P. Addo, D. Guégan, and B. Hassani, Credit risk analysis using machine and deep learning models, Risks, vol.6, issue.2, p.38, 2018.
URL : https://hal.archives-ouvertes.fr/halshs-01719983

N. Akhtar and A. Mian, Threat of adversarial attacks on deep learning in computer vision: A survey, IEEE Access, vol.6, pp.14410-14430, 2018.

O. Y. Al-jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis, and K. Taha, Efficient machine learning for big data: A review, Big Data Research, vol.2, issue.3, pp.87-93, 2015.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner, Machine bias. Propublica. Link, 2016.

J. Banasik and J. Crook, Credit scoring, augmentation and lean models, Journal of the Operational Research Society, vol.56, issue.9, pp.1072-1081, 2005.

L. Barry, Justice ou justesse ? l'équité de l'assurance, WP Chaire Pari, 2019.

-. Basel, International convergence of capital measurement and capital standards: a revised framework. Bank for international settlements, 2004.

. Basel-ii, Standardised measurement approach for operational risks: a revised framework. Bank for international settlements, 2016.

. Basel-iii, Finalizing post-crisis reforms. Bank for international settlements, 2017.

O. Biran and C. Cotton, Explanation and justification in machine learning: A survey, IJCAI-17 workshop on explainable AI (XAI), vol.8, 2017.

D. Boyd and K. Crawford, Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, vol.15, pp.662-679, 2012.

, Documents de travail du Centre d'Economie de la Sorbonne

J. Burrell, How the machine thinks: Understanding opacity in machine learning algorithms, Big Data & Society, vol.3, issue.1, p.2053951715622512, 2016.

E. Calvano, G. Calzolari, V. Denicolò, and S. Pastorello, Artificial intelligence, algorithmic pricing and collusion, 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Smote: synthetic minority over-sampling technique, Journal of artificial intelligence research, vol.16, pp.321-357, 2002.

X. Chen and X. Lin, Big data deep learning: challenges and perspectives, IEEE access, vol.2, pp.514-525, 2014.

K. A. Clarke, The phantom menace: Omitted variable bias in econometric research. Conflict management and peace science, vol.22, pp.341-352, 2005.

Y. Demchenko, C. De-laat, and P. Membrey, Defining architecture components of the big data ecosystem, 2014 International Conference on Collaboration Technologies and Systems (CTS), pp.104-112, 2014.

W. Dieterich, C. Mendoza, and T. Brennan, Compas risk scales: Demonstrating accuracy equity and predictive parity, 2016.

X. Ding, Y. Zhang, T. Liu, and J. Duan, Deep learning for event-driven stock prediction, Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

F. Doshi-velez and B. Kim, Towards a rigorous science of interpretable machine learning, 2017.

J. Dressel and H. Farid, The accuracy, fairness, and limits of predicting recidivism, Science advances, vol.4, issue.1, p.5580, 2018.

M. Ebers, Regulating ai and robotics: Ethical and legal challenges, 2019.

G. Feng, J. He, and N. G. Polson, Deep learning for predicting asset returns, 2018.

O. Fliche and Y. Su, Artificial intelligence: challenges for the financial sector, 2018.

F. Galton, Essays in eugenics, 1909.

, The Eugenics Education Society

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in neural information processing systems, pp.2672-2680, 2014.

I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial examples, 2014.

B. Goodman and S. Flaxman, European union regulations on algorithmic decision-making and a" right to explanation, 2016.

J. Graunt, 1662. Natural and political observations, p.31, 1662.

, Documents de travail du Centre d'Economie de la Sorbonne

F. G'sell, L'automatisation des décisions de justice, jusqu'où ?, Annales des Mines, Enjeux numériques, issue.3, 2018.

D. Guégan and B. Hassani, Risk Measurement: From Quantitative Measures to Management Decisions, 2019.

M. Hardt, E. Price, and N. Srebro, Equality of opportunity in supervised learning, Advances in neural information processing systems, pp.3315-3323, 2016.

X. Huang, J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Robustness of interdependent networks under targeted attack, Physical Review E, vol.83, issue.6, p.65101, 2011.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning, vol.112, 2013.

N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, AAAI workshop on learning from imbalanced data sets, vol.68, pp.10-15, 2000.

J. E. Johndrow and K. Lum, An algorithm for removing sensitive information: application to race-independent recidivism prediction, The Annals of Applied Statistics, vol.13, issue.1, pp.189-220, 2019.

E. Jouini, M. Meddeb, and N. Touzi, Vector-valued coherent risk measures, Finance and stochastics, vol.8, issue.4, pp.531-552, 2004.
URL : https://hal.archives-ouvertes.fr/halshs-00167154

B. Kim, Interactive and interpretable machine learning models for human machine collaboration, 2015.

R. Kitchin, Big data and human geography: Opportunities, challenges and risks, Dialogues in human geography, vol.3, issue.3, pp.262-267, 2013.

T. Klein, Autonomous algorithmic collusion: Q-learning under sequential pricing, Amsterdam Law School Research Paper, pp.2018-2023, 2019.

J. Kleinberg, S. Mullainathan, and M. Raghavan, Inherent trade-offs in the fair determination of risk scores, 2016.

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, vol.160, pp.3-24, 2007.

M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, Icml, vol.97, pp.179-186, 1997.

A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial examples in the physical world, 2016.

S. Landau, Control use of data to protect privacy, Science, vol.347, issue.6221, pp.504-506, 2015.

D. D. Lewis and J. Catlett, Heterogeneous uncertainty sampling for supervised learning, Machine learning proceedings, pp.148-156, 1994.

Z. Li, Y. Tian, K. Li, F. Zhou, Y. et al., Reject inference in credit scoring using semi-supervised support vector machines, Expert Systems with Applications, vol.74, pp.105-114, 2017.

C. X. Ling and C. Li, Data mining for direct marketing: Problems and solutions, Kdd, vol.98, pp.73-79, 1998.

Z. C. Lipton, The mythos of model interpretability, 2016.

Y. Liu, P. Ning, and M. K. Reiter, False data injection attacks against state estimation in electric power grids, ACM Transactions on Information and System Security (TISSEC), vol.14, issue.1, p.13, 2011.

Y. Lou, R. Caruana, J. Gehrke, and G. Hooker, Accurate intelligible models with pairwise interactions, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.623-631, 2013.

S. M. Lundberg and S. Lee, A unified approach to interpreting model predictions, Advances in Neural Information Processing Systems, pp.4765-4774, 2017.

V. Mayer-schönberger and K. Cukier, Big data: A revolution that will transform how we live, work, and think, 2013.

S. Moosavi-dezfooli, A. Fawzi, and P. Frossard, Deepfool: a simple and accurate method to fool deep neural networks, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2574-2582, 2016.

Y. Nevmyvaka, Y. Feng, and M. Kearns, Reinforcement learning for optimized trade execution, Proceedings of the 23rd international conference on Machine learning, pp.673-680, 2006.

D. Nunan and M. Di-domenico, Market research and the ethics of big data, International Journal of Market Research, vol.55, issue.4, pp.505-520, 2013.

. Oecd, Algorithms and collusion: Competition policy in the digital age, 2017.

E. Oyallon, S. Mallat, and L. Sifre, Generic deep networks with wavelet scattering, Ecole Normale Sup?ieure, 2013.

C. Oneill, Weapons of math destruction: How big data increases inequality and threatens democracy, 2016.

N. Papernot, P. Mcdaniel, I. Goodfellow, S. Jha, Z. B. Celik et al., Practical black-box attacks against machine learning, Proceedings of the 2017 ACM on Asia conference on computer and communications security, pp.506-519, 2017.

M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume et al., Reducing misclassification costs, Machine Learning Proceedings, pp.217-225, 1994.

J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect, 2018.

A. Quetelet, Lettresà SAR le Duc Régnant de Saxe-Cobourg et Gotha, sur la théorie des probabilités, appliquée aux sciences morales et politiques, 1846.

J. Ram, C. Zhang, and A. Koronios, The implications of big data analytics on business intelligence: A qualitative study in china, Procedia Computer Science, vol.87, pp.221-226, 2016.

T. Renault, Intraday online investor sentiment and return patterns in the us stock market, Journal of Banking & Finance, vol.84, pp.25-40, 2017.

M. T. Ribeiro, S. Singh, and C. Guestrin, Model-agnostic interpretability of machine learning, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin, Nothing else matters: model-agnostic explanations by identifying prediction invariance, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin, Why should i trust you?: Explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp.1135-1144, 2016.

N. M. Richards and J. H. King, Big data ethics, Wake Forest L. Rev, vol.49, p.393, 2014.

F. Rosenblatt, Perceptron simulation experiments, Proceedings of the IRE, vol.48, issue.3, pp.301-309, 1960.

A. Rozsa, M. Gunther, and T. E. Boult, Towards robust deep neural networks with bang, 2016.

S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited, 2016.

G. Saporta, Probabilités, analyse des données et statistique. Editions Technip, 2006.

H. A. Simon, Rational choice and the structure of the environment, Psychological review, vol.63, issue.2, p.129, 1956.

A. M. Turing, Computing machinery and intelligence, vol.Mind, pp.433-60, 1950.

A. Tversky and D. Kahneman, Judgment under uncertainty: Heuristics and biases. science, vol.185, pp.1124-1131, 1974.

S. Wachter, B. Mittelstadt, R. , and C. , Counterfactual explanations without opening the black box: Automated decisions and the gdpr, Harvard Journal of Law & Technology, vol.31, issue.2, p.2018, 2017.

C. Wadsworth, F. Vera, and C. Piech, Achieving fairness through adversarial learning: an application to recidivism prediction, 2018.

B. Waltl and R. Vogl, Explainable artificial intelligencethe new frontier in legal informatics, Jusletter IT, vol.4, pp.1-10, 2018.

L. Xie, Y. Mo, and B. Sinopoli, False data injection attacks in electricity markets, 2010 First IEEE International Conference on Smart Grid Communications, pp.226-231, 2010.

E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei et al., Petuum: A new platform for distributed machine learning on big data, IEEE Transactions on Big Data, vol.1, issue.2, pp.49-67, 2015.

M. B. Zafar, I. Valera, M. Gomez-rodriguez, and K. P. Gummadi, Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment, Proceedings of the 26th International Conference on World Wide Web, pp.1171-1180, 2017.

Z. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, Big data opportunities and challenges: Discussions from data analytics perspectives, IEEE Computational Intelligence Magazine, vol.9, issue.4, pp.62-74, 2014.

A. Zwitter, Big data ethics, Big Data & Society, vol.1, issue.2, p.2053951714559253, 2014.