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Network interpretation is a widespread practice in 
the digital humanities, and its exercise is 
surprisingly flexible. While there is now a wide 
variety of uses in different fields from social 
network analysis (Ables et al., 2017) to the study 
of document circulation metadata (Grandjean, 
2016) or literature and linguistic data (Maryl and 
Elder, 2017), many projects highlight the 
difficulty of bringing graph theory and their 
discipline into dialogue. Fortunately, the 
development of accessible software (Bastian et 
al., 2009), followed by new interfaces (Rosa Pérez 
et al., 2018; Wieneke et al., 2016), sometimes with 
an educational dimension (Beaulieu, 2017; 
Xanthos et al., 2016), has been accompanied in 
recent years by a critical reflection on our 
practices (Weingart, 2011; Kaufman et al., 2017), 
particularly with regard to visualisation. Yet, it 
often focuses on technical aspects. 
 
In this paper, we propose to shift this emphasis 
and address the question of the researcher’s 
interpretative journey from visualisation to 
metrics resulting from the network structure. 
Often addressed in relation to graphical 
representation, when it is not used only as an 
illustration, the subjectivity of translation is all the 
more important when it comes to interpreting 
structural metrics. But these two things are closely 
related. To separate metrics from visualisation 
would be to forget that two historical examples of 
network representation, Euler (1736) and Moreno 

(1934), are not limited to a graphic reading (the 
term “network” itself would only appear in 1954 
in Barnes’ work). In the first case, the 
demonstration was based on a degree centrality 
measurement whereas in the second case the 
author made the difference between “stars” and 
“unchosen” individuals while qualifying the 
edges as inbound and outbound relationships. 
 
This is why this paper propose to examine the 
practice of visual reading and metrics-based 
analysis in a correspondence table that clarifies 
the subjectivity of the translation while presenting 
possible and generic interpretation scenarios. 

Visual approach: making the 
global structure readable 

The way we read networks has changed over time. 
Historically the question of network readability 
was asked in terms of aesthetic criteria. In the 
word of Jacob Moreno “the fewer the number of 
lines crossing, the better the sociogram”. Even in 
the nineties, when giving birth to the modern 
layout algorithm, Früchterman and Reingold 
(1991) aimed at “minimizing edge crossings” and 
“reflecting inherent symmetry”. However, these 
criteria do not seem so crucial to practices 
observed nowadays in digital humanities (and 
beyond). 



 

Looking at recent papers in digital humanities, 
networks appear to have a wide range of usages. 
Their visualisations are either self-sufficient [fig. 
1.a.] (Algee-Hewitt, 2018; Pino-Diaz and 
Fiormonte, 2018; Verhoeven et al., 2018; 
Marraccini, 2017), an optional help to 
understanding [fig 1.b.] (Colavizza et al., 2016) or 
strongly connected to the text. Some authors use 
them to highlight the position of a specific node 
[fig. 1.c.] (Moretti et al., 2016), to compare 
layouts [fig. 1.d.] (Sozinova, 2016) or the layout 
of the same graph in time [fig. 1.e.] (Wright, 
2016). They may aim at visualising communities 
[fig. 1.f.] (Rybicki et al., 2018; Torres-Yepez and 
Zreik, 2018), mapping a general structure [fig. 
1.g.] (Gao et al., 2017), tracking density patterns 
[fig. 1.h.] (Gao et al., 2018) or monitoring 
algorithms like modularity clustering [fig. 1.i.] 

(Choinski and Rybicki, 2017). These usages 
reveal a different perspective in network 
visualisation where we expect the visual to 
translate underlying relational structures. 
It helps to give different names to these two 
different approaches. We call diagrammatic the 
perspective where the network is a diagram that 
we read by following paths. We do not want the 
edges to cross and we use aesthetic criteria to 
bring clarity. It was Moreno’s perspective, and is 
still relevant to small networks and local 
exploration. Then we call topological the 
perspective where the network is a structure that 
we read by detecting patterns. We expect the 
visualisation to help us retrieve structural features 
like clustering or centralities. It is a common 
practice in digital humanities, more holistic and 
relevant to larger networks. Aside or in 

Fig. 1 Different contexts for network visualisation in DH2016, DH2017 and DH2018 abstracts. 
 



 

complement, classic data visualisation is also 
employed to visualise non-relational structures 
(node attributes, etc.). 
 
In the topological perspective, a standard 
procedure is to assign nodes a position using a 
force-driven algorithm. This family of algorithms 
is known for displaying clusters that match a 
widely used measure of community detection, 
modularity clustering (Noack, 2009). Its 
translation remains however difficult to interpret 
locally, as we can never give a simple explanation 
for a node’s position. Classic data visualisation 
also translates non-relational structures, by itself 
or combined with a relational perspective. 
Different structural features may require different 
visualisations: the examples of fig. 2 shows 
curated visualisations using categories [fig. 2.a 
boys and girls, in the famous example of (Moreno, 
1934)], temporality [fig. 2.b] (Jänicke and Focht, 
2017) or hierarchy [fig. 2.c] (Grandjean, 2017). 
Though very different from force-driven 
placement, they display better certain structural 
features. 

Objectifying the structure with 
metrics 

Often opposed to visual interpretation, of which 
they would be a more objective and reliable 
representation, centrality measures have a history 
that goes back to more than half a century and 

shows that they are not immutable and require 
constant adaptation to usage Moreover, Freeman 
(1979) insists on the fact that the notion of 
“centrality” is the result of several intuitive 
conceptions. To remind that these metrics are 
based on “intuition” means to recognize that they 
have no meaning in themselves and that their 
interpretation must be rediscussed - and therefore 
translated - according to the context. This paper 
thus proposes to list and evaluate to which extent 
these metrics are applicable to humanities and 
social science data and can, if necessary, be 
“translated” into this language to complement 
visual analyses. 
 
Global properties 
Statistical analysis allows for comparing networks 
across multiple dimensions at once (Tank and 
Chen, 2017). For instance, comparing the number 
of nodes and edges of different graphs of the 
same type (Trilcke et al., 2016) can be a ranking 
tool that is directly translatable into natural 
language. In addition to that, studies suggest that 
density (the number of edges in relation to the 
number of nodes) is relevant to analyse character 
networks, especially when compared within a 
homogeneous collection (Evalyn and Gauch, 
2018; Grandjean, 2015). This is also the case 
when measuring average path length (Trilcke et 
al., 2016). 

Fig. 2 Various layouts do not follow a force-driven algorithm to make non-relational dimensions of 
the data explicit. 
 



 

Local properties 
With regard to local measures, the degree 
(number of neighbouring nodes) is the simplest 
centrality, and the only one systematically used 
between the late 1950s and early 1970s, before the 
development of more diversified metrics 
(Freeman, 1979). Its simplicity allows for a 
transparent translation: in a literary network, for 
example, it counts the number of times one 
character speaks to another (Jannidis et al., 2016). 
 
The notion of betweenness centrality disrupts the 
conception of what the “centre” of a network may 
consist of. Its ability to reveal structural elements 
bridging large, immediately visible clusters makes 
it popular in the social sciences since the 
emergence of Granovetter’s concept of “weak 
ties” (Granovetter, 1973). Betweenness is very 
closely linked to the notion of circulation: it 
counts the shortest paths to detect intermediate 

“bridges” or “key passages” capable of opening or 
locking certain parts of the network (Tayler and 
Neugebauer, 2018). Depending on applications, 
these are therefore both positions of power and 
vulnerable places. 
 
The closeness centrality allows to highlight the 
“geographical” middle of the graph. In networks 
of a certain density and when they are not divided 
into several distinct communities, the closeness is 
generally fairly evenly distributed and allows a 
good translation of the notions of “center” and 
“periphery”. 
 
For its part, the eigenvector centrality is quite 
complicated to translate since it works iteratively 
and is very much dependent on the structural 
context at short and medium range around a node. 
“Prestige” or “influence” centrality, named 
“power” centrality by its author (Bonacich, 1972), 

Fig. 3 Three levels of interpretation that can be articulated: visual analysis (examples top left), use 
of global metrics (examples bottom right) and use of local metrics (highlighted nodes). 
 



 

it qualifies a node’s environment while operating 
in cascade: a well-connected node gives its 
neighbours a part of its authority capital, and so 
on. It is therefore particularly useful when trying 
to analyse the hierarchy of the nodes in a graph 
(Piper et al., 2017). The most well-known use of 
this measure is the backbone of the Google search 
engine: the PageRank algorithm (Brin and Page, 
1998). 

Towards mixed approaches 

This contribution proposes a table of 
correspondence between the concepts of graph 
theory and the practice of visual network analysis 
in the social science and humanities. This effort 
must not be understood as a demarcationist 
attempt at telling the right method from the wrong. 
The “dictionary” is not exhaustive and only aims 
at helping to bridge two worlds that have more in 
common that what meets the eye. By focusing on 
translating methods, we want to stress that 
crossing points are real even though they do not 
come without issues, and thus require our 
methodological attention.  
 
We also note that the analysis should not be 
limited to a catalogue of well-known methods 
(basic centralities, etc.) but that approaches 
combining several of those should be encouraged 
to obtain an optimal and innovative “translation”. 
In this way, we could compare metrics (Escobar 
and Schauf, 2018) or combine them to establish 
rankings (Fischer et al., 2018; Grandjean, 2018: 
328). Furthermore, the enrichment of the 
networks by means of categories that are not 
dependent on the structure, like the gender of 
individuals in a social network (Dunst and Hartel, 
2017) or the discipline of projects in a 
scientometric analysis (Grandjean et al., 2017), 
allows to test translation and interpretation 
hypotheses by avoiding the blind approach of 
testing all possible graph metrics. 
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Network visual and topological patterns
This table of correspondence between network analysis concepts and interpretations or "translations" is a work in progress. The authors propose this document to open a discussion on 
the most relevant translation scenarios and examples/references from the different disciplines applying these methods.

NOTION VISUAL ANALYSIS COMPUTATIONAL ANALYSIS INTERPRETATIVE POTENTIAL

G
lo

ba
l

Graph size 
(nodes)

VISUAL PATTERN 
There are few or 
many nodes.

ISSUES 
Though it is easy to 
have an estimation of 
the total number of 
nodes, visualization 
decisions (for 
example, setting node 
sizes on a large scale) 
can make nodes with 
few connections 
difficult to see.

TOPOLOGICAL PATTERN 
Nodes count.

ISSUES 
None. Note that in 
graph theory the count 
of nodes is referred to 
as "graph order" while 
the "graph size" refers 
to the count of edges.

USEFULNESS
Very basic information but useful when 
comparing networks. 

SIMPLE DEFINITION 
How many nodes are 
there in the graph?

HERMENEUTIC CRITERIA
Counting the nodes.

COMPUTATIONAL 
CRITERIA
Counting the nodes.

"TRANSLATION"
The intuition of the size of a network is 
appropriate.

G
lo

ba
l

Graph size 
(edges)

VISUAL PATTERN 
There are few or 
many edges.

ISSUES 
The total number is 
hard to estimate as 
soon as the graph is 
not a simple diagram 
anymore. The 
distribution of edges 
and their weight has 
an influence on the 
visual estimation. The 
difficulty to count 
edges visually is a 
known issue, and 
probably impossible 
to overcome.

TOPOLOGICAL PATTERN 
Edges count.

ISSUES 
None. Note that in 
graph theory the count 
of edges is referred to 
as "graph size" while 
the count of nodes is 
"graph order".

USEFULNESS
Very basic information but useful when 
comparing networks. 

SIMPLE DEFINITION 
How many edges are 
there in the graph?

HERMENEUTIC CRITERIA
Counting the edges.

COMPUTATIONAL 
CRITERIA
Counting the edges.

"TRANSLATION"
Sometimes translated as size in natural 
language, but the number of edges is usually 
expressed in comparison to the number of 
nodes to indicate density or complexity, not 
for itself.

G
lo

ba
l Density

VISUAL PATTERN 
The graph is more or 
less compact. If only 
certain parts are more 
compact, see 
"clusters" below.

ISSUES 
The less edges there 
are, the easier to 
estimate. High 
densities are difficult 
to distinguish because 
the overall appearance 
of a graph with 60% 
edges will looks close 
to a graph with 100%. 
The visual aspect also 
depends on the layout 
algorithm used: some 
are more efficient at 
representing clusters.

TOPOLOGICAL PATTERN 
Network density.

ISSUES 
The formula of 
density slightly 
changes depending on 
the type of networks 
(directed or not, self-
loops allowed or 
not...).

USEFULNESS
A very important notion that allows to 
compare networks of different sizes if they 
are produced in the same way or on the 
basis of comparable data sets.

SIMPLE DEFINITION 
How connected are 
the nodes overall?

HERMENEUTIC CRITERIA
Accumulation of 
edges, cluttered 
groups of nodes, 
"hairball". Easier to 
estimate in situation 
of comparison.

COMPUTATIONAL 
CRITERIA
Divide the actual 
number of edges by 
the number of all 
potential edges.

"TRANSLATION"
Density, complexity, completeness.

G
lo

ba
l Diameter

VISUAL PATTERN 
The longest shortest 
path in the graph, or 
the two most visually 
distant nodes.

ISSUES 
Generally hard or 
impossible to see 
except on small 
networks, but quite 
easy to estimate by 
following a few paths 
that goes from a side 
to another, or just 
looking at most 
distant nodes in the 
same connected 
component (visual 
distance 
approximately 
correlates with 
geodesic distance).

TOPOLOGICAL PATTERN 
Diameter.

ISSUES 
Only relevant in a 
connected graph.

USEFULNESS
Can be used to describe how the density is 
distributed: complex networks are often 
characterized by a small diameter while 
high diameter is frequent in geographical 
networks.

SIMPLE DEFINITION 
How far are the most 
distant nodes?

HERMENEUTIC CRITERIA
Following the series 
of edges from one 
node to another, 
trying to find the 
longest one. If 
impossible, the most 
visually distant nodes 
is acceptable.

COMPUTATIONAL 
CRITERIA
Maximal geodesic 
distance of all the 
pairs of nodes.

"TRANSLATION"
Size, breadth, width.

G
lo

ba
l

Average path 
length

VISUAL PATTERN 
The average distance 
between a couple of 
nodes.

ISSUES 
Impossible to 
calculate visually 
since it is an average 
covering a very large 
number of values 
(already difficult to 
calculate). Loosely 
relates to density, 
which is easier to 
estimate.

TOPOLOGICAL PATTERN 
Average path length.

ISSUES 
Since it is an average, 
this value does not 
allow conclusions to 
be drawn at the 
individual level if the 
graph is strongly 
clustered. 
The average path 
length is more 
complicated for a 
directed graph than 
for an undirected 
graph.

USEFULNESS
Could serve as a complement to diameter 
because the latter can be influenced by a 
few nodes that are very far from the main 
component of the graph. Can replace the 
diameter in case of unconnected graphs.

SIMPLE DEFINITION 
On average, how 
close are nodes to 
each other?

HERMENEUTIC CRITERIA
Following the edges 
between every 
couples of nodes.

COMPUTATIONAL 
CRITERIA
Average number of 
steps along the 
shortest paths for all 
possible pairs of 
nodes

"TRANSLATION"
Can be used to describe the size, breadth or 
width of the network. But it can also be 
translated into an indicator of a small world 
situation.

Martin Grandjean




NOTION VISUAL ANALYSIS COMPUTATIONAL ANALYSIS INTERPRETATIVE POTENTIAL

G
lo

ba
l Connectedness

VISUAL PATTERN 
There must be only 
one component, not 
several groups of 
nodes disconnected 
from each other.

ISSUES 
Depending on the 
layout, it is possible 
that "islands" hide in 
dense groups of 
nodes, but with a 
properly set force-
directed layout, the 
risk is marginal. 
Possibly the easiest 
property to observe 
visually.

TOPOLOGICAL PATTERN 
In a connected graph, 
the number of 
connected 
components must be 
one.

ISSUES 
The notion of 
connectedness is more 
complicated for a 
directed graph than 
for an undirected 
graph.

USEFULNESS
The absence of edges between components 
is more remarkable if they contain many 
nodes. In many applied cases, connected 
graphs are artificially created by removing 
solitary nodes (frequent in messy extracted 
data).

SIMPLE DEFINITION 
Is the graph a 
connected system 
where there is a path 
between every nodes?

HERMENEUTIC CRITERIA
Looking at empty 
areas (structural 
holes). Groups count 
as disconnected only 
if there are no edges 
between them.

COMPUTATIONAL 
CRITERIA
There must be a path 
between each pair of 
nodes.

"TRANSLATION"
The network is a continent, or, on the 
contrary, an archipelago.

G
lo

ba
l

Clusters/ 
Communities

VISUAL PATTERN 
Clusters (uneven 
distribution of nodes)

ISSUES 
Force-directed 
placement algorithms 
are known to 
represent clustering 
very well, if properly 
set.

TOPOLOGICAL PATTERN 
Max modularity 
(modularity of the 
partition with the 
highest modularity).

ISSUES 
Maximal modularity 
is too hard to 
compute, so we rely 
on an estimation. 
Modularity is a 
measure of a graph 
partitioning, so it is 
necessary to partition 
the graph first. 
Different algorithms 
exist (Louvain, 
Leiden...). Other 
metrics than 
modularity also exist, 
though they are less 
widely used.

USEFULNESS
Useful for exploration. It is tempting to take 
the result of a cluster calculation as a given. 
In some cases, it is interesting to compare 
these clusters with previously known groups 
(categories that do not depend on the 
structure obtained).

SIMPLE DEFINITION 
What are the groups 
where nodes are more 
connected to each 
other?

HERMENEUTIC CRITERIA
Looking for groups of 
nodes, as visually 
dense and separated 
as possible.

COMPUTATIONAL 
CRITERIA
Running a modularity 
clustering detection 
algorithm and looking 
at the obtained 
modularity.

"TRANSLATION"
The term cluster has become part of the 
common language, but we also like to talk 
about groups, communities or hubs. This 
notion of community is very directly related 
to the way in which the social sciences and 
humanities use the metaphor of the 
"network".

G
lo

ba
l

Global or 
average 
clustering 
coefficient

VISUAL PATTERN 
Clusters.

ISSUES 
Triangles are easy to 
count visually in a 
small network, but the 
ratio between this 
result and the total 
number of potential 
triangles is impossible 
to calculate directly. 
Very difficult to count 
in dense graphs. 
Graphs with clusters 
and/or visually dense 
tend to have a higher 
clustering coefficient.

TOPOLOGICAL PATTERN 
Number of closed 
triplets.

ISSUES 
The global clustering 
coefficient is obtained 
by dividing the closed 
triplets by the number 
of all possible groups 
of three nodes. The 
average clustering 
coefficient is quite 
different but serve a 
relatively close 
purpose: it is the 
average of the local 
clustering coefficient 
of all the nodes.

USEFULNESS
A global measure that complements density 
well and, like the latter, is useful for 
comparing similar networks with each other.

SIMPLE DEFINITION 
General indication of 
the graph's tendency 
to be organized into 
clusters

HERMENEUTIC CRITERIA
Looking for triangles 
(groups of three nodes 
with three connexions 
between them).

COMPUTATIONAL 
CRITERIA
Dividing the number 
of closed triplets by 
the number of triplets 
in the graph.

"TRANSLATION"
Gives an idea of the entanglement / 
intrication and the presence of a more 
localized density.

Lo
ca

l

Connectivity 
(degree)

VISUAL PATTERN 
There are many links 
to the node.

ISSUES 
In a dense image, it is 
not always obvious 
which edges converge 
to the node or just 
happen to pass 
through it visually. 
Sometimes, counting 
is also impractical.

TOPOLOGICAL PATTERN 
Degree.

ISSUES 
In a directed network, 
we also distinguish 
indegree (inbound 
link) and outdegree 
(outbound links). In 
that case, the degree is 
the sum of those and 
hence the number of 
links, not the number 
of neighbors.

USEFULNESS
The simplest form of centrality. In most 
cases, the degree shows information that is 
already known as part of the basic data and 
not dependent on the structure. This is why 
we often focus on the degree distribution.

SIMPLE DEFINITION 
How well connected 
is a node / how many 
links it has / how 
many neighbors

HERMENEUTIC CRITERIA
Counting the edges 
converging to that 
node.

COMPUTATIONAL 
CRITERIA
Degree.

"TRANSLATION"
The basic intuition of the number of 
neighbors. In directed networks, 
interpretation varies greatly between in- and 
out- degrees: indegree is often the primary 
way to look at a hierarchy of nodes, because 
being "cited" is often a good proxy for 
authority/notoriety.

Lo
ca

l Betweenness

VISUAL PATTERN 
A bridge between 
clusters.

ISSUES 
Many bridges look as 
expected, they 
connect over empty 
spaces. But 
sometimes, bridges 
are hidden in the 
complicated structure 
of the image. It is 
generally easier to see 
the bridging edges 
than the bridging 
nodes (however, most 
of the studies using 
betweenness 
centrality focus on 
bridging nodes).

TOPOLOGICAL PATTERN 
Betweenness 
centrality.

ISSUES 
Note that the 
undirected version of 
the algorithm is often 
used even for directed 
graphs. It is the most 
used metric for 
detecting bridges, but 
it does not exactly 
meet the intuition.

USEFULNESS
The definition of bridge implemented by 
betweenness centrality meets both intuition 
of a bridge and of a center. Indeed both a 
bridge and the center of a star are things 
that, if removed, disconnect parts of the 
network. In that sense betweenness is also a 
"centrality".

SIMPLE DEFINITION 
Being a bridge, 
connecting otherwise 
separated groups of 
nodes.
Removing that node 
would break many 
shortest paths.

HERMENEUTIC CRITERIA
Looking for an edge 
appearing through a 
(mostly) empty area 
between large groups 
of nodes.

COMPUTATIONAL 
CRITERIA
The score of 
betweenness 
centrality represents 
the number of shortest 
paths through a given 
node or edge.

"TRANSLATION"
The notion of bridge (but also link, 
gateway, broker or key passage) is very 
often used when applying network analysis 
to social or circulation issues. In some 
cases, it can represent a form of social 
capital because it describes a structural 
position of power (or vulnerability).
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NOTION VISUAL ANALYSIS COMPUTATIONAL ANALYSIS INTERPRETATIVE POTENTIAL

Lo
ca

l Closeness

VISUAL PATTERN 
The geographical 
center of the graph.

ISSUES 
The visual estimation 
of centrality is 
considered 
acceptable, but it 
remains an evaluation. 
It is harder to find in 
very sparse graphs.

TOPOLOGICAL PATTERN 
Closeness centrality.

ISSUES 
The undirected 
version is often used 
even for directed 
graphs.

USEFULNESS
There is no single implementation of 
centrality, but closeness centrality is the 
most aligned with the notion of a middle, a 
point that is in proximity to all the others. It 
looks at the structural distance to other 
nodes, and can be interpreted as such.

SIMPLE DEFINITION 
Being in the middle of 
the network.

HERMENEUTIC CRITERIA
Finding the 
barycenter (the center 
of the "land masses") 
of the graph.

COMPUTATIONAL 
CRITERIA
The score of closeness 
centrality is the 
average length of the 
geodesic distances to 
all the other nodes.

"TRANSLATION"
Excellent to describe the centre or the 
middle of a network, especially when the 
latter is described in topographical terms. 
Low values of this metric are very 
appropriate for the use of concepts which 
are the opposite of the center: the 
periphery, the margins, etc.

Lo
ca

l

Prestige 
(eigenvector)

VISUAL PATTERN 
Proximity to well 
connected nodes 
(often inside a 
cluster).

ISSUES 
This centrality is hard 
to see, though it 
correlates with other 
forms of centrality 
that point to well 
connected nodes at 
the center of the 
graph.

TOPOLOGICAL PATTERN 
Eigenvector centrality 
or Page Rank.

ISSUES 
None.

USEFULNESS
This form of centrality is notably adapted to 
directed networks, and can be related to the 
functioning of a search engine (the Page 
Rank principle was used in the first Google 
search engine) or a system where 
information flows.

SIMPLE DEFINITION 
Being connected to 
well connected nodes 
without necessarily 
having a large number 
of neighbors itself.

HERMENEUTIC CRITERIA
None, except if the 
size of the nodes is 
visually proportional 
to the degree 
centrality, which 
helps to identify 
nodes in the hubs' 
surroundings.

COMPUTATIONAL 
CRITERIA
This is a score 
computed recursively. 
It flows from each 
node to its neighbors 
(following the 
direction of edges in a 
directed graph).

"TRANSLATION"
The iterative nature of this notion makes it 
difficult to translate (and difficult to use in 
some contexts). It is confused with the 
notions of prestige, authority, influence 
and, sometimes, power and elites. This 
measure distinguishes nodes that are "well" 
connected (and not just "a lot"). Relates to 
the notion of assortativity.

Lo
ca

l

Local clustering 
coefficient

VISUAL PATTERN 
Nodes are inside a 
cluster.

ISSUES 
Clustering coefficient 
is generally hard to 
see and visual 
interpretation is 
considered unreliable. 
Exceptions are small 
networks, nodes that 
have only a few 
neighbors that we see 
well, and nodes that 
are only connected to 
a very dense cluster.

TOPOLOGICAL PATTERN 
Clustering coefficient 
(local).

ISSUES 
None.

USEFULNESS
Meets a notion of redundancy in the local 
connections, comparable to centrality but at 
a very local scale. Tells if a node is in a 
clustered environment. Complex networks 
are often characterized by a high average 
clustering coefficient.

SIMPLE DEFINITION 
Are the neighbours of 
a node also connected 
together?

HERMENEUTIC CRITERIA
Looking for nodes 
that have many edges 
to their cluster (where 
the other nodes are 
also connected 
together). Bridges 
have a low clustering 
coefficient.

COMPUTATIONAL 
CRITERIA
Calculate density of 
the subgraph of 
neighbors (how close 
from complete is the 
graph formed by the 
node and its 
neighbors).

"TRANSLATION"
This local measure makes it possible to 
analyse relationships at the collective level: 
it can be translated as an indicator of 
participation in a group (or, on the 
opposite, loneliness, solitude). It opposes 
the notion of a bridge.

Lo
ca

l Shortest path

VISUAL PATTERN 
Presence of a path 
between the two 
nodes whose 
relationship is to be 
analyzed.

ISSUES 
Requires that we can 
follow the links in 
practice, which is 
possible only for 
small (undirected) 
networks and depends 
on the graphic 
settings. Finding a 
path can be difficult, 
and ensuring that this 
path is the shortest 
can be too difficult. 
However the visual 
distance is a loose 
approximation of the 
shortest path length.

TOPOLOGICAL PATTERN 
Shortest path(s).

ISSUES 
Can be 
computationally 
costly on big 
networks. Note that 
multiple shortest 
paths can exist.

USEFULNESS
Very adapted to the use of the graph as a 
research interface to test the relation of 
couples of nodes. Very close to the 
qualitative approach of the humanities, 
which are often focusing on a few 
individuals in the network.

SIMPLE DEFINITION 
Two nodes are 
connected by a path

HERMENEUTIC CRITERIA
Following the series 
of edges from one 
node to another to 
find the shortest.

COMPUTATIONAL 
CRITERIA
Geodesic distance, 
algorithms for 
shortest path 
detection.

"TRANSLATION"
Corresponds to the intuitive notion of 
distance in the graph structure. Note that 
this translation does not take into account 
the fact that nodes are not always aware of 
the steps between them and that the 
perceived distance is not always the shortest 
path.

Lo
ca

l Cliques

VISUAL PATTERN 
Very dense clusters.

ISSUES 
Possible for small or 
sparse networks, 
especially if the focus 
is on cliques that are 
4+ in size. Visually 
impossible for 
complex networks 
where cliques are very 
frequent.

TOPOLOGICAL PATTERN 
Clique (group of 
nodes with density of 
1).

ISSUES 
The number of cliques 
is often very high. 
Quasi-cliques are 
almost as important as 
cliques. But multiple 
algorithms deal with 
this structure (eg. 
clique percolation).

USEFULNESS
The number of cliques, their size and 
distribution are metrics that are 
complementary to the clustering coefficients 
(local and global). They can be used as a 
more strict community detection algoritm.

SIMPLE DEFINITION 
Groups of nodes 
where all possible 
edges exist between 
them.

HERMENEUTIC CRITERIA
Looking for groups of 
nodes where each of 
them is connected to 
all the others.

COMPUTATIONAL 
CRITERIA
A group of nodes has 
a density of 1. Clique 
detection algorithms 
exist.

"TRANSLATION"
The term clique itself refers to social groups 
of individuals who knows each other. They 
can be translated as communities, 
neighborhoods, closed societies.


