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Abstract.  

The paper is an overview of the main significant advances in the knowledge of brain functioning by 

modern neuroscience that have contributed to the emergence of neuroeconomics and its rise over the 

past two decades. These advances are grouped over three non-independent topics referred to as the 

"emo-rational” brain, "social" brain, and "computational" brain. For each topic, it emphasizes findings 

considered as critical to the birth and development of neuroeconomics while highlighting some of 

prominent questions about which knowledge should be improved by future research. In parallel, it 

shows that the boundaries between neuroeconomics and several recent subfields of cognitive 

neuroscience, such as affective, social, and more generally, decision neuroscience, are rather porous. 

It suggests that a greater autonomy of neuroeconomics should perhaps come from the development of 

studies about more economic policy-oriented concerns. In order to make the paper accessible to a 

large audience the various neuroscientific notions used are defined and briefly explained. In the same 

way, for economists not specialized in experimental and behavioral economics, the definition of the 

main economic models referred to in the text is recalled. 
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By the late 1990s, several converging trends in economics, psychology, and neuroscience 

had set the stage for the birth of a new scientific field known as “neuroeconomics.” The take-

off of experimental economics in the 1980s undoubtedly favored the emergence of the first 

studies in neuroeconomics by offering a set of well codified experimental designs. 

Nevertheless, it is generally agreed that this new field is mainly based on the neuroscientific 

revolution of the 1990s, with the provision of sophisticated investigating tools, primarily 

functional magnetic resonance imaging (fMRI), in which metabolic correlates of neural 

activity can be measured non-invasively. In a more fundamental way, neuroeconomics has 

largely built on the fundamental knowledge developed by several branches of modern 

neuroscience.  

Neuroscience has always been a multi-disciplinary field, covering different explanatory 

goals, concepts and vocabularies, and different techniques and methods. One explicit aim of 

the Society for Neuroscience, which came into existence in 1970, was to integrate all these 

fields with the common goal of understanding the nervous system (Craver, 2007). Overall, 

neuroscience is usually divided into two vast fields: molecular and cellular neuroscience and 

cognitive and behavioral neuroscience. The former studies neurons at a cellular level and 

examines the biology of the nervous system, while the latter is devoted to the study of neural 

mechanisms of mental and behavioral activities, or more generally, the relationships among 

the brain, mind, and action (Gazzaniga and Mangun, eds., 2014). Neuroeconomics is 

closely, but not exclusively, associated with cognitive and behavioral neuroscience.  

More specifically, within the mosaic of neuroscience, several branches support the field of 

neuroeconomics, including neurobiology, neuroimagery, neuroanatomy, neuropsychology, 

neurophysiology, neuroendocrinology, and computational and theoretical neuroscience. 

Neurobiology focuses on the overall biological functioning of the nervous system in relation 

to genetics and is typically regarded as the flagship branch of neuroscience. Neuroimagery 

enables the identification of brain regions active (i.e. “firing”) when a subject is performing 

specific tasks or is receiving information (brain imaging studies). Neuroanatomy increasingly 

improves the knowledge of the structure and organization of the nervous system. 

Neuropsychology is devoted to the relationships between brain structures and functions by 

comparing healthy subjects and patients with brain damage or neurological or psychiatric 

disorders (lesions studies). Neurophysiology—by inserting fine electrodes into neural tissue 

immediately adjacent to the neurons of interest—allows the recording of electrical activity 

when, for example, a non-human primate is performing a specific task (single neuron 

recording or electrophysiological studies). Neuroendocrinology deals with the relationship 

between the nervous and hormonal systems, revealing, in particular, the impact of some 

hormones or neuropeptides on behaviors and mental states (pharmacological interventions). 
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Computational and theoretical neuroscience studies computational abilities of the nervous 

system and develops formal models reporting on algorithms for implementing well defined 

functions often in relation to artificial intelligence.  

On the other hand, cognitive and behavioral neuroscience include several other sub-

disciplines, in particular decision neuroscience, affective neuroscience, and social 

neuroscience, three cutting-edge fields whose boundaries with neuroeconomics are 

occasionally blurred due to the shared focus on decision-making, emotions, and behaviors. 

Decision neuroscience is broadly defined as a wide converging field between cognitive 

neuroscience and decision sciences (such as psychology and economics), while affective 

and social neurosciences pursue neighboring but more limited ends: the former studies 

neural mechanisms involved especially in emotion and affects, whereas the latter is devoted 

to understanding how biological systems implement social processes and behavior. 

The goal of the present paper is to provide an overview of the main significant advances 

in the knowledge of brain functioning by modern neuroscience that have contributed to the 

emergence of neuroeconomics and its rise over the past two decades, while highlighting 

some parallels between this new scientific field and, in particular, decision, affective, and 

social neurosciences (for a first brief history of neuroeconomics, refer to Glimcher and Fehr, 

2014). These key neuroscientific advances are grouped over three non-independent topics. 

The first topic is devoted to emotion processing by the brain and the findings regarding the 

interconnection of emotions and higher cognitive processes. The key role of emotion in 

economic decisions is now unanimously recognized as a teaching of neuroeconomics, in the 

wake of behavioral economics (Sanfey et al., 2006; Engelman and Hare, 2018). Yet, 

neuroanatomy, affective neuroscience, and neuropsychology are at the heart of identifying 

neural structures and mechanisms involved in both cognitive processes and emotional 

responses. The second topic refers to the human brain’s considerable flexibility and ability to 

undertake complex patterns of social cognition; social neuroeconomics focuses on decisions 

made in a social context and seeks to explain prosocial behaviors, such as trust (Fehr and 

Camerer, 2007; Sanfey, 2007; Rilling and Sanfey, 2014; Fehr and Krajbich, 2014; Engelman 

and Fehr, 2017). This neuroeconomic subfield relies partly on findings of social neuroscience 

about the neural networks that are responsible for interpreting other people’s thoughts and 

feelings, sympathizing with their states of mind, and acting in a moral manner, namely 

“mentalizing”, mirror neurons, and empathy systems. The third topic deals with reward 

learning as a new theoretical framework for neuroscience and the identification of brain 

mechanisms deployed for learning and valuing the many stimuli the brain is continuously 

subjected to. Neuroeconomics can now draw the contours of a computational model of how 

the brain makes “simple” economic choices, and recent studies have explored how this 

structural model may extend to more complex decisions, such as risky decisions, 
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intertemporal choices, and social decisions (Fehr and Rangel, 2011; Rangel and Clithero, 

2014; Berridge and O’Doherty, 2014; Glimcher, 2011a, 2014a; Ruff and Fehr, 2014; 

Hutcherson, Bushong, and Rangel, 2015; Krajbich et al., 2015). Here, these studies are 

mainly rooted in neurobiology and computational and theoretical neuroscience while taking 

into account findings from studies relating to the other two topics.  

The paper is organized as follows. Once briefly mentioned the aim of neuroeconomics 

(section 1), I will deal with these three topics by talking respectively about the “emo-rational 

brain” (section 2), “social brain” (section 3), and “computational brain” (section 4).  

1. The Aim of Neuroeconomics  

The pioneers of this young scientific field have different definitions for neuroeconomics. 

Originally, several definitions stand out from two separate communities: one predominantly 

(although not exclusively) behavioral economic (what will be called the “behavioral 

economics in the scanner” program) and the other predominantly (although not exclusively) 

neuroscientific (called the “neural or neurocellular economics” program). However, it can be 

argued that these two trends today are converging on a largely shared research agenda. 

Two early distinct programs: “behavioral economics in the scanner” and “neural 

economics” 

According to the most frequently used definitions given by economists, the purpose of 

neuroeconomics is to study influence of the brain and of the nervous system on economic 

behaviors. The now available neural and physiological measures should be used for a better 

understanding of the nature of deliberative and affective processes underlying decision 

making by economic agents (McCabe, 2003; Camerer, Loewenstein, Prelec, 2005; Camerer, 

2007, 2008a). Neuroeconomics is recognized as a transdisciplinary domain using 

neuroscientific tools of measure in order to identify the neural bases of economic decisions 

(Zac, 2004). At the crossroads of economics and neuroscience, this new approach seeks to 

a better knowledge of choice models by taking advantage of each ones (Sanfey et al., 2006). 

In other words, neuroeconomics simply seeks to complete the behavioral economics 

approach by inquiring upon the neurobiological origin of psychological traits that these new 

economic models assign to individuals. A large part of economics is now soaked with 

psychology; with the help of neuroeconomics, this discipline should turn into a biological 

science. 

The shared characteristic of these first definitions of neuroeconomics is emphasizing the 

benefits of using neuroscientific tools for studying economic behaviors. The whole range of 

tools used today in cognitive neuroscience can be divided into two main categories: (1) 

measurement techniques, that measure changes in brain function while an experimental 
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subject (human or animal) engages in some cognitive activity, and (2) manipulation 

techniques, which examine how perturbations of the brain’s function (either by transiently 

changing neural firing rates or neurotransmitter levels or by permanently damaging tissue) 

change cognitive functions or behavior. Single-unit recording, electroencephalography 

(EEG), magnetoencephalography (MEG), positron emission tomography (PET), and fMRI 

are measurement techniques commonly used in neuroscience; however, fMRI is by far the 

most frequently used tool in neuroeconomics1. Manipulation techniques can be grouped into 

three classes: 1) brain stimulation techniques, including transcranial magnetic stimulation 

(TMS) and transcranial direct current stimulation (TDCS); 2) neuropharmacological 

interventions (classically, manipulation of neuromodulators, including neurotransmitters such 

as dopamine, serotonin, and noradrenaline/norepinephrine, as well as hormones such as 

oxytocin and testosterone); and 3) approaches that study the consequences of brain lesions 

and neurological or psychiatric disorders. In neuroeconomics, only a few experiments have 

used brain stimulation techniques (Knoch et al., 2006a; Knoch et al., 2006b; Knoch et al., 

2008; Karton and Bachmann, 2011; Baumgartner et al., 2011; Ruff, Ugazio and Fehr, 2013), 

while a lot of experiments now involve neuropharmacological interventions, mainly 

concerning hormones (see Crockett and Fehr, 2014)2. Ruff and Huettel (2014) (see also 

Genon et al., 2018) have evaluated the strengths and limitations of these various cognitive 

neuroscience approaches, which are added to older psychophysiology tools and methods for 

experimentally studying emotional and affective responses. Whether it concerns direct 

observation of body physiological activation (heart rate, blood pressure, galvanic skin 

response, eye-tracking, response delays, and recording of subjects’ activity) or measuring 

emotions via facial expressions (Darwin, 1859; Ekmann, 1982; Fernandez-Dols and J. 

Russell, 2017), these methods are commonly used today in neuroeconomic experiments. 

A different neuroeconomics definition was initially adopted by other researchers. Don 

Ross used the name “behavioral economics in the scanner” for the works corresponding to 

previous definitions, and identified another trend in the literature, which he named 

“neurocellular economics” (Ross, 2005, 2008) (Vromen, 2007, also identified these two 

distinct programs). Here, the goal is to borrow from microeconomics concepts and 

mathematics of equilibrium and optimum for modeling neural cells activity and testing 

hypotheses about neural learning. According to this viewpoint, standard economic theory 

may be suitable for modeling neuron networks than current individuals as economic “agents”. 

The objective functions optimized by “agents,” their utility functions, as we suppose in 

microeconomics, may in principle apply to all kinds of “agents,” including sub-personal 

                                                           
1 Near-infrared spectography is another method very recently introduced in experiments (see Kopton and Kenning, 2014). 
2 Additional invasive stimulation methods (as microstimulation and optogenetics) have recently been introduced in nonhuman primate 
experiments (for optogenetics, see Zalocusky and Deisseroth, 2014, and Galvan et al., 2017). 
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agents such as the neuron, neurotransmitter system, or quasi-modular circuit (Ross, 2008, p. 

479). In other words, this author rejects the idea of anthropomorphism as an initial necessary 

condition for neuroeconomics. Thus, neurocellular economics, which I prefer to call “neural 

economics” after Montague and Berns (2002), borrows the conceptual arsenal of economic 

theory for understanding neural mechanisms through which the brain is valuing and 

comparing the multiple stimuli it is subjected to in decision-making. In a way, the project is in 

contrast to the goal of behavioral economics in the scanner; rather than seeking to improve 

economic theory by borrowing tools from neuroscience, the purpose is to use standard 

economic theory for analyzing brain functioning (Glimcher, 2003; Montague, 2007).  

It is well known that neuroeconomics can be divided into these two distinct topics based 

on theoretical roots and project programs. In the 1st edition of the Handbook of 

Neuroeconomics (Glimcher et al., 2009), the editors have agreed to this internal division 

among neuroeconomists. This distinction is useful because many critics toward 

neuroeconomics expressed by some economists were aimed at the “behavioral economics in 

the scanner” program3. Nevertheless, in the light of recent research evolution, its relevance is 

going to fade. Currently, these two historical neuroeconomics programs are in the process of 

converging on a largely shared research agenda. 

“Value-based” decisions: the main research topic assigned to neuroeconomics 

For many scholars, now, the transfer of knowledge from economic theory to neuroscience 

(i.e. the first goal of “neural economics”) would have constituted only a first step during 

information exchange between the two scientific disciplines. A transfer in the reverse 

direction, from neuroscience to economic theory, has to be followed. Indeed, the final goal of 

neuroeconomics is first and foremost improving the predictive power of economic theory4. 

This can be achieved by inserting the biological constraints that brain functioning poses to 

behaviors into economic theory. In this respect, the viewpoint of Paul Glimcher, a pioneer in 

neural economics, is meaningful when he writes in the introduction of his last influential book, 

“we know that there are things human brains can and cannot do. If economic theories about 

how people make choices should be constrained by what human brains actually can do, then 

                                                           
3 In short, the argument is that if a phenomenon is already well known in psychological and behavioral terms, knowledge of neural 
correlates and mechanisms would be useless for economists (e.g. Smith, 2008, Chap. 14; Harrison, 2008a, 2008b; Rubinstein, 2008). In 
addition to this issue of utility for economists, controversial debates about neuroeconomics bear on reliability of findings, in relation 
particularly with the so-called “reverse inference fallacy” and the non-trivial statistical analysis of fMRI data (Poldrack, 2006; Harrison, 
2008b; Harrison and Ross, 2010; Bourgeois-Gironde, 2010; Poldrack et al., 2017) but also on legitimacy of the approach from an 
epistemological standpoint, in particular the “mindless economics” argument (Gul and Pesendorfer, 2005/2008) (see e.g. Serra, 2016, 
Chap. 3, for a recent statement of the discussions). 
4 In the same time, neuroeconomics results are useful in psychiatry for analyzing a constellation of mental and neurological disorders 
including frontotemporal dementia, obsessive-compulsive disorder, and drug addiction (see Zald and Rauch, eds., 2006, Part 3; Maia and 
Frank, 2011; several Chapters in Schutt, Seidman, and Keshaven, eds., 2015; Dreher and Tremblay, 2017, Part IV; Allos-Ferrer, 2018).  
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quite a bit of contemporary neuroscience can be of use in the construction of economic 

theory” (Glimcher, 2011a, p. xvii). 

Vromen (2011) appears to be the first scholar who noted this convergence between the 

two main historical neuroeconomics programs by focusing just on Glimcher’s thinking 

evolution from early to late 2000s (Glimcher, 2003, 2011a). However, this evolution is 

strongly detected in recent works of many neuroeconomists, including, but not limited to, B. 

Douglas Bernheim, Colin Camerer, Ernst Fehr, Joseph Kable, and Antonio Rangel (see 

Serra, 2016, Chap. 1). 

Perceptual decisions and value-based decisions 

In decision-making, how does the brain choose among options? To answer this question, 

we have to first precisely make the decision nature relevant. Cognitive psychologists and 

decision neuroscientists now distinguish between two great decision families: (1) “perceptual” 

decisions, which refer to processes by which a subject is reacting to a sensorial input (e.g., at 

the airport, for the employee who is scanning the personal luggage of passengers, to decide 

instantly whether it is a gun or a hair-drier, or for a woman who is about to cross a street, to 

decide how quickly is a particular car moving toward her); (2) “value-based” decisions 

(VBDs), which correspond to the subject idiosyncratic preferences (for instance, to choose 

between eggs or cereals for the breakfast, or between different financial investments in a 

retirement plan). Contrary to perceptual decisions, VBDs are subjective by nature. In this 

regard, they correspond to behaviors that economists typically are studying in their models. 

Glimcher (2014a) and Wang (2014) proposed an overview of these “twin approaches” of 

decision-making in neuroscience: “The theoretical background of these approaches is clearly 

distinct: perceptual decisions are based on the standard neurobiological theory of perceptual 

categorization, the “signal detection theory,” whereas VBD refers to the standard 

microeconomic theory, the expected utility theory.  

The modern idea that perceptual experience could be studied as a mental phenomenon 

distinct from external physical measurements has its origins in the work of the 19th century 

German physiologist Ernst Weber who showed that human perceptual judgments are 

imperfect and, although probabilistic, quite lawful (Weber, 1834). His more important finding 

that this confusability of perceptual judgments scales as a constant fraction of stimulus 

intensity became codified as a psychological law. Signal detection theory was largely 

developed by Green and Sweets (1966) who put a set of assumptions that are meant to 

correlate stimulus properties directly with perceptual judgments about confusability. The key 

assumptions are that real-world stimuli give rise to percepts through a random process like 

drawing from a Gaussian distribution (Macmillan and Creelmann, 2004). This notion that 

subjects have variable internal experiences from the same stimulus is far removed from 
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expected utility theory; standard economic theory and perceptual psychology are quite 

different (Gold and Heekeren, 2014). Although randomness is a concept known to 

economists, the theory of revealed preference assumes that there is a stable determinist 

choice correspondence from choices to observable behaviors. Yet, taking up an idea set 

forth by Luce (1959/2005), McFadden (1974) proposed that, like the percept curves of 

psychophysics, the utility curves of economics should be considered variable, or, said 

differently, that the very same tools used to study confusability in perceptual judgments 

should be brought to bear on “errors” in choice observed under economic conditions. This 

class of theory is now called “random utility models” in economics (see McFadden, 2005; Gul 

and Pesendorfer, 2005; Karni and Safra, 2016). The computational model arising from the 

neuroeconomics literature (see section 4) should be regarded as providing a neurobiological 

foundation for these random utility models (Fehr and Rangel, 2011; Glimcher, 2011a). 

The subjective value of decision and choice 

Economic theories of choice behavior have a cornerstone in the concept of value. While 

choosing, individuals are supposed to assign values to available options and a decision is 

then made by comparing these values. Thus, value represents a common unit of measure for 

making comparisons. Neuroeconomists seized this concept from economists, and in the past 

10 years, considerable research has focused on neural representations of value and 

selection mechanisms of a decision by comparing the values. Like for economists, the notion 

of “subjective value” is a core concept for neuroeconomists. However, there exists a crucial 

difference. In economics, the concept of value is behavioral and analytical, nor psychological. 

The “as if” stance captures a fundamental limit: based on behavior alone, values cannot be 

measured independently of choice. The assertion that choices maximize values is 

intrinsically circular. Neuroeconomics breaks this circularity by establishing that values are 

computed in the brain. By showing correspondence between a neural signal and a 

behavioral measure of value, that signal in the brain provides an independent measure of 

value, in principle dissociable from choices. So, the assertion that choices maximize values 

becomes potentially falsifiable and thus truly scientific (Padoa-Schioppa, 2011).  

In brief, today, for most neuroeconomics researchers, the ultimate goal assigned to this 

new scientific field is to understand more profoundly these VBDs by studying the 

neurobiological processes and cognitive mechanisms that implement human decisions. 

Neuroeconomics intends to discover the neurobiological and computational underpinning 

these kinds of decisions that we can identify with “economic behaviors” (Montague, 2007; 

Schultz, 2008; Rangel, Camerer, and Montague, 2008; Balleine, Daw, and Doherty, 2009; 

Kable and Glimcher, 2009; Fehr and Rangel, 2011; Padoa-Schioppa, 2011; Rangel and 

Clithero, 2014; Glimcher, 2014a; Padoa-Schioppa and Conen, 2017). 
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2. The Emo-Rational Brain 

The dual-process framework: automatic versus controlled systems 

When studying decision making, psychologists often use a valuable distinction between 

automatic processes (fast, specialized, rigid, intuitive, unconscious, and heuristics-based) 

and controlled processes (slightly slow, generic, flexible, deliberate, conscious, rule-based, 

and using high cognitive faculties, such as reasoning). It was indeed an old dichotomy. 

William James is one of the first psychologists who defended this view by the end of the 19th 

century (James, 1890). This general “dual-process” framework is a simplified and 

reductionist way for analyzing cerebral activities. It is always debated in cognitive psychology 

(see Melnikoff and Bargh, 2018 for critics, and Pennycook et al., 2018, for several arguments 

in favor of it). Its main merit is facilitating the understanding of many decision biases. 

We find this dichotomy today in many theoretical analyses of modern behavioral 

economics that oppose two systems: one would depict a quasi-automatic or short-sight 

behavior while the other would reflect optimization. Different labels have been used to refer 

to this dichotomy, including “emotional” versus “deliberative” systems (Loewenstein and 

O’Donoghue, 2004), “automatic” versus “controlled” systems (Benhabib and Bisin, 2005), 

“short-term” versus “long-term (and controlled)” systems (Fudenberg and Lenine, 2006), and 

“warm (and automatic)” versus “cold” systems (Bernheim and Rangel, 2005). In the formal 

analysis built by Kahneman (2003)—maybe the most general one—these two systems are 

called “system 1” (intuitive system) and “system 2” (deliberative system), respectively. The 

main features of system 1 are its automatic operation and minimal demands on working 

memory, acting mostly through components of associative memory, while the main features 

of system 2 are the active engagement of working memory and analytic thinking (see also 

Stanovich and West, 2000; Sloman, 2002; Evans and Frankish, eds., 2009; Evans, 2010; 

Kahneman, 2011; Evans and Stanovich, 2013). Within the cognitive architecture, system 1 

occupies a central position midway between the merely automatic functioning of perception 

and the merely deliberative functioning of system 2. The latter is similar to processes 

implicitly involved in standard microeconomic theory, whose many results were disproved by 

an increasing number of economic experiments since 1960s (for outlines of history of 

experimental economics, see Guala, 2008, Serra, 2012, Svorencik, 2015, Cot and Ferey, 

2016). In addition, the primary goal of behavioral economics is to build new empirically more 

relevant models by integrating, in a formal way, some features of system 1 (for a recent 

overview of these new models of behavioral economics, see e.g. Serra, 2017, Chap 4).  

From a neurobiological point of view, the rough distinction between emotional and 

cognitive systems is largely akin to the duality between automatic and controlled systems 

from a psychological point of view (Sanfey et al., 2006). The overview that Camerer, 
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Loewenstein, and Prelec (2005) proposed is expected to be more comprehensive; by 

supposing mutual independence between both systems (i.e. automatic versus controlled 

systems and emotional versus cognitive systems), these authors define by crossing four 

kinds of systems of which the only one corresponding to “controlled and cognitive system” 

may be identified to the standard economic model. But what modern neuroscience teaches is 

that in reality there exists a set of interactions among the four kinds of systems. 

To deal with these interactions at the anatomical-functional level, the cognitive-emotional 

distinction is adopted for convenience. The study of neural learning mechanisms offers a 

more relevance dynamic framework for analyzing the links between automatic and controlled 

systems; this topic will be addressed later in section 4. 

Cognitive systems 

Brain, cortex, frontal cortex, and prefrontal cortex 

Broadly speaking, the primate (and hence human) brain can be divided into four main 

divisions whose boundaries are based on converging evidence from developmental, genetic, 

physiological and anatomical sources: (1) the telencephalon (or forebrain), including mainly 

the cerebral cortex, basal ganglia, amygdala, and hippocampus; (2) the diencephalon, that 

corresponds essentially to the thalamus (around three-quarters of this part of the brain); (3) 

the mesencephalon (or midbrain), including the superior and inferior colliculus, substantia 

nigra, and tegmental area; (4) the brainstem (or hindbrain), including the pons and medulla. 

In addition, from a macroscopic viewpoint, cerebral hemispheres are divided into lobes: in 

the main, frontal, parietal, occipital, temporal lobes. These are not functional subdivisions but 

rather names of convenience. Until recently, the insula (or insular cortex) was considered an 

independent fifth lobe but it is now often included in the frontal lobe (Glimcher, 2014b). Other 

subdivisions are usually used: lobules (internal divisions in some lobes), sulcus (troughs in 

the cortex, the deepest ones are called fissure), gyrus (convolutions in lobes bounded by 

some sulcus). Furthermore, it should be noted that the terms used for specifying the position 

of the brain and its various regions are the same that those used for describing the 

macroscopic anatomy of the rest of the body: the terms “anterior” and “posterior” denote the 

front and back, “dorsal” and “ventral” denote upper and lower body, “medial” and “lateral” 

denotes the center and the sides, “rostral” and “caudal” denoting the head or tail’s direction 

(these qualifiers will be frequently used in the paper). 

Among the many brain divisions of the cerebral cortex based on histological criteria that 

were evolved, the map including 52 areas built by the German neuroanatomist Korbinian 

Brodmann in the early 20th century is the most well-known (Brodmann, 1909). Yet, this 

cytoarchitectonic organization (each area being characterized by a specific cellular 

organization) faces a problem related to heterogeneity of data from different organisms, 
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which makes the comparison of their neural activities difficult. The standard proportional 

stereotaxic space, a method conceived by the French neurosurgeon Jean Talairach in the 

sixties but published in English about twenty years later (Talairac and Tournoux, 1988), 

allows responding to this problem. Frequently used in brain imaging experiments, the method 

presents three advantages: first, it allows a more thine computing identification of all brain 

points in a tridimensional geometric system (x, y, z), where x denotes the axis left-right, y the 

axis anterior-posterior, and z the axis superior-inferior; second, it offers a spatial 

transformation in order for drawing up a correspondence among different brains; third; it 

suggests an atlas describing a “standard” brain anatomically and cytoarchitectonically5. Most 

brain localization studies in neuroscience are based on this idea of a standard brain. Yet we 

need to be aware that the discovery of “neuroplasticity” (i.e. the fact that experience directly 

changes the brain throughout an individual's life) weakens the reliability of this static view (for 

a short overview see Schutt, Seidman, and Keshavan, eds., 2015, Chap. 2). 

Traditionally, “association areas” in the cortex are considered as the cognitive abilities 

center. Association areas fill the greatest part of human brain surface (maybe about four-

fifths), the other part corresponds to sensorial and motor cortices, which encode sensory 

information (mechanical or thermal sensitivity, vision, audition, sense of smell, taste) as well 

as movements control (see Fuster, 2008 or Purves et al., 2011, Chap. 25). For example, 

some Brodmann areas (BA thereafter) in the occipital cortex intervene for the vision (BA 17, 

18, 19), some areas in the parietal cortex (in the back of the central sulcus) correspond to the 

primary somatosensory cortex (BA 3, 1, 2), some areas in the frontal cortex (in the front of 

the central sulcus) are specialized with motor activity (primary and secondary motor areas: 

BA 4, 6) whereas others areas in the temporal cortex deal with audition (BA 41, 42)6 (see 

Figure 1 below for the map of the main cortical areas). 

All mammalians have a frontal cortex; however, its relative size in the brain varies widely 

with species. While in non-human primates, such as monkeys or lemurs, its size is enormous 

compared with other species (e.g. rats or hedgehogs), in humans, the frontal cortex is simply 

gigantic (a third of the cerebral volume). Moreover, the metabolic cost of this additional 

cerebral tissue is very high; more than 20 % of what we eat is spent in feeding our brain, 

although the brain accounts for only 4 % of our body weight, and much of the fuel is utilized 

to drive the frontal cortex. Despite this human singularity, our information about frontal cortex 

connectivity in humans has been essentially derived from studies in monkeys (see the 

detailed studies of cytoarchitectonic comparisons between the frontal cortex of humans and 

monkeys published in Petrides and Pandya, 1994, Ongür and Price, 2000, Ongür, Ferry, and 

                                                           
5 Today, neuro-imagery studies use more frequently the Montreal Neurological Institute (MNI) space, which slightly differs from Talairach-
Tournoux normalization by relying on a highly number of fMRI images (see Poldrack, Mumfort, and Nichols, 2011, Chap. 4). 
6 Notice that the different neural regions referred to in the text often include only a part of the BAs mentioned in bracket.  
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Price, 2003). Although some studies suggest a strong similarity in this respect between 

humans and monkeys, caution must be executed when directly correlating the results 

obtained from non-human primates, among other mammals, with humans (Dehaene et al., 

2005); accordingly, monkeys have brain structures that rodents lack, and humans have brain 

structures that both monkeys and rodents lack. This restricts the conclusions we could draw 

about the human brain from studies of animals with much smaller cortices. For instance, 

what is known as the orbitofrontal cortex—the part of the frontal cortex just above the 

orbits—differs in humans and monkeys, suggesting that this frontal region plays a specific 

role in humans (Glimcher, 2011a, p. 310 and 358). The localization of neural areas in 

humans similar to those in monkeys remains to be studied in the neuroanatomy research 

agenda (see in particular Mackey and Petrides, 2010, 2014; Wallis, 2012). 

Figure 1. Brodmann’s cytoarchitectonic map of the human cerebral cortex7  

 

Lateral view      Medial view 

The human frontal cortex plays a fundamental function. It collects complex perceptive 

information from the sensory and motor cortices as well as the parietal and temporal 

associate cortices. This results in an evaluation of individual relationships with the world that 

allows oneself to experience properly planned and fulfilled behaviors. The frontal cortex is 

view as the “executive” region of the brain (Pribram, 1973)8 . In front of the motor and 

premotor areas in the frontal cortex stands the prefrontal cortex—a wide cortical region 

involved in cognitive processes. 

 

                                                           
7 BA 13 and 14 were added by Beck (1949). BA 47/12, added by Petrides and Pandya (1994) for reconciling human and monkey brain 
architectonic organization, corresponds to BA 12 in monkey. All these areas (like BA 10 and 11) are the subject of finer subdivisions (see 
e.g. Ongür, Ferry, and Price, 2003).  
8 While some cognitive processes are automatic (such as visual perception or language), most of them are controlled: they need some 
attention and so imply subject consciousness. 
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 Cortical regions involved in cognitive processes 

The prime importance of the prefrontal cortex (PFC) in highly intellectual functions has 

always been recognized. Yet, knowing if these various functions are performed by well-

defined specific zones has been a matter of debate for a long time. Today, neuroscientists 

agree that a certain specialization exists (a partial one, at any rate), even if there is a better 

understanding of the neural mechanisms sending back to loops or networks (I will return 

below to this important point). In this respect, it is generally agreed that highly complex 

cognitive processes (i.e. reasoning, planning, problem-solving, decision-making) strongly 

involve some anterior and lateral zones in PFC, namely the anterior cortex (BA 10)9 and 

dorsolateral PFC (BA 8, 9, 46)10.  

However, nowadays it is recognized that other neural areas that are engaged in high-level 

cognitive processes are in the more posterior cortical zones, including the anterior cingulate 

cortex (ACC) (BA 24, 32, 25)11, posterior cingulate cortex (PCC) (BA 23, 31)12, temporo-

parietal junction (TPJ)13, and posterior parietal cortex (PPC) (BA 7, 40) (Miller, 2000; Miller 

and Cohen, 2001; Semendeferi et al., 2001; Ramnani and Owen, 2004; Zald and Rauch, 

eds., 2006; Fuster, 2008; Passingham and Wise, 2012).  

Using a comprehensive battery of neuropsychological tasks on a large set of individuals 

with damage to the frontal lobes, Gläscher et al. (2012) suggest that it make sense to speak 

of a “cognitive control network” in the brain, including primarily the dorsolateral PFC and the 

ACC, that is thought to draw on multiple processes, such as task switching, response 

inhibition, error detection and conflict monitoring, and working memory. Figure 2 indicates the 

approximate locations of several regions involved in cognition or/and emotion processing and 

provides a qualitative depiction of the main brain regions of interest to the neuroscientists 

and mentioned in the text). 

 

 

 

                                                           
9 The anterior cortex (or frontopolar cortex) is the most rostral zone of the frontal lobe. It performs a function of cognitive control in the most 
complex situations; it is involved to monitor completely unknown situations or forcing the subject to think about one’s own thoughts (i.e. 
metacognition). 
10 The dorsolateral PFC corresponds to the superior part of the frontal lobe exterior. It is seen as the most “rational” part of the brain. 
11 The cingulate cortex is an internal zone located along the interhemispheric fissure above the corpus callosum. It is divided into an 
anterior (ACC) and a posterior (PCC) parts. The ACC has long been known to play a role in decision making, especially when subjects 
made errors in simple decision-making tasks and detected those errors. It is traditionally known as mainly implicated in the monitoring of 
internal conflicts, namely when conflicting signals are sent by several neural areas and that selection of an action may be tricky. 
12 The PCC is typically known as devoted to several high-level cognitive functions, including attention, working memory, and more broadly, 
“external consciousness”, but its ventral part seems to show a functional integration with the whole areas belonging to the cerebral “default 
mode” (i.e. the brain’s intrinsic activity when it is undertaking no task whatsoever); this network is supposed to accommodate what some 
authors called “internal subjective consciousness” (Buckner et al., 2008; Demertzi et al., 2013; Raichle, 2015). 
13 The TPJ is the part of the temporal cortex at the edge of the parietal cortex. 
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Figure 2. Main neural regions involved in cognition and/or emotion processing  

   Lateral view                       Medial view 

 

 

Internal structures (axial plan) 

AC: anterior cortex, dlPFC : dorsolateral PFC, dmPFC :dorsomedial PFC, vmPFC : ventromedial PFC, lOFC : 
lateral orbitofrontal cortex, ACC: anterior cingulate cortex, PCC: posterior cingulate cortex, AI: anterior insula, 
ATC: anterior temporal cortex (temporal pole), PPC: posterior parietal cortex, STS: superior temporal sulcus, TPJ: 
temporoparietal junction, THA: thalamus, HYPO: hypothalamus, ST: striatum, NAcc: nucleus accumbens, CAU: 
caudate nucleus, PUT: putamen, GP: globus pallidus, AMY: amygdala, HIPPO: hippocampus, SNpc: substantia 
nigra pars compacta, SNpr: substantia nigra pars reticula, VTA: ventral tegmental area, LP: locus coerulus 

Emotional systems  

From a neurobiological viewpoint, emotions and affect expression are closely associated 

with the autonomous nervous system. The centers coordinating emotional responses have 

been historically pooled as the “limbic system”. 

 The limbic system 

Analysis of emotional behavior control systems has a long history marked by Papez and 

his identification of an emotional circuit that later became known as the “Papez circuit” 

(Papez, 1937). Paul MacLean contributed to the well-known three-part brain architecture 

(MacLean, 1970): (1) the reptilian brain, the oldest cerebral structure in terms of evolution 
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(i.e. the basal ganglia 14 ), is seen as the seat of primitive emotions (as fear or 

aggressiveness); (2) the “old” mammalian brain (originally called the “visceral brain”) 

broadens the set of emotional responses by including social emotion (as guilt, shame or 

envy), and corresponds to many of the components of Papez circuit (the thalamus, 

hypothalamus, hippocampus, and cingulate cortex) and additional important structures, such 

as the amygdala15; (3) the “new” mammalian brain (i.e. the neocortex) interfaces emotion 

with cognition and exerts top-down control over the emotional responses driven by other 

systems. The term “limbic system”, introduced by MacLean (1952) for the “visceral brain”, 

survives today as the dominant conceptualization of the “emotional brain”, even though over 

the years its configuration has evolved by including some cortical areas (see Dalgleish, 

2004). 

It is commonly recognized today in “affective” neuroscience16 that in addition to the many 

subcortical structures involved in emotional responses (the amygdala, hippocampus, 

thalamus, hypothalamus, and some structures in the basal ganglia, such as the caudate and 

nucleus accumbens in the ventral striatum), several other cortical zones are viewed as 

engaged in emotion processing: the orbitofrontal cortex (OFC) (BA 11, 14, 13, 47/12), 

ventromedial PFC (10, 11, 14, 32)17, and anterior parts of insula18, cingulate cortex (ACC) 

(BA 24, 32, 25), and temporal cortex (BA 38). Both these subcortical structures (i.e. the 

“classic” limbic system) and cortical structures are now thought to be involved in emotion and 

mood expression and processing 19  (Dalgleish, 2004; LeDoux, 1996, 2007; Phelps and 

LeDoux, 2005; Whalen and Phelps, eds., 2009; Pessoa, 2010; Purves et al., 2011, Chap. 28; 

Lempert and Phelps, 2014; Engelman and Hare, 2018; Fox et al., eds., 2018).  

                                                           
14 All vertebrates (fish, amphibians, reptiles, birds, and mammals) possess such a neural structure, of one form or another. It consists of a 
set of functionally diversified nuclei embedded in cerebral hemispheres depth, behind the frontal lobes and encircling the thalamus, 
including the striatum. The striatum includes itself three structures connected to different neural regions: the caudate nucleus, the 
putamen, and the nucleus accumbens (NAcc). They receive extensive inputs from the frontal cortex and send almost all of their outputs to 
two other nuclei in the basal ganglia, the globus pallidus and the substantia nigra pars reticula (see Figure 2). Today, many researchers 
simply divide the striatum into ventral versus dorsal sections, with the ventral striatum encompassing the NAcc and inferior part of the 
caudate and putamen (interacting with regions engaged mainly in emotion and motivation), while the dorsal striatum encompasses the 
superior parts of the caudate and putamen (interacting with regions implicated in movement and memory).  
15 The amygdala corresponds to a group of nuclei in the medial temporal lobe in front of the hippocampus. This structure plays a central 
place in emotion and motivational processing and is implied both in the emotional component of sensorial stimuli and emotional stimuli 
memorization. The hippocampus, with near structures with whom it is closely connected, is related to memory in general and spatial 
memory and is crucial for complex spatial representations; it is part of a “human navigation network” (Maguire et al., 1998). 
16 As already said, affective neuroscience is the field that studies the neural mechanisms of emotion. The term was coined by Jaak 
Panksepp in the late 1990s (Panksepp, 1998). 
17 In the wide orbitomedial region of the PFC (the region encompassing all internal and orbital neural areas), several specific zones are 
identified but not all researchers agree on their boundaries. By moving up from the zone located just above the orbits to the top of the skull, 
are typically defined the orbitofrontal cortex (OFC) (whose medial, caudal, and lateral parts are differentiated), ventromedial PFC and 
dorsomedial PFC (sometimes named globally medial PFC). The ventromedial PFC often is defined as including the medial OFC (see Zald 
and Rauch, eds., 2006; Wallis, 2012). 
18 The insula (or insular cortex) is a part of the cortex moved in depth of the lateral sulcus, at the junction between the frontal and temporal 
lobes. The insula is sometimes called the “paralimbic structure” (Moll et al., 2006). Its anterior part is strongly involved in emotion 
expressing: it is acting as a monitoring system that informs the brain about high-risk or unpleasant situations that may be a source of 
danger, harm, or pain. Some authors call this structure the “interoceptive” cortex because it is implicated in the processing of internal 
representations signals of body states (Craig, 2002; Singer and Tusche, 2014). 
19 It is known today that motor and sensory areas also are engaged during practically all emotions.  
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The cerebral “geography” of emotions 

Whether we may identify a specialization of some neural zones in perception, expression, 

or experience of certain emotions, or whether all emotions are function of the same basic 

brain circuit has long been an open question (Dalgleish, 2004). Today, many argue in favor 

of specialization based on a litany of clinical studies dealing with patients suffering from brain 

damage or pathologies and, more recently, on brain imaging works (Damasio, 1994, 2003, 

2010; Rolls 1999, 2007, 2014; LeDoux, 1996; Saarimäki et al., 2018). The idea that a link 

would exist between a body function and a brain zone dates from the 19th century to Franz 

Joseph Gall. Phrenology enjoyed popular success but was soon called into question before 

the great biologist Paul Broca proved some truth in Gall’s work; by performing patient 

autopsies, he showed the existence of correlations between brain damage and neurological 

deficiencies. Nevertheless, even though some neural zones are devoted to specific 

functions20, networks, circuits, and loops are engaged most of the time. Although the central 

principle for understanding representation in the brain remains as the notion of “modularity” 

(Fodor, 1983; Glimcher, 2014b), interpretation of network connectivity outweighs 

interpretation of brain localization, particularly for high-order complex functions (Fuster, 2009; 

Fuster and Bressler, 2012; Lindquist and Barrett, 2012; Fehr, 2013; Pessoa, 2017b).  

Alternatively, there is a longstanding debate about whether measures of emotion organize 

themselves into categories or deploy in a more continuous way along affective dimensions. 

For some authors, emotion differentiation may arise according to some distinct and specific 

categories—fear, anger, disgust, happiness, sadness, surprise (i.e. the canonical “basic” or 

“primary” emotions). Many authors have enlarged the list of emotions including, but not 

limited to, shame, compassion, guilt, envy, contempt, discomfort, amusement, irony, 

satisfaction, excitation, and pride (Darwin, 1872; Plutchik, 1980; Ekmann, 1982, 2003; 

Panksepp, 1998). For others, subjective experience of emotions formulated by individuals 

may be described according to a main underlying dimension—the pleasant/unpleasant 

dimension (or positive/negative dimension). Another dimension is often involved—the 

awareness/depression dimension (or low/high activation dimension). So, an individual 

describes their emotional personal experience by saying they feel good or unwell (positive or 

negative emotion) but also aroused or quiet (high or low activation). It is critical to distinguish 

these conscious subjective experiences of emotions, often called “feelings”, from emotions 

                                                           
20 For instance, the Wernick area (a part of BA 22) and the Broca area (a part of BA 44 and 45) are involved in language. The first one is 
the region of language structuration and emission whereas the second one is the place where happen the syntactical coordination and 
implementation of linkage with the adjacent primary supplementary motor area. 
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as internal functional states (Scherer, 2005; Damasio, 2003, 2017; Adolphs, 2017; de Waal, 

2018; Adolphs and Anderson, 2018)21.  

By crossing both approaches one gets a certain image of some neural zones 

specialization (Lindquist et al., 2016; Cowen and Keltner, 2017; Clark-Polner, Johnson, and 

Barrett, 2017; Barrett, 2017). Clearly, several distinguishable neural structures are 

associated with some negative emotions: the amygdala (fear, anxiety, aggressiveness, 

stress, sadness), hypothalamus (anger, fear, aggressiveness), anterior insula (disgust, 

distress, anger), locus coerulus22 (fear, anxiety), and ACC (sadness, pain, anxiety). But the 

amygdala and the ACC are also activated in perception of some positive emotions. Several 

areas in the ventral striatum including the NAcc are strongly associated with positive 

emotions. And several neural areas in the wide orbitomedial region, such as the OFC and 

ventromedial PFC, are thought to be generally related to the psychological component of 

emotions. 

Thus, a multitude of various emotions are represented in the brain in a distinguishable 

manner, yet in partly overlapping regions: the same region possibly plays a different role23 

(see Kragel and Labar, 2016, and Saarimäki et al., 2018, for recent reviews). Some scientists 

go farther by categorically refusing the modular ideas that underlie this typology and argue 

that human emotions result from interaction of broadly distributed functional networks 

(Lindquist and Barrett, 2012; Pessoa, 2013, 2017a). There would not be macroscopic brain 

structures dedicated specifically to emotions; instead, there would be specificity at the level 

of circuits and cell populations (Adolphs and Anderson, 2018). 

Emotion and rationality interplay 

Anatomic and physiological observations dealing with the modern system limbic 

conception teach that understanding of emotion neural supports also requires considering 

the role of the cerebral cortex. The amygdala and the PFC—with their connections in the 

striatum and the thalamus—are involved both in emotion processing and in complex 

cognitive processing that underlies “rational” decision. So, a main tenant of contemporary 

neuroscience is that, contrary to what was always generally assumed, emotion and 

rationality interplay. The current image of opposing “cold” regions in the frontoparietal cortex 

to “hot” regions in the classic limbic system regarding emotional state processing is no longer 

                                                           
21 Psychologists distinguish another notion, “mood”, considered as an affective state more diffuse, less intense but more durable than 
emotion. The term “affect” often is used as a generic term that involves both emotion and mood (Frijda, 1986; Scherer, 2005). 
22  The locus coerulus, located in the cerebral pons, is in close contact with the amygdala. It is associated with 
noradrenaline/norepinephrine, a chemical substance related to adrenaline considered as neurotransmitter; it is seen as active in waking, 
sleeping and feeding behavior but it also interplays with cortical regions for modulating attention (Aston-Jones and Cohen, 2005). 
23 However, several meta-analyses showed that often there are differences in response intensity of a same structure depending of the 
emotion: for instance, both fear and happiness active the amygdala but the activation level is significantly stronger with fear than with 
happiness, or both disgust and anger actives insula but the activation level is significantly stronger with disgust than with anger. 
Hemispheric lateral effects also were observed: for instance, the right amygdala is more involved in negative emotions and the left in 
positive. 
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really correct (Kelso and Engstrom, 2006; Pessoa, 2008, 2013; Koziol and Budding, 2009; 

Phelps, 2009; Lempert and Phelps, 2014; Richter, Shackman, and Okon-Singer, 2017; 

Okon-Singer et al. 2018)24. Several neuropsychology studies from the 1990s go even farther 

by pretending that emotion processing often would be necessary for making rational 

decisions.  

Antonio Damasio was the first neurologist who established the essential role for emotions 

in rational decision making by taking as subjects several patients with brain damage in the 

ventromedial PFC (the cortical region known as mainly specialized in emotional signals 

processing)25. When they face a task consisting of getting rid of risky lotteries that seem 

attractive but harmful in the long run (the famous “Iowa Gambling task” experiment), his 

patients were incapable of adapting their behavior to choosing lotteries seemingly less 

attractive but profitable in the long term (Bechara et al., 1994). Initially, the game was 

intended for assessing the decision abilities of schizophrenics compared with healthy 

subjects. In their experiment, the authors recorded that the healthy subjects were drawing a 

card originally among the 4 decks proposed, and after 40 or 50 trials they were drawing only 

in the “advantageous” decks; conversely, schizophrenics or patients with damage to the 

ventromedial PFC continued to draw from all decks by focusing on immediate gains, 

seemingly indifferent to the whole game’s result. Furthermore, measure of subjects’ 

electrodermal responses showed that the observed behavioral deficiencies were 

accompanied by no specific reaction from the vegetative nervous system before making 

decisions (Bechara et al., 1996; Bechara et al., 1997). Studies on subjects with damage to 

the amygdala reached the same result (Bechara et al., 1999). 

These experiments show that emotions are not always harmful to those which are feeling 

them26 . Without emotional substrate, a rational choice is hard if not impossible. Higher 

cognitive abilities do not universally govern behavior. The “somatic marker” hypothesis 

(Damasio, 1994, 1996; Bechara and Damasio, 2005; Reiman and Bechara, 2010), where 

                                                           
24 Indeed, a more comprehensive understanding of the cerebral functioning should require including motor activity too. Traditionally, 
coordination of movements was supposed filled out by subcortical structures, including the cerebellum. Today it is recognized that these 
structures also play a role in cognition and emotion (Koziol and Budding, 2009). 
25 It was back in 1994 that Damasio depicts for the first time the now famous history of this young American railway worker named Phineas 
Gage who, in 1948, was suffering a serious injury in the brain (a crowbar of 6 kg was going through his brain), an accident whose 
consequences, against all odds, were not physical but behavioral (for further details see Macmillan, 2000). Interested in pathological 
consequences of patients with frontal lobe lesions, Damasio had the opportunity to observe subjects like Gage: Elliot history, a patient 
suffering from a benign brain tumor, is now as famous as Gage history (Damasio, 1994). 
26 Of course, this is not to say that emotions are only beneficial effects for subjects. Damasio himself acknowledges that the participation of 
emotion to reasoning process may be advantageous or detrimental according to both the decision circumstances and the decision-maker’s 
past history (see Engelman and Hare, 2018, for a recent overview of various emotional bias promoting specific harmful behavioral 
tendencies). 
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emotions should be physiological states before being psychological states for making good 

decisions easier, is widely confirmed in the literature27. 

Good decision making is often dependent on good emotion expression through neural 

circuits combining classic limbic system areas that are always seen as taking place in 

emotional and visceral behaviors, such as the amygdala and ventral striatum, with some 

areas in PFC seen as taking place in rational thinking. Interestingly, the results of this famous 

experiment can be interpreted in terms of regret. The most common formulation of regret is a 

result of counterfactual thinking where a realized outcome is compared with, “what might 

have been”. Damasio remarked that his patients, even though they could not adopt an 

adaptive behavior, had a certain consciousness of better choices. Lacking any emotional 

feeling, they did not expect the regret of not choosing the good decision.  

There are numerous neuroeconomic experiments dealing with the role of regret in 

decision that have gone further into this topic. For example, some fMRI studies have 

investigated brain activity involved in regret and disappointment—two negative emotions—by 

manipulating the feedback participants saw after deciding to choose a certain risk: full-

feedback (regret: participant sees the outcomes from both the chosen and unchosen 

gamble) versus partial-feedback (disappointment: participant only sees the outcome from 

chosen gamble). These studies showed that the feeling of regret is associated with the 

dorsal ACC (BA 24), medial OFC (BA 11, 14), and anterior hippocampus, while 

disappointment activated middle temporal gyrus and dorsal brainstem. They also showed 

that both regret and disappointment activate the anterior insula, part of dorsomedial PFC (BA 

8), and lateral OFC (BA 47/12), with activity stronger for regret. Thus, regret exerts a more 

substantial influence on choice than disappointment, and the emotional impact of regret is 

stronger than that of disappointment. The cortical differentiation between regret and 

disappointment helps to better understand their role in decision-making and how they differ in 

biasing choice (Camille et al., 2004, Coricelli et al., 2005; Chua et al., 2009; Giorgetta et al., 

2013)28. 

Now let us think about the famous metaphor imagined by Plato. The mind is seen as a 

chariot pulled by two horses. The rational brain is the charioteer; it holds the reins and 

chooses where the horses run. If the horses get out of control, the charioteer just needs to 

take out his whip and reassert his authority. One of the horses is well bred and well behaved, 

but even the best charioteer has difficulty controlling the other horse. According to Plato, this 

obstinate horse represents negative, destructive emotions. The job of the charioteer is to 

                                                           
27 Over the years several studies have questioned the somatic marker hypothesis (Dunn, Dalgleish, and Lawrence, 2006). Nevertheless, 
this hypothesis has played a central role in affective neuroscience in that it was one of the first which links emotional responses and brain 
systems to behavioral decision patterns.  
28 The emotion of regret not only has an important impact in “normal” decision-making but has also been implicated in several clinical 
disorders such as schizophrenia, depression, obsessive-compulsive disorder, and “chasing” behavior in pathological gambling. 
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keep the dark horse from running wild and to keep both horses moving forward. With that 

simple metaphor, the mind was seen as conflicted, torn between reason and emotion. This 

dual division of the mind is one of the more enshrined ideas in Western culture. Lehrer 

(2009, Chap. 1) paints a vast fresco of Western thought, from René Descartes to Sigmund 

Freud, and including Francis Bacon, Auguste Comte, and Emmanuel Kant, a large set of 

influential philosophers who all stand for various forms of this duality—until the modern 

metaphor of the brain as a computer proposed by the cognitive psychology—for which 

feelings are seen as antagonists of rationality. Aristotle in The Nicomachean Ethics is viewed 

of as an exception by claiming that rationality was not always in conflict with emotion. One of 

the critical functions of rational thinking is checking that emotions are intelligently applied to 

the real world; the key to “cultivating virtue” was learning how to manage one’s own 

passions. Another widely known exception is Spinoza, a contemporary of Descartes, who by 

pooling body and mind saw emotions and feelings as a central aspect of humanity29.  

Therefore, when the brain’s “black box” is opened, we find that the horses (one 

symbolizing negative and destructive emotions) and charioteer (symbolizing rational brain) 

are dependent on each other. Where there is no emotion, reason will not exist. We can use 

the term “emo-rationality” for translating this complementarity between emotion and reason 

(Oullier, 2010). From an economic viewpoint, this is an essential finding. We cannot suppose 

that economic agents’ rational decisions are free from any emotional interference. This is just 

what was confirmed by a deal of early neuroeconomic experiments within the “behavioral 

economics in the scanner” program, in the wake of behavioral economics.  

A multitude of neuroeconomic experiments prove that, in cerebral regulation of behaviors, 

coordination between emotional and cognitive systems is necessary. A great number of 

arguments, in terms of psychology in behavioral economics, for explaining so-called 

“anomalies” or “biases” in decision making generated a meaningful explanation in more 

objective terms. If we distinguish “external” and “internal” assessment of rationality (i.e. 

evaluation of the optimality in achieving certain goals versus evaluation of the coherence of 

intentions, actions, and plans), it can be argued that neuroeconomic studies show how 

“externally” irrational choices can be “internally” rational. This teaching follows mainly from 

brain imaging experiments in very various contexts, such as purchasing consumer goods, 

financial decisions (i.e. risky and ambiguous decisions), intertemporal choices (decisions 

involving trade-offs among payoffs available at different points in time) or social decisions 

(interactive decisions between several individuals). Considering a more complete explanation 

of social decisions from a neuroeconomic perspective requires also taking account social 

                                                           
29 Opposition between Descartes and Spinoza is highlighted by Antonio Damasio in the title he chose for two of his books: Descartes’ 
Error: Emotion, Reason, and the Human Brain (1994) and Looking for Spinoza: Joy, Sorrow, and the Feeling Brain (2003). 
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cognition processes such as “mentalizing” and empathy (see section 3) (see Serra, 2016, 

Chap. 4, for a recent comprehensive presentation of these various experiments).  

Consider, as an example, two contexts where neuroeconomics provides more precise 

explanations than behavioral economics in individual decision-making. The first one is 

concerned with what happens inside the brain when a person makes typical consumer 

choices, such as buying an item in a retail store or choosing a cereal. In an fMRI experiment, 

Knutson et al. (2007) discovered that when subjects were first exposed to an object their 

nucleus accumbens (NAcc) was turned on; it is known that this neural area is strongly 

required for positive emotion and is taking part in the reward pathway (see section 4), so the 

intensity of its activation reflects desire for the item. Then, when the subject was exposed to 

the cost of the product, the anterior insula and the PFC were activated. The anterior insula 

produces “aversive” feelings, so people tend to try to avoid anything that makes their insula 

excited and this includes spending money. The PFC was activated because this rational area 

was computing the risk and reward. The PFC was most active when the item cost on display 

was significantly lower than normal. Importantly, by measuring the relative amount of activity 

in each brain zone, the authors could accurately predict the subject’s shopping decisions: if 

the negativity of the anterior insula exceeded the positive feelings generated by the NAcc, 

then the subject always chose not to buy the item, while if the NAcc was more active than the 

anterior insula or if the PFC was convinced that it had found a good deal, the object proved 

irresistible. It turns out that during many decisions, the rational PFC is largely a spectator, 

standing silently while the NAcc and anterior insula interact and argue with each other. So, 

whichever emotion we feel most intensively tends to dictate one’s shopping decisions30. 

Neuroeconomics also provides more precise explanations than behavioral economics for 

loss-aversion and ambiguity-aversion, two behaviors frequently observed in financial 

decisions. Instead of postulating abstract cognitive heuristics, neuroeconomics explains loss-

aversion as the interaction of neural structures involved in the anticipation, encoding, and 

computation of the hedonic effect of a risky decision. The amygdala, shown to be involved in 

fear and emotional learning, encodes the emotional impact of the loss; the ventromedial PFC 

(BA 10, 11, 14, 32) predicts that a loss will result in each affective impact; the reward 

pathway computes the probability and magnitude of the loss (Naqvi, Shiv, and Bachara, 

2006; Tom et al., 2007). Thus, subjects are loss-averse because they tend to have or already 

had a negative response to losses. Then, they expect a loss to occur, they anticipate their 

affective reaction. Similar studies also can shed light on ambiguity-aversion. In many 

experimental settings, subjects have a strong preference for risky prospects (i.e. those for 

                                                           
30 This “shopping brain” model is implicitly at the root of several marketing practices in retail stores: put in the most prominent places the 
most covered items (exciting the NAcc), repeatedly assured that low prices are “guaranteed”, or that a certain item is on sale, or that it is 
getting the “wholesale price” (inhibiting the anterior insula). 
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which the probabilities are known) over ambiguous ones (i.e. those for which the probabilities 

are unknown). Neuroeconomic studies show that, although decision theory treats ambiguity 

as a special case of risky decision-making, ambiguous and risky decision-making are 

supported by two distinct mechanisms. In an fMRI experiment, Huettel et al (2006) showed 

that activation of a part of the dorsolateral PFC (BA 8, 9, 46) is correlated with ambiguity 

preference while activation of the posterior parietal cortex (PPC) (BA 40, 7) is correlated with 

risk preference; so, the dorsolateral PFC would play a specific role in the ambiguity resolving 

mechanism (i.e. when ambiguous situations are progressively transforming in risky 

situations). Activation of this neuronal zone involved in highest cognitive functions would 

reflect the operation of information searching for decreasing ambiguity, a situation that is 

negatively felt in emotional terms. Thus, ambiguity-aversion appears to happen because 

people have a stronger negative affective reaction to ambiguity than risk (see Platt and 

Huettel, 2008, and Taya, 2012, for a broader review of neuroeconomic experiments on 

ambiguous decisions). 

3. The Social Brain 

So far, we have ignored one striking characteristic of human societies from an 

evolutionary point of view—societies are based on work division and a large-scale 

cooperation between genetically heterogeneous people compared to most animal species 

where cooperation is restricted to smaller groups (Tomasello, 2000; Bowles and Gintis, 

2011). Charles Darwin was the first scientist in the 19th century to reinforce the importance of 

these abilities to explain human dominance over other species (Darwin, 1859). Human brains 

have great flexibility and the ability to interpret complex forms of social interactions based on 

sophisticated beliefs. So, we may imagine that there are neural networks devoted to belief 

formation and updating. The “social brain” refers to this function and can be roughly identified 

with “social cognition and emotion” (Alos-Ferrer, 2018). This issue has been largely studied 

over the past few decades by researchers in social neuroscience—a new interdisciplinary 

field that has emerged from the union of classical cognitive neuroscience and social 

psychology31.  

At the source of these studies, there is a theory initially built in social psychology known 

as “theory of mind” (Premack and Woodruff, 1978) or “mentalizing” (Frith and Frith, 2003); 

                                                           
31 In the beginning, much research in social neuroscience (the term was coined by Cacioppo and Berntson, 1992) has been driven by 
mental illnesses, because many of them often involve a breakdown of the “social brain” (in particular, schizophrenia). Remember that, 
likewise, the study of brain lesions has been a starting point for much of the early progress in neuroscience. Yet, in the last fifteen years, 
research in social neuroscience has increasingly focused on the social behavior of mentally healthy decision makers, encompassing many 
social phenomena as social interactions. 
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some authors also refer to this as “mind-reading” or “cognitive perspective-taking” 32 . 

Nevertheless, today it is known that, in addition to the mentalizing system, the mechanism for 

understanding other people’s minds (i.e. social cognition) also involves recently identified 

nervous cells called “mirror neurons” and a sensory system linked to emotional character, the 

empathic system (some authors also refer to “emotional perspective taking”) (for 

comprehensive reviews, see Caciopo, Visser, and Pickett, eds., 2006; Decety and Cacioppo, 

2011; Singer, 2012; Lieberman, 2012; Schutt, Seidman, and Keshavan, eds., 2015; Alos-

Ferrer, 2018).  

Even though the fields of social neuroscience and neuroeconomics are still perceived as 

two distinct fields, we have to agree that the topics they are concerned with overlap 

substantially both in content and methodology. Researchers in both fields are interested in 

understanding the nature of human social interaction and human decision making and aim to 

determine the neural mechanisms underlying these complex skills. Economic decision 

making, for example, frequently takes place in the context of social interactions and game 

theory—developed in economics and has come to provide an effective quantitative 

framework for studying how information, incentives, and social knowledge influence optimal 

strategies for social interaction (Singer and Tusche, 2014). 

Theory of mind in social psychology 

Theory of mind refers to the human cognitive capacity to distinguish mental states of self 

(beliefs, intentions, desires) from others’ mental states and, thus, the ability to use this 

distinction for anticipating others’ behavior and, in return, for their one’s own behavior. More 

precisely, theory of mind addresses the process by which healthy human adults attribute 

unobservable mental states to other people (the “target”) and integrate these attributed 

states into a single coherent model that can be used for explaining and predicting the target’s 

behavior. This ability amounts to perceive the mind as a sort of “mental representations 

designer”. Of course, these representations are not always necessarily correct. It should be 

emphasized that mentalizing amounts to a metacognitive ability—it enables an individual to 

represent one’s own psychological representations and that of others, and implies the ability 

to simultaneously hold several world representations in the mind (Frith, 2012)33. 

                                                           
32 See Schlinger (2009) for a vast review about mentalizing and an appeal in favor of a behaviorist perspective in terms of Skinner’s old 
works (1945, 1953). 
33 It was recognized that ability to mentalize is severely delayed in autism. That could explain observed failure in communication and social 
interaction by most autistic children. Today, the autistic brain is at the heart of social neuroscience because it helps to clarify the missing 
links between brain and social behavior (Baron-Cohen et al., 2000; Frith, 2001). Temple Grandin (an American professor in animal 
science) was one of the first high-functioning autistic woman (people with Asperger syndrome) whose brain was scanned by fMRI toward 
the end of the 1980s. Like Gage and Elliot cases, mentioned by Damasio (1994), Grandin case is become paradigmatic in cognitive 
neuroscience (Sacks, 1995). 
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The most stringent test for the presence of mentalizing would be to see whether someone 

is able to predict someone else’s actions on the basis of that person’s false belief (“false 

belief” test). Children age four starts to correctly attribute false beliefs to others and give 

verbal explanations when asked. At age five, over 90 % of children understand this task, and 

all do by at age seven (Frith and Frith, 2003, 2007; Hyde et al., 2018)34.  

Several theories were proposed to explain mentalizing. The “theory of simulation” seems 

to account for most results in social neuroscience, proposing that access to other people’s 

mental states is carried out via a mental simulation process, by which “observer” individuals 

are taking the perspective of the “observed” individuals by seeking to imagine oneself in the 

situation or circumstances of another person or “put themselves in their shoes” (see 

Goldman, 2006; Decety and Grèzes, 2006). In social psychology, social cognition refers to 

two sorts of inference processes: (1) inferences based on transitory states (goals, intentions) 

and (2) inferences based on individuals’ stable psychological traits (e.g. personality traits). 

Inferences based on transitory states relate to observed behaviors is of a perceptive nature, 

while inferences based on individuals’ stable psychological traits driven by individuals’ 

idiosyncratic traits would be more abstract and implies further developed mentalizing abilities 

(Van Overwalle, 2009). Most models studied in social psychology agree with the concept of 

these two processes. Among them, the “identification/attribution” model is undoubtedly one 

of the most popular (Trope and Gaunt, 2000); here, the observer individual identifies and 

categorizes the observed behavior to then attribute a psychological state to the observed 

individual. Therefore, the two-involved socio-cognitive processes are not mutually 

independent.  

The mirror neuron system and mentalizing 

Recent studies in social neuroscience do not infirm this type of model proposed in social 

psychology. The central nervous system would involve two sorts of complex neurocognitive 

systems implied in understanding of other people: (1) the “mirror neuron” system (“mirror 

system”)—the term “mirror neuron” was first used by Gallese et al., 1996, and Rizzolatti et 

al., 1996a—and (2) the intrinsic mentalizing system. They correspond to two different levels 

of “mentalizing”. A first level of mentalizing—an automatic, pre-conceptual and unconscious 

phase—would allow the fast identification of mental states (the mirror system), and a second 

level—a voluntary and conceptual phase—would provide the individual the ability to simulate 

others’ mental states via one’s own decision making system (the intrinsic mentalizing 

system) (Coricelli, 2005). 

                                                           
34 The ability to mentalize is absent in monkeys, but is not an exclusively human trait. It is likely to be present, in varying degrees, in all 
species of apes (Povinelli and Bering, 2002; Call and Tomasello, 2008; Singer, 2009). Besides, it was recently shown that the great apes 
pass the classical false-belief test (Krupenye et al., 2016). 
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This literature on the “mirror system” draws on the conceptualization of the motor system 

established in non-human primates in the second half of 1980s. Instead of only being 

organized into three areas of the frontal cortex (i.e. the primary motor area, premotor cortex, 

and supplementary motor area), the motor cortex actually is formed by a constellation of 

different regions. It turns out that some areas in the parietal cortex not only receive outputs 

from sensorial zones but also have motor properties similar to that of the frontal cortex (for 

comprehensive reviews see Rizzolatti and Craighero, 2004; Rizzolatti and Sinigaglia, 2006; 

Rizzollatti, Fugassi, and Gallese, 2009). 

Mirror neurons, which have visual-motor properties, were originally discovered in the 

motor frontoparietal cortex in macaque using electro-physiological studies (Di Pellegrino et 

al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996a) and then were identified in 

corresponding human neural structures using non-invasive tools (e.g. fMRI, positron 

emission tomography) (Fadiga et al., 1995; Rizzolatti et al., 1996b; Kilner et al., 2009; 

Mukamel et al., 2010). These neurons possess a singular property: they are activated when 

we are taking a particular goal-directed action as well we observe someone else taking the 

same action directed to a similar goal. Accordingly, one of the primary functions of mirror 

neurons is to understand the goals of the actions of the person being observed; here, a 

representation of this action is generated by the observing individual’s premotor cortex to 

resonate with the observed individual via an internal simulation process (Rizzollatti et al., 

2001). Thus, the mirror system appears to quickly, almost anticipatory, identify other peoples’ 

intentions and affective states enabling an intuitive understanding of what the other is doing 

(Iacoboni et al., 2005). Being widely automatic and pre-conceptual, these phenomena of 

sensorimotor resonance do not imply the use of costly cognitive resources (Rizzolatti and 

Sinigaglia, 2006). 

Studies of human mirror neurons have consistently shown the involvement of a dorsal 

frontoparietal network that links two large zones: (1) a zone located in front of the brain 

including the ventral precentral gyrus (BA 6) and the posterior inferior frontal gyrus (BA 44, 

the posterior part of Broca area) and (2) a zone located at the back of the brain formed by 

the inferior parietal lobule (BA 40). A third region, although it does not possess neurons with 

strictly speaking mirror property, in the posterior STS is often included in this network; this 

zone is involved in input for mirror system by providing high-level visual representations that 

spread up to the parietal cortex before being passed to premotor zones in the PFC (Rizzolatti 

and Sinigaglia, 2006; Molenberghs et al., 2012).  

Recent meta-analyses about theory of mind are also largely based on many fMRI studies 

that have identified a set of neural regions involved when subjects are engaged in a 

mentalizing task. The network mainly consists of two zones: (1) a zone located in front of the 

brain including the dorsomedial PFC and extending up to the rostral ACC (known as the 
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paracingulate cortex) (BA 9, 46, 24) and (2) a set of neural areas in the temporal cortex 

including the temporal pole (ATP) and the posterior superior temporal sulcus (STS), 

extending up to the temporoparietal junction (TPJ) (BA 38, 42, 22) (Farrer and Frith, 2002; 

Gallagher and Frith, 2003; Amodio and Frith, 2006; Frith and Frith, 2006; Young, Dodell-

Feder, and Saxe, 2010; Bzdok et al., 2012; Carter et al., 2012; Olson et al. 2013; Mahy, 

Moses, and Pfeiffer, 2014; Molenberghs et al., 2016). Farrer and Frith (2002) suggested that 

activation of the dorsomedial PFC would show that the neurocognitive mechanism devoted 

to mentalizing is limited to a well-defined part of the cortex. Correspondingly, activations 

observed in other zones would reflect interventions of non-specific mechanisms—activation 

in the STS could match the physiological counterpart for processes classically implied in 

biological movement perception, activation in the temporal poles could be interpreted in the 

larger context of retrieval in autobiographical memory, while implication of the TPJ could be 

conceived as a system that allows to distinguish one’s own mental states from the others’ 

mental states. Thus, the current consensus is that the mentalizing structure is built around 

frontotemporal pathways connecting frontal executive regions in the PFC to phylogenetically 

older regions in and near the temporal lobes. 

Several additional results have to be mentioned. First, even though meta-analyses have 

identified central systems for mentalizing, great variability in the activation localization at the 

individual level has been observed (Singer and Tusche, 2014). Second, when during 

childhood mentalizing arises in the brain is still unknown. Yet, in a recent study using the 

emerging technique of near-infrared spectroscopy (Hyde et al., 2018), the TPJ, but no other 

temporal or prefrontal regions, was shown to have functional organization that is relevant to 

high-level social cognition by around seven months of age. Finally, it must be stressed that 

the “core network” of mentalizing is perhaps less broad than generally thought. ln a meta-

analysis examining fMRI data for several mentalizing task classes, Schurz et al. (2014) 

showed that there is a minimal active network common for all tasks including only the 

dorsomedial PFC and the bilateral TPJ but that general activation profiles are significantly 

different from each other according to the task class with supplementary activation of the 

inferior frontal gyrus and temporal poles. Comparable results were obtained by Spunt and 

Adolphs (2014) with a new “why/how” task designed to single out the basic idea of 

mentalizing. Indeed, what these recent studies show is that, so far, the literature on 

mentalizing has suffered from the lack of a standardized task. 

For several years, it was generally thought that the two systems broadly involved in 

mentalizing—mirror system and intrinsic mentalizing system—were both anatomically and 

functionally completely independent (Van Overwalle and Baetens, 2009). Yet, it turns out that 

several studies deeply call this hypothesis into question because the mirror system and 
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intrinsic mentalizing system keep cooperative interactions during the accomplishment of 

social cognition tasks (Zaki and Oschner, 2012).  

These findings have led to the development of new integrative models in social 

neuroscience that are similar to models for social psychology. In these models, the mirror 

system and the mentalizing system are supposed to interact when subjects are carrying out 

a social task while playing distinct roles. The mirror system would be involved in the 

mentalizing “identification” component (i.e. decoding of intentional and affective signals) 

whereas the intrinsic mentalizing system would be active in mentalizing “attribution” 

component (Sperdutti et al., 2014). The respective weight of the two systems in social 

situations understanding would depend both on the context and the task (Lombardo et al., 

2010). More generally, “social flexibility”—our ability to understand a social situation and to fit 

it in the most effective way—would be fulfilled by the creation of transitory meta-systems 

expressing a real link between different networks (Cochi and al., 2013).  

Of course, these social neuroscience findings about the human capacity to anticipate 

other people’s intentions by imagining oneself in the situation or circumstances of these 

persons (“putting oneself in their shoes”) provide an obvious advantage for economists. 

Besides, we immediately see the closeness between this ability and the one granted to 

players in game theory by economists assuming that players can think about the game from 

their own perspective just like the one adopted by their protagonists for predicting their 

actions. In game theory, it is necessary to develop a theory regarding other players’ actions, 

and mentalizing could fit the bill (see Singer and Tusche, 2014). However, mentalizing is 

broader than what is usually assumed in game theory in which we only refer to a specific 

probability vector describing actions likelihood into a set of strategies. In theory of mind, this 

is referred to by individuals’ general ability for mentally simulating other people’s mode of 

reasoning (Hsu and Zhu, 2012).  

Today, “social neuroeconomics” (the term was coined by Fehr and Camerer, 2007) 

parallels these studies by looking for neural foundations of other-regarding behaviors in 

studies employing well-established paradigms of experimental games (for an overview of 

these paradigms see e.g. Houser and McCabe, 2009, 2014). Many fMRI experiments have 

shown that when subjects are interacting with human partners rather than a computer 

partner the brain functions differently by activating regions involved in the mentalizing 

network. For instance, one of the first neuroeconomic studies (McCabe et al., 2001), in which 

economic Nobel Prize winner Vernon Smith participated, confirmed that trusting in the trust 

game35 implies anticipating others’ behavior and activating neural areas of the mentalizing 

                                                           
35 Two participants are randomly and anonymously matched, one as investor (player I) and one as trustee (player T), and play a one-shot 
game. Both participants are endowed with an amount of money. Player I can send some, all or none of her endowment to player T. Every 
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network; the authors showed that a stronger activation of the medial PFC is observed in the 

brains of cooperative players when interacting with players localized in the lab rather than 

against a computer (see also King-Casas et al., 2005; Deldago, Franck, and Phelps, 2005). 

On their side, Rilling et al. (2004) examined subjects playing two other well-defined 

paradigms—the ultimatum36 and the prisoner’s dilemma games37—with both human and 

computer partners and observed stronger activation for human partners in the typical 

mentalizing areas. A similar finding was found in the P-beauty contest game (or guessing 

game) (Coricelli and Nagel, 2009) 38 , which examines the subject’s “strategic reasoning 

depth” in a framework that does not refer to any social or moral motivation (like previously 

mentioned games) but in which a psychological problem of coordination arises; this study 

showed that activation of the paracingulate cortex and superior temporal sulcus (STS) is 

strengthened when subjects are playing against human partners rather than against a 

computer. Not surprisingly, thus, the regions of interest in neuroeconomic studies using 

classical game-theoretic paradigms coincide partly with the mentalizing network39. Clearly, 

the mentalizing is a key function of the social brain for economics.  

The system of empathy 

Empathy is usually defined as the ability to share another person’s emotions and feelings, 

following the definition given by the German philosopher Theodor Lipps at the very beginning 

of the 20th century (Lipps, 1903). This ability obviously is not without a relationship with the 

mentalizing system; the mirror system was proposed to be used as a neural scaffold for 

empathy and, from an evolutionary perspective, as a biological substrate for human evolution 

of sophisticated sociability and morality. As Lipps anticipated, in an fMRI study in which 

subjects observed or imitated emotions in facial expressions, Carr et al. (2003) showed that 

empathy is drawn from a special form of “resonance” implemented by the mirror system or 

                                                                                                                                                                                     
amount sent by player I is tripled. Player T observed the tripled amount send, and can send some, all or none of the tripled amount back to 
player I. The amount send by the investor is view as a measure of trust; the amount returned by the trustee is view as a measure of 
trustworthiness. 
36 Two participants are randomly and anonymously matched, one as proposer (player P) and one as responder (player R), and told they 
will play a one-shot game. Player P is endowed with an amount of money, and suggests a division of that amount between herself and 
player R. Player R observes the suggestion and then decides whether to accept or reject. If the division is accepted then both earn the 
amount implied by the player P’s suggestion. If rejected, then both players earn nothing for the experiment. It is a simple take-it-or-leave-it 
bargaining environment. 
37 As is well known, Prisoner’s Dilemma (PD) games are used to study “social dilemmas” that arise when the welfare of a group conflicts 
with the narrow self-interest of each individual group member. In a typical two-player PD, each player can choose either to cooperate or 
defect. Payoffs are symmetric, and chosen so that the sum of the payoffs is greatest when both choose to defect. However, each player 
earns the most if she chooses to defect when the other cooperate. 
38 In the simplest variant of the game, each player simultaneously chooses a number between 0 and 100. The person whose number is 
closest to 2/3 times the average of all chosen numbers wins a fixed amount of money; others receive noting; ties are broken randomly. 
39 Other games with very different logical structures are also concerned by this specificity of subjects’ behavior when they know (or believe 
to know) that they are interacting with humans and not with computers. For instance, in one of the first experiments conducted with 
positron emission tomography (PET), Gallagher et al. (2002) showed that in the well-known rock-paper-scissors game, the paracingulate 
cortex was strongly more activated when subjects thought they were playing against another human player rather than against a computer 
(in reality they always were faced with random choices). For a review of recent neuroeconomic works dealing with strategic thinking, see 
Camerer and Hare (2014). 
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specifically on the non-motor side of another mirror system. This experiment proves that, 

besides the dorsal frontoparietal network that characterizes the mirror system, some regions 

into the limbic system also are activated; in parallel to the neural region devoted to tactile 

perception (i.e. the parietal cortex), regions linked to emotional perception are involved. For 

example, in experiments where subjects felt pleasure or received a reward while viewing 

images of people expressing disgust or suffering indicated activation of neural structures 

involved in disgust or suffering perception (the anterior insula), pleasure perception (the 

medial PFC), or the brain’s “reward network” (the ventral striatum) (see section 4 for further 

detail). In parallel, somatic symptoms typically associated with these emotions (sweating, 

feeling of pressure, increased heart rate, and so on) were observed. In empathic situations, 

several regions involved in behavioral and sensorial perception regulation—the secondary 

somatosensory cortex and the medial ACC—were also activated (Singer and Tusche, 2014)  

Since empathy engages the motivational and emotional brain, empathic motivation is a 

better predictor for engagement in other-regarding behavior than mentalizing. The 

psychopath exemplifies this; they may lack empathy but not cognitive perspective-taking, 

explaining why they can engage in antisocial behavior while being very good at manipulating 

and fooling other people—an ability that requires an understanding of other people’s beliefs 

and intentions (Blair, 2005, 2008; Singer, 2009). Notice, however, that empathy is not always 

a direct avenue to moral behavior. Morality includes ideas such as justice, fairness, and 

rights, and comprises norms regarding how humans should treat one another. At times, 

empathy can interfere with morality by introducing partiality, for instance by favoring in-group 

members (Decety and Cowell, 2014).  

In summary, in a somewhat reductive manner, we can acknowledge that the human brain 

has three partially distinct neural systems which provide the following abilities: (1) to 

understand others’ motor intentions and actions (what other people do) (the mirror system), 

(2) to understand others’ beliefs and thoughts (what other people think) (the mentalizing 

system), and (3) to understand and share others’ feelings (what other people feel) (the 

system of empathy) (Frith and Singer, 2008; Singer, 2009; Singer and Tusche, 2014). Some 

authors, founding their analysis on empirical evidence, are making more explicit relationships 

between empathy, mentalizing, and the mirror system, suggesting to separate empathy into 

two distinct dimensions (Cox et al., 2011; Zaki and Ochsner, 2012): (1) “cognitive” empathy 

(understanding of other people’s feelings) specifically in relation to the mentalizing system 

(Shamay-Tsoory, 2011a, 2011b) and (2) “affective” empathy (sharing of other people’s 

feelings) specifically related to the mirror system (Schnell et al., 2011). Yet, during an 

empathic process, generally, the two systems are likely to maintain cooperative interactions 
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(Schnell et al., 2011; Zaki and Ochsner, 2012; Oliver et al., 2018)40 (see Figure 3 below for a 

schematic representation of the brain areas typically involved in cognitive and affective 

empathy). 

Figure 3. Main neural regions involved in social cognition 

 

    Lateral view    Medial view 

dmPFC: dorsomedial PFC, vmPCF: ventromedial PFC, ACC: anterior cingulate cortex, paraCC: paracingulate 
cortex, vPCG: ventro precentral gyrus (BA 6), pIFG: posterior inferior frontal gyrus (BA 44), AI: anterior insula, 
SS2: secondary somatosensory cortex, ATC: anterior temporal cortex (temporal pole), IPL: inferior parietal lobule 
(BA 40), pSTS: posterior superior temporal sulcus, TPJ: temporoparietal junction 

Typically, this system of empathy is regarded as providing human’s ability to adopt 

cooperative behaviors on a larger scale and explains the evolutionary success of the human 

species. However, in economics, the strategic anticipation of others’ intentions have been 

included in game theory’s conceptual background since the very beginning, and only recently 

has the emotional nature of interactive decisions been introduced by behavioral economists. 

Building on a large body of evidence that many people exhibit “social” preference (say, 

roughly, non-selfish or other-regarding preference), they proposed several models to explain 

observed behaviors inconsistent with standard game theory by referring to psychological 

factors, such as trust, altruism, reciprocity or inequity aversion (for a review, see Fehr and 

Schmidt, 2006; Serra, 2017, Chap. 4).  

Social neuroeconomics, in a lot of recent studies, provides insights into the different 

neural pathways that lead to these prosocial decisions and reveal explanatory mechanisms 

for why humans deviate from the canonical self-interest model. Behaviors, such as altruism 

in charitable donations game (Moll et al., 2006; Harbaugh et al., 2007; Mayr, Harbaugh, and 

                                                           
40 Some authors introduce additional distinctions. For example, Blomm (2016) adds to cognitive and affective empathy two other senses of 
empathy: “emotional contagion”, understood as sharing the feelings of those in your immediate vicinity while for affective empathy others 
does not have to be present or even exist, and “compassion”, “kindness” or “sympathy”, that would replace affective empathy as a moral 
motivation. When one empathizes with another person, there does not have to be a prosocial motivation attached to it; when one 
sympathizes or shows compassion for another person, there is. However, in general, empathy is viewed as a first necessary step in the 
process that begins with affect sharing, which motivates other-related concern and finally engagement in helping behavior. Empathy and 
prosocial behavior are closely linked (Singer, 2009). 
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Tankersley, 2009; Hare et al., 2010) and mutual cooperation in prisoner dilemma or public 

good games (McCabe et al., 2001; Rilling et al. 2002; Rilling et al., 2004; Rilling et al., 2008) 

as well as direct punishment of “deviants” in public good with punishment41 or trust game (de 

Quervain et al., 2004) or indirect punishment in ultimatum games42 (Sanfey et al., 2003; 

Knoch et al., 2006b; Knoch et al., 2008; Baumgartener et al., 2011), would all be viewed as 

rational when accounting for the “emotional” utility or disutility that these behaviors incite and 

elicit neural traces observed in brain regions involved in emotion processing including the 

medial PFC, thalamus, NAcc, and anterior insula, depending on the specificity of each 

experiment. 

Social neuroeconomics is the domain in which are found the largest number of 

experiments with pharmacological intervention, sometimes in combination with fMRI. To 

date, oxytocin is by far the chemical substance subject to the most experimental inquiries. 

Evidence has indicated that this neuroactive hormone is essential for prosocial behavior, 

particularly for trust (see Riedl and Javor, 2012, for a survey). Yet, even though oxytocin 

treatment has been suggested to have implications for at least patients suffering from 

disturbed social behavior, such as autism or social anxiety disorder, the relationship between 

oxytocin and human trust behavior is still an open question. The evidence that oxytocin 

directly influences trust behavior remains unclear, and, if there is an effect, it is likely 

moderated by a variety of factors (Nave, Camerer, and McCullough, 2015; Koppel et al., 

2017). Several experiments have also studied the effects of nasal inhalation of oxytocin on, 

including but not limited to, generosity, betrayal aversion, empathy, positive and negative 

reciprocity, and inequality aversion (for a recent overview of some results about the effects 

on social behaviors of various chemical substances including oxytocin, vasopressin, 

testosterone, serotonin, and benzodiazepine, see Serra, 2016, Chap. III)43.  

In summary, in view of the evidence accumulated in recent decades by social 

neuroeconomists, it is now clear that neural networks dedicated to social cognition—both 

                                                           
41 Recall that the structure of Public Good (PG) games is similar to that of Prisoner’s Dilemma games, but they are typically played in larger 
groups. In a typical PG game, each member of a group of four people is allocated an amount of money, say 10 dollars. Group members 
simultaneously decide how to allocate their endowment between two “accounts”, one private and one public. The private account returns 
one dollar to the subject for each dollar allocated to that account. In contrast, every dollar invested in the public account doubles, but is 
then split equally among the four group members (0.50 dollar each). Thus, like the PD game, group earnings are maximized at 80 dollars if 
everybody cooperates and contributes everything to the public account, in which case each of the four participants will earn 20 dollars. 
However, if three subjects contribute 10 dollars each, and the fourth free-rides and contribute nothing, then the free-rider will earn 25 
dollars. Like the PD game, each group member has the private incentive to contribute nothing (free-riding). PG games with punishment are 
sequential PG games where players have the option to punish non-contributors and to reward the highest contributors after a round of the 
game. We know that the funding of public goods is a balancing act, both voluntary and involuntary mechanisms. In general, modern 
societies rely much more on taxation than on voluntary giving to provide public goods. However, for specific goods (e.g. the arts or some 
kinds of medical research) voluntary giving can be quite important. Charitable donation games allow to experimentally study altruistic 
giving in a PG framework. 
42 In ultimatum games, the act of rejection of the Proposer’s offer by the Responder represents an act of costly punishment because both 
players suffer a cost. 
43A more complete panorama of this neuropharmacology literature, that also includes the effects of chemical substances on time and risk 
preference, can be found in Crockett and Fehr (2014).  
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affective and cognitive empathy—are consistently recruited when people face social 

dilemmas and economic exchanges in cooperative and bargaining environments44. These 

neural networks act together or in competition with those dedicated to cognitive control (see 

above section 2) and reward processing (for reviews on social neuroeconomics see Fehr, 

2009; Sanfey and Rilling, 2011; Rilling and Sanfey, 2011; Fehr and Krajbich, 2014; Declerck 

and Boone, 2016; Serra, 2016, Chap. 4; Engelmann and Fehr, 2017; Dreher and Tremblay, 

2017, Part III). 

4. The Computational Brain 

Since the first cognitive science studies in the early 1950s, the brain has popularly been 

compared to a computer. Warren McCullogh, one of the founders of computational 

neuroscience, was the first to propose this comparison (McCullogh and Pitts, 1943; see also 

McCullogh, 1965). This comparison, although appropriate in many ways, disregards one 

critical functional constraint of the brain—it is a computer specially designed for making 

survival and reproduction easier (Glimcher, 2003; Montague, 2007). In this respect, the brain 

must value information subjectively received in the context of that final goal. This is the 

function of the “reward cerebral system” in all mammals. From an evolutionary perspective, 

this explains interest in experiments with animals (e.g. non-human primates or rodents) for 

understanding the function of the human brain (Santos and Platt, 2014).  

A new paradigm for neuroscience: from the “stimulus-reflex” framework to the 

“reward learning” framework 

The cerebral reward system is crucial for survival, providing the motivation necessary for 

making adapted behaviors (e.g. search for food, reproduction, danger avoidance) to enable 

preservation of the individual and species. Contemporary neuroscience research showed 

that this system is involved in three specific psychological components: (1) an emotional 

component, pleasure or pain caused by positive or negative reinforcements (“appetitive” or 

“aversive” stimuli respectively); (2) a motivational component, the motivation for getting 

reward or avoiding punishment (perception of the reinforcing by the sensorial organs or 

mental representation of this reinforcing, which trigger the motivation for getting reward or 

avoiding punishment); (3) a cognitive component, learning that combines reinforcement with 

emotional or behavioral responses. In the animal kingdom, survival and reproduction 

determines most rewards. In modern humans, the physiological model of threat to the 

                                                           
44 It should be noted that social neuroscience literature covers a much broader thematic domain than questions of social cognition. A lot of 
studies concern what is called “moral dilemmas”, which differ from “social dilemmas” by the fact that all solutions of a given problem 
generate a not morally desirable outcome (for example, the famous “trolley problem”) (Christensen and Gomila, 2012). 
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species is secondary; threat happens when humans face a subjective constraining situation, 

such as complex decision making (Rolls, 2014). 

The understanding of the reward system demonstrates a radical change in a 

neuroscience paradigm: actions are no longer supposed to be only governed by reflexes but 

also and mainly by motivations and intentions (Glimcher, 2003). Reflexes are fixed, 

stereotyped behaviors automatically elicited by specific types of stimuli (Sherrington, 1906). 

Such stimuli do not require learning over the lifetime of the organism to come to elicit such 

responses but rather have innate activity tendencies. These reflexes are behaviors that have 

been shaped over the course of evolutionary history because they provide an adaptive 

solution to environmental challenges. According to the “theory of reflex”, the function of the 

nervous system consists of directly connecting a muscular response to a sensory stimulus so 

that a complex behavior can be broken down into a set of simpler behaviors. 

Neurophysiology sets the challenge describing the way the nervous system logically 

decomposes sensory signals and encodes motor commands. The theory of reflex is still 

present in neuroscience as a reference framework; however, it is acknowledged today that 

this theory is not relevant for explaining all behaviors (Glimcher, 2003, Chap. 4).  

To date, three distinct learning systems have been identified and are dissociable by 

psychologic, neural, and computational terms. There are three different routes that enable 

organisms to draw on previous experience to make predictions about the world and to select 

behaviors appropriate to those predictions. Since these different sorts of predictions 

ultimately concern events relevant to biological fitness, such as rewards or punishments, 

they can also be thought of as different forms of value. These systems are: (1) Pavlovian 

systems, which learn to predict biologically significant events to trigger appropriate 

responses; (2) habitual systems, which value a great number of actions by a simple trial-and-

error process, repeating previously successful actions; (3) goal-directed systems, which 

value actions on the basis of their anticipated impacts (Daw and O’Doherty, 2014) (see 

below in the section). 

Although this theoretical turn in neuroscience was clear by the 1990s with the birth of 

electrophysiology and experimental study of neural activity in non-human primates, 

experimental work by some “neo-behavioral” psychologists with rats and pigeons carried the 

seeds for this revolution since the 1960s (Herrnstein, 1961; see also Herrnstein and Prelec, 

1991). These biologically and evolutionary inspired works—going further into classic 

research of Skinner on conditioning (Skinner, 1953)—tested the hypothesis whereby reward 

frequency or amount is quantitatively changing learning and behavior (Commons, 2001). 

Hence, we observe the early stages of the convergence between reward expectation and 

expected utility of standard microeconomic theory, which were explicitly suggested several 

decades later by neurophysiologist Paul Glimcher. These studies, sometimes named the 
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“quantitative approach of behavior” (Richard Herrnstein, then Howard Rachlin, Georges 

Ainslie, George Loewenstein, Drazen Prelec), shed light on impulsivity and intertemporal 

choice, a question initially studied by Strotz (1955), but subsequently dropped by 

economists. Authors such as Ainslie, Loewenstein, and Prelec moved closer to economics 

progressively. Today, Loewenstein and Prelec are leading figures in neuroeconomics. The 

theoretical debt of this new discipline to these neo-behavioral psychologists is fully 

recognized by several pioneers of neuroeconomics (Glimcher, 2003). Importantly, there are 

significant differences between this branch of psychology, which is heir to the “behavioral 

school” born in the early 20th century in opposition to introspective psychology (Watson, 

1913), and modern behavioral economics born in the 1980s fueled by studies in cognitive 

psychology, primarily Daniel Kahneman and Amos Tversky’s works (see Heukelom, 2014, 

for a history of behavioral economics). 

To analogize between reward expectation in neurobiology and expected utility in 

economics, Glimcher coined the term “physiological” expected utility (Glimcher, Dorris, and 

Bayer, 2005). With the new experimental tool of microelectrodes, which allows recording of 

an individual neuron’s activity in conscious animals, experiments are no longer drawing on 

behavioral observations only but also on neural data. This is considerable progress 

compared to experiments made by neo-behaviorists. Observation of neural activity, to the 

extent that it gets before decision, makes possible the understanding of the involved 

mechanism—we can understand how the monkey, conditioned to make eye movements, is 

constructing and assigning “subjective value” to each option offered. 

In the quest for rewards and to avoid punishments, how is the nervous system is 

organized for representing and valuing stimuli, making predictions about when and where 

they will be felt and using them to guide behaviors? Can these different aspects of the 

system impute by component or does the system have to work together as a whole? Are 

different sections of the system preferably activated when a subject is expecting 

reinforcement or when feeling it? Do rewards and punishments activate distinct components 

of the system or is it a question of activation intensity in the same areas? These are crucial 

questions that the decision neuroscience literature has begun to address and 

neuroeconomists are taking advantage of the first answers for improving predictions from 

economic choice models. Before outlining the main components of that model, I focus on a 

major discovery of contemporary neurobiology, namely the leading role of “dopamine” in the 

reward system and regulation of neural activity. 

Dopamine and the reinforcement learning system 

For several years, most neuroscientists suspected that dopamine—one of the main 

neurotransmitters—as well as the neurons using it (i.e. “dopaminergic” neurons) were playing 
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a decisive role in the reward system. Since the 1920s, it has been widely known that 

vertebrate neurons communicate with one another chemically—that neurons employ 

neurotransmitters to send signals across the synapses. Prior to 1950s, however, it was 

widely assumed that all neurons employed a single neurochemical to achieve this 

communication, the neurotransmitter acetylcholine. In the late 1950s and early 1960s, 

several neurochemists showed that this was incorrect; their studies revealed that highly 

localized clusters of cell bodies synthetized compounds including dopamine and serotonin, 

that these cells sent those compounds down their axons, and that these cells released those 

compounds from their terminals in response to depolarization (Doya, 2008). Dopaminergic 

neurons (DNs) are sometimes considered as “the retina of reward system”, alluding to the 

central role played by this internal nervous membrane in the visual system (Tobler and 

Weber, 2014, p. 159). 

Reward prediction error (RPE) 

In the 1980s, the most frequent hypothesis was that DNs were the “pleasure center of the 

brain.” Dopamine was supposed to play a crucial role in behavior by mediating reward and 

acting in the service of primary motivational characteristics (Wise, 1982). In the 1990s, this 

hypothesis was challenged by a set of experiments revealing the role that expectations were 

playing in modulation of dopamine activity too. While DNs are specialized in information 

transmission within the reward system, they are active if the reward is unexpected—these 

neurons do not respond to reward predicted by anterior stimuli. Thus, dopaminergic function 

rests not only on reward but also on beliefs. DNs do not react to reward per se; they 

implement a learning based on the difference between prediction (expected reward in 

relation to anterior reward) and valuation (reward really perceived). Learning is driven by a 

“reward prediction error.” That error, the difference between expected reward and perceived 

reward, is used to continuously update value that the brain is attaching to stimuli (Houk, 

Adams, and Barto, 1995; Montague, Dayan, and Sejnowski, 1996; Schultz, Dayan, and 

Montague, 1997)45.  

These pioneer experiments revealing the role of dopamine in reward system were carried 

out in non-human primates. However, a similar mechanism was shown to exist in 

honeybees, which employ a close chemical homologue of dopamine called “octopamine” 

(Real, 1991; Montague et al., 1995). As Glimcher points out, “the fact that the same basic 

                                                           
45 It was well known for a long time that the dopamine circuit is crucially involved in motor functions and cognitive processes behind 
organization of motor behaviors; it was shown that motor difficulties affecting Parkinson’s disease patients are caused by DNs 
degeneration. It’s accidently that dopamine role in reward system was discovered in the 1950s by Olds and Milner (1954) in an experiment 
with rats. But it’s really in the mid-1990s that, in an experiment designed to study the dopamine role in some movements, Wolfram Schultz 
found that dopaminergic responses are more closely associated to some “important” event, such as reward in the form of food. However, 
he thought unlikely that dopamine is encoding reward per se. Peter Dayan, the first one, established the link between the Schultz’s 
discovery and reinforcing learning models evolved in computer science (Montague, 2007).  



36 
 

system occurs in species separated by something like 500 million years of evolution 

suggests how strongly evolution has conserved this mechanism” (Glimcher, 2011a, p. 302). 

A slightly more formal presentation of this reinforcement learning system can be 

advanced. Assume that an organism maintains a set of predictions of the reward associated 

with each stimulus, s, called V(s) (i.e. its subjective value), and also assume that these 

predictions determine the organism’s conditioned response to whichever stimulus is 

observed. Then, upon observing stimulus received sk on trial k, and receiving a reward on 

that trial, Rk, the prediction error is: RPEk = Rk – Vk (sk). Dopamine is actively taking part in 

this system of reinforcement learning that is supposed to guide behavior: either there is a 

correspondence between the expected event and that which occurs—and the belief is 

strengthened—or there is no correspondence and a change in the anterior mental 

representation and a new learning arises. In this last case, the brain updates the prediction in 

the sense of the prediction error for reducing it. In the next trial, k+1, the reward prediction 

associated to stimulus sk is: Vk+1(sk) = Vk(sk)+αRPEk, in which α stands for the learning rate 

parameter (between 0 and 1) determining the size of the update step. Understanding of that 

expression is easier if we transform it as follows: Vk+1(sk) = (1–α)Vk (sk)+αRk. We see, thus, 

that the error-driven update accomplishes a weight average between the observed reward 

(with weight α) and the previous reward prediction (with weight 1–α). Finally, a further 

algebraic manipulation of this expression may allow us to realize that the prediction updating 

amounts to compute a weight running average of all rewards received previously in the 

presence of the stimulus, with the most recent reward weighted most heavily and the weight 

for prior rewards declining exponentially in their lag (Daw and Tobler, 2014). 

These pioneering studies on the role of dopamine in reward learning date from the 1990s 

before the paper written by Platt and Glimcher (1999) that generally is accepted as the first 

neuroeconomics study. Although, before Platt and Glimcher’s experiment, several studies by 

psychologists or neuroscientists wished them with economic influences (see section 2), it 

was the first study that put forward the hypothesis for a neural signal dealing with the 

anticipation of a reward (in that case a food reward) that was neither of sensorial origin nor 

linked to a motor command (later, Glimcher will use the term of “physiological expected 

utility”, Glimcher, Dorris and Bayer, 2005). So, we may consider them as a kind of 

“theoretical prehistory” of neuroeconomics. Further they own a strong specificity—results 

exclusively concern modelling of brain functioning in non-human primates undertaking an 

“action” (most often, an eye-tracking task) in electrophysiology experiments.  

If for a neurobiologist such an experimental context may be relevant, for an economist it 

must be expanded to human experiment with choices in a “good-based framework” (i.e. 

abstract decisions independent of the sensorimotor contingencies of choice) so that the 

neurons do not just encode movements. Theoretical models of decision making, indeed, 
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establish the advantages of separating processes related to selecting the good to acquire 

(i.e. “economic choice”) from those responsible for selecting the action necessary to acquire 

that good (Padoa-Schioppa, 2011). This is an important point on which I will come back 

further. 

Thanks to cerebral imaging, the RPE paradigm was extended to humans in the early 

2000s. Several experiments with gustatory or financial rewards generalized the theory, giving 

rise to the “neural economics” program (Delgado et al., 2000; Knutson et al., 2000; Elliot et 

al., 2000; Knutson et al., 2001; Berns et al., 2001; Breiter et al., 2001). Even if some 

cytoarchitectonic differences between the monkey brain and the human brain are observed, 

it appears that the cerebral processes are similar.  

“Stochasticity and sequentiality” are two prominent properties of the choice mechanism in 

neural terms (Serra, 2016, p. 146). Uncertainty is fundamental to understanding brain 

functioning. Neural activity is stochastic by its very nature and, thus, the neural computations 

necessary for making choices are stochastic. Neuronal action potential rates are typically 

described as near Poisson-like stochastic processes. Although the precise source of this 

stochasticity in firing remains to be fully understood, the latest available data suggest that 

this stochasticity results from a mixture of thermal noise and that membrane voltages are 

driven by very small numbers of atomic-scale events (Glimcher, 2014b). Faced with this 

uncertainty, the brain would be able to make hypothesis and expectations, reinforcing or 

changing beliefs after checking, and continuously updating via various learning mechanisms 

that scholars have begun to identify (Niv and Montague, 2009; Balleine, Daw, and O’Doherty, 

2009; Balleine and O’Doherty, 2010; Daw and Tobler, 2014). This is one of the main findings 

of “neural economics” that will be briefly outlined later in the section.  

On the other hand, in the standard approach, economic choice is fundamentally choice 

between “actions”. Intuitively, it is a less than satisfactory hypothesis; we have a strong 

intuition that, for example, when consumers choose durable household goods like 

refrigerators or cars they do not rely on action-based decision making. Some authors have 

proposed an alternative to this standard approach called the “goods-based model”, which 

suggests that economic choice occurs within the space of goods and is computationally 

removed from sensory and motor representations. The key feature of this model is that 

economic choice fully takes place in the space of goods (Padoa-Schioppa and Assad, 2006, 

2008; Padoa-Schioppa 2011). In any case, both classes of models suppose that 

representations of value based on “actions” and “economic choices” are closely linked. A 

serial process is generally postulated: the organism first values the potential “goods” in the 

environment and then recalculates those values based on the “actions” necessary to acquire 

them (Kable and Glimcher, 2009; Rangel and Hare, 2010). Importantly, however, these 

models differ on one critical point—according to the goods-based model, choice should be 
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completely processed within an abstract representation of goods. Knowing how goods-based 

valuation, which unarguably occurs, and action-based valuation interact in decision making 

remains, in fact, a controversial issue (see Glimcher, 2014a; Platt and Plassmann, 2014; 

Padoa-Schioppa and Conen, 2017).  

Another central finding of “neural economics” refers to the existence of a “common 

currency” within the neural system that can be used to compare the valuation of diverse 

behavioral acts or sensory stimuli. For these scholars, who draw a parallel between 

economic systems and biological systems, “a currency is an abstract way to represent the 

value of a good or service… it provides a common scale to value fundamentally 

incommensurable stimuli and behavioral acts. Without internal currencies in the nervous 

system, an organism would be unable to assess the relative value of different events like 

drinking water, smelling food, scanning for predators, sitting quietly in the sun, and so forth” 

(Montague and Berns, 2002, p. 276). For choosing an appropriate behavior, the nervous 

system must estimate the value of each potential actions, it must convert them in a common 

scale and use this scale to determine a course of action; that common scale may be 

requested to value reward predictions as well as rewards themselves. It follows that to value 

a predictor, a neural system must have a way to compute the predictor’s value before the 

reward that it promises actually arrives. And within this neural mechanism able to resolve in a 

centralized way the comparability problem among a priori non-comparable stimuli, it turns out 

that the dopamine production might be one of the essential components (Montague and 

Berns, 2002; Landreh and Bickle, 2008; Schultz, 2009; Balleine, Daw, and O’Doherty, 2009; 

Niv and Montague, 2009; Rangel, 2009; Chib et al., 2009; Levy and Glimcher, 2012). 

Today, the “common currency” hypothesis is widely accepted in the neuroscientific 

community; however, some authors do not fully agree with it. Rolls (2007, Chap.3; 2014, 

Chap.9) has argued that different specific rewards must be represented “on the same scale” 

but not necessarily converted into a “common currency”. The key difference between the two 

concepts of common scaling and common currency lies in the specificity with which rewards 

are represented at the level of single neurons. While a common currency view implies 

convergence of different types of reward onto the same neurons, a common scaling view 

implies that different rewards are represented by different neurons with the activity of the 

different neurons scaled to be in the same value range. Due to the limited resolution of the 

tool, fMRI studies cannot answer whether the same or different neurons are encoding the 

value of different rewards; only single neuron recording studies may provide such evidence 

(Grabenhorst and Rolls, 2011).  
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The dopamine circuit and the centralized regulation of neural activity 

Today, there is vast literature dealing with the role of dopamine in the reinforcement 

learning process related to RPE and neural activity regulation (Pessiglione et al., 2006; Niv 

and Montague, 2009; Schultz, 2010, 2013; Cools, 2011; Glimcher, 2011a, 2011b; Daw and 

Tobler, 2014; Daw, 2014; Doya and Kimura, 2014; Rutledge et al., 2015; Schultz, 2016). 

However, the role of this neurotransmitter does not stop there; in addition to its central 

function in motor functions (as already mentioned), dopamine also acts as a powerful 

regulator in other aspects of cognitive cerebral functions, such as attention and working 

memory (Nieoullon, 2002; Arnsten, Wang, and Paspalas, 2012)46. In fact, even if it appears 

that a consensus exists in neuroscience about the multifunctional nature of dopamine and its 

major contribution in terms of motor performance, some disagreements persist with its role in 

learning and motivation47. Particularly, Rolls (2014, Chap. 6) agrees that there is evidence for 

DNs action in encoding of RPE signals and that this could present a problem; according to 

Rolls, the alternative hypothesis that DNs reflect the effects of many stimuli salience (i.e. a 

property less dependent to reward) is more consistent with experimental data. This is also 

explicit in the survey written by Berridge and O’Doherty (2014), in which each co-author has 

a slightly different point of view: for O’Doherty, dopamine is a prediction-error mechanism of 

reward learning, while for Berridge, dopamine mediates incentive salience. Indeed, there has 

been considerable debate over the role of dopamine activity in processing non-rewarding 

events (i.e. signals related to salient, surprising, and novel events). A series of studies 

provide evidence that DNs are more diverse than previously thought. Rather than encoding a 

single homogeneous motivational signal, they come in multiple types that encode both 

reward and non-reward events in different manners. Thus, these results pose a problem for 

general theories that identify dopamine with a single neural signal or motivational 

mechanism. 

Whether with the human or monkey brain, neurobiologists identified the “dopamine 

circuit”—the brain zones in which neural information circulates mostly due to this 

neurotransmitter. Dopamine is synthesized in over a dozen locations in the brain, but only a 

few clusters of dopaminergic neurons sent axons along a long-distance trajectory that can 

influence brain activity in many areas. These long-distance projections have their origin in 

two zones lying within the midbrain and the high part of the brain stem—the ventral 

                                                           
46 Attention allows for the voluntary processing of relevant over irrelevant inputs in line with the current behavioral goal of the organism. 
Working memory can be conceived as an active process whereby stimulus or internal representations are stored “on-line” to prevent 
temporal decay or intrusion from competing or distracting stimuli that are outside the current focus of attention. So, dissociating effects of 
attention from those of working memory is difficult, and in practice the two processes are interactive (Awh and Jonides, 2001). Dopamine is 
not the only neuromodulator implicated in attention; acetylcholine, noradrenaline and serotonin also play a role in top-down attentional 
control (for a recent review see Thiele and Bellgrove, 2018).  
47 The dopaminergic system also is a primary pharmacological target for psychiatric disorders such as attention deficit, hyperactivity 
disorder, schizophrenia, and Parkinson’s disease, which are associated with attention deficits (Arnsten and Rubia, 2012). 
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tegmental area (VTA) and the substantia nigra pars compacta (SNpc) (Bjorklund and 

Dunnett, 2007). DNs irradiate in the brain by following two main networks: (1) from the VTA 

clusters up to the ventral striatum and the PFC, and (2) from the SNpc cluster up to the 

dorsal striatum (caudate nucleus and putamen). Functional experiments support the 

preferential link of VTA DNs to reward (the “reward network”) and SNpc DNs to motor action 

(Howe and Dombeck, 2016). In all, five regions from the PFC project to five zones in the 

basic ganglia, which in turn project via output neurons to the initial cortical regions. Some 

internal structures, such as the NAcc (in the ventral striatum), appear to be playing an 

important role in the reward network, but many other cortical and subcortical regions also 

may be involved (Glimcher, 2011a, Chap 13) (see a schematic representation of the 

dopamine circuit in Figure 4).  

Figure 4. The dopamine circuit 

 

SNpc: substantia nigra pars compacta, VTA: ventral tegmental area,  
FC: frontal cortex, AMY: amygdale, NAcc: nucleus accumbens, CAU: caudate, PUT: putamen 

In fact, all regions targeted by dopamine in the reward network do not verify the encoding 

conditions of RPE that might be stated (Caplin and Dean, 2008, 2009). Learning from the 

axiomatic method commonly employed by economists in modern theoretical economics, 

these authors wondered whether it is possible to identify a small number of axioms that might 

characterize all classes of RPE algorithms. They prove that three axioms are enough. In 

Caplin et al. (2010), these axioms were empirically tested with fMRI neural data from all 

zones targeted by dopamine. It turns out that only the NAcc verifies the three axioms. Then, 

some authors, such as Caplin and Glimcher (2014), suggest generalization of this approach 

in the field of neuroeconomics for building “axiomatic” neuroeconomics, which may have the 

advantage of solving some disagreements revealed by the literature. 

It should also be noted that some areas belonging to the reward network are targeted by 

other “afferents”—specifically serotonin. Several scholars suggest that serotonin, producing 

feelings of satiety and inhibitions, is active in the field of negative RPE (Daw, Kakade, and 
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Dayan, 2002; Niv and Montague, 2009)48 . As noted by Glimcher (2011a, p. 329), this 

hypothesis is rather attractive because it resolves the contradiction that exists between some 

experimental observations of the RPE model in the case of negative errors and many robust 

experimental economic results that prove existence of an asymmetry between losses and 

gains in terms of expectation. Schultz, Dayan, and Montague (1997), showed that negative 

prediction errors are less valued than positive ones by non-human primates, whereas a lot of 

experiments showed that both human and non-human primates are more sensitive to losses 

than to gains with respect to their expectations (Tversky and Kahneman, 1981, 1986, for 

humans; Chen, Lakshminarayanan, and Santos, 2006, for non-human primates). When 

dopamine is shown to no longer be the only transmitter that intervenes for negative errors, 

these results will no longer be conflicting. In any event, our understanding is still rudimentary 

and contested concerning encoding of negative RPE (Glimcher, 2011a, Chap. 13; Daw, 

2014). 

Learning and valuation: the three systems 

To overcome uncertainty, the brain develops a learning mechanism. As mentioned above 

in this section, there is agreement that several learning processes coexist in the brain. More 

precisely, psychologists and neuroscientists nowadays agree that the brain employs three 

different systems (Bouton, 2007; Rangel, Camerer, and Montague, 2008; Balleine, Daw, and 

O’Doherty, 2009; Balleine and O’Doherty, 2010; Dolan and Dayan, 2013; Daw and 

O’Doherty, 2014; Rolls, 2014):  

(1) Pavlovian systems are a category of learning mechanisms that only value a small 

number of behaviors soundly anchored in terms of evolution, acquired as responses to some 

positive or negative stimuli; they are independent of any actions. With this mechanism, an 

organism can learn to make predictions about when biologically significant events are likely 

to occur and to learn the stimuli tend to precede them (Pavlov, 1927). Pavlovian behaviors 

are more flexible than simple reflexes to emit behaviors shaped by predictive learning, but 

they also are inflexible since the responses themselves are stereotyped. Pavlovian learning 

is known to be present in vertebrates, including humans, as well as many invertebrates, 

including insects such as drosophila, and even in the sea-slug aplysia. 

(2) Habitual systems can learn to value many actions with a simple trial-and-error process. 

Such a learning mechanism works simply by repeating actions that were previously 

successful. However, it has an odd and sometimes maladaptive inflexibility owing to its 

                                                           
48 Broadly, serotonin is implicated in a variety of motor, cognitive and affective functions, such as locomotion, sleep-wake cycles and mood 
disorders. It was argued that this neurotransmitter would play a role in impulsive behaviors: reduced levels of serotonin would promote 
impulsive actions (i.e. the failure to suppress inappropriate actions) and choices (i.e. the choice of small immediate rewards over larger 
delayed rewards) (Dalley, Everitt, and Robbins, 2011). 



42 
 

foundation in the stimuli-response reflex. Habitual systems are relevant only for stable 

enough environments, without sudden change, and at slow rates. 

(3) Goal-directed systems value actions on the base of their anticipated impact. This 

learning mechanism evaluates actions more prospectively, as with a cognitive map. It 

depends on a representation of the action-outcome contingency and on the outcome as a 

desired goal or incentive. For these reasons, goal-directed systems can calculate the value 

of an action in wholly new situations and in quickly changing environments, but they are 

generally associated with high informational cost.  

Each system evaluates decisions and behaviors in a specific way—they correspond with 

values of specific nature. The main criterion for distinguishing between these various learning 

processes refers to the intentional nature of actions (Balleine, Daw, and O’Doherty, 2009). 

The test rests both on contingency and on control of actions by knowledge of their 

relationship to consequences. Goal-directed decisions pass both factors while habitual 

decisions pass none of them. In habitual systems, the only previously “reinforced” behaviors 

are valued. Concerning Pavlovian decisions, they pass no factor too. Learning is merely 

passive—behaviors are independent of their outcomes. However, the same is not true of 

behaviors acquired in other conditioning preparations, notably instrumental conditioning 

(Thorndike, 1911). In Pavlovian conditioning, the delivery of a biologically important event 

(e.g. food, water, and a predator) is predicted by, or made conditional upon, a relatively 

neutral stimulus, and then the reflexive unconditional response induced by exposure to the 

event is elicited by the stimulus. Let us think of Pavlov’s popular experiment in which he 

studied salivary responses to food delivery in dogs and the conditioning of those reflexes 

produced by pairing a neutral stimulus (i.e. the sound of a bell) with food. For instrumental 

conditioning, access to a motivationally valuable commodity (e.g. food when hungry and 

safety when apprehensive) is made conditional on the performance of the animal’s own 

actions, such as pressing a lever or pulling a chain. Here, learning is based on stimulus-

response or response-outcome relationships rather than on direct stimulus-outcome 

relationships in which learning becomes active (e.g. how to teach pressing such or such 

lever to the animal). However, there is now considerable evidence confirming that goal 

values and instrumentally conditioned reflex values are mediated by distinct neural 

processes (Balleine, Daw, and O’Doherty, 2009).  

Broadly, we may consider that Pavlovian and habitual systems correspond to two distinct 

classes of automatic (or quasi-automatic) behaviors for which learning is fast, whereas goal-

directed systems are associated with the class of controlled behaviors for which learning is 

slower. For automatic behaviors, decisions are mainly of an instinctive nature, while with 

goal-directed systems, they would be made more consciously.  
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Nowadays, many questions persist. First, we do not know whether only three kinds of 

learning systems exist—Lengyel and Dayan, 2007, advance the hypothesis of a fourth 

“episodic” system managed by the hippocampus—or whether there exist multiple Pavlovian, 

habitual, and goal-directed systems, each one specialized in a class of actions or outcomes 

(Rangel, Camerer, and Montague, 2008). Second, the question of status assigned to each 

system in terms of state of consciousness is still open. Although Rolls (2014, Chap. 10) 

suggests linking only goal-directed systems to consciousness, which he calls “explicit” 

systems in contrast to the other systems called “implicit” systems, some cognitive 

neuroscientists do not exclude that habitual systems should be compatible with some 

aspects of consciousness (Dehaene et al., 2006; Dehaene and Changeux, 2011). Finally, 

knowing why the brain needs these different regulatory mechanisms and how the trade-off is 

conducted when the systems come into conflict has always been a matter of debate. Some 

elements of response have been proposed for explaining complementarity and not conflict 

between habitual and goal-directed systems depending on the circumstances each one is 

able to efficiently perform the same function—that is, to minimize error risks (Daw, Niv, and 

Dayan, 2005; Daw and O’Doherty, 2014; Rolls, 2014, Chap. 9). In this respect, we find, from 

the study of neural mechanisms involved in the treatment of uncertainty, a general qualitative 

conclusion that converges to the one I highlighted in the anatomical-functional identification 

of neural regions specialized in emotional and cognitive treatments (see section 2). Like 

emotional and cognitive systems that interfere in decision making, automatic and controlled 

processes cooperate to regulate behaviors “for the best” according to the circumstances49. 

From a neural viewpoint, Pavlovian, habitual, and goal-directed systems are implemented 

in dissociable substrates, each involving loops through different parts of the basal ganglia. 

Habitual actions are encoded in loops involving sensorimotor cortical inputs to the 

dorsolateral striatum. A parallel circuit linking the medial PFC and the dorsomedial striatum 

appears to support goal-directed behavior. Finally, Pavlovian responses appear to involve a 

ventral loop linking the OFC and the ventral striatum, with important contributions also from 

the central and lateral nuclei of the amygdala. All three loops are innervated by dopaminergic 

inputs from the VTA and the SNpc (Daw and O’Doherty, 2014)50.  

 

                                                           
49 In Pavlovian systems, the conditioned response is supposed to be proportional to the predicted reward. How these responses coordinate 
(competition or cooperation) with conditioned answers provided by model-free or model-based RL? Dayan et al. (2006) have proposed 
some hypothesis but we still do not have works that could rationalize principles of interaction similar to those explaining the efficient trade-
off between habitual and goal-directed systems (Daw and O’Doherty, 2014).  
50 It was argued that degeneration of cortico-striatal circuits underlying these distinct learning systems result in different forms of pathology 
such as Huntington’s disease and Tourette’s syndrome for goal-directed systems and Parkinson’s disease for habitual systems. 
Furthermore, interaction between these two learning systems, and particularly the situation when habits come to dominate behavior, has 
become a topic of great interest in neuropsychology of addiction and others psychiatric disorders involving compulsive behaviors, such as 
obsessive compulsive disorder (Maia and Frank, 2011; Daw and O’Doherty, 2014). 
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Reinforcement learning and computational algorithms 

Reinforcement learning has been primarily developed within computer science. Two 

waste classes of algorithms were defined to identify optimal decisions in formal abstract 

tasks known as model-free and model-based reinforcement learning (RL) (Barto, 1995; 

Sutton and Barto, 1998; Dayan, 2008). Incidentally, the expression “reinforcement 

learning”—also named “routine” learning—may be confusing for economists in that it is not 

used in the same sense in computer science and neuroscience as in economics. In computer 

science and neuroscience, RL refers broadly to learning in the context of decision problems 

and comprises many sorts of learning including both model-free and model-based 

approaches. In contrast, in economics RL refers more specifically to only one approach, the 

model-free strategy (Daw, 2014, p. 302). See in Camerer (2003, Chap. 6) or Montet and 

Serra (2003, Chap. 7) for an overview of learning models in game theory in that it does not 

assume sophisticated behavior by players who are supposedly concerned only with their 

recent experiences (success or failure of their own followed strategy) and completely 

ignoring information they could infer from success or failure of other players’ strategies.  

Importantly, this implies correspondence between these two classes of algorithms and 

some aspects of real-word decisions by biological organisms. More precisely, there is a 

proposed link for habitual values to model-free RL and goal-directed values to model-based 

RL. Although model-free RL has received the majority of attention in neuroscience, there has 

been an increasing understanding for how the brain uses model-based methods (Daw, Niv, 

and Dayan, 2005; Balleine, Daw, and O’Doherty, 2009; Dolan and Dayan, 2013; Daw and 

O’Doherty, 2014). 

The two algorithms rest upon a formal class of Markov decision processes (MDPs). The 

core elements of an MDP are a set of situations or states, actions, transitions (i.e. how states 

and actions lead to next states), and rewards. In this framework, the expected cumulative 

future reward, called the state-action value function, is given by the following recursive 

equation:  

Q(st, at) = R(st) + Ʃ T(st+1 /at , st) maxa [Q(ss+1, at+1)]                         (MP) 

where st stands for the state at time t, at for the action at time t, Q for the value function state-

action, R for the reward function, and T for the transition function determined by the 

conditional probability of st+1 with respect to st and at. The most important simplifying 

assumption of the MPD is that the state transition probability depends only upon the current 

state and action (i.e. the new state is independent of all earlier states and actions). 

It should be emphasized that the difference between model-free RL and model-based RL 

does not lie in the nature of conveyed information but rather in how this information is 

supposedly inferred from experience by a trial-and-error process (i.e. by trying various 
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actions and observing their results). A key insight into the early developments of RL was that 

learning problems could equally be attacked by focusing on estimating the quantities 

appearing on either side of the equation MP. Let us consider each one of these learning 

algorithms. 

In model-based RL, the brain is supposed to implicitly solve equation MP by building up a 

picture of the dynamic “state-action-next state” for each action by requesting its experience 

with actions and their outcomes—meaning it estimates the right-hand side of MP. Learning is 

said to be “model-based” because the brain implicitly turns to an “internal model” of the task. 

In psychologic terms, since rewards value is supposedly dependent on expected outcomes, 

the control is viewed as goal-directed. The system is very flexible but the calculations are 

complex and costly in terms of working memory. The flip side of the simplicity in learning an 

internal model is computational complexity in using it. 

In model-free RL, the brain is supposed to directly link the given system state, action, and 

resulting consequence and learn how to directly approximate the left-hand side of equation 

MP (Sutton, 1988). Here, reinforcement learning is said to be “model-free” because it lies on 

no representation of MPD for estimating the right-hand side of equation MP. In psychological 

terms, in this system, learning is habitual. This approach corresponds exactly to the RPE 

paradigm (see above in the section). Q can be updated using error-driven learning, 

increased or decreased depending whether the reward is larger or smaller than expected. 

This system has the benefit of directly representing reward value; however, the system is not 

very flexible (Doya et al., 2007). The “temporal difference” algorithm (TD) is an often-quoted 

example of model-free RL in computer science (Sutton, 1998; Suton and Barto, 1998) and 

may be interpreted as an extension of the Rescorla-Wagner algorithm (Rescorla-Wagner, 

1972), which supposes that reward predictions are continuously improved by comparing 

them with current rewards (see e.g. Glimcher, 2011a, Chap. 13).  

Among the several variants of TD algorithms present in the literature, the most known 

variant is the “actor-critic” model (Baro, 1995). It is imagined that the selection of the action is 

implemented by two fictitious components: (1) a component that learns to predict future 

rewards associated with specific environmental states (the “critic”), and (2) a component that 

chooses specific actions allowing to move the agent from one state to the next according to 

the selected policy (the “actor”). The “critic” encodes the states of the world value, 

characteristic of Pavlovian reward prediction signal, while the “actor” stores probabilities 

associated with each action in any state of the world and then chooses actions according to 

these probabilities. The aim of the model is to change the “policy” adopted by the “actor” so 

that, over time, actions associated with the highest rewards are chosen most frequently. 

Some analogies have been drawn between the anatomy and connections of the basal 

ganglia (in the classic limbic system) and the implementation mechanisms of RL models, 
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such as the actor-critic model—here, the ventral striatum plays the role of “critic” whereas the 

dorsal striatum is the “actor” (Montague, Dayan, and Sejnowski, 1996). However, the 

question arises of how to rectify this old model with the more recent distinction between 

habitual and goal-directed decisions.  

Daw, Niv, and Dayan (2005) (see also Balleine, Daw, and O’Doherty, 2009) suggest that 

the actor-critic model would only apply to habitual decisions, and they propose another 

model that can integrate the goal-directed component of learning; the “forward” model 

includes the sensibility of actions to online changes into the consequences of value. Some 

experiments confirm the existence of these signals reflecting the goal-directed value 

computed by the “forward” model in the ventromedial PFC (Hampton, Bossaerts, and 

O’Doherty, 2006). Yet, although this model is likely to provide an alternative conceptual 

framework that may better integrate learning and motivation processes in the brain, a few of 

its implications are difficult to accept (Balleine and O’Doherty, 2010). One implication of this 

model is that the function of dopamine in ‘weighing-up’ value would only concern habitual 

decisions and not goal-directed decisions, which is inconsistent with a largely accepted 

conclusion today that dopamine plays its role for both decisions types as dopaminergic 

neurons project both to the PFC and the striatum (see above). 

Finally, I would like to emphasize that at the very heart of the RPE paradigm is statistical 

reasoning. The brain is supposed to react to environmental information by continuously 

updating existing memory with new observations. According to this perspective, evolution 

would have endowed all living beings with a learning ability and the Bayesian form would be 

the most natural expression. Today the “Bayesian brain” hypothesis is commonly used in 

theoretical neuroscience (Dayan and Abbot, 2001; Knill and Pouget, 2004; Doya et al., 2007; 

Rolls and Deco, 2010; Friston, 2012). This hypothesis is linked to the “free-energy principle” 

built up by Karl Friston (Friston, Kilner, and Harrison, 2006; Friston, 2010) that began with an 

idea moved forward by the great physiologist and physicist Hermann von Helmholtz in the 

19th century. Essentially, the free-energy principle states that any self-organizing system that 

is at equilibrium with its environment must minimize its free energy. The principle is 

essentially a mathematical formulation of how adaptive systems—that is, biological agents, 

like animals or brains—resist a natural tendency to disorder. However, even if this hypothesis 

seems widely accepted concerning perceptual decisions (Gold and Heekeren, 2014), this 

may be problematic for VBDs. 

Towards a computational model of economic choice 

Driven by the theory of revealed preference, economics traditionally has not been 

interested in the neural processes underlying human choice. As a result, standard economic 

models are “as if” as opposed to “as is” descriptions of decision making. In contrast, 
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neuroeconomists are interested in the actual computational and neurobiological processes 

behind human behavior. Neuroeconomics aims for “structural” models of decision making 

(Glimcher, 2011a; Fehr and Rangel, 2011). The contours of such a model emerge today in 

neuroeconomic literature. They arise from the theoretical and computational neuroscience 

teachings coupled with the various experimental findings of the past 20 years. This model 

applies to goal-directed decisions51 and deals mainly with “simple” choices, namely choices 

between a small number of familiar goods, with no informational asymmetries, strategic 

consideration, self-control problems, and financial, temporal, or social dimensions (e.g. 

choosing between an apple or an orange for desert). Of course, researchers hope that 

insights learnt in this simple case will also be applied to more complicated and interesting 

problems. As suggested by the first experimental results dealing with risky decisions and 

intertemporal choices, this hypothesis appears to be reasonable (see Levy et al., 2010, for 

risky decisions, and Hare, Camerer, and Rangel, 2009, Fehr and Rangel, 2011, and Kable, 

2014, for intertemporal decisions). Social decision making is more complicated, which relies 

on neural representation of oneself and others (Hare et al., 2010). Yet, recent findings 

suggest that there is likely a unified mechanism for motivational control of behavior that may 

incorporate both social and non-social factors, even though some aspects of these findings 

suggest that there are also differences between social and non-social neural valuation (Ruff 

and Fehr, 2014; Hutcherson, Bushong, and Rangel, 2015; Krajbich et al., 2015; Wake and 

Izuma, 2017). 

Schematically, the key components of the model are based on two mechanisms that are 

supposed to proceed sequentially: (1) a valuation mechanism that learns, store and retrieves 

the values of options offered to the choice; (2) a choice mechanism that selects one of these 

options by comparing values. The process of choice implementation in the brain is better 

understood as functionally separate from the encoding of values. Moreover, both 

computation and comparison of decision values are modulated by attention—the brain’s 

capacity to vary the computational resources that are used in different circumstances insofar 

as these resources are scarce and costly in terms of consuming energy (Kable and 

Glimcher, 2009; Fehr and Rangel, 2011; Glimcher, 2014a). 

The valuation mechanism 

The concept of “subjective value” (SV) of a decision is at the heart of this device (see 

section 1) and is linked with the notion of “experienced utility”. The SV of a decision 

corresponds to a neural signal computed “online” at the time of choice by forecasting the 

eventual hedonic impact of taking the differing options, whether chosen or not chosen, while 

                                                           
51 Glimcher’s model is more widely dealing with VBD (i.e. it is supposed to also include habitual decisions), but the switch among the two 
neural systems is not explicitly mentioned. 
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the experienced utility represents a neural signal computed at the time where the organism is 

effectively experiencing the hedonic impact of the chosen option (Kable and Glimcher, 2009; 

Rangel and Hare, 2010; Fehr and Rangel, 2011; Padoa-Schioppa, 2011; Berridge and 

O’Doherty, 2014; Padoa-Schioppa and Conen, 2017). Of course, it is difficult not to draw a 

parallel with the current distinction made in behavioral economics between “decision” utility, 

which corresponds to utility concept of standard economic theory, and “experienced” utility, 

which symbolizes subjective welfare (Kahneman et al., 1997; Kahneman, 2003, 2011)52.  

Some authors do not explicitly refer to this notion of “experienced utility”. Rangel and 

Clithero (2014) talk about the “stimulus value” and the “outcome value”. Glimcher (2011a, 

2014a), presents the matter differently; he discriminates between neural regions where an 

“expected subjective value” is “represented—he no longer uses the confusing expression of 

expected “physiological utility” proposed earlier in Glimcher, Dorris, and Bayer, 2005)—and 

neural regions where this value is “learnt and stocked” (i.e. where it is “constructed”)53. I will 

follow this way of presenting the valuation mechanism. 

Regarding the “representing” phase, many fMRI experiments with human subjects 

suggest that the same neural region, the ventromedial PFC (including the medial OFC), is 

activated for valuing decisions at the time of choice. This general finding is corroborated by 

clinical studies examining patients with damage in this brain zone (see above section 1). 

Furthermore, experiments using manipulation techniques (i.e. experiments able to prove 

causality and not just correlation), such as brain stimulation, end up with similar results. Brain 

activity in the ventromedial PFC clearly reveals the idiosyncratic values people place on 

goods, actions, or rewards, whether one is talking about food rewards, fluid rewards, 

monetary rewards, gains, losses, social rewards, or abstract rewards (e.g. viewing beautiful 

faces). Finally, the evidence available in single-cell recordings show that this neural region is 

the final common path for valuation in the human and monkey brain (for a review of these 

studies see Fehr and Rangel, 2011, Rushworth et al., 2011, Wallis, 2012, Levy and 

Glimcher, 2012, Bartra, McGuire, and Kabel, 2013; Platt and Plassmann, 2014).  

                                                           
52 Specifically, Kahneman makes a distinction between “predicted utility” and “experienced utility” and this last one is itself separated into 
“remembered utility” (due to consumption experience) and “real time utility” (over experience). Remark there is a strong similarity between 
remembered utility and the “somatic marker” mechanism proposed by Damasio and his colleagues (see section 1). Other distinctions are 
developed in the literature: for instance, Bossaerts, Preuschoff, and Hsu (2009) mentioned “true” preferences (what individuals want) and 
“revealed” preferences (what individuals do), Berridge and O’Doherty (2014) separated what is “wanting” and “liking” for an outcome, “it is 
possible to want what is not expected to be liked, not remembered to be liked, as well as what is not actually liked when obtained” (p. 242). 
53 Glimcher’s variant of the model, with what he names “hard” expected utility, stands out somewhat from other variants in the literature. 
The author draws a parallel between the standard economic choice model and the neurobiological decision model. Briefly, the economic 
model links “utility’ to “choice” by a maximization operation (argmax), while the neurobiological model would link “subjective value” to 
“action” by a neural mechanism of the type “winner-take-all” or “drift-diffusion”. He emphasizes the fact that “because neurobiological 
notions of subjective value and action (unlike modern economic notions of utility and choice) are measurably distinct objects” … they “are 
linked by an observable mechanism” (p. 194). These models will be mentioned later in the section when talking about the choice 
mechanism. 
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Several authors add the ventral striatum (including the NAcc and the inferior parts of the 

caudate nucleus and putamen) to the ventromedial PFC as contributing to SV, at least for 

non-human primates (Knutson et al., 2009; Glimcher, 2011a; Levy and Glimcher, 2012). 

However, it has been argued that signals in the ventral striatum could be simply RPE signals 

and not subjective value signals per se (Hare et al., 2008). In response to this criticism, 

Glimcher (2011a) admits that it is very difficult to discriminate SV and RPEs in many 

experimental designs and that the dense dopaminergic projections to the ventral striatum 

from the ventral tegmental area (VTA) makes it nearly certain that activity in this area should 

track RPEs. Yet, Glimcher has argued that this view is not well aligned with either 

evolutionary data or single-unit monkey physiology data. He adds that we know that animals 

without frontal cortices (e.g. reptiles) can learn and represent SVs, a finding that clearly 

would suggest a role for the striatum in SV representation throughout the vertebrate line. In 

any event, this is still a controversial hypothesis, at least as how it pertains to good-based 

values in humans (Padoa-Schioppa, 2011; Rangel and Clithero, 2014).  

In this encoding mechanism of an SV by the brain, some additional aspects occur. First, 

the position on a value scale is not absolute in that SV is relative to the decision-making 

context and other options offered to the choice (Elliot et al., 2008; Padoa-Schioppa, 2009). 

Second, in some circumstances, the brain also takes into account the “action cost” that 

measures effort or unpleasant character associated to decision making independently of its 

expected benefits. This is the case when the action cost associated with acquiring the option 

are not negligible relative to the benefits from consuming them or when the action costs of 

the options under consideration are very different. For Wallis and Rushworth (2014), in the 

supposed serial process between good-based choices and action choices, if one does not 

initially act costs into account, then the potential goods space is vast. Thus, actions costs can 

help constrain this abstract space from the outset. If action costs arise, then, net decision 

value is supposedly given by the decision value minus the cost value (Basten et al., 2010; 

Ranger and Hare, 2010; Ranger and Clithero, 2014)54. 

The “constructing” phase of decision SV refers to processes by which the brain is using 

experienced utility signals supposed to be computed at the time of reward or punishment 

“consumptions”—when the organism is experiencing the actual consequences of chosen 

options). How these signals are used to update future decision values is still an exploratory 

issue55. However, authors agree that the reward system and RL processes are likely taking a 

central place in decision value construction by favoring the building of a stimuli valuation 

                                                           
54 The costs nature issue in encoding of decision is addressed somewhat differently by Grabenhorst and Rolls (2011) (see also Rolls, 
2014, Chap. 9). These authors draw a distinction between “extrinsic” costs (such as action costs, time delay, risk in getting reward) and 
“intrinsic” costs (such as motivation state, impulsiveness, risk and ambiguity attitude of the subject). 
55 The more preliminary evidence with experienced utility arises in a large part from technical difficulties: difficulty to measure it reliably in 
animals, difficulty to induce controlled consumption experiences in humans when they are lying inside an fMRI scanner. 
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common scale and by feeding the memorization system that keeps track of relevant 

environmental information collected and continuously updated (see above in this section).  

First, evidence suggests that a wide neural network is taking part in the computation of 

experienced utility signals, including: (1) the OFC for the valuation of many sorts of primary 

rewards (various consumer goods: food, drinks, music, works of art…) and secondary 

rewards (monetary gains) during rather short time courses; (2) the NAcc (in the ventral 

striatum) for the valuation of several sorts of primary and secondary rewards too; (3) the 

dorsolateral PFC, which provides a complementary function to the OFC in value building, for 

the valuation over generally much longer time courses and in more abstract terms and the 

valuation of social/symbolic rewards or consumer goods requiring or referring to self-control, 

particularly in humans; (4) the amygdala in emotional regulation of reward/punishment value 

(in particular, effects of fear and stress on value), such as risky or ambiguous decisions; (5) 

the anterior insula, which is traditionally associated to visceral sensation of disgust and to 

some classes of events generating punishments, such as ambiguous decisions; (6) the ACC, 

which usually plays a role in conflict resolution, in particular when subjects are nearly 

indifferent among largely disparate options or when the valuation subsystems are providing 

contradictory outputs; (7) the posterior cingulate cortex (PCC) for the valuation of preferred 

risky options in a choice task or of delayed options in an intertemporal choice task; (8) the 

hypothalamus for the valuation of risk aversion for primary rewards; (9) the hippocampus and 

near structures with which it is closely connected in the median temporal lobe for value 

storing and modulation as well as its critical role in working memory processes. Thus, what 

emerges is a fairly complex network of brain areas that construct, in the ventromedial PFC 

and probably in the striatum, a subjective value signal that guides choices (for a review of the 

studies proving these results see Glimcher, 2011a, 2014a, Wallis and Rushworth, 2014, Fehr 

and Krajbich, 2014, Platt and Plassmann, 2014, Rangel and Clithero, 2014, Lempert and 

Phelps, 2014, Jung et al., 2016, Padoa-Schioppa and Conen, 2017). 

Some scholars (Glimcher, 2011a, Chap. 14; Rolls, 2014, Chap. 9) stress on the more 

absolute nature of this learned and stored value in these various neural structures, in 

comparison to the relative nature of value taking place in the representing phase. It was 

found that the responses of some OFC neurons encoding the value of a specific stimulus did 

not depend on which other stimuli were simultaneously available (Padoa-Schioppa and 

Assad, 2008); this has been referred to as menu invariance, a property that could provide a 

neurobiological foundation for transitivity—a fundamental trait of economic choice. 

Thus, it is important to note that the OFC is playing a central role in the representing 

phase of decision SV, essentially in the medial OFC (often included in the ventromedial 

PFC), but this neural region also would be active in the constructing phase, if only for primary 

and secondary rewards (Padoa-Schioppa and Assad, 2006; Plassman, O’Doherty and 
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Rangel, 2007; Rushworth et al., 2011, Rolls, 2014, Chap. 9; Padoa-Schioppa and Conen, 

2017) (see Figure 5 below for a schematic representation of the valuation network 

distinguishing the constructing and representing phases).  

Figure 5. Schematic valuation and choice implementation networks 

 

ACC: anterior cingulate cortex, dlPFC: dorsolateral PFC, vmPFC: ventromedial PFC, OFC: orbitofrontal 
cortex, vST: ventral striatum, AMY: amygdale, HIPPO: hippocampus, HYPO: hypothalamus, AI: anterior insula, 
dmPFC: dorsomedial PFC, PPC: posterior parietal cortex 

The choice mechanism 

The last phase taking place in a VBD corresponds to the selection of one particular option 

among those offered a choice. Once SV has been computed for each option, the “best” one 

has to be selected by comparing them. This raises two questions: what kind of choice 

mechanism is likely to be implemented, and what are the neural structures taking part in this 

process of choice implementation? 

The topic of which neural substrates are mobilized in the final phase of decision making 

remains unclear. Some neuroscientists suggest, however, that a frontoparietal network is 

involved. Their argument is essentially based on non-human primate experiments using 

behavioral paradigms that include decisions leading to actions (i.e. involving motor circuits). 

The most obvious evidence comes from a decision system familiar to neurophysiologists—

the monkey visio-saccadic system, which, for widely technical reasons, was used as a model 

to understand sensorimotor control in general since the 1980s (Anderson and Buneo, 2002). 

The core of this frontoparietal network that is playing a critical role for oculomotor tasks 

involves areas known as the lateral intraparietal area (LIP) in the intraparietal sulcus, the 

frontal eye field (FEF) (in the prefrontal cortex), and the superior colliculus in the midbrain 

(Platt and Glimcher, 1999; Glimcher, 2003). These findings were later generalized to body 

movements; it has been shown that the primary motor cortex (M1) (BA 4) (analogue to the 

colliculus), premotor cortex (BA 6) (analogue to the FEF), some anterior areas of the parietal 

cortex (including parts of BA 5 and 7) (analogue to area LIP), and supplementary motor area 

(SMA) (homologue to the supplementary eye field of the eye movements system) play 
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equivalent roles (see Glimcher, 2011a, Chap. 11, and 2014a). Knowing if these results may 

be transposed from “action” to “economic choice” (i.e. a decision that a priori do not 

necessary imply a movement) is still an open question. Yet some cerebral imaging studies 

suggest that human’s neural zones involved in comparison of VBD correspond to a specific 

network including the dorsomedial PFC, the posterior parietal cortex (PPC), and the nearby 

intraparietal sulcus (Kable and Glimcher, 2009; Hare et al., 2011; Glimcher, 2011a, 2014a). 

These areas are suggested to implement a comparison process, and that the output of these 

so-called “comparator regions” modulates activity in the motor cortex to implement the choice 

(see Figure 5 above for a schematic representation of this presumed choice implementation 

network). 

Concerning the mechanism of choice implementation, two basic models of brain 

functioning were commonly developed in theoretical neuroscience: (1) the “winner-take-all” 

(WTA) and (2) the “drift-diffusion” (DD) models (Glimcher, 2011a, Chap. 2; Deco et al., 2013; 

Rolls, 2014, Chap. 8). The DD model was initially developed by the psychologist Roger 

Ratcliff in a study on memory for explaining accuracy and response times in any task 

involving binary responses that can be elicited in a handful of seconds (Ratcliff, 1978) In the 

first model, the brain is supposed to compare all feasible options according to their 

respective SV assessed on the common scale of internal valuation, and then to choose the 

one with the highest value. Basically, the brain would behave like it is assumed in the 

standard economic model. In the second model, it is supposed there is a fixed threshold of 

expected reward that is considered satisfactory by the organism, options are assessed one 

after another, and as soon as an option exceeds this threshold, it is chosen. How is fixed this 

threshold? It would depend on decisions’ complexity. The brain would undertake a trade-off 

between speed and accuracy: if the threshold is low, the choice is highly simplified, at the 

risk possibly of not choosing the best option, while if it is high, the choice is more difficult and 

longer but the error risk is decreasing (Roitman and Shadlen, 2002; Palmer, Huk, and 

Shadlen, 2005).  

We can think a priori that perceptual decisions should be rather ruled by the DD model 

whereas value-based decisions (VBD) should result from the mechanism described by the 

WTA model, i.e., the natural neural counterpart of the “arg max” operation in the standard 

economic model (Kable and Glimcher, 2009; Glimcher, 2014a; Wang, 2014). However, if the 

DD model is widely accepted today for perceptual decisions (Palmer et al., 2005; Gold and 

Shadlen, 2007; Glimcher, 2011a, Chap. 9), one can be skeptical about relevance of the WTA 

model for VBD. Actually, it appears that anatomically, the same frontoparietal network is 

involved in the choice mechanism, irrespective of the nature of decisions (Glimcher, 2014a). 

Thus, the question is whether we have to conclude that neural structures of this network fulfil 

these two different functions (perceptual decisions and VBD) or whether there is one 
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integrate decision-making model (Glimcher, 2014a). Soltani and Wang (2008) were the first 

to suggest that there would be a unique neural system, using the same computational 

properties, which would generate the two kinds of behaviors. In the recent literature, there is 

evidence that the integrate model would be not only be possible but perhaps necessary (see 

Wang, 2014, for a survey). It should be remarked that if this finding were to be confirmed, the 

specificity of neuroeconomics in relation to decision neuroscience would tend to lose part of 

its specificity. 

What are the contours of this integrate decision-making model? An increasing consensus 

in the neuroeconomic literature favors a slightly more sophisticated variant of the DD model’s 

basic version. I briefly mention here the model set out by Fehr and Rangel (2011). In case of 

a binary choice, for instance a choice between decisions x or y, the model provides a 

representation of the dynamic computing that the brain is supposedly making. The brain 

computes a relative SV signal, denoted by R, which measures the value difference of x 

versus y. This signal starts at zero and at every instant t evolves according to the following 

equation: 

Rt+1 = Rt + θ [βv(x) – v(y)] + εt , 

where Rt denotes the level of the signal at time t (measured from the start of the choice 

process), v(x) and v(y) denotes the SV assigned to the two options, θ being a parameter that 

affects the speed of the process (drift rate), β being a parameter that measures the 

“attentional bias” towards the attended option (β > or = 1), and εt an independent and 

identically distributed error term with variance s2. The process continues until one of the 

predefined thresholds (upper or lower) is crossed: x is chosen if the upper threshold is 

crossed first, and y is chosen if the lower threshold is crossed first. Notably, Glimcher 

(2011a, Chap. 9) suggests a parallel between this notion of “threshold” in terms neuronal and 

the usual notion of reservation price in economics (i.e. the minimal price at which choosing 

an option is subjectively profitable) by referring to familiar idea of “bounded rationality” and 

“satisficing” introduced by Herbert Simon (1955, 1979). However, it was just an illustration 

and, by the way, misleading. Because this notion of a threshold in neuronal terms is fully 

compatible regarding an optimizing behavior once the information processing cost is 

integrated (i.e. the trade-off between speed and accuracy). Maybe one can interpret it as the 

required level of trust so that the corresponding option is chosen (Krajbich, Oud, and Fehr, 

2014) (see below Figure 6). 

 This model has an important feature—since the relative SV signal evolves stochastically, 

choices are inherently noisy. Of course, the stochastic nature of R is a direct result of the 

inherent stochasticity of neural activity, as stated above. Furthermore, interestingly, this 

model makes quantitative predictions about the correlation between attention, choices, and 
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reaction times (when β > 1), and these correlations can be tested using eye-tracking testing 

methods. Another important prediction of this model is that exogenous increases in the 

amount of relative attention paid to an appetitive item (for instance, through experimental or 

marketing manipulations) should bias choices in its favor by increasing the probability that it 

is chosen. Several studies have confirmed this prediction through manipulations of visual 

attention (Fehr and Rangel, 2011).  

Figure 6. The drift-diffusion model (binary choice) 

 

The components of this DD model have empirically been tested using both behavioral and 

neural data with food choice, temporal discount decision, and social decision (Krajbich, 

Armel, and Rangel, 2010; Krajbich et al., 2012; Krajbich et al., 2015). This has been 

generalized to the case of three-way choice, and these findings suggest that the underlying 

processes might be robust for small numbers of items (Krajbich and Rangel, 2011). 

However, additional research is necessary for precisely delimiting the field in which the DD 

model can be useful (Krajbich, Oud, and Fehr (2014). 

Final Remarks 

Neuroeconomics is still a nascent scientific field, two decades old at the most. Although 

much remains to be done, a great deal of results has already been proven about how the 

human brain makes choices, and these findings provide insights into the understanding of 

economic behavior in many domains. Undoubtedly, without the availability of an extensive 

variety of experimental designs for dealing with individual and social decision-making 

provided by experimental economics, many neuroeconomics studies could not have been 

developed. Indeed, it is very likely that, for future historians of economics, lab experiments 

will be “one of the most stunning methodological revolutions in the history of science” (Guala, 

2009, 152). At the same time, without the significant progress made in modern neuroscience 

for grasping and understanding brain functioning, neuroeconomics would have never seen 

the light of day.  
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In this paper, I proposed an overview of these advances in neuroscience by grouping 

them together over three non-independent topics referred to as the “emo-rational” brain, the 

“social” brain, and the “computational” brain. For each topic, I emphasized findings that I 

consider critical to the birth and development of neuroeconomics while highlighting some of 

prominent questions about which knowledge should be improved by future research. 

In parallel, I show that the boundaries between neuroeconomics and several recent 

branches of cognitive and behavioral neuroscience, such as affective, social, and, more 

generally, decision neuroscience, are particularly porous. In this regard, I suggest that a 

greater autonomy of neuroeconomics should perhaps come from the development of studies 

about more economic policy-oriented concerns, such as for instance the approach 

undertaken by Bernheim and Rangel to find in neuroeconomics the foundations for a 

“behavioral public economics” (Bernheim and Rangel, 2005, 2007, 2009), in the wake of the 

debates around the “libertarian paternalism” (Sunstein and Thaler, 2003; Thaler and 

Sunstein, 2003, 2008; Loewenstein and Haisley, 2008; Sunstein, 2014). 
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