, Remerciements : Cet article a été écrit dans le cadre du projet DENFREE (Dengue Research Framework for Resisting Epidemics in Europe, grant agreement : 282 378), septième programme de la Commission européenne (FP7). Les auteurs remercient leurs partenaires Alexandre Cebeillac, MODE sera couplé au modèle moustique MOMA (Maneerat et Daudé, 2016a) afin de simuler les dynamiques de stocks de moustiques à l'échelle d'une ville, données entomologiques difficiles à obtenir sur le terrain

. Bibliographie,

S. Almeida, R. Ferreira, Á. Eirasc, R. Obermayr, and M. Geier, Multi-agent modeling and simulation of an Aedes aegypti mosquito population, Environmental Modelling & Software, vol.25, pp.1490-1507, 2010.

N. Arunachalam, S. Tana, F. Espino, P. Kittayapong, W. Abeyewickreme et al., Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia, Bulletin of the World Health Organization, vol.88, pp.173-184, 2010.

S. Bhatti and N. Tripathi, Built-up area extraction using Landsat 8 OLI imagery, GIScience & Remote Sensing, vol.51, pp.445-467, 2014.

B. Cummins, R. Cortez, I. Foppa, J. Walbeck, and J. Hyman, A spatial model of mosquito host-seeking behavior, PLoS Computational Biology, vol.8, issue.5, 2012.

É. Daudé, A. Vaguet, and R. Paul, La dengue, maladie complexe, Natures Sciences Sociétés, vol.23, pp.331-342, 2015.

R. Dennis, Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Forum, vol.102, pp.417-426, 2003.

É. Descloux, M. Mangeas, C. Menkes, M. Lengaigne, A. Leroy et al., Climate-based models for understanding and forecasting dengue epidemics, PLoS neglected tropical diseases, vol.6, issue.de, 1470.
URL : https://hal.archives-ouvertes.fr/pasteur-00734544

A. Getis, A. Morrison, K. Gray, and T. Scott, Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, The American journal of tropical medicine and hygiene, vol.69, issue.5, pp.494-505, 2003.

M. T. Gillies and T. J. Wilkes, The range of attraction of animal baits and carbon dioxide for mosquitoes. Studies in a freshwater area of West Africa, Bull Entomol Res, vol.61, pp.389-404, 1972.

N. Hartemink, S. Vanwambeke, B. Purse, M. Gilbert, and H. Van-dyck, Towards a Resource-based habitat approach for spatial modelling of vector-borne disease risks, Biological Reviews, vol.90, pp.1151-1562, 2015.

M. Hopp and J. Foley, Worldwide fluctuations in dengue fever cases related to climate variability, Climate Research, vol.25, pp.85-94, 2003.

K. S. Halder, N. Kelso, J. Ritchie, S. Milne, and G. , A spatial simulation model for dengue virus infection in urban areas, BMC Infectious Diseases, vol.14, issue.1, pp.447-464, 2014.

L. Lambrechts, K. Paaijmans, T. Fansiri, L. Carrington, L. Kramer et al., Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.7460-7465, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00587940

G. Li and Q. Weng, Fine-scale population estimation: how Landsat ETM+ imagery can improve population distribution mapping, Canadian Journal of Remote Sensing, vol.36, pp.155-165, 2010.

E. Linacre, A simple formula for estimating evaporation rates in various climates, using temperature data alone, Agricultural Meteorology, vol.18, pp.409-424, 1977.

S. Maneerat and É. Daudé, A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas, Ecological Modelling, vol.333, pp.66-78, 2016.
URL : https://hal.archives-ouvertes.fr/halshs-01319784

S. Maneerat and É. Daudé, Étude par simulation à base d'agents des effets des discontinuités intra-urbaines à Delhi sur la dispersion des moustiques Aedes aegypti, vecteurs de la dengue, de la fièvre jaune, du chikungunya et du virus Zika. Cybergéo : Européean Journal of Geographie, 2016.

R. Misslin, O. Telle, É. Daudé, A. Vaguet, and R. Paul, Urban Climate versus global climate change -What makes the difference for dengue, Annals of the New York Academy of Science, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01656598

J. Moloney, C. Skelly, P. Weinstein, M. Maguire, and S. Ritchie, Domestic aedes aegypti breeding site surveillance: limitations of remote sensing as a predictive surveillance tool, The American journal of tropical medicine and hygiene, vol.59, issue.2, pp.261-264, 1998.

E. Ooi, K. Goh, and D. Gubler, Dengue prevention and 35 years of vector control in Singapore, Emerging infectious diseases, vol.12, issue.6, pp.887-893, 2006.

F. Rodhain and L. Rosen, Mosquito vectors and dengue virus-vector relationships. Dengue and Dengue Hemorrhagic Fever, pp.45-60, 1997.

C. Tucker, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, vol.8, pp.127-150, 1979.

C. Vancutsem, P. Ceccato, T. Dinku, and S. Connor, Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa, Remote Sensing of Environment, vol.114, issue.2, pp.449-465, 2010.

D. Vezzani, A. Rubio, S. Velázquez, N. Schweigmann, and T. Wiegand, Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae, Acta Tropica, vol.95, issue.2, pp.123-131, 2005.

W. Zhu, A. Lu, and S. Jia, Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products, Remote Sensing of Environment, vol.130, pp.62-73, 2013.