Translating Networks: Assessing Correspondence Between Network Visualisation and Analytics
Martin Grandjean, Mathieu Jacomy

To cite this version:
Martin Grandjean, Mathieu Jacomy. Translating Networks: Assessing Correspondence Between Network Visualisation and Analytics. Digital Humanities, 2019, Utrecht, Netherlands. halshs-02179024

HAL Id: halshs-02179024
https://halshs.archives-ouvertes.fr/halshs-02179024
Submitted on 10 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Translating Networks
Assessing correspondence between network visualisation and analytics

Digital Humanities 2019, Utrecht, Netherlands

Martin Grandjean (1) and Mathieu Jacomy (2)
1. University of Lausanne, Switzerland
2. Aalborg University, Denmark

Network interpretation is a widespread practice in the digital humanities, and its exercise is surprisingly flexible. While there is now a wide variety of uses in different fields from social network analysis (Ables et al., 2017) to the study of document circulation metadata (Grandjean, 2016) or literature and linguistic data (Maryl and Elder, 2017), many projects highlight the difficulty of bringing graph theory and their discipline into dialogue. Fortunately, the development of accessible software (Bastian et al., 2009), followed by new interfaces (Rosa Pérez et al., 2018; Wieneke et al., 2016), sometimes with an educational dimension (Beaulieu, 2017; Xanthos et al., 2016), has been accompanied in recent years by a critical reflection on our practices (Weingart, 2011; Kaufman et al., 2017), particularly with regard to visualisation. Yet, it often focuses on technical aspects.

In this paper, we propose to shift this emphasis and address the question of the researcher’s interpretative journey from visualisation to metrics resulting from the network structure. Often addressed in relation to graphical representation, when it is not used only as an illustration, the subjectivity of translation is all the more important when it comes to interpreting structural metrics. But these two things are closely related. To separate metrics from visualisation would be to forget that two historical examples of network representation, Euler (1736) and Moreno (1934), are not limited to a graphic reading (the term “network” itself would only appear in 1954 in Barnes’ work). In the first case, the demonstration was based on a degree centrality measurement whereas in the second case the author made the difference between “stars” and “unchosen” individuals while qualifying the edges as inbound and outbound relationships.

This is why this paper propose to examine the practice of visual reading and metrics-based analysis in a correspondence table that clarifies the subjectivity of the translation while presenting possible and generic interpretation scenarios.

Visual approach: making the global structure readable

The way we read networks has changed over time. Historically the question of network readability was asked in terms of aesthetic criteria. In the word of Jacob Moreno “the fewer the number of lines crossing, the better the sociogram”. Even in the nineties, when giving birth to the modern layout algorithm, Fruchterman and Reingold (1991) aimed at “minimizing edge crossings” and “reflecting inherent symmetry”. However, these criteria do not seem so crucial to practices observed nowadays in digital humanities (and beyond).
Looking at recent papers in digital humanities, networks appear to have a wide range of usages. Their visualisations are either self-sufficient [fig. 1.a.] (Algee-Hewitt, 2018; Pino-Diaz and Fiormonte, 2018; Verhoeven et al., 2018; Marraccini, 2017), an optional help to understanding [fig. 1.b.] (Colavizza et al., 2016) or strongly connected to the text. Some authors use them to highlight the position of a specific node [fig. 1.c.] (Moretti et al., 2016), to compare layouts [fig. 1.d.] (Sozinova, 2016) or the layout of the same graph in time [fig. 1.d.] (Wright, 2016). They may aim at visualising communities [fig. 1.f.] (Rybicki et al., 2018; Torres-Yepez and Zreik, 2018), mapping a general structure [fig. 1.g.] (Gao et al., 2017), tracking density patterns [fig. 1.h.] (Gao et al., 2018) or monitoring algorithms like modularity clustering [fig. 1.i.] (Choinski and Rybicki, 2017). These usages reveal a different perspective in network visualisation where we expect the visual to translate underlying relational structures. It helps to give different names to these two different approaches. We call diagrammatic the perspective where the network is a diagram that we read by following paths. We do not want the edges to cross and we use aesthetic criteria to bring clarity. It was Moreno’s perspective, and is still relevant to small networks and local exploration. Then we call topological the perspective where the network is a structure that we read by detecting patterns. We expect the visualisation to help us retrieve structural features like clustering or centralities. It is a common practice in digital humanities, more holistic and relevant to larger networks. Aside or in
complement, classic data visualisation is also employed to visualise non-relational structures (node attributes, etc.).

In the topological perspective, a standard procedure is to assign nodes a position using a force-driven algorithm. This family of algorithms is known for displaying clusters that match a widely used measure of community detection, modularity clustering (Noack, 2009). Its translation remains however difficult to interpret locally, as we can never give a simple explanation for a node’s position. Classic data visualisation also translates non-relational structures, by itself or combined with a relational perspective. Different structural features may require different visualisations: the examples of fig. 2 shows curated visualisations using categories [fig. 2.a boys and girls, in the famous example of (Moreno, 1934)], temporality [fig. 2.b] (Jänicke and Focht, 2017) or hierarchy [fig. 2.c] (Grandjean, 2017). Though very different from force-driven placement, they display better certain structural features.

Objectifying the structure with metrics

Often opposed to visual interpretation, of which they would be a more objective and reliable representation, centrality measures have a history that goes back to more than half a century and shows that they are not immutable and require constant adaptation to usage. Moreover, Freeman (1979) insists on the fact that the notion of “centrality” is the result of several intuitive conceptions. To remind that these metrics are based on “intuition” means to recognize that they have no meaning in themselves and that their interpretation must be rediscussed - and therefore translated - according to the context. This paper thus proposes to list and evaluate to which extent these metrics are applicable to humanities and social science data and can, if necessary, be “translated” into this language to complement visual analyses.

Global properties

Statistical analysis allows for comparing networks across multiple dimensions at once (Tank and Chen, 2017). For instance, comparing the number of nodes and edges of different graphs of the same type (Trlcke et al., 2016) can be a ranking tool that is directly translatable into natural language. In addition to that, studies suggest that density (the number of edges in relation to the number of nodes) is relevant to analyse character networks, especially when compared within a homogeneous collection (Evalyn and Gauch, 2018; Grandjean, 2015). This is also the case when measuring average path length (Trlcke et al., 2016).

Fig. 2 Various layouts do not follow a force-driven algorithm to make non-relational dimensions of the data explicit.
Local properties

With regard to local measures, the **degree** (number of neighbouring nodes) is the simplest centrality, and the only one systematically used between the late 1950s and early 1970s, before the development of more diversified metrics (Freeman, 1979). Its simplicity allows for a transparent translation: in a literary network, for example, it counts the number of times one character speaks to another (Jannidis et al., 2016).

The notion of **betweenness centrality** disrupts the conception of what the “centre” of a network may consist of. Its ability to reveal structural elements bridging large, immediately visible clusters makes it popular in the social sciences since the emergence of Granovetter’s concept of “weak ties” (Granovetter, 1973). Betweenness is very closely linked to the notion of circulation: it counts the shortest paths to detect intermediate “bridges” or “key passages” capable of opening or locking certain parts of the network (Tayler and Neugebauer, 2018). Depending on applications, these are therefore both positions of power and vulnerable places.

The **closeness centrality** allows to highlight the “geographical” middle of the graph. In networks of a certain density and when they are not divided into several distinct communities, the closeness is generally fairly evenly distributed and allows a good translation of the notions of “center” and “periphery”.

For its part, the **eigenvector centrality** is quite complicated to translate since it works iteratively and is very much dependent on the structural context at short and medium range around a node. “Prestige” or “influence” centrality, named “power” centrality by its author (Bonacich, 1972),

Fig. 3 Three levels of interpretation that can be articulated: visual analysis (examples top left), use of global metrics (examples bottom right) and use of local metrics (highlighted nodes).
it qualifies a node’s environment while operating in cascade: a well-connected node gives its neighbours a part of its authority capital, and so on. It is therefore particularly useful when trying to analyse the hierarchy of the nodes in a graph (Piper et al., 2017). The most well-known use of this measure is the backbone of the Google search engine: the PageRank algorithm (Brin and Page, 1998).

Towards mixed approaches

This contribution proposes a table of correspondence between the concepts of graph theory and the practice of visual network analysis in the social science and humanities. This effort must not be understood as a demarcationist attempt at telling the right method from the wrong. The “dictionary” is not exhaustive and only aims at helping to bridge two worlds that have more in common that what meets the eye. By focusing on translating methods, we want to stress that crossing points are real even though they do not come without issues, and thus require our methodological attention.

We also note that the analysis should not be limited to a catalogue of well-known methods (basic centralities, etc.) but that approaches combining several of those should be encouraged to obtain an optimal and innovative “translation”. In this way, we could compare metrics (Escobar and Schauf, 2018) or combine them to establish rankings (Fischer et al., 2018; Grandjean, 2018: 328). Furthermore, the enrichment of the networks by means of categories that are not dependent on the structure, like the gender of individuals in a social network (Dunst and Hartel, 2017) or the discipline of projects in a scientometric analysis (Grandjean et al., 2017), allows to test translation and interpretation hypotheses by avoiding the blind approach of testing all possible graph metrics.

References

Euler L. (1736). Solutio Problematis ad Geometriam Situs, Opera Omnia, 7, 128-140.

Gao J. et al. (2017). The Intellectual Structure of Digital Humanities: An Author Co-Citation Analysis, Digital Humanities 2017, Montreal.

Network visual and topological patterns

This table of correspondence between network analysis concepts and interpretations or "translations" is a work in progress. The authors propose this document to open a discussion on the most relevant translation scenarios and examples/references from the different disciplines applying these methods.

<table>
<thead>
<tr>
<th>NOTION</th>
<th>VISUAL ANALYSIS</th>
<th>COMPUTATIONAL ANALYSIS</th>
<th>INTERPRETATIVE POTENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph size (nodes)
SIMPLE DEFINITION
How many nodes are there in the graph?</td>
<td>VISUAL PATTERN
There are few or many nodes.</td>
<td>TOPOLOGICAL PATTERN
Nodes count.</td>
<td>INTERNALIZATION
Very basic information but useful when comparing networks.</td>
</tr>
<tr>
<td>VISUAL ANALYSIS
HERMENEUTIC CRITERIA
Counting the nodes.</td>
<td>ISSUES
Though it is easy to have an estimation of the total number of nodes, visualization decisions (for example, setting node sizes on a large scale) can make nodes with few connections difficult to see.</td>
<td>ISSUES
Note: Note that in graph theory the count of nodes is referred to as "graph order" while the "graph size" refers to the count of edges.</td>
<td>INTERNALIZATION
The intuition of the size of a network is appropriate.</td>
</tr>
<tr>
<td>COMPUTATIONAL ANALYSIS
EXTERNALIZATION
Counting the nodes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSLATION
Sometimes translated as size in natural language, but the number of edges is usually expressed in comparison to the number of nodes to indicate density or complexity, not for itself.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPH SIZE</td>
<td>VISUAL PATTERN
There are few or many edges.</td>
<td>TOPOLOGICAL PATTERN
Edges count.</td>
<td>INTERNALIZATION
Very basic information but useful when comparing networks.</td>
</tr>
<tr>
<td>SIMPLE DEFINITION
Counting the edges.</td>
<td>ISSUES
The total number is hard to estimate as soon as the graph is not a simple diagram anymore. The distribution of edges and their weight has an influence on the visual estimation. The difficulty to count edges visually is a known issue, and probably impossible to overcome.</td>
<td>ISSUES
Note: Note that in graph theory the count of edges is referred to as "graph size" while the count of nodes is "graph order".</td>
<td>INTERNALIZATION
</td>
</tr>
<tr>
<td>VISUAL ANALYSIS
HERMENEUTIC CRITERIA
Counting the edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTATIONAL ANALYSIS
EXTERNALIZATION
Counting the edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSLATION
Sometimes translated as "size" in a natural language, but the number of edges is usually expressed in comparison to the number of nodes to indicate density or complexity, not for itself.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density
SIMPLE DEFINITION
How connected are the nodes overall?</td>
<td>VISUAL PATTERN
The graph is more or less compact. If only certain parts are more compact, see "clusters" below.</td>
<td>TOPOLOGICAL PATTERN
Network density.</td>
<td>INTERNALIZATION
A very important notion that allows to compare networks of different sizes if they are produced in the same way or on the basis of comparable data sets.</td>
</tr>
<tr>
<td>HERMENEUTIC CRITERIA
Accumulation of edges, cluttered groups of nodes, "hairball". Easier to estimate in situation of comparison.</td>
<td>ISSUES
The less edges there are, the easier to estimate. High densities are difficult to distinguish because the overall appearance of a graph with 60% edges will look close to a graph with 90%. The visual aspect also depends on the layout algorithm used: some are more efficient at representing clusters.</td>
<td>ISSUES
The formula of density slightly changes depending on the type of networks (directed or not, self-loops allowed or not...).</td>
<td>INTERNALIZATION
</td>
</tr>
<tr>
<td>VISUAL ANALYSIS
HERMENEUTIC CRITERIA
Counting the edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTATIONAL ANALYSIS
EXTERNALIZATION
Divide the actual number of edges by the number of all potential edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSLATION
<code>$Density$, $complexity$, $completeness$.</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter
SIMPLE DEFINITION
How far are the most distant nodes?</td>
<td>VISUAL PATTERN
The longest shortest path in the graph, or the two most visually distant nodes.</td>
<td>TOPOLOGICAL PATTERN
Diameter.</td>
<td>EXTERNALIZATION
Can be used to describe how the density is distributed: complex networks are often characterized by a small diameter while high diameter is frequent in geographical networks.</td>
</tr>
<tr>
<td>HERMENEUTIC CRITERIA
Following the series of edges from one node to another, trying to find the longest one. If impossible, the most visually distant node is acceptable.</td>
<td>ISSUES
Generally hard or impossible to see except on small networks, but quite easy to estimate by following a few paths that go from a side to another, or just looking at most distant nodes in the same connected component (visual distance approximately correlates with geographic distance).</td>
<td>ISSUES
Only relevant in a connected graph.</td>
<td>EXTERNALIZATION
<code>$Size$, $breadth$, $width$.</code></td>
</tr>
<tr>
<td>VISUAL ANALYSIS
HERMENEUTIC CRITERIA
Counting the edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTATIONAL ANALYSIS
EXTERNALIZATION
Maximal geodesic distance of all the pairs of nodes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSLATION
<code>$Size$, $breadth$, $width$.</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average path length
SIMPLE DEFINITION
On average, how close are nodes to each other?</td>
<td>VISUAL PATTERN
The average distance between a couple of nodes.</td>
<td>TOPOLOGICAL PATTERN
Average path length.</td>
<td>EXTERNALIZATION
Could serve as a complement to diameter because the latter can be influenced by a few nodes that are very far from the main component of the graph. Can replace the diameter in case of unconnected graphs.</td>
</tr>
<tr>
<td>HERMENEUTIC CRITERIA
Following the edges between every couples of nodes.</td>
<td>ISSUES
Impossible to calculate visually since it is an average covering a very large number of values (already difficult to calculate). Loosely relates to density, which is easier to estimate.</td>
<td>ISSUES
Since it is an average, this value does not allow conclusions to be drawn at the individual level if the graph is strongly clustered. The average path length is more complicated for a directed graph than for an undirected graph.</td>
<td>EXTERNALIZATION
<code>Can be used to describe the $size$, $breadth$ or $width$ of the network. But it can also be translated into an indicator of a small world situation.</code></td>
</tr>
<tr>
<td>VISUAL ANALYSIS
HERMENEUTIC CRITERIA
Counting the edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTATIONAL ANALYSIS
EXTERNALIZATION
Average number of steps along the shortest paths for all possible pairs of nodes.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notion | Visual Analysis | Computational Analysis | Interpretative Potential
--- | --- | --- | ---
Connectedness | Simple Definition
Is the graph a connected system where there is a path between every node? | **Global**
There must be only one component, not several groups of nodes disconnected from each other. | The absence of edges between components is more remarkable if they contain many nodes. In many applied cases, connected graphs are artificially created by removing ordinary nodes (frequent in messy extracted data).
Local
Depending on the layout, it is possible that “islands” hide in dense groups of nodes, but with a properly set force-directed layout, the risk is marginal. Possibly the easiest property to observe visually.
Hermeneutic Criteria
Looking at empty areas (structural holes). Groups count as disconnected only if there are no edges between them.

Clusters/Communities | Simple Definition
What are the groups where nodes are more connected to each other? | **Global**
Clusters (uneven distribution of nodes). | The notion of “bridges” is often used even for directed graphs. It is the most used metric for detecting bridges, but it does not exactly meet the intuition.
Local
Triangles are easy to count visually in a small network, but the ratio between this result and the total number of potential triangles is impossible to calculate directly. Very difficult to count in dense graphs. Graphs with clusters and/or visually dense tend to have a higher clustering coefficient. | The absence of edges between components is more remarkable if they contain many nodes. In many applied cases, connected graphs are artificially created by removing ordinary nodes (frequent in messy extracted data).
Hermeneutic Criteria
Looking for groups of nodes, as visually possible. | **Global**
Number of closed triplets. | The term cluster has become part of the common language, but we also like to talk about groups, communities or hubs. This notion of community is very directly related to the way in which the social sciences and humanities use the metaphor of the “network”.
Local
Number of closed triplets by the number of triplets in the graph. | **Global**
The global clustering coefficient is obtained by dividing the number of closed triplets by the number of triplets in the graph. | A global measure that complements density well and, like the latter, is useful for comparing similar networks with each other.
Hermeneutic Criteria
Counting the edges converging to that node. | **Local**
The average clustering coefficient is quite different but serve a relatively close purpose it is the average of the local clustering coefficient of all the nodes. | A global measure that complements density well and, like the latter, is useful for comparing similar networks with each other.

Connectivity (degree) | Simple Definition
How well connected is a node / how many links it has / how many neighbors | **Global**
There are many links to the node. | The simplest form of centrality. In most cases, the degree shows information that is already known as part of the basic data and not dependent on the structure. This is why we often focus on the degree distribution.
Local
There are many links to the node. | **Global**
Number of closed triplets. | The basic intuition of the number of neighbors. In directed networks, interpretation varies greatly between in- and out-degrees; indegree is often the primary way to look at a hierarchy of nodes, because being “cited” is often a good proxy for authority/noriety.
Hermeneutic Criteria
Counting the edges converging to that node. | **Global**
Number of closed triplets by the number of triplets in the graph. (Degree). | The simplest form of centrality. In most cases, the degree shows information that is already known as part of the basic data and not dependent on the structure. This is why we often focus on the degree distribution.

Betweenness | Simple Definition
Being a bridge, connecting otherwise separated groups of nodes. Removing that node would break many shortest paths. | **Global**
There must be a path between each pair of nodes. | The notion of “bridges” is often used even for directed graphs. It is the most used metric for detecting bridges, but it does not exactly meet the intuition.
Local
Many bridges look as expected, they connect over empty spaces. But sometimes, bridges are hidden in the complicated structure of the image. It is generally easier to see the bridging edges than the bridging nodes (however, most of the studies using betweenness centrality focus on bridging nodes). | **Global**
The notion of bridges implemented by betweenness centrality meets both intuition of a bridge and of a center. Indeed both a bridge and the center of a star are things that, if removed, disconnect parts of the network. In that sense betweenness is also a “centrality.”
Hermeneutic Criteria
Looking for an edge appearing through a (mostly) empty area between large groups of nodes. | **Local**
The score of betweenness centrality represents the number of shortest paths through a given node or edge. | The notion of “bridges” (but also link, gateway, border or key passage) is very often used when applying network analysis to social or circulation issues. In some cases, it can represent a form of social capital because it describes a structural position of power (or vulnerability).
<table>
<thead>
<tr>
<th>NOTION</th>
<th>VISUAL ANALYSIS</th>
<th>COMPUTATIONAL ANALYSIS</th>
<th>INTERPRETATIVE POTENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Closeness</td>
<td>The geographical center of the graph.</td>
<td>Closeness centrality.</td>
<td>There is no single implementation of centrality, but closeness centrality is the most aligned with the notion of a middle point that is in proximity to all others. It looks at the structural distance to other nodes, and can be interpreted as such.</td>
</tr>
<tr>
<td>Prestige (eigenvector)</td>
<td>Proximity to well connected nodes (often inside a cluster).</td>
<td>Eigenvector centrality or Page Rank.</td>
<td>Excellent to describe the center or the middle of a network, especially when the latter is described in topographical terms. Low values of this metric are very appropriate for the use of concepts which are the opposite of the center: the periphery, the margins, etc.</td>
</tr>
<tr>
<td>Local clustering coefficient</td>
<td>Nodes are inside a cluster.</td>
<td>Clustering coefficient (local).</td>
<td>Meets a notion of redundancy in the local connections, comparable to centrality but at a very local scale. Tells if a node is in a clustered environment. Complex networks are often characterized by a high average clustering coefficient.</td>
</tr>
<tr>
<td>Shortest path</td>
<td>Presence of a path between the two nodes whose relationship is to be analyzed.</td>
<td>Shortest path(s).</td>
<td>Very adapted to the use of the graph as a research interface to test the relation of couples of nodes. Very close to the qualitative approach of the humanities, which are often focusing on a few individuals in the network.</td>
</tr>
<tr>
<td>Cliques</td>
<td>Groups of nodes where all possible edges exist between them.</td>
<td>Clique (group of nodes with density of 1).</td>
<td>The number of cliques, their size and distribution are metrics that are complementary to the clustering coefficients (local and global). They can be used as a more strict community detection algorithm.</td>
</tr>
</tbody>
</table>

SIMPLE DEFINITION:
- Local Closeness: Being in the middle of the network.
- Prestige (eigenvector): Being connected to well connected nodes without necessarily having a large number of neighbors itself.
- Local clustering coefficient: Are the neighbours of a node also connected together?
- Shortest path: Two nodes are connected by a path.
- Cliques: Groups of nodes where all possible edges exist between them.

HERMENEUTIC CRITERIA:
- Detect: The visual estimation of centrality is considered acceptable, but it remains an evaluation. It is harder to find in very sparse graphs.
- Visual: The visual pattern of a bridge is generally hard to see and visual interpretation is considered unreliable. Exceptions are small networks, nodes that have only a few neighbors that we see well, and nodes that are only connected to a very dense cluster.
- Shortest: Requires that we can follow the links in practice, which is possible only for small (undirected) networks and depends on the graphic settings. Finding a path can be difficult, and ensuring that this path is the shortest can be too difficult. However the visual distance is a loose approximation of the shortest path length.

TOPOLOGICAL PATTERN:
- Closeness centrality is the score of closeness centrality is the average length of the geodesic distances to all the other nodes.
- Eigenvector centrality or Page Rank.
- Clustering coefficient (local).
- Barycenter (the center of the network).
- Prestige.

VISUAL PATTERN:
- Closeness centrality is hard to see, though it correlates with other forms of centrality that point to well connected nodes at the center of the graph.
- Proximity to well connected nodes (often inside a cluster).
- Nodes are inside a cluster.
- Looking for nodes that have many edges in their cluster (where the other nodes are also connected together). Bridges have a low clustering coefficient.
- Following the series of edges from one node to another to find the shortest.
- Very dense clusters.
- Groups of nodes where all possible edges exist between them.