Mapping the height of heterogeneous vegetation from UAV-borne visible images and DSM
Juliette Grimaldi, F Helen, Charlotte Pelletier, Vincent Bustillo, Thomas Houet

To cite this version:

HAL Id: halshs-02191677
https://halshs.archives-ouvertes.fr/halshs-02191677
Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mapping the height of heterogeneous vegetation from UAV-borne visible images and DSM

Poster - May 2019
DOI: 10.13140/RG.2.2.18345.85606

CITATIONS 0
READS 17

5 authors, including:

Juliette Grimaldi
French National Institute for Agricultural Research
12 PUBLICATIONS 43 CITATIONS
SEE PROFILE

Charlotte Pelletier
Monash University (Australia)
17 PUBLICATIONS 152 CITATIONS
SEE PROFILE

Thomas Houet
French National Centre for Scientific Research
143 PUBLICATIONS 1,319 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- SAMCO: Society Adaptation for coping with Mountain risks in a global change COntext View project
- SAMCO project-ANR-12-SENV-0004 - Adaptation de la société aux risques en montagne dans un contexte de changement global - View project
Mapping the height of heterogeneous vegetation from UAV-borne visible images and DSM

Grimaldi J. (juliette.grimaldi@inra.fr) 1, Helen F. 2, 3, 4, Pelletier C. 3, 4, Bustillo V. 4 and Houet T. 5
1. INRA UMR System, Montpellier, France;
2. Faculty of Engineering, Airbus, Toulouse, France;
3. Faculty of Information Technology, Monash University, Melbourne, Australia;
4. UMR CESSIO and Université Toulouse 3, Toulouse, France;
5. LETG-Rennes, CNRS, Rennes, France;

Context and objectives

Characterizing vegetation structure is essential for studying light distribution and air flow regime within agroforestry plots. Canopy heights and foliage density notably stand as key variables and should be described at both the internal and the landscape scale.

The recent development of unmanned aerial vehicles (UAVs) and the miniaturization of devices for the acquisition of georeferenced images have open new possibilities for remote sensing applications that we intend to test here.

A generic methodology is proposed for describing vegetation structure of agroforestry plots using very high resolution stereoscopic visible and near-infrared images acquired through UAV flights.

Material

Three agroforestry vineyards were selected in Southern France in order to sample diverse contexts of vegetation structure.

At each site, flights were performed in July and August 2016 using a polycarbonate flying wing – else* from Senfly. Two sensors were successively used: a RGB (Red-Green-Blue) digital camera and a four bands multispectral sensor.

Flight trajectories and altitudes were set in order to generate at least 5 overlapping images.

Methods

A two-step image analysis methodology was tested:

Step 1: Land cover mapping

1. Computation of the difference index (2G) and the green percentage index (GI) according to Poblete-Echeverría et al. (2017);
2. Supervised classification by training a Random Forest (Breiman 2001);
3. Post-processing:
 (i) exclusion of the limits of plots for re-attributing grapevine / tree classes.
 (ii) majority filtering applied specifically to the vine class so that only grapevine pixels being connected to other grapevine pixels are retained.

Tools: Python script calling the Orfeo Toolbox (OTB) (CNES 2018) and Geospatial Data Abstraction Library (GDAL) (GIS/OSR contributor 2018).

Flow chart for mapping the land cover of agroforestry vineyards.

Step 2: vegetation height mapping

Vegetation height is mapped by subtracting a Digital Terrain Model (DTM) to the Digital Surface Model (DSM).

Two methods are compared:

• the filtered DSM method from Zarco-Tejada et al. (2014): only requires a high resolution DSM;
• vs. a DSM-XTM method: requires a high resolution DSM and the corresponding land occupation map.

For most species of individual trees, the DSM-XTM method shows the highest overall accuracy for estimating tree height, based on laser-meter measures of reference. In the particular case of very small leaved trees (ex: Sorbus domestica), all methods including laser shows poor accuracy.

Conclusions and perspectives

The overall approach allows many applications for computing vegetation metric such as vegetation 3D density. In addition, the newly proposed ‘DSM-XTM’ method is highly recommended for pole-by-pole applications. The land cover mapping method could gain both accuracy and reproducibility considering only the images from the RGB sensor: testing a two-step classification with RGB bands and then RGB+DTM shows promising results for more accurately mapping foliage gaps.

References

Acknowledgements

We thank Tristan Dubois, Delphine and Benoit VINET, Thierry VACHER and CD MARTI for financial support.

{Image 745x1534 to 816x1898}