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Abstract

In a celebrated 1984 paper, David Cass provided an existence theorem for finan-

cial equilibria in incomplete markets with exogenous yields. The theorem showed

that, when agents had symmetric information and ordered preferences, equilibria

existed on purely financial markets, supported by any collection of state prices.

This theorem built on the so-called "Cass trick", along which one agent had an

Arrow-Debreu budget set, with one single constraint, while the other agents were

constrained a la Radner (1972), that is, in every state of nature. The current paper

extends Cass’theorem to economies with asymmetric information and non-ordered

preferences. It refines De Boisdeffre (2007), which characterized the existence of

equilibria with asymmetric information by the no-arbitrage condition on purely fi-

nancial markets. The paper defines no arbitrage prices with asymmetric information.

It shows that any collection of state prices, in the agents’commonly expected states,

supports an equilibrium. This result is proved without using the Cass trick, in the

sense that budget sets are defined symmetrically across all agents. Thus, the paper

suggests, in the symmetric information case, an alternative proof to Cass’.

.
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JEL Classification: D52

1 University of Paris 1 - Panthéon - Sorbonne, 106-112 Boulevard de l’Hôpital,
75013 Paris, France. Email: lionel.de.boisdeffre@wanadoo.fr

0

 
Documents de travail du Centre d'Economie de la Sorbonne - 2019.10



1 Introduction

When agents have incomplete or asymmetric information, they seek to infer in-

formation from observing markets. A traditional response to that problem is given

by the REE (rational expectations equilibrium) model by assuming, quoting Rad-

ner (1979), that “agents have a ‘model’or ‘expectations’of how equilibrium prices

are determined”. Under this assumption, agents know the map between private

information signals and equilibrium prices, along a so-called "forecast function".

In the simplest setting with two periods, no production and an uncertainty over

future states to prevail, Cornet-De Boisdeffre (2002) suggests an alternative ap-

proach to the REE, where asymmetric information is represented by private sig-

nals, informing each agent that tomorrow’s true state will be in a subset of the

state space. The latter paper generalizes the classical definitions of equilibrium,

no-arbitrage prices and no-arbitrage condition to asymmetric information. In this

model, De Boisdeffre (2007) shows that equilibria exist on purely financial markets

if they preclude arbitrage. That no-arbitrage condition, which typically holds under

asymmetric information, may always be reached by agents observing asset prices

or available financial transfers. Along Cornet-De Boisdeffre (2009), or De Boisdef-

fre (2016), that learning process requires no price model. Such results differ from

Radner’s (1979) inferences and the related generic existence of fully revealing REE.

In our setting, which drops rational expectations’inferences, the current paper

provides new insights on the existence issue. It examines whether the so-called

"Cass trick" is required, and Cass’theorem holds, under asymmetric information.

The Cass trick (1984, 2006) is a device introduced in Radner’s (1972) budget sets

and equilibria, which consists in replacing the budget constraints of one agent by a
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single Arrow-Debreu constraint at the first period. The other agents’budget sets

are left unchanged. This device enables to define asset prices relative to individual

state prices, as the (positively) weighted sum of payoffs across states. It permits to

show that any collection of state prices supports an equilibrium.

The current paper extends Cass’ results to asymmetric information and non-

ordered preferences. Under asymmetric information, it also refines De Boisdeffre

(2007), which characterized the existence of one equilibrium by the no-arbitrage

condition. Our proof applies, as its main argument, the Gale-Mas-Collel (1975,

1979) fixed-point-like theorem to reaction correspondences, which are formal repre-

sentations of the market and agents’behaviours. The proof extends Cass’theorem

but drops the Cass trick, in the sense that budget sets are defined symmetrically

across all agents. Under symmetric information, it thus suggests an alternative proof

to Cass’. The paper is organized as follows: Section 2 presents the model. Section

3 states and proves the existence theorem. An Appendix proves Lemmas.

2 The model

We consider a pure-exchange financial economy with two periods, t ∈ {0, 1}, and

an uncertainty, at t = 0, upon which state of nature will randomly prevail at t =

1. The economy is finite in the sense that the sets, I, S, L and J, respectively,

of consumers, states of nature, consumption goods and assets are all finite. The

observed state at t = 0 is denoted by s = 0 and we let Σ′ := {0} ∪ Σ, whenever Σ ⊂ S.

2.1 Markets and information

Agents consume or exchange the consumption goods, l ∈ L, on both periods’

spot markets. At t = 0, each agent, i ∈ I, receives privately the correct information

2
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that tomorrow’s true state will be in a subset, Si, of S. We assume costlessly that

S = ∪i∈ISi. Thus, the pooled information set, S := ∩i∈ISi, contains the true state,

and the relation S = S characterizes symmetric information.

We let P := {p := (ps) ∈ RL×S
′

: ‖p‖ 6 1} be the set of admissible commodity

prices, which each agent is assumed to observe, or anticipate perfectly, a la Radner

(1972). Moreover, each agent with an incomplete information forms her private

forecasts in the unrealizable states she expects. Such forecasts, (s, pis), are pairs of

a state, s ∈ Si\S, and a price, pis ∈ RL++, that the generic ith agent believes to be

the conditional spot price in state s. Thus, different agents are allowed to agree or

disagree on different forecasts, which are never self-fulfilling. Non restrictively, such

idiosyncratic forecasts are exogeneously given, along De Boisdeffre (2007).

Agents may operate financial transfers across states in S′ (actually in S′) by

exchanging, at t = 0, finitely many nominal assets, j ∈ J, which pay off, at t = 1,

conditionally on the realization of the state. We assume that #J 6 #S, so that

financial markets be typically incomplete. Assets’payoffs define a S × J matrix, V ,

whose generic row in state s ∈ S, denoted by V (s) ∈ RJ , does not depend on prices.

Thus, at asset price, q ∈ RJ , agents may buy or sell unrestrictively portfolios of

assets, z = (zj) ∈ RJ , for q · z units of account at t = 0, against the promise of delivery

of a flow, V (s) · z, of conditional payoffs across states, s ∈ S.

2.2 The consumer’s behaviour and concept of equilibrium

Each agent, i ∈ I, receives an endowment, ei := (eis), granting the commodity

bundles, ei0 ∈ RL+ at t = 0, and eis ∈ RL+, in each expected state, s ∈ Si, if it prevails.

Given the market prices, p := (ps) ∈ P and q ∈ RJ , and her forecasts, the generic ith

agent’s consumption set is Xi := RL×S
′
i

+ and her budget set is defined as follows:

3
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Bi(p, q) := { (x, z) ∈ Xi×RJ : p0·(x0 − ei0) 6 −q·z and ps·(xs − eis) 6 V (s)·z, ∀s ∈ S

and pis·(xs − eis) 6 V (s)·z, ∀s ∈ Si\S }.

Each consumer, i ∈ I, is endowed with a complete preordering, -i, over her

consumption set, representing her preferences. Her strict preferences, ≺i, are rep-

resented, for each x ∈ Xi, by the set, Pi(x) := { y ∈ Xi : x ≺i y }, of consump-

tions which are strictly preferred to x. In the above economy, denoted by E =

{(I, S, L, J), V, (Si)i∈I , (p
i
s)(i,s)∈I×Si\S, (ei)i∈I , (≺i)i∈I}, agents optimise their consumptions

in the budget sets. This yields the following concept of equilibrium:

Definition 1 A collection of prices, p = (ps) ∈ P , q ∈ RJ , & decisions, (xi, zi) ∈ Bi(p, q),

for each i ∈ I, is an equilibrium of the economy, E, if the following conditions hold:

(a) ∀i ∈ I, (xi, zi) ∈ Bi(p, q) and Pi(xi)× RJ ∩Bi(p, q) = ∅;

(b)
∑
i∈I (xis−eis) = 0, ∀s ∈ S′;

(c)
∑
i∈I zi = 0.

The economy, E , is called standard if it meets the following conditions:

Assumption A1 (monotonicity): ∀(i, x, y) ∈ I×(Xi)
2, (x 6 y, x 6= y)⇒ (x ≺i y);

Assumption A2 (strong survival): ∀i ∈ I, ei ∈ RL×S
′
i

++ ;

Assumption A3: ∀i ∈ I, ≺i is lower semicontinuous convex-open-valued and

such that x ≺i x+ λ(y − x), whenever (x, y, λ) ∈ Xi × Pi(x)× ]0, 1];

Assumption A4: ∃z ∈ RJ , ∀s ∈ S, V (s) · z > 0.

2.3 A portfolio decomposition

This sub-Section introduces orthogonal sub-vector spaces of the portfolio set, RJ ,

in relation to agents’information signals. It defines no-arbitrage prices, and relates

them to supporting individual state prices.

4
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For each i ∈ I, we let Zi :=
∑
s∈Si RV (s) ⊂ RJ be the span of the payoff matrix’

rows in the range of the information set, Si. We let Zoi := {z ∈ RJ : V (s)·z = 0,∀s ∈ Si},

its orthogonal complement, and Zo := { z ∈ RJ : V (s) · z = 0, ∀s ∈ S }, be the spaces of

useless portfolios in the eyes of, respectively, the ith agent and a (possibly missing)

fully informed agent.

We also define Zo :=
∑
i∈I Z

o
i and Zo⊥ := ∩i∈IZi, its orthogonal complement.

Whereas the relation Zo ⊂ Zo holds for any information structure, (Si), from the

definition, the converse inclusion may fail, as shown on the heuristic example be-

low. We therefore let Z∗ := Zo ∩ Zo⊥ ⊂ RJ be reduced to {0}, if and only if Zo = Zo.

For all portfolio, z ∈ RJ , we henceforth denote z = z1 + z∗ + z2 the so-called (with

slight abuse) "orthogonal decomposition" of z on Zo⊕Z∗⊕Zo⊥. We use this notation

throughout and may assume, from Assumption A4, that the last J2 > 0 assets belong

to Zo⊥, and all other assets (if any) belong to Zo. Thus, V (s) = V (s)2 holds for every

s ∈ S. We now define no-arbitrage prices and their supporting state prices.

Definition 2 A no-arbitrage price is an asset price, q ∈ RJ , which meets one of the

following equivalent conditions, and we let NA be their set:

(a) @(i, z) ∈ I × RJ , −q · z > 0 and V (s) · z > 0, ∀s ∈ Si, with one strict inequality;

(b) ∀i ∈ I, ∃λi := (λis) ∈ RSi++, q =
∑
s∈Si λisV (s).

Scalars, (λis) ∈ ×i∈IRSi++, which meet the above condition (b), are said to support the

no-arbitrage price, q ∈ NA, and called (individual) state prices. We denote NA(λ) :=

{q ∈ NA : q2 =
∑
s∈S λsV (s)}, for every λ := (λs) ∈ RS++, and NAC = ∪

λ∈RS++
NA(λ).

Proof The equivalence between the Assertions (i) and (ii) of Definition 2 is

standard and proved in Cornet-De Boisdeffre (2002, Lemma 1, p. 398). �

We henceforth assume, at no cost from Cornet-De Boisdeffre (2009), that the in-
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formation structure, (Si), is arbitrage-free, i.e., admits a n-a price. Indeed, the latter

paper shows that agents, starting from any information structure, (Si), may always

infer, with no price model, a refined information structure, which is arbitrage-free.

The following heuristic example and Claim 1 show that Z∗ may not be reduced

to {0} and that the sets NA and NAC do not coincide, in general, but that any

collection of symmetric state prices, λ := (λs) ∈ RS++, supports a no-arbitrage price,

q ∈ NA(λ), and, from Theorem 1 below, supports an equilibrium.

Example Consider an economy, E, with two agents, i ∈ {1, 2}, three states, s ∈

{1, 2, 3}, an information stucture, S1 := {1, 2} and S2 := {2, 3}, and one asset, whose

price is q = 1. If the payoff matrix is V =


1

0

1

, Assumption A4 fails and the

relations Z∗ = R and q ∈ NA ∩ cNAC hold. If V =


1

−1

1

, the relations Z
∗ ⊂ Zo =

{0}, q ∈ NA ∩ cNAC and NAC = −R++ hold.

Claim 1 The following Assertions hold:

(i) ∀λ ∈ RS++, NA(λ) 6= ∅;

(ii) NA * NAC, in general.

Proof Assertion (i) Let λ := (λs) ∈ RS++ be given. Non restrictively from Cornet-

De Boisdeffre (2009), we had assumed that the payoff and information structure,

[V, (Si)], was arbitrage-free (i.e., NA 6= ∅). Hence, we let q ∈ NA and (λis) ∈ ×i∈IRSi++

be given, such that q =
∑
s∈Si λisV (s), for each i ∈ I. Since q is a no-arbitrage price,

the relation q1 = 0 holds (for q · z = 0 holds for every z ∈ Zo, from the definitions).
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Assertion (i) From Assumption A4, J2 := dimZo⊥ > 0. We refer to the notations

of sub-Section 2.3 and let V (S) := (V (s))s∈S be the S× J extracted sub-matrix of V ,

defined by its rows, V (s), in states s ∈ S. We show that rank V (S) = J2 or, equivalently,

that the relation V (S) · z 6= 0 holds, whenever z ∈ Zo⊥\{0}. Indeed, the joint relations

V (S) · z = 0 and z ∈ Zo⊥ imply, from the definitions: z ∈ Zo∩Zo⊥ = {0}. For each i ∈ I,

we define qi ∈ RJ by qi =
∑
s∈Si\S λisV (s)2, if Si 6= S, and qi = 0 otherwise.

Since qi ∈ Zo⊥ and rank V (S) = J2, there exists a vector (µis) ∈ RS, which we set

as given, such that qi =
∑
s∈S µis V (s), for every i ∈ I. For N ∈ N large enough, the

relations |µisN | < λs hold, for every pair (i, s) ∈ I × S. Then, we let γi := (γis) ∈ RSi++ be

defined, for each i ∈ I, by γis = λis
N , for every s ∈ Si\S, and γis = λs− µis

N , for every s ∈ S.

By construction, the individual state prices, γi := (γis) ∈ RSi++, defined for each i ∈ I,

support a no-arbitrage price, q ∈ NA(λ). �

Assertion (ii) was shown on the heuristic example above. �

3 The existence theorem and proof

Along Theorem 1, any symmetric state price collection supports an equilibrium:

Theorem 1 Let λ ∈ RS++ be given. A standard economy, E, admits an equilibrium,

(p, q, [(xi, zi]) ∈ P ×NA(λ)× (×i∈IBi(p, q)).

We henceforth set as given λ := (λs) ∈ RS++ and let q =
∑
s∈S λsV (s).

The proof’s main argument is the Gale-Mas-Colell (1975, 1979) fixed-point-like

theorem. We apply the theorem to lower semi-continuous reaction correspondences,

defined over a convex compact set, which formally represent agents’behaviours.
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Thus, sub-Section 3.1 introduces an auxiliary compact economy, derived from the

economy E . Sub-Section 3.2 defines the reaction correspondences in that economy

and applies the GMC theorem. A so-called (with slight abuse) "fixed point" obtains.

Sub-Section 3.3 derives from this fixed point an equilibrium of the initial economy.

In particular, in the symmetric information case, the following proof, which

defines budget sets symmetrically across agents, suggests an alternative to Cass’.

3.1 An auxiliary compact economy with modified budget sets

Using the notations of sub-Section 2.3, we let Q := {q ∈ Z∗ : ‖q‖ 6 1}

and define the following sets, for every (i, p, q) ∈ I × P ×Q:

B1i (p, q) := { (x, z) ∈ Xi×Zi : p0 · (x0 − ei0) + q · z +
∑
s∈S λsps·(xs − eis) 6 1,

ps·(xs − eis) 6 V (s)·z, ∀s ∈ S, and pis·(xs − eis) 6 V (s)·z, ∀s ∈ Si\S };

A(p, q) := { [(xi, zi)] ∈ ×i∈I Bi(p, q + q) :
∑
i∈I(xis−eis) = 0, ∀s ∈ S′, (

∑
i∈I zi) ∈ Zo }.

The latter set meets the following boundary condition:

Lemma 1 ∃r > 0 : ∀(p, q) ∈ P ×Q, ∀ [(xi, zi)] ∈ A(p, q),
∑
i∈I(‖xi‖+ ‖zi‖) < r

Proof : See the Appendix. �

Along Lemma 1, for every (i, p := (ps), q) ∈ I ×P ×Q, we let X∗i := {x ∈ Xi : ‖x‖ 6 r}

and Z∗i := {z ∈ Zi : ‖x‖ 6 r}, and define the following convex compact sets:

B′i(p, q) := { (x, z) ∈ X∗i ×Z∗i : p0 · (x0 − ei0) + q · z +
∑
s∈S λsps·(xs − eis) 6 γ(p,q),

ps·(xs − eis) 6 V (s)·z, ∀s ∈ S, and pis·(xs − eis) 6 V (s)·z, ∀s ∈ Si\S },

where γ(p,q) := 1−min(1, ‖p‖+ ‖q‖), so that B′i(p, q) ⊂ B1i (p, q).

The auxiliary economy is alike that of Section 2, up to the change in budget

correspondences, from Bi to B′i, for each i ∈ I, which meet the following Claim 2, and

in agents’programs, replaced by the next sub-Section’s reaction correspondences.

8
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Claim 2 For every i ∈ I, B′i is upper semicontinuous.

Proof Let i ∈ I be given. The correspondences B′i is, as standard, upper semicon-

tinuous, for having a closed graph in a compact set. �

3.2 The fixed-point-like argument

Budget sets were modified in sub-section 3.1, so that their interiors be non-empty.

This was required to prove the lower semi-continuity of the reaction correspondences

of Lemma 2, below. For every (p, q) ∈ P×Q, these interior budget sets are as follows:

B′′i (p, q) := { (x, z) ∈ X∗i ×Z∗i : p0 · (x0 − ei0) + q · z +
∑
s∈S λsps·(xs − eis) < γ(p,q),

ps·(xs − eis) < V (s)·z, ∀s ∈ S, and pis·(xs − eis) < V (s)·z, ∀s ∈ Si\S }, for every i ∈ I.

Claim 3 The following Assertions hold, for each i ∈ I:

(i) ∀(p, q) ∈ P ×Q, B′′i (p, q) 6= ∅;

(ii) the correspondence B′′i is lower semicontinuous.

Proof Let (p, q) ∈ P × Q and i ∈ I be given. Assertion (i) From Assumptions

A2-A4 and the definition, we may always choose (x, z) ∈ B′′i (p, q). �

Assertion (ii) The convexity of B′′i (p, q) yields, fromAssertion (i), B′i(p, q) = B′′i (p, q).

Then, B′′i is lower semicontinuous for having an open graph in a compact set. �

We now introduce an agent representing markets (i = 0) and a reaction corre-

spondence, for each agent, on the convex compact set, Θ := P×Q×(×i∈IX∗i ×Z∗i ), so as

to apply the GMC theorem. Thus, we let, for each i ∈ I and all θ := (p, q, [(xi, zi)]) ∈ Θ:

Ψ0(θ) := { (p′, q′) ∈ P×Q : (q′ − q)·
∑
i∈I zi +

∑
s∈S′ [(p′s − ps)·

∑
i∈I(xis − eis)] > 0 };

Ψi(θ) :=


B′i(p, q) if (xi, zi) /∈ B′i(p, q)

B′′i (p, q) ∩ Pi(xi)× Z∗i if (xi, zi) ∈ B′i(p, q)

9
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Lemma 2 For each i ∈ I ∪ {0}, Ψi is lower semicontinuous.

Proof See the Appendix. �

Claim 4 There exists θ∗ := (p∗, q∗, [(x∗i , z
∗
i )]) ∈ Θ, such that :

(i) ∀(p, q) ∈ P ×Q, (q∗ − q)·
∑
i∈I z

∗
i +

∑
s∈S′ [(p∗s − ps)·

∑
i∈I (x∗is − eis)] > 0;

(ii) ∀i ∈ I, (x∗i , z
∗
i ) ∈ B′i(p∗, q∗) and B′′i (p∗, q∗) ∩ Pi(x∗i )× Z∗i = ∅.

Proof Quoting Gale-Mas-Colell (1975, 1979): “Given X = ×mi=1Xi, where Xi is

a non-empty compact convex subset of Rn, let ϕi : X → Xi be m convex (possibly

empty) valued correspondences, which are lower semicontinuous. Then, there exists

x in X such that for each i either xi ∈ ϕi(x) or ϕi(x) = ∅”. The correspondences Ψi,

for each i ∈ I ∪ {0}, meet all conditions of the above theorem and yield Claim 4. �

3.3 An equilibrium of the economy E

The above fixed point, θ∗, meets the following properties, proving Theorem 1:

Claim 5 Given θ∗ := (p∗, q∗, [(x∗i , z
∗
i )] ) ∈ Θ, along Claim 4, the following holds:

(i)
∑
i∈I z∗∗i = 0 and

∑
i∈I (x∗is − eis) = 0, ∀s ∈ S′;

(ii) for every i ∈ I, (x∗i , z
∗
i ) ∈ B′i(p∗, q∗) and B′i(p

∗, q∗) ∩ Pi(x∗i )× Z∗i = ∅;

(iii) there exist (zi) ∈ RJ×I and q ∈ NA(λ), such that (p∗, q, [(x∗i , zi)] ) is an equili-

brium of the economy E and p∗ ∈ RL×S
′

++ .

Proof Assertion (i) We show, first, that
∑
i∈I z

∗∗
i = 0 (where, for each i ∈ I, z∗∗i is

the orthogonal projection of z∗i on Z∗). Assume, by contraposition, that
∑
i∈I z

∗∗
i 6= 0.

Then, from Claim 4-(i), the relations q∗·
∑
i∈I z∗∗i = q∗·

∑
i∈I z∗i > 0 and γ(p∗,q∗) = 0

hold. Moreover, from Claim 4-(i), the relations 0 6
∑
i∈I p

∗
s· (x∗is− eis) hold, for every

s ∈ S′. From Claim 4-(ii), the relations p∗0· (x∗i0 − ei0) + q∗·z∗i +
∑
s∈S λs p

∗
s · (x∗is − eis) 6 0

hold, for every i ∈ I. Summing them up (for i ∈ I) yields, from above:

10
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0 < p∗0 ·
∑
i∈I (x∗i0 − ei0) + q∗·

∑
i∈I z∗i +

∑
s∈S λs

∑
i∈I p∗s · (x∗is − eis) 6 0.

This contradiction proves that
∑
i∈I z∗∗i = 0.

Similarly, from Claim 4-(i), p∗s·
∑
i∈I (x∗is − eis) > 0 holds, for every s ∈ S′, and

p∗0·
∑
i∈I (x∗i0−ei0)+

∑
s∈S λs

∑
i∈I p

∗
s·(x∗is−eis) > 0 holds whenever (

∑
i∈I (x∗is−eis))s∈S′ 6= 0.

Assume, by contraposition, that
∑
i∈I (x∗is−eis) 6= 0, for some s ∈ S′. Then, from Claim

4, the relation γ(p∗,q∗) = 0 and the following budget constraints hold for each i ∈ I:

p∗0 · (x∗i0 − ei0) + q∗·z∗i +
∑
s∈S λsps·(xis − eis) 6 0.

Summing them up yields, from above:

0 < p∗0 ·
∑
i∈I (x∗i0 − ei0) +

∑
s∈S λs

∑
i∈I p∗s · (x∗is − eis) 6 0.

This contradiction proves that
∑
i∈I (x∗is − eis) = 0, for every s ∈ S′. �

Assertion (ii). Let i ∈ I be given. From Claim 4-(ii), we need only show: B′i(p∗, q∗)∩

Pi(x
∗
i )×Z∗i = ∅. Assume, by contraposition, there exists (xi, zi) ∈ B′i(p∗, q∗)∩Pi(x∗i )×Z∗i .

From Claim 3, there exists (x′i, z
′
i) ∈ B′′i (p∗, q∗) ⊂ B′i(p

∗, q∗). By construction, the

relations (xni , z
n
i ) := [ 1n (x′i, z

′
i) + (1 − 1

n )(xi, zi)] ∈ B′′i (p∗, q∗) hold, for every n ∈ N. From

Assumption A3, the relation (xNi , z
N
i ) ∈ Pi(x∗i )× Z∗i also holds, for N ∈ N big enough,

which implies: (xNi , z
N
i ) ∈ B′′i (p∗, q∗)∩Pi(x∗i )×Z∗i . The latter contradicts Claim 4-(ii). �

Assertion (iii) The relation p∗s ∈ R
L×S′
++ is standard from Assertions (i)-(ii) and As-

sumptions A1-A2. From Assertions (i)-(ii) and Assumption A1, agents’budget con-

straints hold with equality. Then, fromAssertion (i), the relations ∑
i∈I (x∗is − eis) = 0 ,

for s ∈ S, yield: 0 =
∑
i∈I p∗s·(x∗is − eis) =

∑
i∈I V (s)·z∗i = V (s)·

∑
i∈I z∗i , for every s ∈ S.

Referring to the notations of sub-Section 2.3, the latter relations are written

(
∑
i∈I z∗i ) ∈ Zo, whereas, from Assertion (i),

∑
i∈I z∗∗i = 0. It follows that

∑
i∈I z∗i =

11
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(
∑
i∈I z

∗1
i ) ∈ Zo. Let q := q∗+ q := (q∗+

∑
s∈S λsV (s)) ∈ NA(λ) be a given. From above,

we set as given (zoi ) ∈ ×i∈IZoi , such that
∑
i∈I(z

∗
i − zoi ) = 0, and denote zi = (z∗i −zoi ), for

each i ∈ I. From the definitions, the following relations hold: q ·zi = q ·z∗i = q∗ ·z∗∗i +q ·z∗i

and V (s) · zi = V (s) · z∗i , for each (i, s) ∈ I × Si.

For each i ∈ I, the satiated budget constraints of (x∗i , z
∗
i ) ∈ B′i(p∗, q∗) in states s ∈ S

imply:
∑
s∈S λs p

∗
s · (x∗is − eis) = q · z∗i . At the first period, the same constraints are

written, for each i ∈ I and from above: p∗0·(x∗i0 − ei0) + q∗·z∗i +
∑
s∈S λs p

∗
s · (x∗is − eis) =

p∗0·(x∗i0 − ei0) + q·zi = γ(p∗,q∗). Summing up the latter relations (for i ∈ I) yields, from

Assertion (i): 0 =
∑
i∈I p

∗
0·(x∗i0−ei0)+q∗·

∑
i∈I z

∗
i +
∑
s∈S λs

∑
i∈I p

∗
s ·(x∗is−eis) = #I.γ(p∗,q∗).

Then, all above relations, Assertion (ii) and the definitions of q ∈ NA(λ) and of

buget sets (namely, B′i(p∗, q∗) and Bi(p
∗, q)) imply: (x∗i , zi) ∈ Bi(p∗, q), for each i ∈ I,

and [(x∗i , z
∗
i )] ∈ A(p∗, q∗). The latter implies, from Lemma 1:

∑
i∈I(‖x∗i ‖+ ‖z∗i ‖) < r.

We now let i ∈ I be given and show that (x∗i , zi) is optimal in Bi(p
∗, q). If not,

there exists (xi, z
′
i) ∈ Bi(p∗, q)∩Pi(x∗i )×RJ . From the definitions of q, Zoi , Z∗i , from As-

sumption A3 and above, we may assume that (xi, z
′
i) ∈ B′i(p∗, q∗) ∩ Pi(x∗i )×Z∗i , which

contradicts Assertion (ii). Thus, we have shown that Conditions (a)-(b)-(c) of Defin-

ition 1 hold for the collection, C := (p∗, q, [(x∗i , zi)]) ∈ P×NA(λ)×(×i∈IBi(p∗, q)). �

Appendix

Let A(p, q) := { [(xi, zi)] ∈ ×i∈I Bi(p, q+q) :
∑
i∈I(xis−eis) = 0, ∀s ∈ S′, (

∑
i∈I zi) ∈ Zo },

for every (p, q) ∈ P ×Q. These sets are bounded as follows:

Lemma 1 ∃r > 0 : ∀(p, q) ∈ P ×Q, ∀ [(xi, zi)] ∈ A(p, q),
∑
i∈I(‖xi‖+ ‖zi‖) < r

Proof Let δ =
∑
i∈I ‖ei‖, (p, q) ∈ P ×Q and [(xi, zi)] ∈ A(p, q) be given. The relations

xis ∈ [0, δ]L hold, for every pair (i, s) ∈ I × S′, from the market clearance conditions

12
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of A(p, q). From the fact that there exists α > 0, such that pis ∈ [α,+∞[L, for every

forecast, (i, s) ∈ I × Si\S, it suffi ces to prove the following Assertion:

∃r′ > 0, ∀(p, q) ∈ P ×Q, ∀ [(xi, zi)] ∈ A(p, q),
∑
i∈I ‖zi‖ < r′.

Assume, by contraposition, that, for every k ∈ N, there exist (pk, qk) ∈ P × Q

and [(xki , z
k
i )] ∈ A(pk, qk), such that ‖zk‖ :=

∑
i∈I ‖zki ‖ := αk > k. For every k ∈ N, let

z′k := zk/αk := (zki /αk). The bounded sequence, {z′k}, may be assumed to converge in a

closed set, say to z := (zi) ∈ ×i∈IZi, such that ‖z‖ = 1. The relations [(xki , z
k
i )] ∈ A(pk, qk)

hold, for every k ∈ N, and imply, for every (i, s, k) ∈ I × Si × N:

V (s)·zki > −δ, hence, V (s)·z′ki > −δ/k and, in the limit, V (s)·zi > 0, for each s ∈ Si;∑
i∈I z′ki ∈ Zo, hence,

∑
i∈I zi ∈ Zo.

Let
∑
i∈I zi =

∑
i∈I zoi for some (zoi ) ∈ ×i∈IZoi , and (z∗i ) := (zi)− (zoi ) be given. The

following relations hold from above: V (s)·z∗i > 0, for all (i, s) ∈ I×Si and
∑
i∈I z

∗
i = 0.

The latter relations imply, fromCornet-De Boisdeffre (2002, p. 401): (z∗i )∈ ×i∈IZoi ,

that is, z := (zi) = 0. This contradicts the relation ‖z‖ = 1 and proves Lemma 1. �

Lemma 2 For each i ∈ I ∪ {0}, Ψi is lower semicontinuous.

Proof The correspondences Ψ0 is lower semicontinuous for having an open graph.

We now set i ∈ I and θ := (p, q, [(xi, zi)]) ∈ Θ as given.

• Assume that (xi, zi) /∈ B′i(p, q). Then, Ψi(θ) = B′i(p, q).

Let V be an open set in X∗i × Z∗i , such that V ∩ B′i(p, q) 6= ∅. It follows from the

convexity of B′i(p, q) and the non-emptyness of the open set B′′i (p, q) that V ∩B′′i (p, q) 6=

13
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∅. From Claim 3, there exists a neighborhood U of (p, q), such that V ∩ B′i(p′, q′) ⊃

V ∩B′′i (p′, q′) 6= ∅, for every (p′, q′) ∈ U .

Since B′i(p, q) is nonempty, closed, convex in the compact set X∗i ×Z∗i , there exist

open sets V1 and V2 in X∗i ×Z∗i , such that (xi, zi) ∈ V1, B′i(p, q) ⊂ V2 and V1∩V2 = ∅. From

Claim 2, there exists a neighborhood U1 ⊂ U of (p, q), such that B′i(p′, q′) ⊂ V2, for

every (p′, q′) ∈ U1. Let W = U1×(×j∈IWj), where Wi := V1, and Wj := X∗j×Z∗j , for each

j ∈ I\{i}. Then, W is a neighborhood of θ, such that Ψi(θ
′) = B′i(p

′, q′), and V ∩Ψi(θ
′) 6=

∅, for every θ′ ∈W . Thus, Ψi is lower semicontinuous at θ. �

• Assume that (xi, zi) ∈ B′i(p, q), i.e., Ψi(θ) = B′′i (p, q) ∩ Pi(x)×Z∗i .

Lower semicontinuity results from the definition if Ψi(θ) = ∅. Assume Ψi(θ) 6= ∅.

We recall that Pi (from Assumption A3 ) is lower semicontinuous with open values

and that B′′i has an open graph. As a corollary, the correspondence (p′, q′[(x′i, z
′
i)]) ∈

Θ 7→ B′′i (p′, q′) ∩ Pi(x′i)×Z∗i ⊂ B′i(p
′, q′) is lower semicontinuous at θ. Then, from the

latter inclusions, Ψi is lower semicontinuous at θ. �
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