diameter of pipe 1 are 1000 m and 50 cm, respectively. The length of 

pipe 2 is 1500 m. It is required to determine the diameter of pipe 2 such that the 

total pumping power ( PW ) does not exceed 5 kW.  

 
Figure 5.P8. Two pipes connected in parallel 

 

Solve the problem by determining the friction factor (f) from the following options: 

 
(a) Using a constant value for f = 0.015 (Answer: D2 ≈ 33 cm). 

(b) Using the Swamee-Jain formula for the friction factor. 

(c) Using the Colebrook-White formula for the friction factor.  

 

  
  

 
  

    

D= 30 cm, L= 300 m 
 D= 30 cm 

L= 250 m 

D= 20 cm, L = 450 m 

D= 37.5 cm, L = 360 m 

2   1   

0.54 m
3
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9. Using the pump characteristic curve given by Equation (5.12) and the Colebrook-
White formula, develop an Excel sheet to determine the operating point for the 

pump-pipe system described in Example 5-1.  

10. Figure 5.P10 shows three pumps connected in parallel to a horizontal 100-m-long 
commercial-steel pipe that carries water at 25

o
C. The three pumps are identical and 

their characteristic curve is given by Equation (5.12). For economic reasons it is 

desired to keep the water velocity in the common pipe below 2.8 m/s by selecting a 
suitable diameter for the pipe. Minor losses can be neglected. Use Excel and Solver 

to determine the operating point of the system, the diameter of the common pipe, 

and the power requirement of the three pumps. 

 
Figure 5.P10. Three centrifugal pumps connected in parallel  

 

11. Figure 5.P11 shows three pumps connected in series to a horizontal commercial-

steel pipe that has a diameter of 22 cm and carries water at 25
o
C. The characteristic 

curve for the three identical pumps is expressed by Equation (5.12). For economic 

reasons, it is desired to keep the velocity in the common pipe below 2.8 m/s. Minor 

losses can be neglected. Determine length of the common the pipe, the operating 

point of the system, and the power requirement of the three pumps. 

 
Figure 5.P11. Three centrifugal pumps connected in series  
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Hydraulic analyses of pipe networks 
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Hydraulic analyses of pipe-network are based on the same principles applied in the 
previous chapter for analysing multi-pipe systems; which are the two principles of mass 

and energy conservation coupled with auxiliary formulae for determining the pipe 

friction. However, pipe-network analyses are more challenging because they involve 
more continuity equations and energy constraints to be simultaneously satisfied. 

Therefore, the analyses of practical pipe-networks require computer-aided numerical 

methods such as the Hardy-Cross method. Before introducing the Excel-aided method 
for pipe-network analyses, this chapter illustrates the limitation of mathematical 

analysis of looped pipe-networks by considering a simple network with three pipes. The 

chapter then presents the Excel-aided methodology that uses Solver to deal with the 

analyses of looped, branched, and mixed pipe networks.  
 

6.1. The methodology of looped pipe-network analysis 

Figure 6.1 shows two types of pipe network arrangements: (a) looped networks and (b) 
branched networks. The flow in the pipe network can be driven by the effect of gravity 

or by a motor-pump system. The connection points, called nodes, can be sources 

(supply points), sinks (demand or load points), or just junctions. The looped network in 

Figure 6.1.a has two sources, which are the reservoirs A and B, and six load points. The 
branched network in Figure 6.1.b has a single source, which is the pump A, and six load 

points. According to the notation scheme used in Figure 6.1, a single letter refers to a 

location or a pipe junction, e.g., A, B, etc., two letters refer to a pipe, e.g., AB, BC, etc., 
whereas numbers refer to pipe loops, e.g. loop 1, loop 2, etc. 

 

 
(a)          (b) 

Figure 6.1. Pipe network arrangements: (a) looped and (b) branches networks 

 

In a typical hydraulic analysis, the flow rates at the sources and outlets are given 
together with the lengths, diameters, and roughness of the pipes and the requirement is 

to determine the flow rates and pressure levels at the different nodes.  
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The analytical model for a looped network 
In order to analyse the looped pipe network shown in Figure 6.1.a that has eight pipes, 

eight independent equations have to be formed from mass and energy balances.  The 

continuity equation can be applied at two levels; (i) to the whole pipe network, and (ii) 
to any junction (node) in the network. Applied to the whole network shown in Figure 

6.1.a for a steady flow of an incompressible fluid, the continuity equation leads to: 

 
QA + QB = QC + QD + QE + QF + QG+ QH      (6.1) 
 
Applied to any junction in the network, the continuity equation requires the algebraic 

sum of all the flow rates meeting at the junction to be zero. For example, at junction C 

the equation becomes: 
 

QC = QAC - QCD - QCE - QCF       (6.2) 
 

Application of the continuity equation at the six nodes in the network shown in Figure 
6.1.a leads to five (number of nodes minus 1) independent linear equations. The 

remaining three equations have to be obtained from the energy equation.  

 
The general form of the energy equation, Equation (1.20), does not only account for the 

friction losses in the pipes, but also for the differences in elevations between the end 

points. However, for simplicity we will assume here that all pipes of the network under 

consideration are on the same horizontal plane. A special form of the energy equation 
can be written for a closed loop in which point B in the equation coincides with point 

A. In this case, the algebraic sum of the head losses in all the pipes forming a closed 

loop is balanced by any heads generated by inline booster pumps in the loop, i.e., 
 

 
N

P

M

f hh
11

           (6.3) 

 

Where M is the number of pipes forming the closed loop, N is the number of booster 
pumps in the loop, hf is the head loss in each pipe (including the minor losses), and hP is 

the head produced by a booster pump. When there is no booster pump within the loop, 

Equation (6.3) reduces to: 

 

0
1


M

fh            (6.4) 

 

Friction loss in a pipe (hf) can be determined by using the Darcy-Weisbach equation or 

the Hazen-Williams equation for pipes carrying water. Since we cannot be certain about 
the flow directions in the network pipes in advance, we have to assume them. The flow 
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directions of pipes CD, CE and CF in Figure 6.1.a are assumed directions. The true 
directions can only be confirmed after the analysis is done.  

 

Applying Equation (6.4) to the three loops in the network provides the three (equal to 
the number of loops) additional equations needed to solve the problem. The solution of 

the eight equations should give the unknown values and directions of the flow rates in 

the eight pipes of the network. A positive flow value means that the assumed direction 
is correct and a negative value means that it has to be reversed. The following example 

illustrates the limitation of mathematical pipe-network analyses by considering a simple 

network that consists of only three pipes forming a single loop. 

 

Example 6-1. Mathematical analysis of a simple looped pipe network  

Figure 6.2 shows a pipe network that distributes water from a single source to two 

consumption points as shown in the figure. The friction factor for all three pipes can be 
taken as 0.025. Find the flow rates in the three pipes. 

 

 
Figure 6.2. Pipe network in Example 6-1 

 

Solution 

For this simple network, there are only two possible flow arrangements depending on 

the flow direction in pipe BC as shown in Figures 6.3.a and 6.3.b. Since there are only 
three flow rates that have to be determined, three independent equations are needed to 

solve the problem. For this simple network, let us refer to pipe AB by pipe 1, pipe BC 

by pipe 2, and pipe AC by pipe 3. Starting with the arrangement shown in Figure 6.3.a, 
mass conservation leads to the following two equations: 

 

6012 QQ            (6.5) 

 

13 100 QQ             (6.6) 
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Figure 6.3. The two possible flow arrangements in the simple network 

 

The third equation can be obtained by applying the energy equation (Equation (6.4)).  

 

03,2,1,  fff hhh           (6.7) 

 

Equation (6.7) applies the sign convention that the two clockwise flows in pipes 1 and 2 

are positive, while the counter clockwise flow in pipe 3 is negative. Using Equation 

(1.21) and substituting for V by Q/A, the equation becomes: 
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This equation can be put in the following simpler form: 
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2
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2
11  QKQKQK          (6.9) 

 

Where, 
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Now, substituting for Q2 and Q3 from Equations (6.5) and (6.6), Equation (6.9) 
becomes: 

 

    010060
2

13

2

12
2
11  QKQKQK                 (6.13) 

 
Expanding and rearranging Equation (6.13) leads to: 

 

01
2
1  cbQaQ                    (6.14) 

 

Where: 

 

 321 KKKa                     (6.15) 

 

 21 200120 KKb                     (6.16) 

 

3
2

2
2 10060 KKc                     (6.17) 

 
Equation (6.14) is a quadratic equation that can be solved for Q1 once the numeric 

values of K1, K2, and K3 are provided. There are two solutions for the quadratic 

equation, which are given by: 
 

a

acbb
Q

2

42

1


                    (6.18) 

 

Where a = 114350.4, b = -1.3x10
7
, and c = 3.37x10

8
. Substituting for a, b, and c in 

Equation (6.18) gives the following solutions:  
 

First solution: Q1 = 66.99 l/s, Q2 = 6.99 l/s, and  Q3 = 33.0 l/s 

 
Second solution: Q1 = 44.04 l/s, Q2 = -15.96 l/s and Q3 = 55.96 l/s  

 

The second solution, which leads to a negative value for Q2, cannot be accepted because 

it either means that the magnitude of Q2 is negative, which is physically meaningless, or 
its direction is reversed, which goes against our initial assumption embedded in the 

formation of Equation (6.7). Trying to solve the problem by adopting the flow 

arrangement shown in Figure 6.3.b, i.e., by assuming that the flow in pipe BC goes in 
the opposite direction, leads to values of the flow rates in the pipes as complex 

numbers, which is also a physically unacceptable solution. Therefore, the only 

acceptable solution is the first solution shown above.  

 
The pipe-network considered in this example could be analysed mathematically 

because of its simplicity and because of using constant values for the friction factors in 
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Equations (6.10) – (6.12). In general, the friction factor depends on the Reynolds 
number and, therefore, on the unknown pipe flow rate. Therefore, the complex practical 

pipe networks have to be analysed by using computer-aided methods [1]. In this 

respect, the earliest and mostly used method for the analysis of looped pipe-networks is 
the Hardy-Cross (H-C) method described in Appendix C. The following section 

presents an Excel-aided method for pipe-network analyses that is more general than the 

H-C method because it can be used for both looped and branching networks [2, 3]. 
 

6.2. Analyses of looped  pipe-networks with Excel-Solver 

This method utilises the multi-variable iterative capability of Solver that can take into 

consideration multiple constraints on the iterative process. The following example, 
which is based on Example 5-2 in Nalluri and Feather [4], demonstrates the method. 

 

Example 6-2. Analysis of a two-loop network by Excel-Solver 
Figure 6.4 shows a network that consists of two pipe loops with one source and five 

discharge (load) junctions. The valve in pipe BC is partially closed, which produces a 

local head loss of 10.0 V
2
/2g. Table 6.1. gives the lengths and diameters of each pipes. 

The roughness of all pipes is 0.06 mm. Determine the water flows in the network pipes. 

 
Figure 6.4. The two-loop pipe network of Example 6-2 

 

Table 6.1. Pipes‟ lengths and diameters 
Pipe AB BC CD DE EF AF BE 

Length (m) 500 400 200 400 600 300 200 

Diameter (mm) 250 150 100 150 200 250 150 

 

The analytical model 

The Excel-aided solution procedure starts with guessed values for selected pipe flows. 

The remaining pipe flows are then calculated by Excel such that they satisfy the 

continuity equation. Since these initial flows are unlikely to satisfy the energy equation, 
Solver is used to adjust the guessed pipe flow rates so that the energy equations are 

satisfied for all the network loops while Excel recalculates the remaining pipe flows to 

1  2 
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A B 

F 

C 

D 
E 

200 L/s 
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ensure that the nodal continuity equations are simultaneously satisfied. We need to 
guess the flow rate in only one pipe in each loop since the flows in the other pipes can 

be determined from the continuity equations. Let us guess the magnitude and direction 

of flow rate in pipe AB (loop 1) and pipe BC (loop 2) and calculate the flow rates in the 
other pipes in the network by applying mass conservation at the nodes (junctions). 

Accordingly, the flow rates in the other pipes are determined as follows: 

 
Loop 1: 

 

 BCBABBE QQQQ                   (6.19) 

 

 ABAAF QQQ                    (6.20) 

 

 FAFEF QQQ                    (6.21) 

 

Loop 2: 
 

 CBCCD QQQ                    (6.22) 

 

 BCBABBE QQQQ                   (6.23) 

 

 CDDDE QQQ                    (6.24) 

 

Figure 6.5 shows the initial flows in the network for assumed values: QAB=120 l/s and 
QBC = 50 l/s. Your initial flows can be different from those shown in the figure provided 

that they satisfy the nodal continuity equations. The final solution may change the 

initial pipe flows in both magnitude and direction.  

 
Figure 6.5. Initial flows and sign convention for the pipe network of Example 6-2 
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The second step in the procedure is to calculate the friction loss in each pipe of the 
network and calculate the net friction loss in each loop according to the assumed flow 

direction in the relevant pipes. In the present analyses, the friction losses in all the pipes 

are calculated using the Darcy-Weisbach equation, Equation (1.21). However, for pipe 
BC, the equation is modified to allow for the loss in the valve as follows: 

 

g

V

g

V

D

L
fh BCf

2
10

2

22

,                     (6.25) 

 
More likely the energy equation, Equation (6.4), will not be satisfied by using the 

initially guessed flows. To satisfy the energy equation, Solver will be used to adjust the 

flow rates in pipes AB and BC so as to satisfy the following constraints on the iterative 
process: 

 

 AFfEFfBEfABf hhhh ,,,,
   Loop 1              (6.26) 

 

 BEfDEfCDfBCf hhhh ,,,,
  Loop 2              (6.27) 

 

Where ││ refers to the absolute value and ε is a prescribed positive tolerance that is 

acceptably small.  
 

By using the absolute value of the error, the positive direction for friction doesn‟t have 

to be the same for all the loops, i.e., it can be clockwise or anti-clockwise for different 

loops. The absolute value also takes into consideration that the flow may not be in the 
suggested direction or may change its direction during the solution process. Also note 

that only the flow rates in pipes AB and BC need to be adjusted by Solver since the 

other pipe flow rates are adjusted automatically by applying Equations (6.19) to (6.24) 
in the main Excel sheet. 

 

Excel implementation 
Figure 6.6 show the Excel sheet developed for applying the Excel-aided method for 

solving this example. The problems data (pipe lengths and diameters, roughness factor, 

and water viscosity) are shown at the left part of the sheet. The two values for the flow 

rates in pipe AB (Q_AB) and pipe BC (Q_BC) are guessed values while the flow rates 
in the other pipes (Q_CD – Q_BE) are calculated according to Equations (6.19) to 

(6.24). The sheet then calculates the velocity (Q/A) and Reynolds number (Re) for each 

pipe. Based on these values, the sheet determines the friction factor (f) and friction loss 
(hf) in the pipes. Finally, the sheet calculates the balance of friction losses in the two 

loops as required by Equations (6.26) and (6.27). The formula bar shows how the 

balance of friction losses in loop 1 is calculated according to Equation (6.26).  
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Figure 6.6. Excel sheet developed for Example 6-2 

 

Figure 6.6 shows that the imbalances in friction losses in the two loops with the initially 

guessed flows are not small. Solver can now be used to find the values of QAB and QBC 
that make the friction imbalances in the two loops become less than a specified value. 

Figure 6.7 shows the required set-up for this task. 

 

 
Figure 6.7. Solver set-up for Example 6-2 

 
With this set-up the friction balances in the two loops should be below 0.1. The sheet 

automatically calculates the unknown flow rates by satisfying the continuity equations. 
Figure 6.8 shows the solution found by Solver. Note that the imbalances in friction 

losses in the two loops have been reduced to 0.1 or less. As shown in Table 6.2, 

Solver‟s solution shown in Figure 6.8 agrees closely with that given by Nalluri and 
Feather [4]. The following example applies the method to a pipe-network with three 

loops which was used by Benjamin [5] to illustrate the Hardy-Cross method. His 

solution will be used to verify the solution with Excel-Solver. 
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Figure 6.8. Solver solution for Example 6-2 

 

Table 6.2. Verification of the solution obtained by the Excel-Solver method 

Pipe Nalluri and Feather [4] Excel-Solver 

AB 0.11152 0.1115 

BC 0.03505 0.0350 

CD 0.00495 0.0050 

DE 0.03495 0.0350 

EF 0.04848 0.0485 

AF 0.08848 0.0885 

BE 0.01648 0.0165 

 

Example 6-3. Analysis of a three-loop network by Excel-Solver 

Determine the flow rates in all the pipes in the network shown in Figure 6.9 according 
to the data given in Table 6.3. If the pressure head at point A is 40 m, find the pressure 
head at D (which might represent a fire-demand, for example).  

 
Figure 6.9. Pipe-network for Example 6-3  
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Table 6.3. Pipes‟ lengths and diameters 

Pipe 
Length 
(m) 

Diameter 
(m) Pipe 

Length 
(m) 

Diameter 
(m) 

AB 250 0.3 DG 100 0.25 

BE 100 0.2 FG 125 0.15 

DE 125 0.2 CF 100 0.1 

CD 125 0.2 EH 100 0.25 

AC 100 0.15 GH 125 0.1 
 

The analytical model 

Following the procedure described above, the flow rate in one pipe in each loop is 
guessed and the flow rates in the other pipes are obtained from relevant mass balance 

equations. Figure 6.10 shows the initially assumed values and directions of the flows.  

 

 
Figure 6.10. Pipe-network for Example 6-3 with initial flows  

 
The flows in pipes AB, CD, and DE are guessed and those in the other seven pipes are 

determined as follows: 

 

ABBE QQ                     (6.28) 

 

ABAAC QQQ                    (6.29) 

 

DCDDEDG QQQQ                   (6.30) 
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FCFFG QQQ                    (6.31) 

 

CDACCF QQQ                    (6.32) 

 

DEBEEH QQQ                    (6.33) 

 

EHHGH QQQ                    (6.34) 

 

The three loops in the network provide the following energy constraints: 
 

0,,,,,  CDfACfDEfBEfABf hhhhh   Loop 1            (6.35) 

 

0,,,,  FGfCFfDGgfCDf hhhh    Loop 2            (6.36) 

 

0,,,,  GHfDGfEHfDEf hhhh    Loop 3            (6.37) 

 

Excel implementation 

Figure 6.11 shows the Excel sheet developed for this example. The (coloured) flow 
rates for pipes AB, DE, and CD are guessed flow rates. The flow rates for the other 

seven pipes are determined according to Equation (6.28) to (6.34). Based on the 

guessed flow rates, the sheet calculates the Reynolds number (Re), friction factor (f), 
and friction loss (hf) in each pipe. Figure 6.11 shows that the guessed flow rates do not 

satisfy the requirements of the energy equations, Equations (6.35), (6.36), and (6.37).  

 

 
Figure 6.11. Excel sheet for Example 6-3 

 

Solver can now be used to adjust the three guessed flow rates in pipes AB, DE, and CD 
until Equations (6.35) to (6.37) are satisfied and Figure 6.12 shows Solver set-up for 

this problem.  
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Figure 6.12. Solver set-up for Example 6-3 

 
Note that Solver is only required to adjust the flow in the three pipes with the guessed 

flows to satisfy the constraints that represent the three energy equations. Figure 6.13 

shows the final result obtained by Solver. Table 6.4 compares this result with that given 

by Benjamin [5] and proves their proximity to the Hardy-Cross solution. 
 

 
Figure 6.13. Solver solution for Example 6-3 

 
Table 6.4. Verification of Solver‟s solution for the pipe-network of Example 6-3 

 Pipe Benjamin [5] Present 
solution 

 Pipe Benjamin [5] Present 
solution 

AB 0.0098 0.00978 DG 0.0082 0.00808 

BE 0.0098 0.00978 FG 0.0035 0.00363 

ED 0.0065 0.00649 CF 0.0185 0.01863 

DC 0.0317 0.03159 EH 0.0033 0.00329 

AC 0.0502 0.05022 HG 0.0117 0.01171 
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6.3. Analyses of branched pipe-networks with Excel-Solver 
The analysis of branched pipe-network with Excel and Solver basically follows the 

same procedure applied for the analysis of looped-networks. The basic equations for the 

analysis are the continuity and energy equations supplemented by an equation for 
determining the frictional losses. The following example, which is based on Example 5-

4 in Nalluri and Feather [4], illustrates the procedure. 
 

Example 6-4. Branched network connecting multi-reservoirs 

Neglecting minor losses, determine the gravity-driven discharges in the pipes of the 

branched network shown in Figure 6.14 that carries water. The data of the pipes are 
given in Table 6.5 and the elevations of the three tanks A, B, C, and D are shown in the 

figure. 

 

  

Figure 6.14. The branched pipe-network in Example 6-4 
 

Table 6.5. Pipes‟ lengths and diameters 

Pipe Length (m) Diameter (mm) 

AJ 10,000 450 

BJ 2,000 350 

CJ 3,000 300 

DJ 3,000 250 

 

The analytical model 
The energy equation requires that the friction loss between any two points (nodes) A 

and B in the network to be balanced by the difference in potential and kinetic heads 

between these two points in addition to the head produced by any booster pump along 

the line. Therefore, the energy equation takes the following form: 
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Where M is the total number of pipes between the two points A and B. Without a 
booster pump along the line, the equation simplifies to: 

 

 
g

VV
ZZh BA

BA

M

f
2

22

1


                   (6.39) 

 
Nalluri and Feather [4] solved the problem by using the quantity balance method (the 

'nodal' method). Their solution started with an assumed value for the head at joint J 

based on which the flow rate and head loss in each pipe were calculated. The guessed 
heat at joint J was then adjusted successively in order to satisfy the energy equation. 

With the present method it is more convenient to follow the same procedure used in the 

previous section by assuming the flow rates in each pipe, determining the friction 
losses, and then using Solver to adjust the flow rates until the energy equation is 

satisfied within a specified tolerance. Figure 6.15 shows the magnitudes (litre/s) and 

directions of the flow rates initially assumed in each pipe. 

 

 
Figure 6.15. Assumed flows in the network  

 

Three of the four flows at junction J have been assumed (AJ, BJ, and CJ), while the 
fourth (DJ) is left to satisfy continuity:  

 

CJBJAJDJ QQQQ                     (6.40) 

 

Since there are no booster pumps in the network, Equation (6.39) applies. For pipes that 

have constant cross-sections, the velocities at both ends of the pipe are the same and, 

therefore, Equation (6.39) can be simplified to produce the following equations:  
 

  0,,  BABJfAJf ZZhh                    (6.41) 

 

  0,,  CACJfAJf ZZhh                    (6.42) 
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  0,,  DADJfAJf ZZhh                  (6.43) 

 

Equations (6.41) – (6.43) will be used as constraints for Solver solution. Once the 

friction losses in the different pipes are known, the elevation at the junction J can be 

determined from any of the following equations: 
 

AJfAJ hZZ ,                     (6.44) 

 

BJfBJ hZZ ,                     (6.45) 

 

CJfCJ hZZ ,             (6.46) 

 

DJfDJ hZZ ,         (6.47) 

 

The Excel sheet 

Figure 6.16 shows the Excel sheet developed for this example. The flow rates in the 

three coloured or shaded cells are assumed, but the flow rate in pipe DJ is calculated 
from the continuity equation, Equation (6.40). Note that the formula bar shows the 

formula in cell E19 that applies this equation. Based on the assumed pipe flow rates, the 

sheet calculates the relevant Reynolds numbers, friction factors, and friction losses.  
 

 
Figure 6.16. Excel sheet developed for Example 6-4 

 
The top four cells in column J (i.e. J15, J16, J17, and J18) show the height at the 

junction J as calculated from Equations (6.44)-(6.47). These cells show different values 

because the assumed flow rates in the pipes are not correct. This is also indicated by the 
bottom three cells in column J that show the imbalances in the energy equations, 

Equations (6.41)-(6.43), which should be zeros. Since the assumed flow rates do not 

satisfy the energy equations, the values shown in the sheet are relatively large. Solver 

can now be used to find the correct flow rates (their magnitudes and directions) in the 
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three pipes AJ, BJ, and CJ that satisfy the energy equation. The required Solver set-up 
is shown in Figure 6.17.  

 

 
Figure 6.17. Solver set-up for Example 6-4 

 

This set-up requires Solver to adjust the flow rates in the top three pipes such that the 

last three entries in column J, i.e. J20, J21, and J22, are close to zero. Note that the flow 
in pipe DJ is automatically determined by the continuity equation. Figure 6.18 shows 

the solution found by Solver that satisfies the energy equation as shown by the small 

values of the three entries in cell J20, J21, and J22. Also note that the resulting head 
losses in all four pipes now yield the same value for the elevation at joint J, which is 

125.5 m. Table 6.6, which compares the present solution with that given by Nalluri and 

Feather [4], shows a close agreement between the two solutions. 

 

 
Figure 6.18. Solver solution for Example 6-4 
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Table 6.6. Verification of the pipe flow rates in m
3
/s obtained by Solver with those 

given by Nalluri and Feather [4] 

Pipe Nalluri and 
Feather [4] 

Present solution 

AJ 0.344 0.344780 

BJ 0.105 0.104696 

CJ 0.127 0.127590 

DJ 0.112 0.112606 

 

6.4. Analysis of mixed pipe networks 

To illustrate the application of the Excel-Solver method for the analyses of a general 

pipe network that consists of branched pipes branches as well as looped pipes, consider 

the pipe network shown in Figure 6.19 that distributes water and has two sources and 
six discharge points. This network was analysed by Rivas et al [6] who also used Excel 

and Solver. Their solution will be used for verification. 

 
Figure 6.19. Pipe network (adapted from Rivas et al [6]) 

 
All the network pipes are made of steel with a roughness of 0.3 mm. The lengths and 

diameters of the 16 network-pipes are given in Table 6.7. The demand at the six nodes 

in litres per second is shown in Table 6.8. 
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Table 6.7. Pipe data 

 
Pipe 

Pipe size  
Pipe 

Pipe size 
Diameter 

(mm) 
Length 

(m) 
Diameter 

(mm) 
Length 

(m) 

AB 250 200 CD 200 180 
BJ 150 400 LM 250 140 

IJ 200 300 KL 200 360 
HI 300 190 FK 150 200 

CH 80 210 FG 150 340 
BC 200 300 GL 80 180 

GH 150 160 EF 150 180 

DG 300 200 DE 200 345 
 

Table 6.8. Nodal demand 

Node C D E I F K 

Demand (l/s) 100 30 30 20 10 10 

 

The analytical model 

Since the network has sixteen pipes, its analysis involves sixteen unknown flow rates. 
Applying the continuity equation at the eleven nodes in the network provides eleven 

linear equations. Four nonlinear equations can be formed by applying the energy 

equations over the four loops in the network. The fifth nonlinear equation can be 
formed by applying the energy equation between the two tanks A and M, for which the 

elevations are known. As for the analyses of looped and branched networks, the flows 

in some pipes are assumed and those in the other pipes are calculated by satisfying the 

continuity equation around each node. In this case, it is enough to assume the flow in 
five pipes, AB, BC, GH, KL and DE. The flows in the eleven remaining pipes are then 

calculated from the continuity equation as follows: 

 

BCABBJ QQQ                      (6.48) 

 

BJIJ QQ                       (6.49) 

 

IIJHI QQQ                      (6.50) 

 

GHHICH QQQ                      (6.51) 

 

DDECDDG QQQQ                     (6.52) 

 

CHCBCCD QQQQ                     (6.53) 

 

GLKLLM QQQ                      (6.54) 
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KKLFK QQQ                     (6.55) 

 

FFKEFFG QQQQ                     (6.56) 

 

DGFGGHGL QQQQ                    (6.57) 

 

EDEEF QQQ                     (6.58) 

 
Applying the energy equation to the four loops provides four additional equations. 

Since there are no pumps in the system, the closed clockwise (or counter-clockwise) 

summation of the friction losses in each loop must be zero: 

 

    0,,,,,  IJfBJfBCfCHfHIf hhhhh   Loop 1              (6.59) 

 

    0,,,,  GHfCHfCDfDGf hhhh   Loop 2              (6.60) 

 

    013,8,16,15,  ffff hhhh    Loop 3              (6.61) 

 

    0,,,,  KLfGLfFGfFKf hhhh    Loop 4              (6.62) 

 
The 16

th
 equation is formed by applying the energy equation along any route that 

connects points A and M. Selecting the route given by A-B-J-I-H-G-L-M: 

 

    0,,,,,,,  MALMfGLfGHfHIfIJfBJfABf zzhhhhhhh              (6.63) 

 

Since the initial pipe flows are unlikely to satisfy the energy equations, Solver will be 

used to adjust the five guessed pipe flows until the five energy equations are 

approximately satisfied.  
 

Excel implementation 

The Excel sheet developed for this example is shown in Figure 6.20. The first columns 
on the left side of the sheet show the given network data that include the pipe roughness 

(ε), the kinematic viscosity of water (visc), the discharges at the six demand nodes, and 

the pipes diameters and lengths. Initial guesses are made for the flow rates of five pipes, 

one pipe in each loop. These are shown in the figure by the coloured or shaded cells.  
The flow rates in the other eleven pipes are then calculated from the continuity 

equations, Equations (6.48) to (6.58). The sheet then determines the velocity in each 

pipe followed by the Reynolds number, friction factor, and friction loss. 
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Figure 6.20. Excel sheet developed for the mixed pipe-network 

 

Based on the calculated friction losses, the sheet determines the imbalance in the energy 

equation in the four loops (cells R2:R6) and along the route between points A and M. 
The last column shows the head obtained at each node (U2:U12). The specified and 

calculated pipe flows automatically satisfy continuity but, as the magnitudes of the 

friction imbalances show, they do not satisfy the energy constraint, Equations (6.59) – 
(6.63). Also, note that some nodes acquired negative elevations based on the assumed 

flow rates. Solver can now be used to search for the flows in the five pipes that satisfy 

the specified energy constraints, which will also give the correct elevations. Figure 6.21 
shows the set-up for this analysis that requires Solver to perform the iteration with 

Equations (6.59) to (6.63) as constraints.  

 

 
Figure 6.21. Solver set-up for analysing the mixed pipe-network 

 

Figure 6.22 shows the solution determined by Solver that satisfied the five constraints 

with a specified tolerance of 0.01. The solutions obtained for the flow rates in the 16 
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pipes and for the heads at the eleven nodes are compared with those given by Rivas et 
al [6] in Figure 6.23. The figure shows close agreements with their results.    

 

 
Figure 6.22. Solver solution for the mixed pipe-network 

 

 
 (a)       (b) 

Figure 6.23. Comparison of the present results for the mixed pipe-network with those 

given by Rivas et al [6] for (a) the pipe flow rates and (b) nodal elevations 
 

6.5. Closure 

This chapter presented a method for using Excel and Solver for conducting hydraulic 

analyses of pipe networks. An important advantage of the Excel-Solver method for 
pipe-network analyses is that it can be applied to looped networks, branched networks, 

and mixed networks. The method can also be applied for pipe networks with specified 

heads as well as specified discharges. Apart from its generality, the method ensures that 
continuity is automatically satisfied as the iterative process approaches the correct 

solution. Appendix D illustrates the ability of the Excel-Solver method to deal with 

pipe-networks of practical complexity by considering a gravity-fed pipe network 

described by Brkic [8] that has two supply sources and 8 loops. The method can also be 
used for optimisation analyses of pipe-networks by adding an objective function for the 

economic optimisation. 
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All the analyses presented in this chapter were performed with the GRG Nonlinear 
method of Solver without using the automatic-scaling option. The number of iterations 

ranged from 5 for the two-loop network to 55 for the four-loop network.  
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Exercise 
1. All the five pipes in the network shown in Figure 6.P1 are horizontal and have a 

friction factor f =0.025. For the given inlet and exit flow rate of 0.054 m
3
/s of water 

at 20°C (ρ = 998 kg/m
3
 and μ = 1.002×10

-3
 kg/m⋅s), determine the flow rate and 

direction in all pipes. If pA = 800 kPa gage, determine the pressures at points B, C, 

and D. This exercise is based on Problem 6.127 in White [7]. 
2. Analyse the gravity-driven pipe network shown in Figure 6.P2 that distributes water 

from one reservoir to five demand points via 19 cast iron pipes (ε = 0.00026 m). 

The accompanying table shows the lengths and internal diameters of the network 

pipes that are laid on a flat area with no variation in elevation. 
3. Perform pipe network analysis and calculate water flow in all branches of the 

network shown in Figure 6.P3 that has two sources, 14 discharge points, and 22 

pipes. Hazen-Williams coefficient for each pipe is provided in the accompanying 
table. 
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Figure 6.P1. A pipe-network with two loops (adapted from White [7]) 

 

 
Figure 6.P2. A pipe-network with 8 loops (adapted from Brkic (8) with modifications) 

 

Pipe Length (m) Diameter (m) Pipe Length (m) Diameter (m) 
AB  457.2 0.305 JK  304.8 0.152 

BC  304.8 0.203 KL  335.3 0.254 
CD  365.8 0.203 EL 304.8 0.254 

DE  609.6 0.203 HJ 548.6 0.152 
EF  853.4 0.203 BJ 335.3 0.152 

FG 335.3 0.203 GK 548.6 0.152 
GH 304.8 0.203 CK 365.9 0.254 

HI  762.0 0.203 FL 548.6 0.152 

AI 243.8 0.203 DL 396.2 0.152 
IJ 396.2 0.152    

 L=900 m 

20 cm 

20 cm 

15 cm 
8 cm 

0.054 m
3
/s 
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3
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3
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66.44 m
3
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3
/h 

90.72 m
3
/h 
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Figure 6.P3. A pipe-network with seven loops (Adapted from CheGuide.com [9]) 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Pipe No. Pipe Diameter (mm) Length (m) C 

1 AB 1000 1000 100 
2 BO 750 925 100 

3 NO 750 1000 100 
4 AN 750 925 100 

5 MN 500 350 100 
6 LM 500 671 100 

7 KL 500 400 100 
8 KO 500 650 100 

9 DO 750 1000 120 

10 BC 1000 1000 120 
11 CD 1000 925 120 

12 DE 1000 800 120 
13 EF 750 763 120 

14 EP 1000 650 120 
15 FP 750 400 120 

16 FG 750 125 120 
17 GH 750 400 120 

18 HP 500 125 120 
19 HI 500 800 120 

20 IJ 500 125 120 
21 JP 500 800 120 

22 JK 500 1000 120 
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Numerical solution methods, such as the finite-difference (FD) method and the finite-
element (FE) method, enable us to deal with multi-dimensional heat-conduction in 

complex geometries. A common feature in these methods is that they replace the 

original conduction equation with a system of linear equations that can be solved using 
standard methods. Compared to the FE method, the FD method is easier to apply 

because it directly replaces the derivatives in the equation by finite differences. This 

chapter focuses on using the FD method for solving the steady heat-conduction 
equation. Before introducing the FD method, simple one-dimensional heat conduction 

problems are solved with the analytical solution method and then with the FD method 

so as to highlight the differences between the numerical and the analytical methods. 

The FD method is then applied to the heat-conduction equation with various boundary 
conditions. The chapter presents two approaches for applying the FD method with 

Excel. The first approach assembles the system of linear equations and uses Excel‟s 

matrix functions to solve it, while the second approach uses circular calculations and, 
therefore, does not require the system of linear equations to be assembled. 

 

7.1. Analytical solution of the steady one-dimensional conduction equation 

The general equation that governs the heat transfer by conduction in a medium with a 
constant thermal conductivity is the following partial differential equation [1]: 

 

t

T

k

e

z

T

y

T

x

T g






















1
2

2

2

2

2

2 
         (7.1) 

 

Where k  is the thermal conductivity, ge  the volumetric rate of heat-generation, and α 

the thermal diffusivity of the medium (α = k/ρcp). For steady one-dimensional heat-

transfer by conduction without heat generation, the equation reduces to: 

 

0
2

2


dx

Td
            (7.2) 

 

The analytical solution of Equation (7.2) can be obtained by integrating it twice, i.e.: 
 

1C
dx

dT
             (7.3) 

 

21)( CxCxT             (7.4) 

 
Values of the two unknown constants C1 and C2 can then be determined if given two 

independent boundary conditions. The following two examples illustrate the application 

of the analytical solution method by using simple boundary conditions. 
 

 



Computer-Aided Thermofluid Analyses Using Excel                                                

 

Example 7-1. One-dimensional heat-conduction with prescribed-temperatures  
The inner and outer sides of a large plane wall of thickness L = 0.3 m and thermal 

conductivity k  = 0.8 W/m
2
.
o
C are kept at constant temperatures of 20

o
C and 5

o
C, 

respectively. Determine the temperatures at x = 0.1 m and x = 0.2 m during a steady 
heat transfer by conduction.  

 

Solution 
In this case, the two constants in Equation (7.4) can be determined by applying the 

boundary conditions as follows: 

 

T = T0 at x = 0;   Which leads to  C2 = T0 
 

T = TL at x = L;   Which leads to  C1 = (TL – T0)/L 

 
Substituting the values obtained for C1 and C2 in Equation (7.4) yields: 

 

 00)( TT
L

x
TxT L            (7.5) 

 
Substituting for x/L = 1/3 and x/L = 2/3 in Equation (7.5), gives the two temperatures: 

 

T0.1 = 10
o
C  

 
T0.2 = 15

o
C  

 

This solution indicates that the temperature changes linearly between the two wall 
surfaces.  

 

Example 7-2. One-dimensional heat-conduction with a specified heat-flux 

Consider the steady heat conduction in a large plane wall of thickness L = 0.3 m and 
thermal conductivity k  = 0.8 W/m

2
.
o
C. Suppose that the inner side of the wall is 

subjected to a constant heat flux q = 50 W/m
2
 while the outer side of the wall is kept 

constant at 40
o
C.  Determine the temperature at the inner side of the wall and at the 

centre of the wall.  

 

Solution 

Equation (7.4) also applies for this case and values of the constants C1 and C2 can be 

determined by applying the two boundary conditions:
  

500 q W/m
2
 
  

TL = 40
o
C  
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From the first boundary condition:  
 

k

q
C

dx

dT o


 1
          (7.6) 

 

Substituting the given values for 
0q and k  gives: 

 

C1 = -50/0.8 = - 62.5 [
o
C/m] 

 
Applying the second boundary condition: 

 

TL = C1L +C2           (7.7) 

 
Substituting the values given for TL and L gives: 

 

C2 = TL-C1L = 40+62.5x0.3 = 58.75 [
o
C] 

 

Therefore, the equation that describes the temperature variation with x is:  

 

xxT 5.6275.58)(           (7.8) 

 

By substituting x = 0 and x = 0.15 in Equation (7.8) we get:  
 

T0 = 58.75
o
C,  TL/2 = 49.375

o
C  

 
Generally speaking, the analytical method has an important advantage which is that it 

yields continuous solutions that can be used to determine the temperature at any desired 

value of x within the wall. However, its disadvantage is that these solutions are only 

applicable for simple one-dimensional (1D) and two-dimensional (2D) geometries. 
Although, analytical solutions of the heat-conduction equation could also be obtained 

for a number of unsteady 1D and 2D cases, these solutions usually involve complex 

equations that require using tables of special functions.  
 

7.2. Application of the FD method to the steady 1D conduction equation 

Unlike the analytical solution method, the FD method and other numerical solution 

methods for the heat-conduction equation do not provide continuous solutions like 
Equation (7.5) and Equation (7.8). Instead, they provide numerical values of the 

temperature at selected points (called nodes) in the physical (special or temporal) 

domain. These values are obtained by creating and then solving a system of algebraic 
equations that involve the unknown nodal temperatures and take care of the specified 

boundary conditions. The advantage of the numerical solution methods is that they can 

deal with three-dimensional (3D) geometries and complex boundary conditions easier 

than the analytical solution method.  
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Having identified the relevant form of the conduction equation and boundary 
conditions, the procedure for applying the FD method is as follows [1, 2]: 

 

1. Lay a grid of nodal points over the solution domain.  
2. Write the FD equation relevant to the differential equation and apply it at each 

internal node of the grid. This results in a difference equation for each node.  

3. Assemble all the difference equations into a global system. This system will not 
have a unique solution before applying the boundary conditions.  

4. Apply the boundary conditions by adding the relevant difference equation of 

the boundary nodes or by modifying the global system.  

5. Solve the resulting algebraic system of equations to determine the nodal values 
of the temperature. 

 

The method will be illustrated by considering the case in Example 7-1 for which the 
relevant form of the conduction equation is Equation (7.2) and the relevant boundary 

conditions are the two specified surface temperatures at x = 0 and x = L.  

 

Step 1: The first step in applying the FD method is to divide the wall into nodes as 
shown in Figure 7.1. This choice makes nodes 1 and 2 coincide with the points at which 

the temperatures are required, i.e. x = 0.1 and 0.2 m.  

 

 
Figure 7.1. Node distribution for the wall in Example 7-1 

 

Step 2: The second step is to replace the derivatives in the governing equation by finite 
differences. In general, the first derivative is approximated by: 

 

x

T

dx

dT




            (7.9) 

 0 1 2 3 

∆x ∆x ∆x 

0.0       0.1        0.2       0.3 
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Where ∆x is the distance between two adjacent nodes. However, there are two ways to 
evaluate ∆T in the above approximation given by: 
 

mm

mm

FW xx

TT

x

T














1

1                     (7.10) 
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


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
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mm

BW xx

TT

x

T
                    (7.11) 

 
Where m refers to the node number and can take the values 0, 1, 2, or 3. The first 
approximation is called forward difference, while the second approximation is called 

backward difference. Similarly, the second derivative is approximated by: 

 

2

11

2

2 2

x

TTT

dx

dT

dx

d

dx

Td mmm




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






 

                    (7.12) 

 

The above approximation of the second derivative is called central difference. With this 

approximation, the FD equivalent of Equation (7.2) is the following algebraic equation: 
 

0
2

2

11 


 

x

TTT mmm                       (7.13) 

 

Step 3: Applying Equation (7.13) at the two interior nodes 1 and 2 gives the following 
equations: 

 

0
2

2

210 




x

TTT
  (node 1)                  (7.14) 

 

0
2

2

321 




x

TTT
  (node 2)                  (7.15) 

 
Step 4: Multiplying both sides of Equations (7.14) and (7.15) by ∆x

2
 and substituting 

the numerical values for T0, T3, and ∆x leads to the following linear equations: 

 

20 – 2T1 + T2 = 0                      (7.16) 
 

T1 - 2T2 + 5 = 0                      (7.17) 

 
Step 5: Simultaneous solution of Equations (7.16) and (7.17) for T1 and T2 gives T1 = 

15
o
C and T2 = 10

o
C, which is the same solution obtained earlier by using the analytical 

method. 
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The formulation of the FD method described above is limited to: 
 

1. One-dimensional heat-conduction  

2. A simple boundary condition (specified-temperature on both sides of the wall) 
3. Absence of heat generation in the medium 

 

While the specified-temperature boundary conditions made the FD easy to apply, the 
lack of heat generation resulted in a linear temperature variation through the wall that 

enabled it to give exact values. However, the following points have to be borne in mind 

when dealing with more general cases: 

 
1. The FD method only gives approximate solutions to the conduction equation 

which may not be exact, e.g., when there is heat generation or a variable k .  

2. The accuracy of the FD results can be improved by increasing the number of 
nodes that divide the physical domain.  

3. ∆x does not always have to be uniform as shown in Figure 7.1, but can be 

varied so as to make a better use of the computer time and memory. 

4. The boundary conditions need not be specified values since the FD method can 
deal with specified heat flux, convective, or other boundary conditions. 

5. In multi-dimensional heat-conduction analyses the FD equations involve Δy 

and Δz and in unsteady conduction analyses they also involve Δt. 
 

The following sections show how the FD method can be used to solve the conduction 

equation with heat-generation and different boundary conditions and how to deal with 

two-dimensional heat conduction. As the number of nodes increase, the size of the 
resulting algebraic system also increases and has to be solved by using a computer-

based numerical method. In this respect, the following sections illustrate two methods 

offered by Excel for solving the algebraic system by using its matrix functions or its 
iterative-calculation option. More information about the FD method and its 

approximations is given by Recktenwald [2].  

 

7.3. Dealing with various boundary conditions  
Like the analytical solution method, the FD method can deal with boundary conditions 

other than specified temperature such as: 

 
1. Specified heat flux  

2. Convection boundary condition 

3. Radiation boundary condition 
4. Insulated surface, symmetry surface, and mixed boundary condition 

 
The FD equations for boundary nodes are obtained from energy balance around the 
node in question. For example, consider the wall shown in Figure 7.2 that experiences 

uniform heat generation at the rate ge per unit volume.  
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Figure 7.2. Treatment of boundary nodes with specified heat-flux  

(adapted from Cengel and Ghajar [1]) 

 
For steady heat conduction, energy balance around any node gives:  
 

0,  elementgrightleft EQQ                    (7.18) 

 

For node 0, the FD representation of Equation (7.18) is: 

 

  02/01 



 xAe

x

TT
kAQ gleft

                   (7.19) 

 

The first term in Equation (7.19) that accounts for the rate of heat transfer at the left 

side of the element volume depends on the particular boundary condition being 
considered, which can be convection, radiation, flux, or other boundary condition. For 

illustration, reconsider Example 7-2 that involves a boundary surface with a specified 

heat flux. By dividing the thickness of the wall L into two equal sections, Δx = L/2  = 
0.15 m, the positions of the three nodes involved are as shown in Figure 7.3.  

 
Figure 7.3. Node distribution for Example 7-2 
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Being an interior node, the FD equation for node 1 is obtained from Equation (7.13) as:
  

0
2

2

210 




x

TTT
                    (7.20)

  
 

Multiplying Equation (7.20) by ∆x
2
 and substituting the value of T2 gives: 

 
T0 = 2T1 – 40                      (7.21) 

 

The FD equation for node 0 is obtained by applying Equation (7.19) with ge =0:  

 

001 





x

TT
kqo

                     (7.22) 

 

Multiplying Equation (7.22) by ∆x and rearranging gives: 

 

k

x
qTT o


 

01                     (7.23) 

 

Substituting for T1 from Equation (7.23) in Equation (7.22) and rearranging gives: 

 

4020 






 


k

x
qT o
                     (7.24) 

 

Substituting the values of oq , k, and ∆x in Equation (7.24) gives: 

 
T0 = 58.75

o
C 

 

Substituting for T0 in Equation (7.23) gives: 
 

T1 = 49.375
o
C 

 

Note that the temperature values obtained by the FD method in this example are also 
the same as the exact values obtained analytically.  

 

7.4. Conduction with heat generation 
For steady one-dimensional conduction heat-transfer in a medium with heat generation, 

the conduction equation becomes: 

 

0
2

2


k

e

dx

Td g


                     (7.25) 
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The FD representation of Equation (7.25) for any interior node m is [1]: 
 

0
2

2

11 


 

k

e

x

TTT gmmm


                  (7.26) 

 

Multiplying by ∆x
2
,  

 

2
11 2 x

k

e
TTT

g

mmm  


                  (7.27) 

 

The following example illustrates the application of the FD method for heat-conduction 

with heat generation and prescribed-temperature boundary conditions. The example is 

based on Example 2-20 in Cengel and Ghajar [1]. 
 

Example 7-3. FD solution of the steady 1D heat-conduction with heat generation 

A plane wall of thickness 2L that is made of a material having a uniform thermal 

conductivity k  experiences a uniform heat generation at the rate ge  where:  

 

2L = 0.01 m;  

k  = 18.0 W/(m.
o
C);   

ge  = 7.2x10
7
 W/m

3
;  

 

 
Figure 7.4. Nodal network for Example 7-3 

 
Using the FD method with 6 equally-spaced nodes as shown in Figure 7.4,  

 

(a) Determine the temperature profile for the boundary conditions: T-L = 50
o
C and 

T+L  = 235
o
C,  

(b) Compare the FD results with the exact analytical solution. 

 
 

  

5 0 1 2 3 4 

T0 = 50
o
C T

5
 = 235

o
C 

∆x 
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Solution 
Step 1: Figure 7.4 shows the solution domain divided into 5 equal portions. In this 

case, ∆x = 0.01/5 = 0.002 m.  

 
Step 2: Applications of Equation (7.27) at the four interior nodes give: 

 

T0 – 2T1 + T2 = -R                     (7.28) 
 

T1 – 2T2 + T3 = -R                     (7.29) 

 

T2 – 2T3 + T4 = -R                    (7.30) 
 

T3 – 2T4 + T5 = -R                     (7.31) 

 
Where,  

 

kxeR g /2                        (7.32) 

 
Steps 3 and 4: Since the temperatures at node 0 (T0) and node 5 (T5) are known, the 

above system of linear equations can be put in the following matrix form: 
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                (7.33) 

 

Step 5: The above algebraic system can be solved by using the matrix inverse method 

with Excel‟s matrix functions as described in Chapter 2. Figure 7.5 shows the Excel 

sheet developed for this example. 
 

 
Figure 7.5. Excel sheet developed for Example 7-3 
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The left hand side of the sheet stores the given data of the wall based on which the 
values of ∆x and R are calculated and stored in cell F2 and F4, respectively. The 

coefficient matrix is stored in cells E6:H9, while the right-hand side (r.h.s.) vector is 

stored in cell K6: K9. The formula bar reveals the formula that calculates the first 
element of the r.h.s. vector. The inverse matrix is calculated using the “MINVERSE” 

function in cells E11:H14. The inverse matrix is then multiplied by the r.h.s. vector and 

the result is stored in cells J11:J14.  
 

(a) According to the solution shown in Figure 7.5, the values of the four temperatures 

are: T1 = 119
o
C, T2 = 172

o
C, T3 = 209

o
C, and T4 = 230

o
C.  

 
(b) The analytical solution for this example problem is given by [1]: 

 

22
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TT
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e
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

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
,                (7.34) 

 
Where θ is related to x by: 

 

θ = x - L/2                     (7.35) 
 

Note that the two surfaces at x = 0 and x = L correspond to θ = -L/2 and +L/2, 

respectively. Figure 7.6 compares the FD solution to the exact analytical solution 

obtained by substituting the different values of θ in Equation (7.34). As the figure 
shows, the FD solution agrees well with the analytical solution.  

 

 
Figure 7.6. Comparison of the analytical and FD solutions of Example 7-3 

 

7.5. Two-dimensional steady heat conduction 

For a steady-state, two-dimensional heat conduction in a medium with uniform thermal 
properties and without heat generation, Equation (7.1) reduces to: 
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                     (7.36) 

 

The application of the FD method to Equation (7.36) basically follows the same steps 

described above for the 1D equation. The following example that demonstrates the 2D 

application was given by Karimi [3].  
 

Example 7-4. FD solution of the steady two-dimensional heat conduction 

The 30x30 cm
2
 solid section illustrated in Figure 7.7 has its right and bottom surfaces 

maintained at 100
o
C and 150

o
C, respectively. The left surface is insulated, while the top 

surface is exposed to a convective environment at T∞ = 20
o
C and heat transfer 

coefficient h = 30 W/(m
2
.
o
C). The thermal conductivity of the solid k  = 5.0 W/(m.

o
C) 

and there is no heat generation. By dividing the solid into a nodal network in which Δx 

= Δy = 10 cm, use the FD method to find the temperatures at nodal points 1 through 9.  

 
Figure 7.7. The solution domain and nodal network for Example 7-4 

 

Solution 

For the internal nodes, the FD representation of Equation (7.36) is [1]: 

 

0
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x
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                 (7.37) 

 

Where m and n refer to the node‟s locations in the x and y-directions, respectively. 

Since for the present case Δx =Δy, Equation (7.37) can be simplified to: 
 

04 ,1,1,,1,1   nmnmnmnmnm TTTTT                   (7.38) 

 

1 

9 

TR =100
o
C 

T∞  = 20
o
C, h = 5.0 W/(m.

o
C) 

2 3 

4 5 6 

7 8 

Insulated 

Δx=10 cm 

Δy=10 cm 

TB =150
o
C 
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Applying Equation (7.38) to the four internal nodes, 5, 6, 8, and 9, we get the following 
four algebraic equations: 

 

T4 + T2 + T6 + T8 – 4 T5 = 0                  (7.39) 
 

T5 + T3 + TR + T9 – 4 T6 = 0                  (7.40) 

 
T7 + T5 + T9 + TB – 4 T8 = 0                  (7.41) 

 

T8 + T6 + TR + TB – 4 T9 = 0                  (7.42) 

 

For nodes 4 and 7 that lie on the insulated surface, where q =0, energy balance gives: 

 
T1 + 2T5 + T7 – 4T4 = 0                   (7.43) 

 

T4 + 2T8 + TB – 4T7 = 0                   (7.44) 
 

For nodes 1, 2, and 3 that lie on the top surface, energy balance that takes into account 

the convection boundary condition gives [3]: 
 

T2 + T4 + βT∞ – (2+β) T1 = 0                  (7.45) 

 

T1 + T3 + 2T5 + 2βT∞ - 2(2+β)T2 = 0                 (7.46) 
 

T2 + 2T6 + TR + 2βT∞ - 2(2+β)T3 = 0                 (7.47) 

 
Where β = hΔx/k .  

 

The nine linear equations, Equations (7.39) to (7.47), can be put in matrix form as: 

 

 
 

 



























































































































































BR

B

B

R

R

TT

T

T

T

TT

T

T

T

T

T

T

T

T

T

T

T

0

0

2

2

410100000

141010000

024001000

100410100

010141010

001024001

0002002210

0000201221

000001012

9

8

7

6

5

4

3

2

1













          (7.48)

  

This system of algebraic equations can be solved by using Excel‟s matrix inversion 

function and Figure 7.8 shows the Excel sheet prepared for this purpose. The figure 
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shows the given data at the left hand side of the sheet based on which the sheet 
calculates the coefficients and right-hand side vector of the linear system.  

 

 
Figure 7.8. Excel sheet developed for Example 7-4 

 
Figure 7.9 shows the inverse matrix and the solution obtained by multiplying the 

inverse matrix with the right-hand side vector. Table 7.1 compares the present solution 

with that given by Karimi [3] who solved the algebraic system by using Solver as 

shown in Chapter 3. The table shows that the two solutions are identical. 
 

 
Figure 7.9. FD solution of Example 7-4 

 

Table 7.1. Comparison of the present solution with that given by Karimi [3] 
o
C Karimi [3] Present solution 

T1 67.44 67.448 

T2 68.46 68.469 

T3 74.15 74.153 

T4 94.89 94.896 

T5 95.21 95.219 

T6 96.56 96.562 

T7 121.69 121.69 

T8 120.95 120.949 

T9 116.88 116.878 
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7.6. Application of the FD method using Excel „s iterative calculation option 
In the two previous sections the FD method was applied by assembling the nodal 

equations into a global system of linear equations that could be solved by using Excel‟s 

matrix functions (or Solver). Although this approach of applying the FD method with 
Excel is straight-forward and simple to implement, Excel enables an alternative 

approach for applying the method by using its iterative calculation option that doesn‟t 

require the algebraic system to be assembled explicitly. Instead, the Excel sheet is 
developed in the shape of the heat-transfer medium and each node in the solution 

domain is represented by a cell that stores the corresponding FD equation. The stored 

FD equations are then solved simultaneously by activating Excel‟s iterative calculation 

option. Apart from eliminating the need to assemble the algebraic system, this approach 
makes the FD model look more like a physical model than a mathematical one [4,5].  

 

Example 7-4 will be used to illustrate this method and Figure 7.10 shows the Excel 
sheet prepared for this purpose. A 3x3 block of cells is reserved for the 9 nodes with 

unknown temperatures, while the cells in the block boundaries store the values of the 

ambient temperature (20
o
C) and the two surface temperatures (100

o
C and 150

o
C).  

 

 
Figure 7.10. Excel sheet for Example 7-4 showing the 3x3 grid of nodes and the 

boundary temperatures 

 
Each cell of the 3x3 block stores the relevant nodal FD formula that determines its 

temperature from those of the surrounding cells as given by the FD equations. When 

entered into the coloured Excel cells, the interdependence between the different nodal 
equations will create circular references. By allowing iterative-calculations, Excel will 

find the solution that satisfies all the inter-related nodal equations without having to 

assemble the global system of equations.   

 
Equation (7.38) for the four internal nods 5,6,8,9 can be written as: 

 

Tnode = (Tleft + Ttop + Tright + Tbottom)/4                (7.49) 
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The formula bar in Figure 7.10 shows the formula typed in cell E5 that stores the FD 
equation for node 5 based on Equation (7.49), which is: 

 

E5  = (D5 + E4 + F5 + E6)/4 
 

Note that the usual reference by cell-location is used. For the other three internal nodes, 

the above formula can be simply copied and pasted in the cells F5, E6, and F6, 
respectively. However, pasting the formula in cells F5 that correspond to node 6 will 

cause a circular reference as shown in Figure 7.11. When this occurs, press the “OK” 

button and proceed to paste the formula in cells E6 and F6 that correspond to nodes 8 

and 9, respectively.  
 

 
Figure 7.11. The circular-calculation warning message given by Excel when its 

iterative-solution option is not active 
 

We also have to enter the relevant FD equations for the boundary nodes 1, 2, and 3 that 

lie on the top convection boundary in the respective cells. Taking node 1 as an example, 
the relevant FD equation is obtained by re-arranging Equation (7.45) as follows: 

 

T1 = (T2 + T4 + βT∞)/(2+β)                   (7.50) 

 
Using cell-location referencing, the above formula is entered in cell D4 as follows: 

 

D4  = (E4 + D5 + β x D3)/(2 + β) 
 

Similarly, the following formulae are entered in cells E4 and F4 for nodes 2 and 3, 

respectively, based on Equations (7.46) and (7.47): 

 

E4  = (D4 + F4 + D5+β x E3)/(2+(2 + β)) 

 

F4  = (E4 + G4 + E5+β x F3)/(2+(2 + β))  
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The FD equations for node 4 and node 7 that lie on the insulated left side of the solid 
are to be obtained by rearranging Equations (7.43) and (7.44) following the same 

procedure and typed in cells D5 and D6, respectively. Figure 7.12 reveals the complete 

set of formulae for the nine cells. The simultaneous solution of the equations can now 
be found by using Excel‟s iterative calculation option. To do that, go to “File”→ 

“Options”→ “Formulas” and then select “Enable iterative calculation”.  

 

 
Figure 7.12. The nine nodal FD equations entered in the corresponding cells 

 
Figure 7.13 shows the solution determined by Excel for Example 7-4 with this method. 

Comparison with the temperature values obtained earlier, confirms the solution‟s 

accuracy. 

 

 
Figure 7.13. The temperature distribution in the solid of Example 7-4 

 

The solution was obtained with the default settings of 100 as the maximum number of 
iterations and 0.001 as the maximum change. In certain situations, these default values 

may have to be adjusted so as to save computer time or to avoid solution divergence 

[4]. Although Δx and Δy do not have to be equal for the application of this approach, it 
makes the application of the method easier. Also note that this approach suits 1D and 

2D heat-conduction problems, but not 3D conduction problems unless the cells in the 

third direction are stored in separate sheets of the workbook. 
 

7.7. Closure 

This chapter demonstrated the usefulness of Excel for applying the finite-difference 

method to solve the steady heat-conduction equation. The basic technique of the 
numerical method was explained by considering the simple 1D steady conduction in a 

plane wall with specified-temperature boundary conductions and did not involve heat 
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generation before showing how the method can deal with different boundary 
conditions, heat-generation, and 2D conduction. 

 

As an educational tool, Excel has an important advantage compared to other computer 
software by offering two methods for applying the FD method. The first approach, 

which is more conventional, explicitly forms the global system of linear equations and 

uses the matrix-inversion method to solve the system with Excel‟s matrix functions. 
This approach, which suits the simple cases of steady 1D conduction equations, has 

been used to introduce the FD method. The second approach avoids the explicit 

formation of the algebraic systems by utilising Excel‟s iterative-calculations capability. 

The advantage of this approach is that it makes the FD model look like a physical 
model of the conduction problem. As shown in the following chapter, this approach is 

also useful for solving the transient 2D conduction equation with the FD method. 

 
For the purpose of simplification, all the examples considered in the chapter solved the 

heat conduction equation in simple 1D or 2D geometries. Appendix E describes a FD 

analysis of the steady conduction heat-transfer in a triangular fin. This case shows how 

the method can be used to deal with a more complex geometry.  
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Exercises 
1. Figure 7.P1 shows a large uranium plate of thickness L = 4 cm and thermal 

conductivity k  = 28 W/m·K in which heat is generated uniformly at a constant rate 

of ge = 5x10
6
 W/m

3
. One side of the plate is maintained at 0°C by iced water while 

the other side is subjected to convection to an environment at T∞ = 30°C with a heat 
transfer coefficient h = 45 W/m

2
·K. Considering a total of five equally spaced 

nodes in the medium, two at the boundaries and three at the middle, develop three 

Excel sheets to estimate the exposed surface temperature of the plate under steady 
conditions using the finite difference method with the following options: 
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Figure 7.P1 Schematic for Problem 7.1 (adapted from Cengel and Ghajar [1])  

 

(a) Using the explicit method 

(b) Using the implicit method that assembles and solves the linear system 
(c) Using the implicit method with the iterative-calculation option 

 

This exercise is based on Example 5-1 in Cengel and Ghajar [1]. 
2. Develop an Excel sheet to Solve Example 7-3 with 10 equally-spaced nodes and 

compare the FD solutions with 5 and 10 nodes with the exact analytical solution 

given by Equation (7.34).   
3. Consider the fin with an insulated tip shown in Figure 7.P3. The fin is of thermal 

conductivity k , length L, constant cross-sectional area A, perimeter P, and specified 

base temperature Tw. The heat transfer coefficient to ambient at T∞ is h.  

 
Figure 7.P3 Schematic for Problem 7.3 (adopted from Recktenwald [2]) 

 
Neglecting the temperature variation over the cross-sectional area, for small Biot 

numbers (Bi = hLc/k), the governing equation in a dimensionless form is: 
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Develop an Excel sheet for analysing the steady one dimensional heat conduction in 

the fin subjected to the following boundary conditions: 
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Compare your FD solution at the 5 nodes with the following analytical solution: 
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Finite-difference solution of the 

transient heat-conduction equation  
 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

  



Computer-Aided Thermofluid Analyses Using Excel                                                

 

This chapter extends the methodology presented in the previous chapter so as to solve 
the transient heat-conduction equation with the finite-difference (FD) method. The 

chapter initially considers the 1D conduction-equation to demonstrate the application of 

the method by using both the explicit forward-in-time central difference in space 
(FTCS) scheme and the implicit backward-in-time central difference in space (BTCS) 

scheme. For the implicit scheme that requires a system of linear equations to be solved, 

the chapter presents two methods for using Excel. The first method explicitly forms and 
solves the linear system using the tri-diagonal matrix algorithm (TDMA), while the 

second method does not form the linear system but uses Excel‟s iterative-calculation 

option to solve the nodal equations. For solving the 2D conduction equation that 

requires a large system of linear equations to be solved with the first method, only the 
second method for applying the implicit FD scheme is used. 

 

8.1. Transient 1D conduction: the explicit FTCS formulation 
The transient one-dimensional heat-transfer by conduction is governed by: 
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As shown in the previous chapter, the FD method replaces the spatial derivative (

22 / xT  ) by the central difference defined by Equation (7.13). For the temporal term (

tT  / ) either forward or backward differences can be used, i.e.: 
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Depending on whether Equation (8.2) or (8.3) is selected, two FD formulations for 
Equation (8.1) are possible: a forward-in-time central-difference in space (FTCS) 

scheme and a backward-in-time central-difference in space (BTCS) scheme. This 

section focuses on the first scheme. 
 

By using Equation (8.2), the FD approximation of Equation (8.1) becomes: 
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Note that the temperatures at the two neighbouring nodes are evaluated at time level i. 

Equation (8.4) can be rearranged as follows: 
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Where, τ is the dimensionless mesh Fourier number defined as: 
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Equation (8.5) calculates the temperature at the current time step (i) from the known 

values at the previous time step. Starting with a known temperature field, it can be used 

directly to compute the new temperature field because all the values of 1i
mT can be 

updated independently. The FTCS scheme is easy to implement, but it is only 

conditionally stable by requiring the time step ∆t to be chosen such that [1]: 
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The following example shows how the scheme is applied.  

 

Example 8-1. Solving the transient 1D conduction equation with the FTCS scheme 

Transient heat-conduction occurs in a plate with length L = 0.1 m and diffusivity α = 

0.1. The boundary conditions are T(0,t) = T(L,t) = 0 and the initial temperature 

distribution is given by: 
 

T(x) = sin(πx/L)                     (8.8) 

 
The exact temperature variation is given by [1]: 
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Use the FD method with a grid of 21 equally-spaced nodes and a suitable time step to 

determine the temperature variation at t = 0.2 s.  

 

Solution 
By dividing the length of the plate into 21 equally-spaced nodes, ∆x= 0.1/20 = 0.05 m.  

According to Equation (8.7), the maximum allowable time step ∆t is given by: 

 

1.0/05.05.0 2t = 0.0125 s 

 

Therefore, we can use a time step of 0.01 s. The following procedure for implementing 

the FD solution with Excel follows that described by Anthony [2]. Figure 8.1 shows the 
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sheet into which the specified values of α, ∆x, and ∆t are entered at the top part of the 
sheet.  

 

 
Figure 8.1. The Excel sheet with the nodal coordinates and initial temperatures for 

Example 8-1 

 

The x-values of the 21 nodes are entered in cells B4 to V4. The following row of cells, 

i.e., cells B5 to V5 store the initial temperature profile as obtained from Equation (8.8). 
The formula bar reveals the formula that calculated the initial temperature at x =0.5 cm. 

Cells B6 and V6 store the specified boundary conditions at x=0 and x=L. Next, we aim 

to determine the temporal temperature variation by dividing the required time span (0.2 
s) into equal time levels Δt long. Enter the first 10 time-levels in column A in the Excel 

sheet, as shown in Figure 8.2. 

 

 
Figure 8.2. Calculating the time levels and inserting the two boundary conditions 

 

Each time level is calculated by adding ∆t to the previous time level. In Figure 8.2, the 

expression in the formula bar in cell A6 shows the specific Excel formula used to 

compute the new time level, 𝑡2, by adding the fixed time increment (∆t) to the previous 
time level, t1, stored in the cell immediately above it, i.e., cell A5. The time levels at 

other periods are obtained by simply copying the formula in cell A6 and pasting it in 

cells A7 to A25 as shown in Figure 8.3. The boundary conditions at x = 0 and x = L are 
then inserted in columns B6:B25 and V6:V25. For clarification, these two columns are 

given a blue colour. Equation (8.5) is then applied in cell C6 to calculate the 

temperatures at time level 2 (t =Δt) and x  = Δx as shown  in the formula bar of Figure 

8.3. This formula is then copied and pasted in all other cells in the same row (D6:U6) 
and the following rows (C7:U25).  
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 Figure 8.3. Excel sheet prepared for solving Example 8-1 with the FTCS scheme 

 
Figure 8.3 shows the temperatures determined by the FD formula at different nodes and 

time levels. Figure 8.4 shows the initial temperature profile and the temperature profiles 

at time t=0.2 s as determined by the FTCS scheme and by the exact analytical solution 
given by Equation (8.9). A close agreement is achieved between the two solutions 

because the time step used is sufficiently small. Figure 8.5 shows the solution at t = 1.0 

s with a larger time step Δt = 0.05. In this case, τ = 2 and as the figure show the FTCS 

scheme becomes unstable.  

 
Figure 8.4. Comparison of the FTCS solution with the exact analytical solution  

(t = 0.2 s, ∆t = 0.01s) 
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Figure 8.5. Comparison of the FTCS solution with the exact analytical solution 

(t = 1.0 s, ∆t = 0.05 s) 

 

8.2. Transient 1D conduction: the implicit BTCS formulation 
Substituting Equation (8.3) into the left-hand side of Equation (8.1) and substituting 

Equation (7.13) into the right-hand side of the equation gives; 

 

2

11
1 2

x

TTT

t

TT i
m

i
m

i
m

i
m

i
m








 


                   (8.10) 

 

Here also, the temperatures at the two neighbouring nodes are evaluated at time level i. 

Equation (8.10) can be rearranged as follows: 
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Where,  2/ xa    
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Unlike Equation (8.5), Equation (8.11) is not a simple algebraic formula for computing 

i
mT  from its value at the previous time level, 

1i
mT  because 

i
mT  and its neighbours, 
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and i
mT 1 , are at the same time level. Thus, Equation (8.11) is one equation in a system 

of equations for the values of T at the internal nodes of the spatial mesh. Equations 

similar to Equation (8.11) can be written for each node, thus, forming a system of 

algebraic equations that can be written as [1]: 
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The above system of linear equations has to be solved at every time level in order to 
determine the temperatures at that time level. Note that the coefficient matrix does not 

change with time, but the r.h.s. vector does. Also note that the algebraic system of 

equations has only three non-zero diagonals and, therefore, can be solved by using the 

tri-diagonal matrix algorithm (TDMA) which is more efficient than the matrix inversion 
method [3].  

 

Although the BTCS scheme requires solving the system of linear equations in Equation 
(8.12) at each time step, the additional development effort and computer time are 

compensated for by the improved stability of the scheme that allows larger time steps to 

be used compared to the explicit FTCS scheme. As shown in the previous chapter, 

Excel offers two options for solving the system of linear equations one of which 
explicitly assembles and then solves the system, while the other uses the iterative-

calculation option of Excel to solve the systems without assembling it. The two 

methods are presented below. 
 

8.2.1. Application of the BTCS scheme by assembling the linear system 

Figure 8.6 shows the Excel sheet prepared for solving Example 8-1 by using the BTCS 

scheme. To make the sheet look like that used for applying the FTCS scheme, the linear 
system of Equation (8.12) has to be solved externally for the temperature values shown 

at each time level. This has been achieved by writing a custom VBA function called 

“FDimplicit” that determines the coefficient matrix given by Equation (8.12) and 
solves the resulting system by calling a TDMA solver, called “TDMA”. Both the 

“FDimplicit” function and the “TDMA” solver are listed in Appendix F. Figure 8.7 

compares the FD solution obtained with ∆t = 0.01 s with the exact solution at t = 0.2 s. 
The figure shows a close agreement between the two solutions. Figure 8.8, that 

compares the temperature values obtained at t = 1.0 s with ∆t = 0.05 s with the exact 

solution, does not show any sign of solution instability with this scheme for which the 

time step is limited by the required accuracy rather than the scheme‟s stability. 
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Figure 8.6. Excel sheet prepared for solving Example 8-1 with the BTCS scheme 

 

 
Figure 8.7. Comparison of the BTCS solution with the exact analytical solution  

(t = 0.2 s, ∆t = 0.01 s) 

 
Figure 8.8. Comparison of the FTCS solution with the exact analytical solution 

(t = 1.0 s, ∆t = 0.05 s) 
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8.2.2. Application of the BTCS scheme by using iterative calculations 
Mokheimer and Antar [4] applied the BTSC scheme with the alternative method that 

does not require the algebraic system to be formed, i.e., by allowing the iterative-

solution option of Excel to solve the nodal equations. To use their method, Equation 
(8.10) is rearranged as follows: 
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Where, τ is defined by Equation (8.6). Figure 8.9 shows the Excel sheet developed for 

this method. The data part at the top of the sheet adds the calculation of the Fourier 

number τ from Equation (8.6) in cell O1. The formula bar reveals the formula in cell C5 
that uses Equation (8.13) to determine the temperature at x = Δx:  

 

C5 = (C4 + τ * (B6 + D5))/(1 + 2 * τ) 

 
This formula is copied and pasted in cell D5:U5 at the same row. Figure 8.9 shows the 

nodal temperatures calculated by this method when the iterative calculation option of 

Excel is active. The figure shows that the calculated temperatures are the same as their 
corresponding values shown in Figure 8.6. 

 

 
Figure 8.9. Application of the BTCS scheme by allowing Excel‟s circular calculations 

 

8.3. Transient 2D heat-conduction: A general formulation 

The transient 2D heat-conduction with heat generation and a constant thermal 

conductivity is governed by the following equation: 
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The FD equations for solving the equation can be developed by following one of the 
two schemes described in the previous section for the transient 1D conduction. While 

the two special derivatives are approximated by central-differences, either the forward-

difference or the backward-difference can be used for the temporal derivative. This 
section presents the formulation part that is common to both schemes.  
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Consider the two-dimensional metal plate shown in Figure 8.10 that is initially at a 
uniform temperature of 90

o
C, while its top and right sides are exposed to heat-transfer 

by convection and the left side in insulated. Heat is then generated in the plate at a rate 

of ge , but the temperature at the bottom side of the plate is held constant at 90
o
C. 

 
Figure 8.10. Geometry and boundary conditions  

 

For the internal node, node 5, energy balance in the surrounding element gives: 
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Substituting for the six terms in Equation (8.15) by relevant expressions: 
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Since ∆x =∆y, dividing by k  and substituting for ∆x and ∆y with l: 
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Sunstituting the numbers of the nodes surrounding node 5, the equation becomes: 
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From Figure 8.11 that shows the energy transfer in the zone surrounding node 2 energy 

balance gives: 
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Figure 8.11. The energy-balance zone for node 2 
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Evaluating the six terms in Equation (8.19) from relevant expressions, we get: 
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Specifying the relevant temperatures around node 2, the equation becomes: 
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Following the same procedure, the FD equations for the other boundary nodes can be 

obtained from energy balance around each node. Note that no time level has been 
assigned to the temperatures on the left side of Equations (8.18) and (8.21). The 

appropriate time level depends on whether the scheme to be used is explicit or implicit 

as explained in the following two sections  
 

8.4. The explicit FTCS scheme for 2D conduction 

With this scheme, the temperatures in the left side of the nodal equations represented by 

Equation (8.20) are taken at the old time-level (i). The example that illustrates 
application of the scheme is based on one given by Cengel and Ghajar [5] who also 

solved the problem by using the explicit scheme.  

 

Example 8-2. Transient 2D heat-conduction with heat-generation 

Two-dimensional transient heat transfer takes place in an L-shaped solid body as shown 

in Figure 8.12. The thermal conductivity and diffusivity of the body are k  = 15 W/m·°C 

and α = 3.2x10
-6

 m
2
/s, respectively. The left surface of the body is insulated, while the 
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right surface is subjected to heat flux at a uniform rate of 
Rq  = 5000 W/m

2
 and the 

entire top surface is subjected to convection to ambient air at T∞= 25°C with a 

convection coefficient of h = 80 W/m
2
·°C. Heat is generated in the body at a rate of ge  

= 2x10
6
 W/m

3
. The body is initially at a uniform temperature of 90°C, which is then 

maintained at the bottom surface at all times. 
 

 
Figure 8.12. Geometry and boundary conditions of Example 8-2 

 
Using the FD method with a nodal network consisting of 15 equally spaced nodes, 

determine the temperature at the top corner (node 3) of the body after 1, 3, 5, and 10 

minutes. 

 

The analytical model 

Noting the similarity between Figures 8.10 and 8.12, Equation (8.18) gives: 
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Rearranging: 
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Similalrly, for node 2 Equation (8.21) takes the following form: 
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With appropriate modifications, Equation (8.24) can be applied to nodes 7 and 8: 
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The FD equations for the remaining 5 nodes as obtained by energy balance around the 

respective node are as follows [5]:  
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Stability considerations limit the time step for the explicit FTCS scheme by requiring 

that the primary coefficient, i.e., the coefficient of 
i

mT  in the respective nodal equation, 

to be greater than or equal to zero for all nodes. Since the smallest coefficient is that of 

Equation (8.28) for node 3, this requirement leads to [5]: 
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According to Equation (8.32), the maximum time step for l = 1.2 cm is given by: 

 

   15/012.08011012.34/012.0 62
 t   = 10.6 s  

 

Cengel and Ghajar [5] used ∆t =10 s, which will also be used in the present analysis.  
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Excel implementation 
The approach adopted for applying the explicit scheme for the 2D transient heat 

conduction equation closely follows that described by Mokheimer and Antar [4]. Figure 

8.13 that shows the Excel sheet developed for applying the scheme. The data part on the 
left side of the sheet stores the given information about the thermal conductivity and 

diffusivity of the solid, the rate of heat-generation, the specified boundary temperatures, 

etc. The temperatures at nodes 10, 11, 12, 13, 14, and 15 that lie at the bottom surface 
are fixed to 90

o
C. Based on these data, the formula in cell G2 determines the Fourier 

number τ that appears in the FD equations of the different nodes.  
 

 
Figure 8.13. Excel sheet developed for Example 8-2 by the explicit scheme 

 
Figure 8.13 shows two L-shaped cell configurations that represent the 15 nodes in the 

FD grid at two consecutive time levels. The top configuration stores the initial solution 

(e.g., t = 0), while the bottom configuration stores the solution at the new time level 

(e.g., t = ∆t) as obtained by applying Equations (8.23) to (8.31) to the values stored in 
the top configuration. The formula bar shows the formula that calculates the 

temperature at node 6 using Equation (8.30). To obtain the temperatures at the next 

time level, i.e., t = 2Δt, the values of the temperature in the bottom block are copied and 
pasted in the corresponding cells of the top block (use the special “paste-values” 

feature). This procedure needs to be repeated until the required time level is reached.  

 

The repetitive copy-and-paste action can be automated by recording a macro for these 
two steps as explained in Appendix F. Figure 8.13 shows a “Solve” button that is linked 

to the recorded macro to activate it. Pressing the “Solve” button once will advance the 

time by Δt. In order to keep record of the time, the following formula was entered in 
cell K11: 

 

K11 = K4 + ∆t 
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The initial value of cell K4 was set to zero as shown in Figure 8.13. Therefore, the 
corresponding value calculated in cell K11 is equal to ∆t, which is 10 s. The values in 

cells K4 and K11 will be automatically updated after every paste-values step to become 

10 and 20 s, respectively. The FD solutions determined by the Excel sheet at  time = 1, 
3, 5, and 10 minutes are shown in Figure 8.14. The calculated temperature values at 

node 3 shown in the figure, which are 100.2, 105.9, 106.5, and 106.6°C, agree with the 

corresponding values obtained by Cengel and Ghajar [5].     
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.14. FD solutions by the explicit scheme after time 1, 3, 5, and 10 minutes  

 

8.5. The implicit BTCS scheme for 2D conduction 

In the implicit scheme, the temperatures in the left side of the nodal FD equations are 
evaluated at the new time level (i+1). As for 1D conduction, the BTCS scheme can 

either by applied by assembling and then solving the linear system of equation or by 

using iterative calculations to directly solve the equations. Since the first option leads to 
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a large system of linear equations to be solved, only the second option will be used in 
following analysis. Accordingly, Equation (8.18) for node 5 becomes: 
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Rearranging the equation: 
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The FD equations for the other nodes can also be obtained by rearranging those of the 

explicit scheme as follows:  
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Excel implementation 
The Excel sheet for the implicit scheme can be devoped from that of the explicit 

scheme by modifying the nodal FD equations written in bottom block of cells with 

those given by Equations (8.34) to (8.42). Since the right-hand sides of these equations 
involve temperatures at the new time level i+1, the iterative-calculations option of 

Excel must be active. Figure 8.15 shows the resulting sheet using the same spacial and 

time steps l =0.012 m and ∆t = 10 s. The formula bar reveals that for node 6 based on 
Equation (8.39). The figure shows slighlly different temperature values from those 

obtained with the explicit scheme as shown in Figure 8.13. As for the explicit scheme, 

pressing the “Solve” button once will advance the time by Δt.  

 

 
Figure 8.15. Excel sheet developed for Example 8-2 by the implicit scheme 

 

Table 8.2 compares the temperature values at node 3 as determined by the explicit and 
the implict schemes after ½, 1, 3, 5, and 10 minutes. As the figures show, the 

percentage deviation between the values obtained with the two schemes just after ½  

minute is more than 4.3%, but decrease with time and diminishes after 10 minutes.  
 

Table 8.2. Comparison of the solutions obtained with the explicit and the implicit 

schemes for the temperature at node 3 

Time (s) FTCS  (
o
C) BTCS (

o
C) Deviation (%) 

30 97.2 93.1 4.304 

60 100.2 99.02 1.178 

180 105.9 105.3 0.567 

300 106.5 106.4 0.094 

600 106.6 106.6 0.000 
 

Figure 8.16 compares the solution obtained with the implicit scheme for the 

temperature at node 3 at different times with those obtained with the explicit scheme 
using three values of the time step; 2, 5, and 10 s. The figure shows that the temperature 

approaches a steady-state value of about 106.6
o
C after 6 minutes. Figure 8.16 also 

indicates that the solution obtained with explicit scheme depends on the time step and 
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approaches that obtained with implicit scheme as the time step is reduced. The effect of 
the spatial step l=∆x=∆y can also be investigated. 

 

 
Figure 8.16. Values of the temperature at node 3 obtained with the explicit scheme 

using three time-steps compared to those obtained with the implicit scheme 

 

8.6. Closure 
The chapter showed how Excel can be used to solve the transient 1D and 2D heat-

conduction equations with the FD method. Both explicit and implicit FD formulations 

of the method were considered. For the explicit formulations of the FD method, the 
chapter highlighted the need for selecting reasonably small time steps in order to ensure 

the solution‟s stability. For the implicit scheme, the chapter illustrated the usefulness of 

Excel‟s iterative-calculation option for solving the transient 1D and 2D conduction 

equations. Although the schemes discussed in the chapter can be applied to solve the 
full 3D conduction equation, application of the FD method for solving 3D heat-

conduction problems with complex geometries and boundary conditions is better done 

with dedicated computer programs [6]. 
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Exercises   
1. Figure 8.P1 shows a large uranium plate of thickness L = 4 cm, thermal 

conductivity k  = 28 W/m·°C, and thermal diffusivity α = 12.5 x 10
-6

 m
2
/s that is 

initially at a uniform temperature of 200°C. Heat is generated uniformly in the 

plate at a constant rate of ge = 5 x10
6
 W/m

3
. At time t = 0, one side of the plate is 

brought into contact with iced water and is maintained at 0°C at all times, while 
the other side is subjected to convection to an environment at T∞ = 30°C with a 

heat transfer coefficient of h = 45 W/m
2
· °C.  

 
Figure 8.P1 Schematic for Problem 8.1 (adapted from Cengel and Ghajar [1])  
 

Considering a total of five equally spaced nodes in the medium, two at the 

boundaries and three at the middle, develop three Excel sheets to estimate the 

exposed surface temperature of the plate 2.5 min after the start of cooling using:  
 

(a) the explicit method, 

(b) the implicit method that uses the iterative-calculation option,  
(c) the implicit method that assembles and solves the linear system. 

 

This exercise is based on Example 5-5 in Cengel and Ghajar [1]. 

2. When time-accurate solutions of the conduction equation are important, the Crank-
Nicolson (C-N) scheme has significant advantages over the FTCS and BTCS 

schemes. The C-N scheme is implicit like BTCS and also unconditionally stable. 

The scheme is not significantly more difficult to implement than the BTCS 
scheme. Develop an Excel sheet for solving Example 8-1 by using the C-N 
scheme. For more information about the C-N scheme refer to Recktenwald [1].  

3. Develop the general FD equations for node 3 and node 6 in Figure 8.10. 

Uranium plate 

k = 28 W/m.K 

W/m
3
 

α = 12.5x10
-6

 m
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o
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4. Solve the two-dimensional transient heat transfer in an L-shaped solid body given 
in Example 8-2 by using a finer nodal network that consists of equally spaced 

nodes with ∆x = ∆y = 0.6 cm, as shown in Figure 8.P4. Using the explicit FD 

method, determine the temperature at the top corner (node 5) of the body after 1, 3, 
5, and 10 min. Compare your solution with that obtained with the original grid. 

 
Figure 8.P4. FD grid for problem 8.4 

 
Hint: You do not have to develop new equations except for nodes 10 and 32. The 

equations developed in Example 8-2 can be used for the other nodes, but you have 

to use a smaller time step. 

5. Repeat the above exercise by using the implicit BTCS scheme. Use either the 
iterative-calculation option of Excel or the matrix-inversion method to solve the 

resulting system of algebraic equations. Compare your solution with ∆t = 10, 15, 

and 20 s with that obtained with the coarser grid for the temperature at node 3. 

6. A hot surface is to be cooled by attaching aluminium fins (k  = 237 W/m·°C 

and α =97.1x10
-6

 m
2
/s) that have triangular cross sections as shown in Figure 

9P.6. Each fin has length L= 5 cm, base thickness t = 1 cm, and very large width 

w. The temperature of the surrounding medium is 15°C, and the heat 

transfer coefficient on the surfaces is 35 W/m2·°C. Initially, the fins are at a 

uniform temperature of 30°C, and at time t = 0, the temperature of the hot 

surface is suddenly raised to 120°C. Assuming one-dimensional heat 

conduction along the fin, use the finite difference method with six equally 

spaced nodes to determine the nodal temperatures after 2 min by using: 
 

(a) The explicit finite-difference formulation 

(b) The implicit finite-difference formulation 

 

Also, determine how long it will take for steady conditions to be reached.  

 

Hint. Refer to Appendix E for the solution of the steady heat conduction 

equation on the triangular fin with similar boundary conditions. 

1 5 

6 10 

11 15 21 

22 32 

33 43 
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Figure 8.P6. The dimensions and initial and boundary conditions of the triangular fin  
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Energy-conversion cycles that involve phase changes of the working fluid, like the 
Rankine cycle, require the determination of fluid properties at different phases of the 

fluid. For the analyses of these cycles, computer-aided methods that use property 

functions are more convenient than traditional methods that use property tables and 
charts. For gas cycles that do not involve phase changes computer-aided methods are 

also more accurate because they allow the application of the variable specific-heat 

method of analysis instead of the approximate constant specific-heat method. This 
chapter shows how Thermax functions can be used to analyse two important gas power-

generation cycles which are the Brayton cycle and the Otto cycle. The results obtained 

for the Brayton cycle by using the ideal-gas property functions provided by Thermax 

are compared to those obtained by using the Ideal-Gas add-in developed at the 
University of Alabama [1]. For the Otto cycle, energy as well as exergy analyses are 

presented. The values obtained for the key parameters of the cycles are also verified 

against the relevant values given in standard thermodynamics textbooks. 
 

9.1. The ideal Brayton cycle  

The Brayton cycle is the ideal cycle for gas-turbines. Unlike real gas-turbine cycle, it is 

a closed cycle with a constant mass of the working fluid going through the system‟s 
components as shown in Figure 9.1. The cycle consists of four processes; compression 

in an ideal gas compressor, heat-addition from a high-temperature source, expansion in 

an ideal gas turbine, and heat-rejection to a low-temperature sink. Figure 9.2 shows the 
cycle on a T-s diagram. Although the working fluid can be any suitable gas, in the 

following analysis it is assumed to be air. 

 

 
Figure 9.1. Schematic diagram of the closed-cycle gas-turbine  
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Figure 9.2. T-s diagram for the ideal Brayton cycle 

 

Referring to Figure 9.2, the compressor work (wc) and turbine work (wt), per unit mass 
flow rate of the air, are determined from: 

 

 12 hhwc                        (9.1) 

 

 43 hhwt                        (9.2) 

 

Where h1, h2, h3, and h4 are values of the enthalpy at states, 1, 2, 3, and 4, respectively. 

The amount of heat addition (qin) per unit mass flow of the air is given by: 
 

 23 hhqin                        (9.3) 

 

Therefore, the net work (wnet), back-work ratio (BWR), and thermal efficiency (η) of the 
cycle are determined from: 

 

ctnet www                        (9.4) 

 

tc wwBWR /                       (9.5) 

 

innet qw /                       (9.6) 

 
Given the compressor‟s inlet temperature, T1, and the turbine‟s inlet temperature, T3, the 

discharge temperature from the compressor (T2) and the discharge temperature from the 

turbine (T4) are determined by using the variable specific-heat method of analysis from 
the corresponding relative pressures Pr2 and Pr4 given by: 

T 
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1

2
12

P

P
PP rr                       (9.7) 

3

4
34

P

P
PP rr                       (9.8) 

 

Where Pr1 and Pr2 are the relative pressures at states 1 and 2, respectively. For the ideal 

cycle without pressure losses, P3 = P2 and P4 = P1. The following example, which is 
based on Example 9.5 in Cengel and Boles [2], illustrates the procedure of using 

Thermax property functions for analysing the cycle with Excel.  

 

Example 9-1. Analysis of the simple ideal Brayton cycle  

A gas-turbine power plant that operates on an ideal Brayton cycle with air as the 

working fluid has a pressure ratio of 8. The gas temperature at the compressor inlet is 

300 K and at the turbine inlet is 1300 K. Determine (a) the net work per unit mass flow 
rate of the working fluid, (b) the back work ratio, and (c) the thermal efficiency. 

 

Solution 
Figure 9.3 shows the Excel sheet developed for this example using Thermax property 

functions. The figure shows the general layout adopted in this book for sheet 

arrangement according to which the sheet is divided from left to right into three main 

parts: (i) Input data, (ii) Intermediate calculations, and (iii) Final results. In the present 
case, the input data include the given values of the two temperature values at states 1 

and 3 (T_1 and T_3) and the pressure ratio (rp). The middle part of the sheet, which is 

reserved for the calculation of intermediate results, shows the calculated values of the 
two unknown temperatures T_2 and T_4 and the enthalpy values at the four states in the 

cycle. The final results are the compressor work (w_c), the turbine work (w_t), the heat 

input (Q_in), the back work ratio (BWR), and thermal efficiency (η) as shown on the 

right side of the sheet. 
 

 
Figure 9.3. The Excel sheet developed for Example 9-1 
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Table 9.1 shows the formula entered in each cell of the calculations part using Thermax 
functions. Only three Thermax functions from the Gas-group have been used in the 

Excel model with air as the gas which are: GasPr_TK, GasTK_Pr, and Gash_TK. For 

the purpose of comparison, a similar Excel sheet was developed by using the IdealGas 
add-in developed at the University of Alabama [1]. Figure 9.4 shows the Excel sheet 

and Figure 9.5 reveals the function used in it. 

 
Table 9.1. Usage of Thermax functions in the analysis 

Cell Parameter Excel formulae and Thermax functions 

E2 Pr_2 =GasPr_TK("Air";T_1) * rp 
E4 T_2 =GasTK_Pr("Air";Pr_2) 

E6 Pr_4 =GasPr_TK("Air";T_3)/rp 

E8 T_4 =GasTK_Pr("Air";Pr_4) 
H2 h_1 =Gash_TK("Air";T_1) 

H4 h_2 =Gash_TK("Air";T_2) 

H6 h_3 =Gash_TK("Air";T_3) 
H8 h_4 =Gash_TK("Air";T_4) 

 

 
Figure 9.4. Excel sheet for Example 9-1 using the IdealGass add-in  

 

 
Figure 9.5. IdealGas functions used in the Excel sheet of Example 9-1  
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Table 9.2 shows the values determined by the two property add-ins for the key cycle 
parameters and their corresponding values given by Cengel and Boles [2]. The figure of 

the table show only minor differences between the values obtained by the two property 

add-ins and those given by Cengel and Boles [2]. 
 

Table 9.2. Verification of the two add-ins‟ results with those of Cengel and Boles [2] 

Parameter Cengel and Boles [2] Thermax IdealGas  

cw  244.16 243.69 243.69 

tw  606.60 606.01 606.01 

qin 851.62 852.52 852.52 

BWR 0.403 0.402 0.402 

  0.426 0.425 0.425 

 

9.2. The regenerative Brayton Cycle 
Gas turbines can sustain higher combustion temperatures than those typically met in 

internal-combustion engines, but the high combustion temperatures lead to high exhaust 

temperatures as well. By adding a regenerator to the simple gas-turbine system as 
shown in Figure 9.6, the energy in the hot exhaust gases that can reach more than 500

o
C 

is utilised to preheat the compressed air before it goes to the combustion chamber; a 

process called regeneration. Regeneration reduces the fuel combustion and improves 

the plant‟s thermal efficiency, but the cost of the heat-exchanger increases that of the 
modified system. The economic benefit due to regeneration depends not only on the 

cost of the heat-exchanger, but also on the system‟s pressure ratio. While the cost of the 

heat-exchanger depends on its size and effectiveness, there is a certain value for the 
pressure ratio that maximises the system‟s thermal efficiency.  

 
Figure 9.6. Schematic diagram of the regenerative gas-turbine  

 

Figure 9.7 shows the T-s diagram for the regenerative Brayton cycle assuming zero 
pressure losses in the combustion chamber and heat-exchanger. Due to friction losses in 

both compressor and turbine, the actual exit temperatures from these devices (i.e., T2 
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and T4) are different from the ideal values obtainable by the isentropic compression and 
expansion processes (T2s and T4s).  

 

 
Figure 9.7. T-s diagram for the regenerative Brayton cycle 

 

As for the simple Brayton cycle considered earlier, the thermal efficiency (η) is given 

by: 
 

innet qw /                        (9.9) 

 

Where, wnet is the net output work from the plant and qin is its heat input. The net output 
work for the gas-turbine power plant is the difference between the turbine work output 

(wt) and the compressor work input (wc). Using the numbering scheme of Figures 9.6 

and 9.7 to indicate the state of the working fluid entering and leaving the compressor 
and turbine, the net output work in terms of fluid enthalpies is given by: 

 

   1243 hhhhwnet                    (9.10) 

 
The heat input to the power plant is given by the difference in enthalpies of the 

combustion gases and the preheated air entering the combustion chamber, i.e.: 

 

 53 hhqin                     (9.11) 

 

Given the temperature and pressure of air at the compressor inlet, the ideal relative 

pressure after the compressor (Pr,2s) is determined from [2]: 
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Where, rp stands for the pressure ratio. Pr2s is then used to find T2s, which is the 
temperature after an ideal isentropic compression process. Once T2s is found, h2s can be 

determined by using the property function. The actual enthalpy (h2) is then found from: 

 

  cs hhhh /1212                    (9.13) 

 

Where, ηc is the compressor‟s isentropic efficiency. Similarly, the relative pressure after 

the expansion process (Pr,4s) is determined from: 
 

prrsr rP
P

P
PP /3

3

4
34                    (9.14) 

 

Pr4s is then used to find the temperature after an ideal expansion process T4s, from 
which h4s can be determined. The actual enthalpy (h4) is then found from: 

 

  tshhhh  4334                   (9.15) 

 
Where, ηt is the turbine‟s isentropic efficiency. The temperature of the compressed air 

entering the combustion chamber (T5) and, therefore, the saving in fuel consumption, 

depends on the effectiveness of the regenerator (ε) which is defined as: 
 

   2425 / TTTT                     (9.16) 

 

Given an estimate for ε, Equation (9.16) can be rearranged to get: 
 

)( 2425 TTTT                      (9.17) 

 

Example 9-2. Analysis of the regenerative Brayton cycle 
A gas-turbine power plant operates on a regenerative Brayton cycle with air entering 

the compressor at 100 kPa, 300 K. Combustion gases leave the combustion chamber at 

1400 K. The regenerator effectiveness is 80% and the isentropic efficiency of both the 
compressor and the turbine is 80%. Determine the pressure ratio that yields the 

maximum net work output and the maximum thermal efficiency of the plant. 

 

Solution 
Figure 9.8 shows the Excel sheet prepared for this example using Thermax functions. 

The input data shown in the left-side of the sheet includes the air intake temperature 

(T_1) and pressure (P_1), the pressure ratio (Pratio), and the combustion temperature 
(T_3). The data part also includes the isentropic efficiency of the compressor (Eff_c), 

the isentropic efficiency of the turbine (Eff_t), and the regenerator effectiveness 

(Eff_regen). The middle part of the sheet shows the calculated values of T2 and T4. The 

figure shows the enthalpy values as obtained by using Thermax functions. The formula 
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used in each cell is inserted next to it. The right-side of the sheet shows the main 
results, which include values of the input compression work, the output expansion 

work, the net work output, the heat input, and the thermal efficiency. 

 

 
Figure 9.8. The Excel sheet developed for the regenerative Brayton cycle 

 
The sheet shows the results at a pressure ratio of 10 at which the corresponding values 

of the net output work and thermal efficiency are 216.19 kJ/kg and 0.346, respectively. 

The value of the pressure-ratio (Pratio) in cell C4 was changed from 2 to 16 and Figure 
9.9 shows the calculated values for the net specific work and thermal efficiency plotted 

against the pressure ratio. The figure shows that the net output work and thermal 

efficiency reach their maximum values at different pressure ratios. While the maximum 

net work output occurs at a pressure ratio of about 8, the maximum thermal efficiency 
occurs much earlier at a pressure ratio of about 5 or less.  

 

 
Figure 9.9. Variation of the net specific work and thermal efficiency of the regenerative 

Brayton cycle with the turbine‟s pressure ratio 
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9.3. Energy analysis of the Otto cycle  
The Otto cycle and the Diesel cycle are two ideal cycles used for modelling the cycles 

in internal combustion (I.C.) engines. While the Otto cycle is used for modelling spark-

ignition I.C. engines, the Diesel cycle is used for modelling compression-ignition I.C. 

engines. Figure 9.10 shows the four processes that constitute the Otto cycle, which are: 
 

Process 1-2: Adiabatic and reversible compression of air 

Process 2-3: Constant-volume heat addition 
Process 3-4: Adiabatic and reversible expansion of air 

Process 4-1: Constant-volume heat rejection 

 
Figure 9.10. The Otto cycle (Adapted from Cengel and Boles [2]) 

 
The P-v diagram of the Otto cycle is shown in Figure 9.11. Processes 1-2 and 3-4 are 

isentropic processes because they are both adiabatic and reversible. The following 

analysis of the Otto cycle, which is based on the first law of thermodynamics, is called 
an “energy analysis” of the cycle. 

 
Figure 9.11. P-v diagram of the Otto cycle (Adapted from Cengel and Boles [2]) 
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The analytical model  
For the ideal Otto-cycle shown in Figures 9.10 and 9.11 with air as an ideal-gas [3]: 

 

111 / PRTv                      (9.18) 

 

rvv /12                      (9.19) 

 

23 vv                      (9.20) 

 

14 vv                       (9.21) 

 

Where, R is the gas constant (for air R= 0.287 kJ/kg.K) and r is the compression ratio of 

the cycle (for modern spark-ignition engines 8 ≤ r ≤ 11). For or the isentropic 
compression and expansion processes: 

 

r
v

v

v

v

r

r /1
1

2

1

2                     (9.22) 

r
v

v

v

v

r

r 
3

4

3

4                     (9.23) 

 

Where, vr is the relative specific volume. The last two relationships can be used to 

determine the two temperatures after the compression and expansion processes. The 
amount of heat added in process 2-3 per kg of the working fluid (qin) is calculated from: 

 

 23 uuqin                      (9.24) 

 
The amount of heat removed per kg of the working fluid (qin) is calculated from: 

 

 14 uuqout                     (9.25) 

 
Applying the first-law of thermodynamics, the net work from the cycle is given by: 

 

outinnet qqw                      (9.26) 

 
Therefore, the thermal efficiency of the Ott cycle (ηOtto) is given by: 

 

in

net
Otto

q

w
                      (9.27) 
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The cycle‟s mean-effective pressure (MEP) is defined as: 
 

21minmax vv

w

vv

w
MEP netnet





                   (9.28) 

 
Although the above model uses the usual air-standard assumptions, Equations (9.22) 

and (9.23) take into consideration the variation of the specific heat with temperature. 

Therefore, the model yields more realistic results than those obtained by using the 

approximate constant specific heat method which is more convenient for hand 
calculations.  

 

Example 9-3. Energy analysis of the Otto cycle  
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression 

process, air is at 100 kPa and 17°C. During the constant-volume heat-addition process, 

800 kJ/kg of heat is transferred to air. Accounting for the variation of specific heats of 

air with temperature, conduct an energy analysis of the cycle to determine: 
 

(i) the net work output and thermal efficiency,  

(ii) the mean effective pressure for the cycle. 
 

This example is based on Examples 9-2 in Cengel and Boles [2].  

 

Solution 
Figures 9.12 and 9.13 show the Excel sheets developed for the analysis of the Otto 

cycle using property functions for ideal gases provided by Thermax and IdealGAs, 

respectively. The sheets show the formulae used in the calculation parts and the formula 
window in each sheet reveals the formula used for the calculation of the mean effective 

pressure according to Equation (9.28). Since the IdealGas add-in does not provide a 

function for determining the gas temperature from its internal energy, the temperature 

T_3 in Figure 9.13 has been found by using the Goal-Seek command. Table 9.3 
compares the values obtained by the two add-ins to those given by Cengel and Boles 

[2]. The figures in the table show good agreement between the three solutions. 

 

 
Figure 9.12. Excel sheet developed for Example 9-3 
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Figure 9.13. Excel sheet developed for Example 9-3 using the IdealGas add-in 

 

Table 9.3. Key parameters in the energy analysis 

Parameter Cengel and Boles [2] Thermax  IdealGas 

T2 652.4 648.7 648.7 

T3 1575.1 1572.6 1572.6 

T4 795.6 793.1 793.1 

P2 1799.7 1789.6 1789.6 

P3 4345.0 4338.2 4338.2 

qout 381.83 381.91 381.91 

wnet 418.17 418.09 418.09 

ηOtto 0.523 0.523 0.523 

MEP 574.0 574.1 574.1 

 
Using the approximate method of analysis with fixed values of the specific heat, it can 

be shown that the thermal efficiency of the Otto cycle is given by [3]: 

 

  1
/11




k

cotto r                    (9.29) 

 

Where, k  is the ratio of specific heats cp/cv for air. Substituting rc = 8 and k  = 1.4 in 

Equation (9.29), the calculated thermal efficiency is 0.565. Although values of the 
thermal efficiency obtained by both the exact and the approximate methods are 

exaggerated compared to that of actual engines that of the variable specific heat 

method, which is 0.523, is more realistic.  

 

9.4. Exergy analysis of the Otto cycle  
Energy analyses, such as that presented in the previous section, evaluate the general 

performance of energy-conversion systems using overall performance indicators such 

as the thermal efficiency for power-producing systems and the coefficient of 
performance (COP) for refrigeration systems. By comparison, the analyses based on the 

second-law of thermodynamics, which are called exergy analyses, enable the locations, 

types, and true magnitudes of waste and loss to be determined. Therefore, exergy 

analyses can be used in design analyses of thermofluid systems to further the goal of 
achieving more efficient use of resources [4].  
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The analytical model 
Exergy (ϕ) is a thermodynamic property that measures the ability of the working fluid 

to do useful work. Per unit mass in a closed system like that of the engine shown in 

Figure 9.10, exergy is given by [2]: 
 

      gz
V

vvPssTuu o 
2

2

0000                (9.30) 

 

Where u is the internal energy and u0, s0, and P0, respectively, refer to the values of the 
internal energy, entropy and pressure at the dead state which is the surroundings. 

Neglecting changes in the kinetic and potential energies, and taking into consideration 

that v3 = v2 in this case, the exergy input in process 2-3 is determined from: 
 

     2302323 ssTuuinput                   (9.31) 

 

Exergy of the working fluid can be destroyed in a process because of irreversibilities 
such as friction losses and heat-transfer over a finite-temperature difference. In general, 

the exergy destruction (xdest) in a process is determined from: 

 

 outinsysgendest sssTsTx  00      

  
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
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outb

out

inb

in

sys
T

q

T

q
ssT

,,

120
               (9.32) 

 

Where, sgen refers to the entropy generated in the process. In the Otto cycle, processes 1-

2 and 3-4 are both adiabatic and reversible. Therefore, for these two processes: 
 

0destx                    (9.33) 

 

However, processes 2-3 and 4-1 both involve heat transfer with the surroundings and 
that makes them externally irreversible processes. While process 2-3 involves heat 

addition only, process 4-1 involves heat rejection only. For these two processes, exergy 

destructions are obtained from: 
 

  









H

in

dest
T

q
ssTx 230   Process 2-3              (9.34) 
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The exergy destruction of the whole Otto cycle is the sum of the exergy destructions in 

the heat-addition and heat-rejection processes. Since
12 ss  and

34 ss  , the exergy 

destruction in the Otto cycle becomes: 

 













H

in

L

out
dest

T

q

T

q
Tx 0                    (9.36) 

 

Example 9-4. Exergy analyses of the Otto cycle  

Accounting for the variation of specific heats of air with temperature, conduct an 

exergy analysis for the Otto cycle considered in Example 9-3 to determine: 

 
(i) the exergy destruction associated with the Otto cycle (all four processes as 

well as the cycle), assuming that heat is transferred to the working fluid from 

a source at 1700 K and heat is rejected to the surroundings at 290 K, and  
(ii) the exergy of the exhaust gases when they are purged. 

 

This example is based on Example 9-10 in Cengel and Boles [2] and therefore, the 
present results can be compared with their calculations for verification of the relevant 

Thermax functions.  

 

Solution 
The two sheets developed for Example 9-3 were extended for this exergy analysis and 

Figure 9.14 shows the extension that is needed in the lower part of the one using 

Thermax functions. Table 9.4 shows the functions used in this extension. The sheet 
using the IdealGas add-in was extended in a similar way. The additional data needed for 

exergy analysis include the temperature and pressure of the surroundings, temperature 

of the heat source, and the sink temperature. By obtaining the required entropy values at 

the different states from the energy part, the two sheets determine the exergy 
destructions in the four processes of the cycle, the total exergy destruction, and the 

exergy lost in the heat-rejection process. Table 9.5 compares the calculated values to 

those given by Cengel and Boles [2]. The figures in the table show a good agreement 
between the results of the two add-ins and those given by Cengel and Boles [2]. 

 

 
Figure 9.14. Excel sheet developed for Example 9-4 using Thermax 
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Table 9.4. Thermax functions used in exergy analysis of the Otto cycle 

Cell Formula 
F30 =gass0_1TK("air",T_2)-gass0_1TK("air",T_3)-

R_air*LN(P_2/P_3) 

F31 =T_0*(-Dels23-Q_in/T_source) 

F33 =Dels23 

F34 =T_0*(Dels14+q_out/T_sink) 

I27 =Ed_23+Ed_41 

I29 =v_1 

I30 =gasu_1TK("air",T_0) 

I31 =-Dels14 

I33 =(u_4-u_0)-T_0*Dels40-P_0*(v_4-v_0) 

 

Table 9.5. Results of the Otto cycle exergy analysis 

 Cengel and Boles [2] Thermax IdealGas 

32, destx  82.2 82.8 82.79 

14, destx  163.2 162.7 162.65 

Ottodestx ,  245.4 245.4 245.44 

4  163.2 162.6 162.65 

 

The figures in Table 9.5 show that two thirds of the total exergy supplied to the engine 
is lost during the heat-rejection process. Therefore, any design efforts that aim to 

minimise the loss of exergy in the heat-rejection process can effectively improve the 

performance of the Otto cycle. For example, the lost exergy can be used in a 
cogeneration system that utilises the heat for producing steam for industrial applications 

or for air-conditioning purposes. The figures in Table 9.5 also show that the exergy 

destruction in the heat-addition process are about one third of the total exergy 

destruction. While increasing the heat-addition temperature improves the thermal 
efficiency of the cycle, it increases the rate of exergy destruction in this process. 

Therefore, the selection of this temperature requires a careful consideration of the two 

factors among other practical considerations.  

 

9.5. Closure 

This chapter illustrated the use of the two property add-ins, Thermax and IdealGas [1], 

for the analyses of two basic power-generation cycles which are the Brayton cycle and 
the Otto cycle. With respect to such gas cycles, property functions enable the excat 

variable specific-heat method to be used; which gives more realistic estimations than 

the approximate constant-specific heat method. The analyses show that the functions 
provided by Thermax and IdealGas give identical results. While the IdealGas functions 

have the advantage of allowing the two systems of units to be used, Thermax functions 

are more general because the same function can be used for different gases. Thermax 
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also provides additional functions not provided by IdealGas such as the GasTK_1u and 
GasTK_1h functions that determine the temperature from a given value of internal 

energy or enthalpy, respectively.  

 
Although not demonstrated in this chapter, the automation of property calculations by 

using property functions also enables Excel to be used for iterative solutions and 

optimisation analyses of various types of energy-conversion systems using its two 
“What-if analysis” tools; Goal-Seek and Solver. The scope of thermodynamic analyses 

with the Excel-based platform can be widened by using a number of other educational 

and research-oriented Excel add-ins that have been developed by academic institutions 

and individuals [5-7].  
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Excersises 
1. Figure 9.9 shows that the net output work and thermal efficiency of the regenerative 

Brayton cycle reach their maximum values at different pressure ratios; which is 

about 8 for the maximum net work output and about 5 or less for the maximum 
thermal efficiency. Use Solver to determine the exact values of the pressure ratios.  

2. A regenerative gas turbine with intercooling and reheat operates at steady state. Air 

enters the compressor at 100 kPa, 300 K with a mass flow rate of 5.8 kg/s. The 

pressure ratio across the two-stage compressor is 10. The pressure ratio across the 
two-stage turbine is also 10. The intercooler and reheater each operate at 300 kPa. 

At the inlets to the turbine stages, the temperature is 1400 K. The temperature at the 

http://www.me.ua.edu/excelinme/index.htm
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inlet to the second compressor stage is 300 K. The isentropic efficiency of each 
compressor and turbine stage is 80%. The regenerator effectiveness is 80%. Figure 

9.P2 shows the T-s diagram of the regenerative gas turbine cycle. 

 

 
Figure 9.P2. T-s diagram for the regenerative gas turbine with intercooling  

 

Develop an Excel sheet to determine: (a) the thermal efficiency, (b) the back work 
ratio, (c) the net power developed, in kW. Compare your solution with that of 

Example 9-11 in Moran and Shapiro [8]. 

3. The air-standard Diesel cycle shown in Figure 9.P3 operates with a compression 
ratio of 18. At the beginning of the compression process the temperature is 300 K 

and the pressure is 0.1 MPa. The cutoff ratio for the cycle is 2. Using Thermax or 

any other property add-in, develop and Excel sheet to determine (a) the temperature 

and pressure at the end of each process of the cycle, (b) the thermal efficiency, (c) 
the mean effective pressure, in MPa. Compare your solution with that of Example 

9-2 in Moran and Shapiro [8]. 

 
Figure 9.P3. P-v diagram of the Diesel cycle 
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The vapour-compression refrigeration (VCR) refrigeration systems used in various 
residential, commercial, and industrial applications are the main contributor to the 

ozone-layer depletion problem and a major contributor to the global-warming problem. 

Therefore, improving the performance of these systems is a critical matter. The 
performance of the simple single-stage VCR system deteriorates when there is a large 

difference between the evaporator and condenser temperatures. In this case, multi-stage 

compression VCR systems that split the refrigeration cycle into low-pressure and high-
pressure stages become more attractive. However, these systems are more expensive 

and, in order to get their best performance, their stages have to be optimised. The 

chapter presents optimisation analyses of two-stage and three-stage compression cycles 

using refrigerant R134a. The results obtained by the property functions provided by 
Thermax and by the add-in developed for R134a at the University of Alabama (UA) [1] 

are verified against the relevant values given by Moran and Shapiro [2] and Cengel and 

Boles [3]. 
 

10.1. The ideal vapour-compression refrigeration cycle 

Figure 10.1 shows a schematic diagram of the basic VCR system and Figure 10.2 

shows the T-s diagram for the ideal VCR cycle that consists of the following four 
processes: 

 

1. Process 1-2: reversible adiabatic compression process 
2. Process 2-3: constant-pressure heat-rejection process in the condenser 

3. Process 3-4: expansion in an expansion value or a capillary tube 

4. Process 4-1: constant-pressure heat-addition process in the evaporator 

 

 
Figure 10.1. Schematic diagram of the single-stage vapour-compression  

refrigeration system  
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Figure 10.2. T-s diagram for the ideal vapour-compression refrigeration cycle  

 

The ideal cycle does not account for the irreversibility and pressure losses in the system 
components and the compressor is assumed to be adiabatic and reversible. Therefore, 

the compression process is isentropic as shown in Figure 10.2. Assuming steady 

operation of all the system components and neglecting changes in kinetic and potential 
energy across each component, the energy interactions with the surroundings in the 

different components per unit mass flow rate of the refrigerant in the system are 

described by the following relationships. 
 

Compressor input work: 

 

 12 hhwc             (10.1) 

 

Heat rejection in the condenser: 

 

 32 hhqout            (10.2) 

 

Heat input in the evaporator: 

 

 41 hhqin             (10.3) 

 

Adiabatic process in the expansion valve or capillary tube: 

 

34 hh             (10.4) 
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Three parameters measure the performance of the VCR systems; which are its 
coefficient of performance (COP), cooling capacity (CC) in ton of refrigeration, and the 

compressor power (
cW ): 

 

c

in

w

q
COP             (10.5) 

 

211

60 inqm
CC


            (10.6) 

 

 12 hhmWc             (10.7) 

 

Where m  is the mass flow rate of the refrigerant in the system in kg/s. The following 

example, which is based on Example 10-1 in Moran and Shapiro [2], illustrates the use 
of Thermax and the UA add-in “R134a” for analysing the cycle.  

 

Example 10-1. Analysis of the ideal vapour-compression refrigeration cycle 

An ideal VCR cycle thermally connected to a cold region at 0
o
C and a warm region at 

26
o
C uses refrigerant R134a as the working fluid. The refrigerant enters the compressor 

as saturated vapour at 0
o
C and leaves the condenser as saturated liquid at 26

o
C. The 

mass flow rate of the refrigerant is 0.08 kg/s. Determine (a) the compressor power, in 
kW, (b) the refrigeration capacity, in tons, and (c) the coefficient of performance.  

 

Solution 

Figure 10.3 shows the Excel sheet developed for this example using Thermax. The 
given data for the evaporator and condenser temperatures and refrigerant mass flow rate 

are shown on the left side of the sheet as T_e, T_c, and m_ref, respectively. The middle 

part of the sheet shows the formulae used for determining the different enthalpy values 
using functions from Thermax. The enthalpy at state 1, h_1, is determined by using the 

function Refh_Tx that returns the enthalpy of saturated vapour (hv) at a given 

temperature. The entropy at this point (s_1) is found by using another function, 
Rehs_Tx, that determines the entropy of saturated vapour at a given temperature (T) 

and quality (x).  

 

The right-hand side of the sheet calculates the compressor power, w_c, according to 
Equation (10.7), the cooling capacity, CC, according to Equation (10.6), and the 

coefficient of performance (COP) according to Equation (10.5). A similar sheet was 

developed by using property functions from the R134a add-in provided by the 
University of Alabama [1]. Table 10.1 that compares the calculated values for the key 

cycle parameters by the two add-ins shows a good agreement between the add-in results 

with their corresponding values given by Moran and Shapiro [2].  
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Figure 10.3. Excel sheet developed for the ideal VCR cycle of Example 10-1 

 

Table 10.1. Comparison of the ideal VCR cycle key parameters given by the two add-

ins with their values given by Moran and Shapiro [2] 

Parameter Moran & 

Shapiro [2] 

Thermax UA Add-in 

R134a 

Compressor work [kW] 1.40 1.409 1.409 

Refrigeration capacity (ton) 3.67 3.700 3.700 

COP 9.24 9.237 9.235 

 

10.2. The actual vapour-compression refrigeration cycle 

In actual VCR cycles, all four processes are irreversible because of friction losses in the 

compressor and heat-transfer with finite temperature differences in the evaporator and 
condenser. Some degree of subcooling also occurs at the condenser discharge. These 

modifications to the ideal cycle affect both the cooling capacity and COP of the VCR 

system. Figure 10.4 shows the T-s diagram for the actual VCR cycle. 

 
Figure 10.4. T-s diagram for the actual VCR cycle  

 

s 

T 

3 

4 1 

2s 

  

2 

Tc 

Te 



                                                Mohamed M. El-Awad (UTAS) 

 

For simplification, it is assumed that saturated vapour refrigerant enters the compressor 
where it is compressed to a pressure that matches the required condenser temperature . 

The actual exit temperature at state 2 is higher than the corresponding temperature in 

the ideal cycle at state 2s, while the actual exit temperature from the condenser at state 
3 is lower than the corresponding temperature in the ideal cycle, which is Tc. Referring 

to Figure 10.4, the relationships that determine the specific compressor work and heat-

rejection in the condenser become: 
 

 12 hhwc             (10.8) 

 

 32 hhqout            (10.9) 

 
The enthalpy at state 2 can be determined from: 

 

  cs hhhh /1212                     (10.10) 

 
Where ηc is the isentropic efficiency of the compressor. The enthalpy at state 3 is 

approximately taken as the enthalpy of the saturated refrigerant at the given 

temperature. The following example, which illustrates the use of the Thermax and 

R134a add-ins for analysing the actual VCR cycle, is based on Example 10-3 in Moran 
and Shapiro [2].   

 

Example 10-2. Analysis of the actual vapour-compression refrigeration cycle 
A VCR system thermally connected to a cold region at 0

o
C and a warm region at 26

o
C 

uses refrigerant R134a as the working fluid. The refrigerant temperature in the 

evaporator is -10
o
C, while the condenser pressure is 9 bars, which corresponds to a 

saturation temperature of 36
o
C for R134a. The refrigerant exits the condenser as 

subcooled liquid at 30
o
C. Analyse the cycle to determine its COP and cooling capacity 

taking the isentropic efficiency of the compressor as 80%. 

 

Solution 

Figure 10.5 shows the Excel sheet developed for analysing the cycle with Thermax. 

Note the additional entries in the data and calculations parts. In the data part, the 

condenser pressure is entered instead of the condenser temperature. The data part also 
added the subcooled fluid temperature, T_3, and the compressor efficiency (η_c). The 

calculations part adds a new formula for determining the compressor discharge 

enthalpy, h_2. Also, note that the enthalpy at state 3 is now evaluated at 30
o
C and not at 

the saturation temperature corresponding to the condenser pressure, which is 36
o
C.  

 

A similar Excel sheet was developed using the UA add-in for R134a. Table 10.2 
compares values of the three cycle parameters wc, CC, and COP as determined by the 

two add-ins with their corresponding values given by Moran and Shapiro [2]. The 

figures in the table show that the results obtained by the two add-ins are slightly 
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different from those given by Moran and Shapiro [2]. It should be noted that the work 
input in the actual cycle is more than that of the ideal cycle of Example 10-1, while the 

cooling capacity is lower. Therefore, the COP dropped from 9.235 in the ideal cycle to 

3.83 in the actual cycle, which is more realistic.  
 

 
Figure 10.5. Excel sheet developed for the actual VCR cycle of Example 10-2 

 
Table 10.2. Comparison of the actual VCR cycle key parameters with their values given 

by Moran and Shapiro [2] 

Parameter Moran & 

Shapiro [2] 

Thermax UA add-in 

R134a 

Compressor work [kW] 3.10 3.154 3.153 
Refrigeration capacity (ton) 3.41 3.434 3.433 

COP 3.86 3.828 3.830 

 
10.3. Optimisation analysis of the ideal two-stage compression cycle  
A number of industrial refrigeration applications have very low evaporator 

temperatures. In such cases, the two-stage cascade refrigeration system shown in Figure 

10.6 becomes more feasible. In this system, a flash-chamber is added at an intermediate 
pressure. Part of the refrigerant evaporates during the flashing process and mixed with 

the refrigerant leaving the low-pressure compressor. The mixture is then compressed to 

the condenser pressure by the high-pressure compressor. The liquid in the flash 

chamber is throttled to the evaporator pressure to cool the refrigerated space as it 
vaporizes in the evaporator. Figure 10.7 shows the T-s diagram for the ideal cycle.  

 

10.3.1. The analytical model 
The refrigerant is assumed to leave the evaporator as a saturated vapour and both 

compression processes are assumed to be isentropic. The refrigerant leaves the 

condenser as a saturated liquid and is throttled to a flash chamber pressure.  
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Figure 10.6. Schematic diagram for a two-stage compression VCR system 

 
Figure 10.7. T-s diagram for a two-stage compression VCR system 

 

Taking the mass flow rate of the refrigerant in the condenser as m , the fractions of this 

flow rate that are separated after the flash chamber as saturated vapour 
vm and saturated 

liquid lm are given by:  

 

mxmv


6                     (10.11) 
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 mxml


61                   (10.12) 

 

Where x6 is the quality at state 6. Therefore, the rates of heat removal in the evaporator 

eQ  and heat rejection in the condenser cQ  are given by: 

 

 81 hhmQ le                      (10.13) 

 

 54 hhmQc                      (10.14) 

 

The compression work cW which has two parts one in the low-temperature cycle and 

another in the high-temperature cycle, is given by.  

 

   9412 hhmhhmW lc  
                 (10.15)

 

 
The COP of the system is then given by: 

 

  
    94126

816

1

1

hhhhx

hhx

W

Q
COP

c

e









                (10.16) 

 

10.3.2. The optimisation analysis  

Cengel and Boles [3] considered a two-stage VCR system with refrigerant R134a as the 

working fluid. In what follows, their data and analysis results will be used to verify the 

results obtained by using Excel and property functions provided by Thermax and the 
add-in developed at the University of Alabama (UA) for refrigerant R134a [1]. 

 

Example 10-3. Optimisation of the ideal two-stage compression cycle 
An ideal two-stage compression VCR system operates between evaporator and 

condenser pressures of 0.14 and 0.8 MPa, respectively, and its flash chamber has a 

pressure of 0.32 MPa. 
 

Solution 

Figure 10.8 shows the Excel sheet developed for analysing the two-stage compression 

cycle using property functions. The three values of the evaporator, condenser, and 
flash-chamber pressures are stored in the data part that occupies the left side of the 

sheet. Calculations of the enthalpy values and the quality at state 6 are done in the two 

central columns using Thermax functions. Based on the calculated values of state 
enthalpies, the sheet determines the amount of heat absorbed in the evaporator (q_E), 

the heat rejected in the condenser (q_C), the total compression work (w_comp), and the 

cycle‟s COP (COP). Figure 10.9 shows the formulae entered in the three columns that 

calculate the intermediate and final results and Thermax functions they use. In addition 
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to the three Thermax functions shown in Table 10.1, this analysis requires the function 
“Refs_Ph(“R134a”,P_flash,h_9)” to determine the entropy s9 from the known pressure 

and enthalpy values at state 9.   

 

 
Figure 10.8. The Excel sheet developed for the two-stage compression VCR system 

 

 
Figure 10.9. Excel formulae and Thermax functions used in the Excel sheet  

 

A similar Excel sheet was also developed using the relevant property functions 

provided by the add-in developed at the University of Alabama for refrigerant R134a 
[1]. Table 10.4 compares the values of various cycle parameters obtained by the two 

Excel sheets with their corresponding values given by Cengel and Boles [3]. The 

figures in the table show that the values of eQ , cW , and COP given by both add-ins are 

very close to those given by Cengel and Boles [3]. The COP of the two-stage 
compression cycle can be improved by suitably adjusting the pressure at the flash-

chamber. The results obtained by changing the value of this pressure are shown in 

Figure 10.10. The figure shows that the cycle‟s COP can reach 5.49 at a flash-chamber 
pressure of around 400 kPa.  
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Table 10.4. Analysis results for the two-stage compression cycle  

 Cengel and 

Boles [3] 

Thermax UA add-in 

R134a 

Error (%) 

1h  239.16 387.3095 387.3244 -0.0038 

1s   1.740259 1.740194 0.0037 

2h  255.93 404.0627 404.0133 0.0122 

3h  251.88 400.0385 400.0513 -0.0032 

4h  274.48 422.611 422.6194 -0.0020 

5h  95.47 243.6307 243.6611 -0.0125 

6h  95.47 243.6307 243.6611 -0.0125 

6x  0.2049 0.204904 0.204879 0.0122 

7h  55.16 203.3228 203.364 -0.0203 

8h  55.16 203.3228 203.364 -0.0203 

9h  255.10 403.2381 403.2016 0.0091 

9s   1.737308 1.737218 0.0052 

eQ  146.3 146.287 146.2708 0.0111 

cW  32.71 32.69327 32.68758 0.0174 

COP 4.47 4.47453 4.474811 -0.0063 

 

 
Figure 10.10. Variation of the COP with the flash-chamber pressure in the two-stage 

compression VCR system 
 

The maximum COP and corresponding flash-chamber pressure can be determined more 

precisely by using Solver and Figure 10.11 shows the completed Solver Parameters 

dialog box for this task. 

4.1

4.2

4.3

4.4

4.5

4.6

0 200 400 600 800

C
O

P
  

Flach-chamber pressure (kPa) 



                                                Mohamed M. El-Awad (UTAS) 

 

 
Figure 10.11. Solver Parameters dialog box for optimisation of the two-stage 

compression cycle 

 

Two constraints have been imposed so as to keep the value of the flash-chamber 
pressure, P_flash, between the specified values of the evaporator and condenser 

pressures. Figure 10.12 shows that the solution reached by Solver by using the GRG 

Nonlinear method. According to this solution the maximum COP is 4.49 and occurs at a 
flash-chamber pressure of 375.45 kPa. Further improvement of the system‟s COP is 

still possible by using more than one flash chamber at different pressure levels as show 

in the following section. 
 

 
Figure 10.12. Solver solution for optimisation of the two-stage compression cycle 

 

10.4. Optimisation analysis of the three-stage compression cycle  

By using two flash chambers instead of one chamber, three-stage compression VCR 

systems can be more cost-effective than two-stage compression systems if the 

temperature lift is sufficiently high. Figure 10.13 shows a schematic diagram for such a 
system and Figure 10.14 shows its ideal T-s diagram.   
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Figure 10.13. Scematic of the three-stage compression VCR system 

 

 
Figure 10.14. T-s diagram for the ideal three-stage compression VCR cycle 

 

Depending on the refrigerant used in the system, there are certain values of the two 

flash-chamber pressures that maximise the system‟s COP. However, unlike the two-
stage compression system, the determination of these pressures requires the use of an 

optimisation software since it is not as easy to find them by varying the flash-chamber 

pressures as in the case of a single flash chamber. In what follows, the optimum flash-

chamber pressures will be determined by using Solver. 
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10.4.1. The analytical model 

Taking the mass flow rate of the refrigerant in the condenser to be m , the mass flow 

rates of the vapour and liquid fractions after the high-pressure flash chamber are given 
by: 

 

mxm 
1314      

               (10.17) 
 

 mxm 
135 1     

               (10.18)
 

 
Accordingly, the mass flow rates of the vapour and liquid fractions after the low-

pressure flash chamber are given by: 

 

 mxxm 
1363 1    

              (10.19) 
 

  mxxm 
1367 11     

              (10.20) 
 

The total compression work and the rate of heat rejection in the condenser are now 

given by: 
 

      10119473127 hhmhhmmhhmWct  
             (10.21) 

 

 1211 hhmQc       
             (10.22) 

 

Therefore, the system‟s COP is given by: 
 

ctc WQCOP  /
                  (10.23) 

 

10.4.2. The optimisation analysis  
The advantage of the three-stage compression cycle over the simple and the two-stage 

compression cycles is illustrated by the following example in which the evaporator and 

condenser pressures in the three systems are identical.   
 

Example 10-4. Optimisation of the ideal three-stage compression cycle  

The system to be analysed has the same evaporator and condenser pressures as in the 

two-stage cycle considered earlier, i.e., 0.14 and 0.8 MPa, respectively. It is required to 
determine values of the two flash-chamber pressures that maximise the system‟s COP. 

 

Solution 
Figure 10.15 shows the Excel sheet prepared for this example by extending that of the 

two-stage compression cycle shown in Figure 10.6. The data part now includes two 
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flash-chamber pressures, P_fc1 and P_fc2 instead of one. The two flash-chamber 
pressures are initially assigned values of 320 kPa and 520 kPa. A third column has also 

been added to the calculations part to determine the enthalpy and entropy values in the 

high-pressure stage.  
 

 
Figure 10.15. Excel sheet for analysing the three-stage compressipon VCR cycle 

 

Figure 10.15 shows that at the specified values of the pressures at the two flash 
chambers, the COP is 4.65. Although this COP is higher than the optimum pressure 

obtained earlier for the two-stage compression cycle, which is 4.49, it is still not the 

maximum possible value for the COP of the three-stage cycle. The maximum COP can 
be determined by optimising the two flash-chamber pressures by using Solver. Solver 

Parameters dialog box is show in Figure 10.16. 

 

 
Figure 10.16. Solver Parameters box for the optimisation of the three-stage cycle 
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As Figure 10.16 shows, three constraints have been imposed so as to keep the value of 
the two flash-chamber pressures, P_fc1 and P_fc2, between the specified values of the 

evaporator pressure P_evap, and the condenser pressure, P_cond, i.e.:  

 
P_evap < P_fc1  

 

P_fc1 < P_fc 2  
 

P_fc2 < P_cond 

 

Figure 10.17 shows the solution determined by Solver according to which the 
maximum COP is reached when the flash-chamber pressures are 283.465 kPa and 

498.434 kPa. Comparison of the cycle‟s overall parameters shown in Figure 10.17 with 

those shown in Figure 10.12 indicates that the cooling rate per unit flow rate of the 
refrigerant (q_E) has increased from 146.388 kJ for the two-stage system to 147.158 kJ 

for the three-stage system, while the corresponding compressors work decreased from 

32.595 kJ to 31.579 kJ. As a result, the COP of the three-stage system reached 4.66; 

which is higher than that of the two-stage compression cycle (COP=4.49) by about 
3.23% and higher than that of the simple VCR cycle (COP=3.97) by about 14.44%. The 

advantage of the three-stage system over the simple and the two-stage compression 

systems becomes more profound as the temperature lift increases. 
 

 
Figure 10.17. Solution determined by Solver for the three-stage compression VCR 

cycle 

 

10.5. Closure  
This chapter illustrated the use of Thermax functions for the analyses of basic 

refrigeration cyclesincluding the ideal VCR cycle and the actual VCR cycle. The results 

obtained by using Thermax functions for refrigerant R134a were verified with those 
given in standard textbooks or determined by another property add-in developed at the 
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Mechanical Engineering Department at the University of Alabama [1]. The chapter also 
showed how the Excel-based modelling platform can be used for analysing and 

optimising two-stage cascade and multi-stage compression VCR systems.  

 
Most of the fluid states in the analysed VCR analyses lie in the compressed liquid or 

saturated mixture regions and, therefore, the accuracy of Thermax functions for these 

states is not questionable because they calculate the refrigerants properties using the 
data provided by ASHRAE. Regarding the accuracy of estimating the fluid properties in 

the superheated region by the relevant Thermax functions, the analyses presented in this 

chapter showed that the accuracy of these functions has a minor effect on the accuracy 

of estimating the overall cycle parameters determined by Thermax. Therefore, Thermax 
function can be used to analyse the effects of other improvements to the simple VCR 

cycle such as adding a suction-line heat excahnger to the system [4]. 

 
A number of Excel add-ins have been developed by academic and research institutions 

that can be used to widen the scope of analyses of VCR systems by using the Excel-

based platform. A good example of these add-ins is the REFPROP add-in developed by 

the National Institute of Standards and Technology (NIST). REFPROP provides 
properties of a large number of conventional and alternative refrigerants including 

refrigerants mixtures [5]. A free-source alternative to REFPROP is the CoolProp 

software developed by Bell [6].  
 

References 

[1] The University of Alabama, Website of Excel in Mechanical Engineering, 

https://www.me.ua.edu/ExcelinME/ 
[2] M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 5

th
 

edition, John Wiley & Sons, Inc, 2006. 
[3] A. Cengel, and M.A. Boles, Thermodynamics an Engineering Approach, 

McGraw-Hill, 8
th

 Edition, 2015 
[4] M.M. El-Awad, Effect of Suction-Line Heat Exchangers on the Performance of 

Alternative Refrigerants to R-22, IOSR Journal of Mechanical and Civil 

Engineering (IOSR-JMCE), Volume 13, Issue 3 Ver. IV (May- Jun. 2016), PP 

109-117 
[5] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Reference Fluid 

Thermodynamic and Transport Properties— REFPROP Version 8.0, User‟s 

Guide, National Institute of Standards and Technology, Physical and Chemical 
Properties Division, Boulder, Colorado 80305, 2007. 

[6] I. Bell, CoolProp. Available at  https://sourceforge.net/projects/coolprop/files/ 

CoolProp/  (Last accessed July 11, 2019) 
 

Exercises 

1. It is required to compare the performance of refrigerant R134a as an alternative 

fluid to refrigerant R22 for air-conditioning (air-cooling) applications. By suitably 
modifying the Excel sheet developed for Example 10-1, compare the compressor 

https://www.me.ua.edu/ExcelinME/
https://sourceforge.net/projects/coolprop/files/%20CoolProp/
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power (kW), refrigeration capacity (ton), and coefficient of performance of the 
vapour-compression refrigeration cycle with both refrigerants for an evaporator 

temperature of 10
o
C and various condenser temperatures typical to your 

environment. 
2. It is required to compare the performance of refrigerant R134a as an alternative 

fluid to refrigerant R22 for air-conditioning (air-heating) applications. By suitably 

modifying the Excel sheet developed for Example 10-1, compare the compressor 
power (kW), heating capacity (kW), and coefficient of performance of the vapour-

compression refrigeration cycle with both refrigerants for a condenser temperature 

of 40
o
C and various evaporator temperatures typical to your environment.  

3. Modify the Excel sheet developed for Example 10-2 to model the performance of 
the actual VCR cycle with R22 as refrigerant. Take the evaporator temperature as -

10
o
C, the condenser pressure as 1390 kPa (at which the saturation temperature is 

36
o
C), the compressor exit temperature as 30

o
C, and the compressor isentropic 

efficiency as 80%. 

4. Repeat Exercise 10.3 with R410A or R717 as the refrigerant. 

5. By making suitable extensions to the Excel sheet developed for Example 10-2, 

determine the rates of exergy destruction within the compressor and expansion 
valve, in kW, for T0 = 299K (26

o
C). (Answer: 0.58 kW and 0.39 kW). 
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Appendix A: Properties of air and water at atmospheric pressure  

 

Table A.1. Properties of air at at various temperatures
†
 

T 
o
C 

ρ  

kg/m
3
 

cp 

kJ/kg.K 

μ 
 

kg/m.s 

ν
 

m
2
/s 

k 

W/m·
o
C 

α 

m
2
/s 

Pr 

-150 2.866 0.983 8.636x10
-6

 3.013x10
-6

 0.01171 4.158x10
-6

 0.7246 

-100 2.038 0.966 1.189x10
-5

 5.837x10
-6

 0.01582 8.036x10
-6

 0.7263 

-50 1.582 0.999 1.474x10
-5

 9.319x10
-6

 0.01979 1.252x10
-5

 0.7440 

-40 1.514 1.002 1.527x10
-5

 1.008x10
-5

 0.02057 1.356x10
-5

 0.7436 

-30 1.451 1.004 1.579x10
-5

 1.087x10
-5

 0.02134 1.465x10
-5

 0.7425 

-20 1.394 1.005 1.630x10
-5

 1.169x10
-5

 0.02211 1.578x10
-5

 0.7408 

-10 1.341 1.006 1.680x10
-5

 1.252x10
-5

 0.02288 1.696x10
-5

 0.7387 

0 1.292 1.006 1.729x10
-5

 1.338x10
-5

 0.02364 1.818x10
-5

 0.7362 

5 1.269 1.006 1.754x10
-5

 1.382x10
-5

 0.02401 1.880x10
-5

 0.7350 

10 1.246 1.006 1.778x10
-5

 1.426x10
-5

 0.02439 1.944x10
-5

 0.7336 

15 1.225 1.007 1.802x10
-5

 1.470x10
-5

 0.02476 2.009x10
-5

 0.7323 

20 1.204 1.007 1.825x10
-5

 1.516x10
-5

 0.02514 2.074x10
-5

 0.7309 

25 1.184 1.007 1.849x10
-5

 1.562x10
-5

 0.02551 2.141x10
-5

 0.7296 

30 1.164 1.007 1.872x10
-5

 1.608x10
-5

 0.02588 2.208x10
-5

 0.7282 

35 1.145 1.007 1.895x10
-5

 1.655x10
-5

 0.02625 2.277x10
-5

 0.7268 

40 1.127 1.007 1.918x10
-5

 1.702x10
-5

 0.02662 2.346x10
-5

 0.7255 

45 1.109 1.007 1.941x10
-5

 1.750x10
-5

 0.02699 2.416x10
-5

 0.7241 

50 1.092 1.007 1.963x10
-5

 1.798x10
-5

 0.02735 2.487x10
-5

 0.7228 

60 1.059 1.007 2.008x10
-5

 1.896x10
-5

 0.02808 2.632x10
-5

 0.7202 

70 1.028 1.007 2.052x10
-5

 1.995x10
-5

 0.02881 2.780x10
-5

 0.7177 

80 0.9994 1.008 2.096x10
-5

 2.097x10
-5

 0.02953 2.931x10
-5

 0.7154 

90 0.9718 1.008 2.139x10
-5

 2.201x10
-5

 0.03024 3.086x10
-5

 0.7132 

100 0.9458 1.009 2.181x10
-5

 2.306x10
-5

 0.03095 3.243x10
-5

 0.7111 

120 0.8977 1.011 2.264x10
-5

 2.522x10
-5

 0.03235 3.565x10
-5

 0.7073 

140 0.8542 1.013 2.345x10
-5

 2.745x10
-5

 0.03374 3.898x10
-5

 0.7041 

160 0.8148 1.016 2.420x10
-5

 2.975x10
-5

 0.03511 4.241x10
-5

 0.7014 

180 0.7788 1.019 2.504x10
-5

 3.212x10
-5

 0.03646 4.593x10
-5

 0.6992 

200 0.7459 1.023 2.577x10
-5

 3.455x10
-5

 0.03779 4.954x10
-5

 0.6974 

250 0.6746 1.033 2.760x10
-5

 4.091x10
-5

 0.04104 5.890x10
-5

 0.6946 

300 0.6158 1.044 2.934x10
-5

 4.765x10
-5

 0.04418 6.871x10
-5

 0.6935 

350 0.5664 1.056 3.101x10
-5

 5.475x10
-5

 0.04721 7.892x10
-5

 0.6937 

400 0.5243 1.069 3.261x10
-5

 6.219x10
-5

 0.05015 8.951x10
-5

 0.6948 

450 0.4880 1.081 3.415x10
-5

 6.997x10
-5

 0.05298 1.004x10
-4

 0.6965 

500 0.4565 1.093 3.563x10
-5

 7.806x10
-5

 0.05572 1.117x10
-4

 0.6986 

600 0.4042 1.115 3.846x10
-5

 9.515x10
-5

 0.06093 1.352x10
-4

 0.7037 

700 0.3627 1.135 4.111x10
-5

 1.133x10
-4

 0.06581 1.598x10
-4

 0.7092 

800 0.3289 1.153 4.362x10
-5

 1.326x10
-4

 0.07037 1.855x10
-4

 0.7149 

900 0.3008 1.169 4.600x10
-5

 1.529x10
-4

 0.07465 2.122x10
-4

 0.7206 

1000 0.2772 1.184 4.826x10
-5

 1.741x10
-4

 0.07868 2.398x10
-4

 0.7260 

1500 0.1990 1.234 5.817x10
-5

 2.922x10
-4

 0.09599 3.908x10
-4

 0.7478 

2000 0.1553 1.264 6.630x10
-5

 4.270x10
-4

 0.11113 5.664x10
-4

 0.7539 
† 

Adopted from  Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: 
Fundamentals and Applications. 5

th
 edition, McGraw-Hill, 2015. 
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Table A.2: Properties of water (saturated liquid) at various temperatures  
 

o
C 

cp 

kJ/kg.
o
C 

ρ  
kg/m

3
 

μ ×10
4  

kg/m.s 
k 
W/m·

o
C 

Pr 

0 4.225 999.8 17.90 0.566 13.25 

5 4.207 999.7 15.26 0.576 11.15 

10 4.195 999.2 13.10 0.585 9.40 

15 4.187 998.7 11.39 0.594 8.03 

20 4.180 997.6 10.08 0.602 7.00 

25 4.179 996.3 8.96 0.611 6.13 

30 4.176 995.3 8.03 0.619 5.41 

35 4.174 994.0 7.24 0.627 4.83 

40 4.174 992.0 6.56 0.633 4.33 

45 4.174 990.1 6.00 0.639 3.92 

50 4.175 988.2 5.52 0.645 3.57 

55 4.179 985.5 5.09 0.650 3.27 

60 4.179 983.3 4.71 0.654 3.01 

65 4.183 980.6 4.34 0.659 2.76 

70 4.185 977.9 4.07 0.664 2.57 

75 4.189 974.8 3.81 0.667 2.39 

80 4.193 971.6 3.57 0.671 2.23 

90 4.201 965.3 3.19 0.676 1.98 

100 4.211 958.3 2.83 0.682 1.76 

110 4.223 950.9 2.56 0.685 1.59 

120 4.237 942.9 2.34 0.685 1.45 

140 4.276 926.1 1.96 0.685 1.23 

160 4.326 907.0 1.74 0.681 1.11 

180 4.382 886.7 1.54 0.676 1.02 

200 4.452 864.3 1.39 0.667 1.00 

230 4.576 828.4 1.21 0.648 0.86 

260 4.731 785.2 1.07 0.616 0.83 
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Appendix B: The numerical tools provided by Thermax 
 

The Thermax add-in provides, in addition to its functions for fluid properties, a 

Newton-Raphson solver for non-linear equations and two interpolation functions for 
tabulated data. This appendix shows why these numerical tools are needed in 

thermofluid analyses and how they are used with the help of relevant examples. 

 

B.1. The Newton-Raphson solver “NRM” 

Excel‟s cell formulae become too restrictive and inconvenient to use when dealing with 

iterative solutions and optimisation analyses that involve implicit equations. This 

occurs, for example, when dealing with type-2 or type-3 pipe-flow problems, which 
themselves require iterative solutions, by using the following Colebrook-White (C-W) 

equation that determines the Darcy friction factor (f) in a turbulent pipe flow:  

 
















f

D

f Re

51.2

7.3

/
log0.2

1
10


    (1.25) 

 

In this case, Excel has to deal with two nested iterations; an inner iteration to determine 

f and an outer iteration to determine the pipe‟s diameter or the flow rate.  
 

Another nonlinear equation in thermofluid analyses is the following Benedict-Webb-

Rubin (BWR) equation of state [1]: 
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  (B.1) 

 

Where Ru is the universal gas constant, P is the absolute pressure, T is the absolute 

temperature, and v~  is the molar specific volume. The BWR equation is one of the most 

accurate equations of state, but it is implicit in v~ and requires an iterative solution to 

determine the molar specific volume. Therefore, its use in thermodynamic optimisation 

analyses faces a similar problem to that of the C-W equation in type-2 or type-3 flow 

problems. 
 

The Newton-Raphson solver provided by Thermax is a custom function developed with 

VBA for solving nonlinear equations such as the C-W equation and the BWR equation. 
To illustrate the use of this “NRM” solver, let us use it to determine the error of the 

ideal-gas law compared to the BWR equation of state by calculating the specific 

volume of carbon dioxide (CO2) at 0.2 MPa and temperatures in the range 273 – 373K. 

Figure B.1 shows the Excel sheet developed for this purpose and Table B.1 reveals the 
formulae used in the sheet.  
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Figure B.1. Excel sheet for determining the specific volume by the ideal-gas law 

compared to the BWR equation of state 

 

Table B.1. The formulae used in the Excel sheet using the NRM solver 

T v_ideal v_BWR error_v_ideal 

273 =Ru*D3/P =NRM("BWR",E3,P,D3) =ABS(F3-E3)/F3*100 

283 =Ru*D4/P =NRM("BWR",E4,P,D4) =ABS(F4-E4)/F4*100 

293 =Ru*D5/P =NRM("BWR",E5,P,D5) =ABS(F5-E5)/F5*100 

303 =Ru*D6/P =NRM("BWR",E6,P,D6) =ABS(F6-E6)/F6*100 

313 =Ru*D7/P =NRM("BWR",E7,P,D7) =ABS(F7-E7)/F7*100 

323 =Ru*D8/P =NRM("BWR",E8,P,D8) =ABS(F8-E8)/F8*100 

333 =Ru*D9/P =NRM("BWR",E9,P,D9) =ABS(F9-E9)/F9*100 

343 =Ru*D10/P =NRM("BWR",E10,P,D10) =ABS(F10-E10)/F10*100 

353 =Ru*D11/P =NRM("BWR",E11,P,D11) =ABS(F11-E11)/F11*100 

363 =Ru*D12/P =NRM("BWR",E12,P,D12) =ABS(F12-E12)/F12*100 

373 =Ru*D13/P =NRM("BWR",E13,P,D13) =ABS(F13-E13)/F13*100 
 

The formula bar in Figure B.1 reveals the following Excel formula in cell F3 that uses 

the NRM solver to calculate v~ at 273K: 

 

 =NRM("BWR",E3,P,D3) 

 
Note that the function NRM requires four input arguments: "BWR", E3, P, and D3. The 

first argument, “BWR”, is the name of another user-defined VBA function for the 

particular nonlinear equation to be solved; which in this case is the BWR equation. The 
second argument, E3, is an initial guess for the dependent variable in the nonlinear 
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equation; i.e., v~ in Equation (B.1). The third and fourth arguments, P and D3, are 
values of two independent variables in the nonlinear equation; which are P and T in 

Equation (B.1). For the C-W equation, they are the values of ε/D and Re. The function 

“BWR” that applies the BWR equation is listed below: 

 
Function BWR(x, P, T) 

    Dim Ru, a, A0, b, B0, c, C0, alfa, gama 

  'Carbon dioxide, CO2 
Ru = 8314 

  a = 13.86 

A0 = 277.3 
b = 0.00721 

B0 = 0.04991 

c = 1511000.0 

C0 = 14040000.0 
   alfa = 0.0000847 

   gama = 0.00539 

   BWR = P - Ru * T / x + (B0 * Ru * T - A0 - C0 / T  ̂2) / (x  ̂2) + (b * Ru * T 
- a) / x  ̂3 + a * alfa / x  ̂6 + c / (x  ̂3 * T  ̂2) * (1 + gama / x  ̂2) * Exp(-

gama / x  ̂2) 

End Function  

 
The different constants given in the BWR function are those of carbon dioxide (CO2). 

Note that the value determined by the ideal-gas law in cell E3 is used as an initial guess 

for the BWR equation. Figure B.2 shows the deviation of the ideal-gas law from the 
BWR equation in estimating the specific volume. 

 

 
Figure B.2. Errors in the specific volume estimations by the ideal-gas law compared to 

the BWR equation of state for carbon-dioxide 
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B.2. The interpolation functions “Interpol1” and “Interpol2” 
The two functions provided by Thermax for the interpolation of tabulated data, called 

Interpol1 and Interpol2, use linear and quadratic equations, respectively. These 

functions enable tabulated fluid properties to be used in parametric studies and 
optimisation analyses. For example, Figure B.3 shows an Excel sheet in which three 

properties of engine oil are given at various temperatures: the density (ρ), specific heat 

(cp), and kinematic viscosity (ν).  
 

 
Figure B.3. Using the interpolation functions for tabulated data 

 
The interpolation functions can be used to calculate the three oil properties at any 

temperature within the range of tabulated data. Both Interpol1 and Interpol2 require 

four input arguments referred to as: X, XX, YY, and Ndata. Their meanings are as 

follows: 
 

- X passes the value of the independent property (i.e. temperature) at which the 

value of the dependent property (i.e. viscosity) is to be determined.  
- XX and YY are vectors that store the tabulated data (in this case, the 

temperature, B5:B13, and viscosity values, E5:E13.  

- Ndata passes the number of entries in the tabulated data. For the oil properties 

shown in Figure B.3, Ndata = 9.  
 

The formula bar in Figure B.3 reveals the formula in which the linear interpolation 

function Interpol1 is used to determine the viscosity at 90
o
C. The following example 

shows how the interpolation functions can be used in a typical analysis. 
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Example B-1. Effect of oil temperature on the drag force over a flat plate  
Engine oil at 20°C flows over the upper surface of a 5-m-long flat plate as shown in 

Figure B.4. If the oil velocity is 2 m/s, plot the variation of the total drag force (FD) per 

unit width of the entire plate FD with oil temperatures in the range 40 - 150
o
C. 

 

 
Figure B.4. Flow of oil over a flat plate (adapted from Cengel and Ghajar [2]) 

 

The analytical model 

The drag force (FD) over a flat plate is due to friction, which is given by [2]: 

 

2/2VACF fD          (B.2) 

 

Where Cf  is the friction coefficient (not to be confused with the friction factor f), A is 

the surface area of the plate, and ρ and V are the density and velocity of oil, 

respectively. 
 

The value of the friction coefficient depends on whether is flow is laminar or turbulent 

as indicated by the Reynolds number (ReL). For the flow over a flat plate, the critical 
Reynolds number above which the flow becomes turbulent is about 5x10

5
. For laminar 

flows, the friction coefficient is given by: 

 

5.0Re328.1  LfC  
5105Re L        (B.3) 

 

For turbulent flows, it is given by: 
 

2.0Re074.0  LfC  
75 10Re105  L       (B.4) 

 
Note that fluid properties are evaluated at the average temperature (Ts+T∞)/2, e.g., if the 

oil temperature is 60
o
C, the oil viscosity and density are evaluated at 40

o
C.  

 
 

Oil FD 

T∞ = 40 – 150
o
C 

V = 2 m/s 

Ts = 20
o
C A 

L = 5 m 
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Solution with Excel 
Figure B.5 shows the Excel sheet developed for this example. The data part shows the 

given information concerning the oil temperature (T_oil), plate temperature (T_plate), 

oil velocity (Velocity), and plate length (Length). Based on the specified oil 
temperature, the sheet calculates the average temperature (T_average) and the 

corresponding oil density (ρ_oil) and kinematic viscosity (ν_oil). The sheet then 

calculates the Reynolds number (Re) and friction coefficient (Cf). The single final 
result, which is the drag force (F_D), is shown on the right-side of the sheet. The figure 

reveals the formulae entered in each cell in the calculations part and the formula bar 

reveals that used for determining the drag force in cell I2.  

 

 
Figure B.5. The Excel sheet developed for Example B-1 

 

The friction coefficient is calculated depending on the value of the Reynolds number by 
using the following nested-If formula in cell F7: 

 

Cf=IF(Re<500000,1.328*Re^-0.5,0.074*Re^-0.2) 

 
The above formula determines whether to use Equation (B.3) or Equation (B.4) to 

calculate the friction coefficient depending on the value of the Reynolds number. 

 
Figure B.5 shows the calculations at an oil temperature of 40

o
C, which is the initial oil 

temperature in the required range. At the average temperature, which is 30
o
C, the sheet 

uses the linear interpolation function Iinterpol1 to determine the values of the oil 

density and viscosity. At this temperature the calculated drag force, F_D, is 88.445 N. 
By inserting a different value for the oil temperature, say 50

o
C, the sheet automatically 

updates its calculations. Figure B.6 shows a plot of the drag force determined at 

different oil temperatures in the range 40
o
C to 150

o
C.  

 

The linear and quadratic interpolation functions are useful in thermofluid analyses not 

only for determining fluid properties, but also for the interpolation of other types of 

tabulated data that is required by such analyses. Table B.2 shows the cost per metre of 
galvanised-steel air-conditioning ducts for different diameters of the duct. By 

permitting automatic determination of the duct diameter from the tabulated data, the 
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interpolation functions are useful for optimisation analyses that aim to determine the 
optimum duct diameter.  

 

 
Figure B.6. Variation of the drag force with oil temperature 

 

Table B.2. Cost of galvanised-steel air-conditioning ducts 

Duct diameter 

(m) 

Cost per linear 

metre ($) 

0.10 9.0 

0.15 11.5 

0.20 14.5 

0.25 17.0 

0.30 22.5 

0.35 29.0 

0.40 34.0 

0.45 40.0 

0.50 50.0 
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Exercises 
10. Using the data for properties of air at atmospheric pressure given in Appendix A, 

develop an Excel sheet that can be used to determine the kinematic viscosity of air 

at any given temperature in the range 200 – 1000K by using:  
 

a. The trendline feature of Excel 

b. The linear-interpolation function (Interpl) provided by Thermax.  
 

11. Develop a VBA function to determine the friction factor from the Colebrook-

White equation and use it with the NRM solver to determine the frictional losses 

(hf) in a circular pipe that carries air at 20
o
C with the following data: 

 

D = 25 cm, L = 150 m, V = 7 m/s, k s = 0.045 mm.  
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Appendix C: Application of the Hardy-Cross method with Excel 
 

This appendix supplements Chapter 6 by presenting the Hardy Cross (H-C) method for 

the analyses of looped pipe-networks. The appendix shows how the method can be 

applied by using Excel. To illustrate the method, consider the single-loop network 
shown in Figure C.1. There is one source at node A and three discharge points at the 

other three nodes B, C, and D.  It is required to determine the magnitudes and directions 

of the four pipe flows that satisfy both the conservation of mass and the conservation of 
energy. 

 
Figure C.1. A pipe network with a single-loop 

 

The Hardy-Cross method 

For steady, incompressible flow in a looped pipe-network, the two principles can be 

expressed by the following equations:  
 

 
NPipes

iQ
1

0           (C.1) 

 

 
MPipes

jfh
1

, 0           (C.2) 

 
Where NPipes is the number of pipes connected to the particular node (2 in the present 

case) and MPipes is the number of pipes in each loop (4 in the present case).  

 
The solution procedure starts by assuming the flow rates and directions in the pipes 

such that they satisfy the continuity equation, Equation (C.1), at all the pipe-junctions. 

Suppose that we assume the flow directions to be as shown in Figure C.2 and we 

assume that the flow rate in pipe AB to be 50 litre/s. Then the flow rates in the other 
pipes can be determined by the continuity equation as shown in the figure. 

10 l/s 
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Figure C.2. Assumed flow rates in the network 

 

The assumed pipe flows are unlikely to satisfy the energy equation. Therefore, they are 
corrected in steps until they practically satisfy the energy equation as follows: 

 

QQQ oldnew            (C.3) 

 
Where Qnew and Qold, refer to the initial and the adjusted flow rates, respectively, and 

∆Q is a correction term that depends on the energy equation. The correction procedure 

has to be repeated a number of times until the energy equation is satisfied. It remains to 
show how the correction term ∆Q is determined. 

 

The Darcy-Weisbach equation for the friction head, Equation (1.21), can be written as: 

 
2KQh f                   (C.4) 

 

Where K is given by: 
 

322

2

2 Dg

Lf

gDA
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K


                (C.5) 

 

Applying Equation (C.4) to the corrected flow rate given by Equation (C.3), we get: 
 

 2QQKh f                  (C.6) 

 

Expanding the right-hand side of Equation (C.6): 
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 22 .2 QQQQKh f                (C.7) 

 

Neglecting the term (ΔQ
2
), the equation becomes:  

 

 QQQKh f  .22
               (C.8) 

 

Applied to all four pipes in the loop, Equation (C.2) leads to: 

 

  0.22  QQQK                (C.9) 

 

Rearranging the equation, it becomes: 

 

022   QKQKQ                   (C.10) 

 

Or, 
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                       (C.11) 

 

When applying Equation (C.11), a sign convention must be adopted to take into 

consideration the flow direction in the particular pipe. In the following discussion, the 
friction losses in the clockwise direction are taken as positive while those in the 

counter-clockwise direction are taken as negative. In general, this sign convention 

means that the friction loss in a pipe that is common to two loops (or more) will be 

given a negative sign with one loop but a positive sign with the other loop(s).  
 

The steps of applying the H-C method are as follows: 

 
1. Make a guess for the flow rate (magnitude and direction) in one pipe of each loop 

and calculate the flow rates in the other pipes in the network by applying the 

continuity equation at the respective nodes. 
2. Calculate the friction loss hf in each pipe of the network and determine the net 

friction loss in each loop according to the flow direction in the relevant pipes 

(clockwise positive and counter-clockwise negative). Most likely, these will not 

be zeros at the initially guessed pipe flows.  
3. Calculate a correction increment ΔQi for the flows in loop i from Equation 

(C.11). The summations in Equation (C.11) are performed over the number of 

pipes in each loop.  
4. Obtain new pipe flows in each loop by modifying the old ones according to 

Equation (C.3). 



Computer-Aided Thermofluid Analyses Using Excel                                                

 

5. Repeat steps 2, 3, and 4 until the correction increments become small and the 
variations in the flow rates become negligible.  

 

A number of articles and videos in the internet explain how the H-C method can be 
implemented in Excel [1,2]. The following example demonstrates its application to 

analyse the single-loop pipe-network shown in Figure C.1. 

 

Example C-1. Analysis of a simple pipe-network by the H-C method 

Figure C.1 shows a pipe network that distributes water to three consumption points as 

shown in the figure. Determine the flow rates in the four pipes if a friction factor for all 

pipes can be taken as 0.025.  

 

Solution 

Step 1: The first step is to assume flow rates in the four pipes that satisfy continuity. It 
is enough to assume the value of the flow rate in one pipe since the other flow rates 

must follow the continuity equation. Let us assume that the flow in pipe AB is 50 l/s in 

the direction shown in Figure C.2. The magnitudes and directions of other flow rates 

are automatically determined by applying the continuity equation at the four nodes. 
Figure C.2 shows the magnitudes and directions of the flow rates in the network that 

satisfy the continuity equation at all the nodes based on the assumed flow in pipe AB. 

 
Step 2: The second step is to determine the resulting velocities and friction head losses 

in the different pipes. Figure C.3 shows the sheet developed for these calculations. The 

given information about the network pipes, i.e., their lengths and diameters, are entered 

on the left side of the sheet. Values of the gravity acceleration (gc) and friction factor 
(f) are entered at the top left-side of the sheet. These two parameters are labelled. 

 

 
Figure C.3. Excel sheet developed for Example C-1 

 

The cross-sectional areas of the different pipes are calculated in column E so as to 
determine the fluid velocities in column G. Based on these velocities the friction losses 

are determined in column G. Table C.1 shows the formulae in columns G and H that 

calculate the pipe velocities and friction head losses. Note that in the formula for the 

friction head loss (hf), the head loss is multiplied by SIGN(Q) so as to account for the 
direction of the flow in the pipe – which can change during the iteration process.  
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Table C.1. Formulae in columns G to K 

V Hf hf/Q ΔQ Qnew 

=F5/E5 =f*(B5/C5)*G5^2/(2*gc)*SIGN(F5) =H5/F5 =-SUM(H5:H8)/SUM(I5:I8)/2 =F5+$J$5 

=F6/E6 =f*(B6/C6)*G6^2/(2*gc)*SIGN(F6) =H6/F6  =F6+$J$5 

=F7/E7 =f*(B7/C7)*G7^2/(2*gc)*SIGN(F7) =H7/F7  =F7+$J$5 

=F8/E8 =f*(B8/C8)*G8^2/(2*gc)*SIGN(F8) =H8/F8  =F8+$J$5 

 

Step 3: The third step is to determine ΔQ according to Equation (C.11) which requires 

the determination of hf/Q. Table C.1 also reveals the formulae that calculate hf/Q in 
column I and ΔQ in column J. Since ΔQ is the same for all pipes, it is calculated for 

pipe AB only but used for the other pipes as well as shown in the last column of Table 

C.1. As shown in Figure C.3, the value obtained for this first iteration is ΔQ =0.0157.  
 

Step 4: New values for the flow rates in the four pipes according to Equation (C.3). 

Column K in the sheet shown in Figure C.3 shows the new values of the flow rates.  
 

Step 5: The adjusted flow rates obtained in step 4 can now be used as initial values for 

the second iteration. Table C.2 shows the calculations in the second iteration which are 

based on the new values of the flow rates following the same steps described for the 
first iteration. Note that the ΔQ has dropped to 0.0047. Table C.2 also shows the new 

values of the flow rates after the second iteration. These new values of the flow rates 

can now be used as initial values for the third iteration. As shown in Table C.3, 
calculations of the third iteration yield a very small value for ΔQ of 0.0001. 

 

Table C.2. Results of the second iteration 

Pipe Q V hf hf/Q ΔQ Qnew 

AB 0.066 2.092834 5.5809832 84.88403 0.004707 0.070 

BC 0.006 0.325289 0.2696557 46.91027 
 

0.010 

CD -0.024 -1.37236 -7.999415 329.8501 
 

-0.020 

AD -0.034 -1.09026 -3.029247 88.44087 
 

-0.030 

 
Table C.3. Results of the third iteration 

Pipe Q V hf hf/Q ΔQ Qnew 

AB 0.070 2.242649 6.4086065 90.96041 0.000144 0.071 

BC 0.010 0.591626 0.8920015 85.31902 
 

0.011 

CD -0.020 -1.10603 -5.195783 265.8355 
 

-0.019 

AD -0.030 -0.94045 -2.25394 76.2881 
 

-0.029 

 

Figure C.4 shows the variation of ΔQ with the iteration number. The figure indicates 
that the change in the flow rates after the third iteration is small and, therefore, the flow 

rates obtained after the third iteration can be taken as the final solution. The plus sign 
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with the flows in AB and BC means that their direction is clockwise, while the minus 
sign with the flows in CD and AD means that their direction is counter-clockwise. Note 

that the flow in pipe BC was initially assumed to be in the counter-clockwise direction, 

but the final solution showed that it is clockwise.  
 

  
Figure C.4. Variation of ΔQ with iteration number 

 

Example C-2. Application of the H-C method to pipe-networks with multiple loops 

Determine the flow rates in the pipe-network shown in Figure C.5. The valve in pipe 

BC is partially closed, which produces a local head loss of 10.0 V
2
/2g. The roughness of 

all pipes is 0.06 mm.  

 
Figure C.5. The two-loop pipe network of Example C-2 

 
This case is based on Example 5-2 in Nalluri and Feather [3].  

 

Solution 

Pipe networks with multiple loops will have pipes that are common to two or more 
loops such as Pipe BE in Figure C.5. In this case, the pipe will have a different ΔQ in 

each loop. Suppose that the two values of ΔQ are ΔQ1 for loop 1 and ΔQ2 for loop 2. 

The effective ΔQ for pipe BE is calculated from [1]: 
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211, QQQBE    Loop 1               (C.12.a) 

 

122, QQQBE    Loop 2               (C.12.b) 

 

Note that the two values of ΔQ have the same magnitude but opposite signs.  

 
Figure C.6 shows the Excel sheet developed for this example. As usual, the left side of 

the sheet shows the problem data that consist of the pipes lengths (L) and diameters 

(D), the roughness factor of the pipe material (ε), and the viscosity of the fluid (visc). 

Column E shows the flow rates in the pipes; two of which are guessed (QAB and QBC) 
and the rest are calculated by applying the continuity equation at the different nodes.  

 

 
Figure C.6. Excel sheet developed for solving Example C-2 by the Hardy Cross method  
 

Based on these initial flow rates, the sheet determines the Reynolds numbers, friction 

factors, and friction losses. The friction factors are determined by using the Swamee-
Jain formula (Equation (1.25)). The formula bar reveals the formula that applies 

Equation (1.25). The flow rate adjustment (ΔQ) in each loop is determined according to 

Equation (C.11). For loop 1, ΔQ =-0.0057251 and for loop 2, ΔQ =-0.011222. For pipe 
BE, which is common to both loops, the effective values of ΔQ have the same 

magnitude for both loops, which is 0.0054965. The new flow rates in the different pipes 

are obtained according to Equation (C.3). 

 
To avoid repetition of the whole procedure for the following iterations, the new Q 

values in column (N) can be copied and pasted (using the "Paste Values" option) in 

column (E) that stores the old values. This is to be repeated until ΔQ became reasonably 
small so that there was no significant change in Q in all the network pipes. Figure C.7 

shows the result after 5 iterations when ΔQ dropped to small values in both loops.  The 

minus sign before the flow rates in pipes EF, AF, CD, DE, and BE means that their 

directions are counter-clockwise relative to the respective loop. Note that, the flow in 
pipe BE, which is common to the two loops, has the same magnitude (0.01645 m

3
/s) 
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but opposite directions. While its direction is clockwise (+) in loop 1, it becomes 
counter-clockwise (-) in loop 2.  

   

 
Figure C.7. The Excel sheet for Example C-2 with the adjusted flows after five 

iterations 

 

Table C.4 compares the present pipe flows, in m
3
/s, with those given by Nalluri and 

Feather [3]. The table shows a good agreement between the two solutions. The same 

problem was solved in Example 6.2 by using the Excel-Solver method and the solution 

obtained is also shown in the table. 
 

Table C.4. Comparison of the pipe flow rates obtained by the H-C method with those 

obtained by Nalluri and Feather [3] 

Pipe Nalluri and Feather [3] H-C solution Excel-Solver 

AB 0.11152 0.11150 0.1115 

BC 0.03505 0.03505 0.0350 

CD 0.00495 0.00495 0.0050 

DE 0.03495 0.03495 0.0350 

EF 0.04848 0.04850 0.0485 

AF 0.08848 0.08850 0.0885 

BE 0.01648 0.01645 0.0165 
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[1] TM‟s Channel, Pipe network analysis in Excel using Hardy Cross method, 

Video, available at: https://www.youtube.com/watch?v=M8f1FNgeq7o, last 
accessed 20/6/2017. 

[2] A. M. Elfeki, Pipe network analysis example with Excel Solver, Researchgate, 
available at:  
https://www.researchgate.net/publication/258051650_Pipe_Network_ 
Analysis_Example_with_Excel_Solver, last accessed 20/6/2017. 

[3]  C. Nalluri and R.E. Feather, Civil Engineering Hydraulics, Fourth Edition.  
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Appendix D: Analyses of a gravity-driven network with eight loops  
 

This appendix applyies the Excel-Solver method presented in Chapter 6 for hydraulic 

analyses of pipe-networks to a network of practical complexity. The case considered is 
the gravity-driven network presented by Brkic [1] shown in Figure D.1. The network 

distributes water from two reservoirs to four demand points via 19 cast iron pipes (ε = 

0.00026 m) that are laid on a flat area with no variation in elevation. Table D.1 shows 
the lengths of the 19 network pipes.  

 

 
Figure D.1. A pipe-network with eight loops (adopted from Brkic [1]) 

 

This network will be analysed by using the same initial pipe diameters used by Brkic 

[1] so that comparison can be made with his solution for the pipe flow rates shown in 

Table D.1. In the present analysis the effect of the method used to evaluate friction 
factor on the results obtained by Solver is assessed by using both the Swamee-Jain 

formula and the Colebrook-White formula.  

 

D.1. The analytical model 

Following the procedure described in Chapter 6 for the analysis of pipe networks using 

Excel and Solver, the flow rates in 8 selected pipes were specified and those in the 

remaining 11 pipes were determined by applying the continuity equation at each 
junction. Solver is then used to adjust the initial flow rates in order to satisfy the energy 

equation. The assumed flow-directions for all the pipes are shown in Figure D.1. The 

initially assumed flow rates are those for pipes AB, BC, CD, DE, EF, HI, JK, and KL. 
The flow rates in the remaining 11 pipes are calculated from continuity as follows: 

 

GHGKFG QQQ 
         (D.1) 

HJHIGH QQQ 
         (D.2) 
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Table D.1. Pipe data and initial flow rates in the 8-loop network [1] 

Brkic [1] 
notation 

Pipe 
Length (m) Initial 

diameter (m) 
Initial flow 
rate (m

3
/h) 

/1/ AB  457.2 0.305 173.32 

/2/ BC  304.8 0.203 150 
/3/ CD  365.8 0.203 130 

/4/ DE  609.6 0.203 6.6 
/5/ EF  853.4 0.203 100 

/6/ FG 335.3 0.203 0.28 
/7/ GH 304.8 0.203 16.88 

/8/ HI  762.0 0.203 13.56 

/9/ AI 243.8 0.203 200 
/10/ IJ 396.2 0.152 50 

/11/ JK  304.8 0.152 70 
/12/ KL  335.3 0.254 51.96 

/13/ EL 304.8 0.254 32.96 
/14/ HJ 548.6 0.152 3.32 

/15/ BJ 335.3 0.152 23.32 
/16/ GK 548.6 0.152 17.16 

/17/ CK 365.9 0.254 20 
/18/ FL 548.6 0.152 9 

/19/ DL 396.2 0.152 10 
 

QIA = 373.32 - QAB           (D.3) 

HIAIIJ QQQ  44.136         (D.4) 

EFDELE QQQ  36.126
        (D.5) 

JKBJIJJH QQQQ           (D.6) 

BCABBJ QQQ           (D.7) 

CKKLJKGK QQQQ  12.159        (D.8) 

CDBCCK QQQ           (D.9) 

FGEFFL QQQ  72.90                    (D.10) 

DECDDL QQQ  4.113                    (D.11) 

 

The energy equation imposes 8 constraints on the iterative solution, one for each loop. 

Taking the clockwise flow direction as positive, the constraints are: 
 

0,,,,  IJfAIfBJfABf hhhh    Loop 1                 (D.12) 
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0,,,  HIfHJfIJf hhh     Loop 2               (D.13) 

0,,,,  JKfBJfCKfBCf hhhh    Loop 3               (D.14) 

0,,,,  HJfGHfGKfJKf hhhh    Loop 4               (D.15) 

0,,,,  CKfKLfDLfCDf hhhh    Loop 5               (D.16) 

0,,,,  FLfKLfGKfFGf hhhh    Loop 6               (D.17) 

0,,,  DLfELfDEf hhh     Loop 7               (D.18) 

0,,,  ELfFLfEFf hhh     Loop 8               (D.19) 

 

D.2. The hydraulic analysis  

To investigate the effect of the formula for the friction-factor on the analysis results, 

two Excel sheets were developed for the hydraulic analyses of this network one of 
which applies Darcy-Weisbach equation with the Swamee-Jain (S-J) formula, while the 

other applies the Colebrook-White (C-W) formulae. Figure D.2 shows the sheet that 

uses the S-J formula.  
 

 
Figure D.2. The Excel sheet developed for analysing the pipe-network with eight loops 

by using the Swamee-Jain formula 
 

The data part stores the water density (ρ) and viscosity (visc), the gravity constant (g), 

and the pipe roughness (ε). The length and diameter for the 19 pipes are stored in 

columns E and F, respectively. The sheet calculates the cross-sectional area for each 
pipe in column G. Column H stores the initial flow rates in the pipes. The 8 coloured 

(shaded) cells in this column store the assumed flow rates while those determined 

according to Equation (D.1) – (D.11) are not coloured. Note that the calculated pipe 
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flow rates are the same as those given by Brkic [1] and Table D.1. The calculated pipe 
friction losses are stored in column L. The formula bar in Figure D.2 reveals the 

formula for determining the error in satisfying the energy equation in loop 1 according 

to Equation (D.12).  
 

Since the initially assumed flow rates in the pipes satisfy only the continuity equation 

but not the energy equation, most of the errors calculated by Equations (D.12) – (D.19) 
in column O are not close to zero. The flow rates that minimise the errors in the energy 

equations to sufficiently small values can be found by Solver and the set-up for the task 

is shown in Figure D.3.  

 

 
Figure D.3. Solver set-up for the analysis of the pipe-network with eight loops 

 

Note that the “Set Objective” slot is left blank and the variables to be changed are the 

flow rates in the 8 selected pipes. There are 8 constraints which require the absolute 

values of the errors in satisfying Equations (D.12) – (D.19) to be reduced to a maximum 
tolerance (Maxerror) of 0.001. Attempts were made to use the Evolutionary method of 

Solver for the present analyses, but the method failed to converge to a solution even 

with the different numerical options offered by Solver. The GRG Nonlinear method 
also failed to converge to a solution with automatic-scaling. Figure D.4 shows the 

solution found with GRG Nonlinear method but without automatic-scaling. Note that 

all the 8 constraints are now satisfied. Figure D.5 compares the flow rates with Solver 

with those obtained by Brkic [1]. The figure shows that the values calculated by the S-J 
formula agree well with those obtained by Brkic [1] who used the node-loop method 

and solved the resulting linear system with Excel matrix functions.  
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Figure D.4. Solver solution for the pipe-network using the Swamee-Jain formula 

 

The second sheet that uses the Colebrook-White formula was developed following a 

similar procedure and Solver was used to determine the flow rates that satisfy the 
energy equations. Figure D.6 shows the solution obtained with the GRG Nonlinear 

method of Solver with this formula. Figure D.5 that also shows the flow rates calculated 

by this formula shows that their values are close to those obtained with the Swamee-
Jain formula and agree well with those obtained by Brkic [1].  

 

 
Figure D.5. Comparison of the flow rates obtained by the present analyses for the eight-

loop pipe-network with those given by Brkic [1] 
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Figure D.6. Hydraulic solution found with Solver using the Colebrook-White formula 
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Appendix E: Finite-difference analysis of the heat transfer from a triangular fin 
 

This appendix supplements Chapter 7 that deals with the numerical solution of the 

steady conduction equation using the finite-difference (FD) method. The appendix 

demonstrates the application of the FD method for solving the conduction equation in 
complex geometries by considering the case of the heat-conduction in a triangular fin 

given by Cengel and Ghajar [1] in Example 5-2. 

 

Case description 

An aluminium alloy fin (k=180 W/m.K) has a triangular cross section as shown in 

Figure E.1. The fin has length L=5 cm, base thickness t = 1 cm, and very large width w. 
The base of the fin is maintained at a temperature of To=200

o
C. The fin losses heat to 

the surrounding medium at T∞ = 25
o
C with a heat transfer coefficient of h = 15 W/m

2
.K. 

Using the finite difference method with six equally spaced nodes along the fin in the x-

direction, determine the temperature variation in the fin along its length. 

 
Figure E.1. The dimensions and boundary conditions of the triangular fin 

 

Developing the FD equations  
As discussed in Chapter 7, for steady one-dimensional conduction heat-transfer in a 

medium without heat generation, the conduction equation reduces to: 

 

0
2

2


dx

Td
                       (E.1) 

 

Two boundary conditions are given, which are: (i) specified temperature at the base and 

(ii) convection boundary condition at the top and bottom surfaces as shown in Figure 
E.1. To develop the relevant FD equations, the fin is divided into five segments of equal 

length (Δx) as shown in Figure E.2.  

Tb = 

200
o
C 

T
∞
 = 

25
o

C 

L= 5 cm 

t = 1 cm w 
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Figure E.2. Numerical mesh of nodes for the triangular fin 

 

At steady state, the rate of heat transfer by conduction entering each segment from its 

left side is balanced by the rate of heat transfer leaving the segment by conduction 
through its right side and by convection through the top and bottom surface areas, i.e.  

 

convRcondLcond QQQ   ,,         (E.2) 

 

Where, LcondQ ,
  and RcondQ ,

  refer to the heat transfer by conduction through left and 

right sides of the fin segment, respectively, while 
convQ refers to the heat transfer by 

convection from the top and bottom sides of the segment. Applying Fourier law for 

conduction for LcondQ ,
  and RcondQ ,

 and Newton‟s law of cooling for 
convQ , the 

following equation is obtained based on Equation (E.2): 

 

  TThA
dx

dT
kA

dx

dT
kA conv

xR

R

xL

L       (E.3) 

 
The temperature derivatives in Equation (E.3) are now replaced by the respective finite 

temperature differences across the segment. For node 1, these are given by: 

 

 
x

TT

dx

dT

xL 


 01          (E.4) 

 

 
x

TT

dx

dT

xR 


 12          (E.5) 

 

Substituting in Equation (E.3), the resulting FD equation for node 1 is: 
 

   
 









 TThA

x

TT
kA

x

TT
kA convRL 1

1201       (E.6) 
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Where the three areas AL, AR and Aconv are calculated from: 
 

 
L

wtxL
AL

2/
          (E.7) 

 

 
L

wtxL
AR

2/3
          (E.8) 

 

 cos
2

xw
Aconv


          (E.9) 

 

Where L, w, and t are the three dimensions of the fin shown in Figure E.1 and θ is the 
fin‟s angle (θ = tan

-1
(t/2L).  

 

Equations similar to Equation (E.6) can be obtained for nodes 2, 3, and 4 by replacing 
the temperature derivatives and side areas with the respective values for each node. 

However, node 5 requires a slightly different treatment because there is no heat transfer 

by conduction from its right side and also because its convection area is half the value 

at the other segments. Table E.1 shows the corresponding terms in Equation (E.6) for 
the five nodes as described in more details by Cengel and Ghajar [1]. 

 

Table E.1. Terms in Equation (E.3) corresponding to each node  

 Node 1 Node 2 Node 3 Node 4 Node 5 

xLdx

dT
 

x

TT



 )( 01  
x

TT



 )( 12  
x

TT



 )( 23  
x

TT



 )( 34  
x

TT



 )( 45  

xRdx

dT
 

x

TT



 )( 12  
x

TT



 )( 23  
x

TT



 )( 34  
x

TT



 )( 45  0 

AL 
 

L

wtxL 2/
 

 
L

wtxL 2/3
 

 
L

wtxL 2/5
 

 
L

wtxL 2/7
 

 
L

wtxL 2/9
 

AR 
 

L

wtxL 2/3
 

 
L

wtxL 2/5
 

 
L

wtxL 2/7
 

 
L

wtxL 2/9
 0 

Aconv  cos
2

x
w


 

 cos
2

x
w


 

 cos
2

x
w


 

 cos
2

x
w


 

 cos

2/
2

x
w


 

 

The FD equations for the five nodes can be written as: 

 

0)()()( ,31,21,1   mmmmmmmm TTCTTCTTC                 (E.10) 

 

Where, m = 1, 2, 3, 4, or 5. For nodes 1 to 4 the constants C1,m, C2,m and C3,m are 

obtained from: 
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






 


L

x
mC m )

2

1
(1,1

                 (E.11) 

 








 


L

x
mC m )

2

1
(1,2

                 (E.12) 

 

 
sin

2

,3
kL

xh
C m


                   (E.13) 

 

For node 5, the three constants are obtained from: 

 

tan5,1 C                    (E.14) 

 
C2,5  = 0                   (E.15) 

 

cos
5,3

k

xh
C


                    (E.16) 

 
Substituting for each node the respective values in Equation (E.10) leads to the 

following system of linear equations that can be solved to determine the five unknown 

temperatures: 
 

0)()()( 11,3121,2101,1   TTCTTCTTC                (E.17) 

 

0)()()( 22,3232,2212,1   TTCTTCTTC               (E.18) 

 

0)()()( 33,3343,2323,1   TTCTTCTTC               (E.19) 

 

0)()()( 44,3454,2434,1   TTCTTCTTC               (E.20) 

 

0)(0)( 55,3545,1   TTCTTC                 (E.21) 

 

Excel implementation 

The algebraic system of Equations (E.17) – (E.21) can be rearranged in a matrix form 
and then solved by using the matrix-inversion method as shown in Chapter 2. 

Alternatively, the system can be solved by using Solver and Figure E.3 shows the Excel 

sheet developed for this method. The left part of the sheet shows the given data for the 
fin. Cells C5 stores the base temperature (Tb=200

o
C), while cell C6 stores the ambient 

temperature (T∞=25
o
C). Cells H3 to L3 contain guessed values of the temperatures T1 

to T5.  
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Figure E.3. Excel sheet prepared for FD solution of the triangular fin 

 

Cells H5 to L5 store the values of m corresponding to each node. The following three 

rows store values of the three constant C1,m, C2,m and C3,m that correspond to each node. 
The bottom row (cells H10 to L10) stores values of the residuals in the right-hand-sides 

of the algebraic equations resulting from the substitution of the guessed values of the 

temperatures in Equations (E.17) – (E.21). The formula bar reveals the formula used for 
the calculation of R4. Note that, since the guessed temperatures are not correct, the 

residuals are not zeros.  

 
Solver can now be used to adjust values of the five temperatures until the five 

corresponding residuals become approximately zeros. Figure E.4 shows the set-up of 

Solver for this task. 

 

 
Figure E.4. Solver set-up for FD solution of the triangular fin 

 
Note that the target cell is left blank. The adjustable cells are the guessed temperature 

stored in cells H3 to L3. The constraints added require that values of the residuals 

stored in cells H10 to L10 become approximately zeros. In this case, Solver will iterate 
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until all the constraints are satisfied. Figure E.5 shows the sheet with Solver solution 
which is: T1 = 198.6

o
C, T2 = 197.1

o
C, T3 = 195.7

o
C, T4 = 194.3

o
C, and T1 = 192.9

o
C. 

The same solution was given by Cengel and Ghajar [1].  

 

 
Figure E.5. Solver solution of the FD equations of the triangular fin 
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Appendix F: Macros and VBA functions for applying the finite -difference method 
with Excel  

 
This appendix supplements Chapter 8 that deals with the numerical solution of the 

transient heat-conduction equation with the finite-difference (FD) method. It describes 

the procedure of recording the macro needed for implementing the explicit FTCS 
scheme in Example 8-2 and provides the two VBA functions, Fdimplicit and TDMA, 

needed for implementing the implicit BTCS scheme in Example 8-1. A macro is a 

useful feature for performing parametric analyses and repetitive calcaulations. It allows 
Excel to record the sequence of actions for the initial value of the targetted parameter 

and then repeat them for other values by a push of a button. The TDMA solver is also 

useful for solving systems of linear equations that arise in other types of thermofluid 

analyses.   
 

F.1. Recording a macro 

The procedure of creating the macro can be demonstrated by describing that needed for 
applying the explicit finite-difference scheme (FTCS) in Example 8-2. Figure F.1 

shows the Excel sheet developed for this example.  

 

 
Figure F.1. Advancing the FD solution by copying the temperature values after one 

time-step from the bottom cells and pasting them in the coressponding top cells 

 
Figure F.1 shows the FD solution at two consecutive time levels. The cells in the 

bottom block store the temperature values at the current time level i , while those in the 

top block calculate the temperatures at the new time level i+1 after one time-step (∆t). 

To update the temperature values in the top block, the values in the bottom cells are 
copied and pasted in the coressponding top cells. This procedure is repeated until the 

targetted time level is reached. To create the macro for this repetetive procedure: 
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1. Go to the Developer tab and select “Record Macro” as shown in Figure F.2. 
The form shown in Figure F.3 will appear to you. The first macro will 

automatically be given the name “Macro 1”. You can change this name and 

give it a description if you like. Press “OK”. 
2. Copy the values in the bottom block of cells, i.e. cells F11:K13 

3. Use Paste-special to paste the values in the top cells; F4:K6 (Figure F.1) 

4. Go back to the Developer tab and select “Stop Recording” (Figure F.4) 
 

 
Figure F.2. Initiating the macro by selecting “Record Macro” from the Developer tab 

 

 
Figure F.3. Form for selecting the macro, adding a description to the macro, and 

chaninging its name if needed 

 

 
Figure F.4. Ending the micro recording by selecting the “Stop Recording” function  
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To create a button for the new macro, go to the Developer tab and insert a “button 

form control” as shown in Figure F.5. Place the button in a suitable location in the 

sheet and the form shown in Figure F.6 will appear to you. As the figure shows, the 

button will automatically be given the name “Button1_Click”.  
 

 
Figure F.5. Creating a button for the new macro 

 

 
Figure F.6. Assigning “Button 1” to “Macro 1” 

 

This button should now be linked to the macro and the form shown in Figure F.6 gives 
you a list of the available macros to select from. Since Macro1 is the only macro we 

have created so far, the list only includes it. Select “Macro1” and press “OK”. The new 

button  will then appear in the Excel sheet  with the name “Button 1“ as shown in 
Figure F.7. Your macro is now ready to use and you by pressing the button once, Excel 

will automatically advance the explicit solution by one time step.  
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Figure F.7. The Excel sheet with the new button “Button 1” 

 

To change the button‟s name to a more meaningful one like “Solve” as shown in Figure 

F.1, or “Run”, “Advance solution”, etc, place the cursor on the button and click the 
right side of your mouse. The form shown in Figure F.8 will then appear to you. Select 

“Edit Text” and change the name as desired. For more information about this feature, 

the reader can refer to specialised references or the internet [1,2]. 
 

 
Figure F.8. Changing the name “Button 1” to a more indicative one 

 

F.2. The VBA functions 
The function Fdimplicit determines the coefficient matrix given by Equation (9.12), 
while the TDMA function applies the tri-diagonal matrix algorithm for solving the 
resulting system of linear-equations. The two functions are listed below. 
 

The function Fdimplicit  
 
Function Fdimplicit(Dx, Dt, alfa, N, M, L, Temp) 
Dim A As Variant 
Dim B As Variant 
Dim C As Variant 
Dim D As Variant 
Dim Sol As Variant 
ReDim A(150), B(150), C(150), D(150), Sol(1 To 150) 
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Ai = -alfa / (Dx * Dx) 
Bi = (1 / Dt) + (2 * alfa / Dx / Dx) 
Ci = -alfa / Dx / Dx 
 
For ic = 1 To N 
A(ic) = Ai 
B(ic) = Bi 
C(ic) = Ci 
D(ic) = (1 / Dt) * Temp(ic) 
Next ic 
 
B(1) = 1# 
C(1) = 0# 
D(1) = 0# 
A(N) = 0# 
B(N) = 1# 
D(N) = 0# 
 
Temp = tdma(A, B, C, D, N, Sol) 
Fdimplicit = Sol 
End Function 

 
 
The function TDMA  
 
Function tdma(A, B, C, X, N, XX) As Variant 
With Worksheets("Sheet1") 
Dim AA, BB, CC, DD As Variant 
 
Dim ic As Integer 
ReDim AA(1 To N) 
ReDim BB(1 To N) 
ReDim CC(1 To N) 
ReDim DD(1 To N) 
ReDim XX(1 To N) 
 
For ic = 1 To N 
AA(ic) = A(ic) 
BB(ic) = B(ic) 
CC(ic) = C(ic) 
XX(ic) = X(ic) 
Next ic 
 
CC(1) = CC(1) / BB(1) 
XX(1) = XX(1) / BB(1) 
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' loop from 1 to N - 1 
For ic = 2 To (N - 1) 
M = 1# / (BB(ic) - AA(ic) * CC(ic - 1)) 
CC(ic) = CC(ic) * M 
XX(ic) = (XX(ic) - AA(ic) * XX(ic - 1)) * M 
Next ic 
M = 1# / (BB(N) - AA(N) * CC(N - 1)) 
XX(N) = (XX(N) - AA(N) * XX(N - 1)) * M 
 
' loop from N - 1 to 1 
For ic = (N - 1) To 1 Step -1 
XX(ic) = XX(ic) - CC(ic) * XX(ic + 1) 
Next ic 
 
tdma = XX 
End With 
End Function 
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