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Abstract

Emergency managers receive communication training about the importance of being ’first, right and credible’, which
is not easy. For instance, in October 2018, the Aude department in the South-West of France was hit by intense rain.
Flash floods were hard to forecast and only the ’orange’ level of vigilance could be raised initially, but the population
dismissed this very usual warning in that season. The ’red’ level was then raised too late, leading to high criticism.
The main problem here is the loss of trust induced by too many ’false alarms’. In this paper we propose a serious
game called VigiFlood for raising awareness in the population about the difficulty of crisis communication and their
own responsibility for reacting to the alerts. The implemented game still has limited functionality but already shows
interesting results in helping the user to visualise and understand the trust dynamics.
Keywords: Flash floods, early warning, crisis communication, trust, agent-based modelling and simula-
tion, serious game

1 Introduction

Nowadays, our societies are exposed to multiple risks: natural disasters, epidemics, terrorist attacks, industrial accidents,
etc. During such disasters, the population has access to multiple sources of information (including images, videos or
field information shared by other citizens), leading to possible confusion and information overload. As a result, they do
not always listen to or trust official messages, and might not react appropriately. Emergency managers are therefore
trained in risk communication and learn how to communicate in a timely and credible manner, while taking into account
the psychology of their audience, in order to refute misinformation, and maintain trust and good relationships [20].

The question of when to raise an early warning about a predictable natural disaster is crucial: too late, and there
might be many victims; but too early, and the clues might not be very reliable, leading to possible false alarms and
subsequent loss of trust [18, 12]. For instance in October 2018, serious flash floods hit the Aude department in the
South-West of France1. The day before, the level of vigilance was set to ’orange’ (level 3 out of 4) for heavy rain and
risk of flood, but the population did not react to that very usual warning for that season. When the vigilance was risen
to ’red’ (level 4 out of 4) early the next morning, it was too late and many towns and villages were already flooded. As
a result, several people died and the authorities received severe critics.

There are several ways of addressing this problem: training the alert services to use the orange and red vigilance
cautiously in order to avoid false alarms [12]; providing them with decision-support systems to help raising timely
early warnings [11, 7]; or making the population aware of the difficulty of risk prediction and communication, and of
their responsibility for still responding even after several false alarms. Here we focus on the population, and aim at
providing them with a serious game, VigiFlood where they can play the role of an emergency communicator. They
will have to set the vigilance level based on the (uncertain) weather forecast, and observe reactions in the simulated
population. Our hypothesis is that this change of perspective will increase their awareness.

This paper is structured as follows: the first section provides some background about flash floods, crisis communi-
cation, trust dynamics, and existing simulators; the next section then describes our conceptual agent-based model; we
follow up with exposing the implemented game and first experimental results, before concluding the paper.

2 Background

2.1 Flash floods

Flash floods generally occur due to rapid rain on an already saturated soil (after a particularly wet period) or on a soil
with a poor absorption capability (such as concrete, as is often the case in urbanised settings), or due to extensive rain
because of a storm or hurricane. They can also occur from more occasional events such as a glacier melting after a

1See for instance: https://www.bbc.com/news/world-europe-45861428
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Figure 1: MeteoFrance vigilance map, 15 October, 11am (source: MeteoFrance)

volcanic eruption, an ice dam melting, or a man-made dam failing. In this paper we focus on rain-induced flash floods,
whose prediction depends on the meteorological services.

The indicators used by forecast services include: forecast quantity of rain (radar or satellite or model based), soil
absorption capacity, soil moisture or dryness level, topography, basin or catchment capacity, etc [8]. In France, the
agency in charge of forecasting the expected amount of rain is Meteo France2. Weak rain is defined as 1 to 3 mm/h,
moderate rain is between 4 and 7 mm/h, and heavy rain is over 8 mm/h. Another agency is in charge of monitoring
the main waterways and broadcast their expected height and debit 3 to 6 hours ahead of time: Vigicrues3. However,
only part of the waterways are monitored, and the European Flood Risk Prevision Center (CEPRI4 notices that half of
the 63 victims in the Languedoc-Roussillon region (south of France) alone between 1996 and 2006 died on catchment
basins that were not monitored by flood vigilance services.

The meteorological services in charge of the area then analyses these clues (rain forecast, waterway height and
debit, etc) to define and announce a level of vigilance on a 4-colour scale, from green (no problem), yellow, orange, to
red (higher risk). This level of vigilance is publicly available online5 (example map on Figure 1). Each region has its
particularities and can be more or less used to receiving heavy rain in a short amount of time, so that the vigilance
thresholds are not the same everywhere. The Aude department in France (see map on Figure 2) depends on the CNP
center in Toulouse; its critical rain threshold for the orange vigilance is 50-100 mm in 24 hours, with a regional record
of 551 mm in 24 hours. On Sunday 14 October 2018 the meteorological station of Carcassonne received 139.8 mm
of rain. However the vigilance level was first only set to orange, until Monday 15 October morning at 6am when it
was finally raised to red. As a result, MeteoFrance vigilance system was harshly criticised in the media [16]. The
representative of the Ministry of the Interior, Frédéric de Lanouvelle, interviewed on LCI-TV, evoked a “weakness in
the orange vigilance level which is used very often and when there is a real problem, people do not take it into account
anymore” (our translation). He adds that based on residents’ statements, the red vigilance level was indeed raised too
late, but explains it is due to the difficulty in forecasting such a powerful episode.

2.2 Flood simulations

Axelrod ([5]) defines 7 purposes of simulations, including prediction (simulate a system very realistically to predict its
future behaviour, e.g. meteorology), training (provide a believable interactive environment to rehearse actions, e.g. flight
simulator), or education (let the user learn by trying in a virtual world). Predictive simulations require a high degree of
realism to lay valid predictions, while training and education simulations can be simpler and less realistic (they “need
not be rich enough to suggest a complete real or imaginary world”). Besides, Axelrod also claims that “the simpler the
model, the easier it may be to discover and understand the subtle effects of its hypothesized mechanisms”; educational
simulations are therefore often quite simple.

Simulations have often been used in crisis management for various purposes. For instance [24] provide a very

2http://www.meteofrance.com/previsions-meteo-france/previsions-pluie
3www.vigicrues.gouv.fr
4https://www.cepri.net/
5For instance at: http://vigilance-public.meteo.fr/ or http://vigilance.meteofrance.com/
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Figure 2: Map of the flooded area, with victim counts, and evacuated towns. Source: Préfecture de l’Aude

realistic model based on field data, to predict the impact of early warnings on population behaviour in terms of
reducing material losses from floods. Others focus on realistically modelling the physical flood phenomenon in order to
support decisions regarding early warnings for tsunamis [11], based on data from multiple sensors [7].

Other simulations are aimed at education, often in the form of a serious game. Anycare is a table-top role-playing
game to involve stakeholders [23]. LittoSIM [6] is very realistic and aimed at emergency managers; SPRITE [22] teaches
risk management to engineering students; however both games focus on longer-term management and protection against
coastal submersion (e.g. building dykes) rather than communication.

Other simulations focus on communication, but not necessarily during floods. [4] study if the population should
be alerted or not of an ongoing crisis (e.g. terrorist attack), depending on the anticipation of their potential reaction
(e.g. crowd panic), which is based on a psychological model. Since events considered are ongoing, they do not deal with
false alarms and their potential impact on long-term trust. [2] study the propagation of awareness in the Australian
population after a bushfires warning, depending on its channel and (familiar vs unfamiliar) source. Since they consider a
single event, they do not deal with long-term dynamics of trust over multiple (right and wrong) alerts. [1] also proposed a
serious game for trying various communication strategies to alert the population (focused vs wide targeting, information
vs recommendations) before and during fires, but they do not deal with the timing of alerts nor the impact of false
alerts. Indeed, they report no habituation phenomenon to fire alerts, which could be due to the easier predictability of
fires compared to flash floods, or to normative and cultural differences.

2.3 Crisis communication

Reynolds ([19]) identifies 6 principles of efficient crisis emergency and risk communication (CERC):

• Be First: in times of crisis, people need information fast, and will often stick with the first source they get
information from.

• Be Right: information should be accurate and transparent, explaining what is known or not, and what is being
done to get more information.

• Be Credible: communicators should be honest and trustful, and avoid to promise what they cannot deliver, at
the risk of losing the public’s trust.

• Express Empathy: communicators should acknowledge the population feelings and challenges to build trust
and a good relationship.

• Promote Action: messages should not only be informative but also action-oriented, to empower the population,
give them a feeling of control, and release their anxiety.

• Show Respect: communicators should account for the vulnerability of people during crises, their messages should
be respectful and promote cooperation and rapport.

[14] review the literature to explain the “complex and unpredictable ways that individuals perceive risk”, and find
that risk communication is influenced by socio-cultural, environmental and linguistic factors. Covello et al. ([9, 10])
identify 4 factors of risk communication:
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• Risk perception is subjective, influenced by socio-cultural and cognitive factors (e.g. the individual feeling of
agency or control).

• Mental noise created by stress and threat reduces the ability to process information: technical and scientific
concepts must be “translated [...] into understandable messages”, which should be visual and repeated.

• Negative dominance: upset people focus more on negative (losses) than positive (gains) information, so com-
munication must counter-balance negative messages with many more positive, action-oriented messages, and focus
on progress rather than failures.

• Trust determination: upset people tend to not trust authority, so trust must be created well ahead of any crisis,
through proactive community communication.

Further, [13] discuss the importance of the locus of control of individuals: if external (i.e. they believe they have
no control) they will feel helpless, and be less likely to take preventative action or react to warnings than if internal
(i.e. they believe they can do something). This is in line with the CERC principle to ’promote action’ and give people
something to do so that they feel (more) in control. Similarly, [15] discusses the lack of response of the population
when the perceived risk is either too high (fatalism) or too low (“blasé effect”): in both cases, people feel powerless.
He concludes by recommending to pay careful attention to the level of risk that is communicated to the population in
the warnings to avoid undesirable reactions or inertia.

The American Center for Disease Control and Prevention issued a report about Crisis and Emergency Risk Com-
munication [20] focusing on specific psychological factors of information processing during a crisis, and how messages
should be adapted subsequently:

• People simplify messages, might not hear, not remember, or misinterpret them. Logical reasoning is impaired
and decisions might rely more on habits, routines or imitation. Messages should therefore be simple.

• People hold on to their current beliefs, and prefer trusted and familiar sources of information even if inaccurate
and non-expert, to reputable experts who might disagree with each other. Messages should therefore come from
credible sources.

• People try to confirm information before acting, via complementary information and additional opinions. Mes-
sages should therefore be consistent between the different channels.

• People believe the first message, and compare any further message with it; lack of information creates anxiety,
leading to speculation and rumors. Accurate messages should therefore be released as early as possible.

These findings are in line with research showing the importance of cognitive biases in disasters [17, 3].

2.4 Trust and risk

According to Slovic ([21]), risk management has become much more “contentious”, with risk managers blaming the
public for being irrational, and the public blaming the stakeholders for their poor management. In his view risk
communication, aiming at aligning population and experts’ perceptions with experts, has failed due to the lack of trust:
“if trust is lacking, no form or process of communication will be satisfactory” (p. 410).

Slovic also explains that trust is “fragile”, builds up slowly but can be destroyed instantly and is then hard or
impossible to regain (p. 319). He provides several reasons for this asymmetry:

• Negative events are more visible than positive ones (one missed alarm stands out in many days of correct predic-
tions);

• Negative events have more weight because they have lower probability and higher consequences (a flood is rarer
than a “normal day” and can do serious damage);

• The media also tends to give more coverage to bad news than good news;

• Sources of bad news are seen as more credible, less likely to lie, than sources of good news;

• Distrust strengthens itself, by limiting further interactions and biasing future interpretations towards the rein-
forcement of existing (distrustful) beliefs.

2.5 Conclusion

Existing simulators are most often aimed at training or supporting decisions of emergency managers. We adopt a
different approach where we propose a serious game aimed at changing the population’s perspective by letting them
play the role of an emergency manager confronted with difficult decisions.

This approach is in line with the risk communication principles advocating transparency and empowerment of the
population [19], and is currently lacking research. Our claim is that such a game will improve the population’s awareness
of the difficulty to predict and announce natural disasters, and their responsibility to react despite a certain rate of
(unavoidable) false alarms.
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Our serious game is based on a conceptual agent-based model of human behaviour in flash floods. The validity of
the underlying behaviour model is ensured by its grounding in psychological and sociological theories of trust and risk
communication described above. The physical model of flood on the other hand need not be extremely realistic to reach
our educational goal, in line with [5]. This conceptual model is described in the next section.

3 Conceptual agent-based model

3.1 The hazard: flash flood

Among the many available clues used by hydrologists and meteorologists to forecast floods, we selected only clues
understandable by non-specialists players. As discussed above, this simplified model is more likely to be understood,
and sufficient for educational purposes [5]. Figure 3 provides a representation of our environment model in the Unified
Modelling Language (UML). Each area has various attributes: its name, geographical coordinates, population, rain
forecast, vigilance level; rivers in this area (name, dangerousness, overflow height, water height and vigilance level);
buildings (name, type, are they safe, are they official shelters, distance to water, altitude); history of hazards and their
severity.

Figure 3: UML conceptual representation of the environment in which flash floods occur. Boxes are the classes, linked by
relations with numbers indicating the number of instances. For instance the link between ’building’ and ’area’ states that
a building can be in 1 area only; an area can contain any number of buildings.

The weather forecast services (MeteoFrance) is represented as an agent having a precision attribute (0-100%); it
predicts the expected amount of rain (in mm). The emergency manager (human-piloted agent) relies on this rain
forecast to sets the vigilance colour that is communicated to the population.

3.2 Population

The population is composed of a number of heterogeneous civilian agents, whose attributes are listed in Table 1.
Civilians receive vigilance alerts from the emergency manager, and observe real rain. The core of their behaviour is
their subjective evaluation of risk (i.e. expected rain) based on their (dynamic) trust in the vigilance alerts, their
memory depth (how many past events they can remember), and their update strategy. This strategy reflects their
personality: optimistic (consider the minimum amount of rain observed during past events where the same vigilance
colour was raised; if a false alarm was raised in the past this can lead to expect no or very little rain); pessimistic
(consider the maximum amount of rain; this is very forgiving to false alarms); rational (consider an average of observed
rain on past occurrences); or short-memory (consider only the last occurrence). This process is in line with psychological
theories saying that humans evaluate risk based on previous experience and emotions [20].

Trust then mediates the relative importance of the official vs personal forecast: if trust is 100%, the civilian will
expect exactly the amount of rain corresponding to the vigilance colour; if it is 0% they will expect the subjective value
resulting from their past experience, which can be quite low after many false alerts.
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Finally the civilians’ decision to evacuate is based on the comparison of this subjective value with a personal risk
aversion threshold (initialised randomly), which can lead to delays in evacuation if expected rain is under-estimated.
Civilians can also evacuate after directly observing high amounts of rain (exceeding their aversion threshold), but this
often happens too late.

Attribute name Range of values Initialisation
Initial trust 0-100% Parameter

Subjective risk 0-?? mm 0 (no risk)
Update strategy min, max, avg, last Parameter
Memory depth 5-10 events Random uniform

Evacuated True, False False
Risk aversion threshold 50-100 mm Random uniform

Table 1: Attributes of civilian agents

4 Implementation

4.1 Goal of the game

The VigiFlood serious game is targeted at the population, with the goal of raising their awareness about the
difficulty of choosing the right level of alert under uncertainty and high stakes. This is done by changing the player’s
perspective, getting normal citizens to play the role of an emergency manager having to set the level of flood vigilance
based on uncertain rain forecast before facing the population reaction. Our hypothesis is that this change of perspective
will improve awareness of risk communication challenges.

4.2 Real data

4.2.1 Getting the data

We implemented 2 Python scripts to extract two types of meteorological data useful to our serious game (rain and
vigilance level) from websites where archives are publicly available.

• Rain data: Infoclimat6 provides archives of daily, monthly and yearly meteorological data since 1973: tempera-
tures, wind, rain, etc. The earlier years can be incomplete. We have implemented a Python parser getraindata

(300 lines) to extract the following data: normal monthly rain (seasonal norms computed by Infoclimat between
1981-2010), number of days of rain (at least 1 mm) per month, and actual daily readings of rain amounts. We
used this parser for Carcassonne-Salvaza (station number 07635) for the years 2010-2018.

• Vigilance data: Vigilance Public Meteo7 provides a PHP interface (see Figure 4) letting users search for a specific
date to get information about vigilance alerts in the entire country that day: time, level (green, yellow, orange, red),
emitting agency (each covering a different region; Aude department depends on the CNP agency in Toulouse),
and phenomenon concerned (floods, high winds, waves and coastal submersion, snow and black ice, etc). We
implemented another parser, getvigidata (300 lines) that can query this website for a series of dates (we used
it between 2010 and 2018), download the alert bulletins (XML files), select only relevant ones (emitted by CNP,
concerning floods). We searched each bulletin for the vigilance colour associated with rain and floods only. When
there was no bulletin for a date, we set the colour to green; when there were several, we kept the highest colour.

The output of both scripts is a dictionary dumped to a binary file (with the pickle module) that can be loaded from
any other Python script to recover the entire dataset.

4.2.2 Difficulties and limitations

Our main difficulty was handling missing and inconsistently formatted data. First, some daily rain data was missing,
in particular for the earlier years, which is why we only extracted data after 2010, but some days are still missing.
Also the format of the vigilance bulletins was not always consistent, making it hard to extract the exact colour of the
flood alert. Besides, on yellow vigilance days, no bulletin was issued. This means that for these days, in the absence
of information, our parser will extract a green vigilance instead of yellow. In fact out of 3294 vigilance values, we have
3009 green days, 274 orange days, 11 red days, and no yellow days. To improve this, we need to find another source of

6https://www.infoclimat.fr. For instance, archives for Carcassonne-Salvaza for the entire month of January 2010: https://www.

infoclimat.fr/climatologie-mensuelle/07635/janvier/2010/carcassonne-salvaza.html and for a specific day 2 January 2010: https:

//www.infoclimat.fr/observations-meteo/archives/2/janvier/2010/carcassonne-salvaza/07635.html
7http://vigilance-public.meteo.fr/
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Figure 4: Example of Vigilance Public Meteo output for 28 October 2018

vigilance information that also provides yellow alerts; however this is not too much of a problem in this paper since we
are mainly interested in the habituation to orange alerts.

Finally, the vigilance level that we extract concerns the entire area covered by the CNP agency, while our daily
rain values concerns the Carcassonne-Salvaza meteorological station. This means that the vigilance level is not always
consistent with the actual rain amount, when the floods are located in a different part of the South-West region. In our
model, this might be interpreted by the residents as a false alarm because an orange vigilance is raised but the observed
amount of rain does not match; in reality, humans would understand which area is concerned with the vigilance; to
improve this we would need to mine the text of the bulletin for the locations concerned.

4.2.3 Genericity

Data could be recovered from the same sources for other regions with minimal adjustment of the scripts. Data from
any source and in any format can also be fed to the game provided it is saved in the expected input dictionary format,
making the game generic and easily adaptable to different areas. We are indeed currently discussing with Grenoble
township to get local flood data and provide them with an adaptation of VigiFlood. What might change however is
the human reaction to floods, that are much less frequent in Grenoble than in Carcassonne.

4.2.4 More realistic hydrological data

Our current model only relies on the forecast height of rain to set the level of vigilance. To improve scenarios realism
without undue complexification of the model, we intend in future versions to add a few more relevant clues, namely soil
saturation and river capacity. We will use real hydrological data from various national waterways monitoring agencies8.
This will require implementing new data extraction scripts and working with hydrologists to design a realistic model
of the flash flood process and its prediction.

4.3 Implemented game

4.3.1 Technical details

Our current program is a 1800-line Python script. It uses the pickle module to load the data created by our previous
scripts (getraindata and getvigidata) from local dump files. This is done only once at the start of the program, and
the object created can then be used for the duration of the game. The game has a textual (screenshot on Figure 5) or
graphical (screenshot on Figure 6) interface, in either French or English. A batch simulation (no output) over 1 year of
simulated time, with 10 repeats and a population of 100 agents, runs in about 120 seconds; with a population of 10000
agents one repeat runs for almost 20 minutes.

4.3.2 Game parameters

Before playing, the user can set a number of parameters:

• Population size: number of residents in the population.

• Starting date: between 1st of January 2010 and December 2018, which is the range covered by our data.

8In particular http://www.hydro.eaufrance.fr/ and https://www.vigicrues.gouv.fr/
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• Duration of the game: in days (at the latest the game stops on December 31st, 2018).

• Trust initialisation: either heterogeneous with random initial trust for each resident; or homogeneous with a
set initial trust value for all residents (between 0 and 100%).

• Risk update strategy: residents can update their subjective risk (expected amount of rain) based on the
minimum, maximum, average, or last amount of rain observed on the past occurrences (that they can remember)
of the same vigilance level. This strategy is chosen as a parameter and is the same for the entire population.

• Precision of rain forecast: the weather forecaster agent computes forecasted rain based on monthly norm of
rain, real observed rain for the next day, and precision parameter (0-100%). With higher precision, the forecast is
closer to real rain, while lower precision predicts values closer to the norm, potentially missing exceptional events.

• Interface parameters: the user can choose between textual or graphical interface, can toggle text feedback
on/off, and can choose between French and English language.

4.3.3 Game loop

The game loop proceeds as follows:

1. The date of the day is displayed, as well as the observed amount of rain that day (in mm).

2. The residents react to the observation of the rain: they compare it with the current vigilance level (set the day
before) to update trust, and they might evacuate if needed.

3. The player is provided with feedback about the population: average trust and its explanation (in terms of how
much rain they expected based on the vigilance colour); and percentage of evacuated residents.

4. The weather forecast service announces a forecast amount of rain for the next day.

5. The player is asked to set a vigilance colour based on this forecast.

6. The population reacts to this vigilance level: compute subjective expected rain based on previous similar alerts,
and might evacuate if this is above their risk aversion threshold;

7. The player receives feedback about the percentage of the population aware of the risk (if any); their average
expected rain (in mm); their average trust (in %); and the percentage that evacuated as a result of the alert.

8. Rain and vigilance for the day are stored in game history, and the time moves forward to the next day.

4.3.4 Getting feedback

At the end of the game, final feedback is displayed in the form of statistics about the population and communication:

• Population statistics: average percentage that stay unaware of risk; average expected amount of rain for each
vigilance colour; average trust and its evolution before/after the game; and average evacuation percentage.

• Communication statistics: total days played; for each colour: number of alarms raised, number of false alarms
(raised but observed rain lower than expected), number of alarms missed (not raised and observed rain higher
than expected).

4.3.5 Game modes

We have implemented 4 possible game modes:

• Visualisation: this mode lets the user explore the available data. The user inputs any date since 2010 and
obtains the amount of rain in Carcassonne on that day as well as the vigilance level.

• Play: the user chooses the desired parameters, and plays the role of the emergency communicator in charge of
setting the vigilance level. The game proceeds along the loop described above for the selected number of days,
and final feedback is provided to let the player debrief his actions.

• Automatic: in this mode the human player is replaced with an AI that automatically selects the vigilance level
based on the rain forecast (above 10mm: yellow, above 20mm: orange, above 50mm: red). The same final feedback
is displayed at the end. This allows to compare human players’ strategies with a predefined static strategy.

• Batch: in this mode all displays are disabled and the game is repeated a number of times with the same initiali-
sation to smooth out the randomness. The output is an average of the trust evolution over all games played with
these same parameters. This allows to draw statistics and compare the impact of each parameter.
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Figure 5: Screenshot of the textual game interface in “play” mode

Figure 6: Graphical interface of VigiFlood during a game
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5 Preliminary results

5.1 Scenario 1: forecast precision

We have run a first scenario in order to explore the positive and negative evolution of population trust in function
of the precision of the weather forecast. We have run the simulation for 3 months, starting October 1st 2018, and
therefore including the events of October 14-15, on a population of 100 agents. The population was defined with
random heterogeneous initial trust (around an average of about 50%) and their algorithm for computing expected rain
is based on the average of past rain. With these settings, we only varied the precision of rain forecast and observed the
evolution of trust over these 90 days.

• Perfect forecast (100% precision of the rain forecast): trust increased slightly from an average of 52.81% to an
average of 58.71%.

• Realistic forecast (80% precision): average trust remained stable around 50% (from 49.76% to 49.65% exactly).

• Same but with 50% forecast precision: the average trust dropped from 54.23% to only 22.57%.

First, we observe that trust decreases faster than it increases: lost trust is hard to restore, so it is best to maintain
trust. Second, this shows the importance of reliable forecast to set an accurate vigilance level, yet flash floods are hard
to predict because they depend on many other factors than just rain. It is therefore very important that the population
is made aware of these difficulties and the fact that false alarms are unavoidable. This is part of being transparent in
order to maintain trust, as recommended by [19].

5.2 Scenario 2: population reasoning

The scenario above was based on an averaging of past events, and an “objective” update of trust where observed rain
was compared with the objective meaning of the vigilance colour. This means that if the vigilance level was set to
orange, the observed rain was compared to the official 20-30mm range supposed to be meant by that alert. But the
population actually relies on a subjective expected rain based on their previous experience of past orange vigilance days;
this is how they get habituated to this orange vigilance meaning “not much”, when it is raised and it does not rain
much. We have therefore run another set of games with a subjective update of trust based on comparing observed rain
with the individual’s subjective expectation, computed using our various algorithms. We have set the forecast precision
to 100% and run 90 days during year 2010 to limit the number of false alarms in history. Results are very sensitive to
the period played and which events occurred:

• The averaging of past rain on same-vigilance days: this strategy considers the more different past alerts, and leads
to the worst loss of trust when there are many false alarms. However, correct alarms in the past history will
improve the subjective prediction and hence the final trust of the population.

• The “last-event only” strategy means that after a false alarm, the next alarm will be inefficient, people will expect
it to be just as false. But then only one correct alarm is enough to reset expectations.

• The “maximal last event” strategy makes residents pessimistic, they will expect as much rain as the worst event
on record; the player might lose some amount of trust for announcing too much rain, but people will rather react
too much than not enough.

• The “minimal last event” strategy on the other hand makes residents more optimistic: they will only expect as
much rain as the lowest rain that occurred in the past when vigilance was set to that same level. This means that
they are very likely to not react to an orange vigilance, for instance, as long as they have not forgotten that one
day when it was raised and it did not rain.

In reality, we expect humans to use combinations of these strategies, possibly dynamic depending on the context
and their personality. Changes are therefore needed in our game to improve the residents’ reasoning, and also to make
it heterogeneous. However, validating this reasoning strategy would require to find supporting data about how people
actually reason about subjective risk, which might be difficult.

5.3 Visualising the dynamics of trust

Figure 7 illustrates the dynamics of trust in the population over the real events of year 2018. We initialised the population
with full trust (100%), a ’realistic’ update strategy (averaging past rain on orange vigilance days in memory) and a
memory depth of 7. One can see that at the start of the year, trust is 100% (blue curve) and the expected amount of
rain on orange vigilance days (orange curve) is around 35 (the middle of the official 20-50 mm range).

The bar chart shows the actual amount of rain observed each day, and the colour of each bar shows the associated
vigilance colour as announced by the authorities. As the year progresses, various ’false alarms’ are raised where orange
vigilance is announced but it does not rain much: as a result, trust goes down, and the average expected rain on orange
days also decreases, making the residents more likely to be surprised in case intense rain really occurs. This is the case
in October, when the orange vigilance is set on the 14. A positive effect of this surprise is that the expected amount of
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Figure 7: Dynamics of trust (blue line), expected rain associated with orange vigilance (orange line), observed rain (bars
height), and vigilance (bars colour), over year 2018.

rain on orange vigilance days goes up again (counting that exceptional event in the average), but a negative effect is
that trust drops near 0.

We believe such visualisations can be very helpful for people (residents or emergency managers alike) to understand
the dynamics of trust in crisis communication. This makes our model already useful as a visualisation, before it is even
interactive and playable.

5.4 Discussion

The game exposed here is just a proof-of-concept with limited playability, preventing immediate evaluation. The main
obstacle to playability is the repetitiveness of the game that makes it quickly boring. So far the player is asked everyday
to set a vigilance colour, while most days almost no rain is forecasted and the vigilance will be green more often than
not. This will be improved by creating pedagogical scenarios that do not rely on actual past data, but that trigger more
frequent interesting events in order to engage the player. Other ideas for improvement include using an interactive map
built from OpenStreetMap data, similar to other serious games used in emergency management (for instance SPRITE
[22]); and displaying feedback about emotions of the population.

We would also like to explore other scenarios, in particular assessing the impact of the vigilance thresholds (10mm
for yellow, 20mm for orange, 50mm for red) on the average trust of the population and their subjective expected
rain, depending on the forecast precision. This will require implementing various (automated) strategies with dynamic
vigilance thresholds, and making the choice a parameter of the automated player.

5.5 Prospective evaluation of the game

As discussed above, the underlying behaviour model is grounded on psychological theories and is realistic enough for
an educational purpose. What requires evaluation however is the impact of the game. In order to verify our claim
that playing this game can improve awareness, we have planned the following evaluation process.
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Once the playability of the game has been improved, the first evaluation will be with other researchers and students
in our university or at workshops and conferences, in order to refine gameplay and interface; this can happen at
medium-term. The second evaluation will require to first implement a logging functionality to store the history of
players’ actions, and to analyse logs to draw interesting statistics. We will then be able to analyse players’ strategies to
face the different pedagogical scenarios that we define, and observe how they adapt over time to measure the evolution
of their awareness.

Finally, a more complex evaluation will be in the form of a survey of people in the affected area (Aude) in order
to assess their trust in orange vigilance and will to act on it, before and after playing the game. This survey will also
gather their qualitative feedback about the game. This can only happen at longer-term, after finalising the game and
carefully designing the experimental protocol and questionnaire.

6 Conclusion

In this paper we have presented the VigiFlood serious game, a disaster alert game based on a real case study, the
flash floods in the Aude department in October 2018. Although preliminary, the game is based on real pluviometric
and vigilance data from local weather forecast agencies, and already provides interesting insight and novelty compared
to previous work. In particular we have shown that it allows the player to visualise the dynamics of trust over time,
and the impact of events such as repeated false alarms.

This game is however still a preliminary proof-of-concept and many things remain to improve. The implementation
of more roles (journalists, etc) is already ongoing and should be finished at short-term, allowing us to explore more
complex pedagogical scenarios. In the longer term we then want to improve playability, evaluate the game and its
impact on awareness, and adapt it to other contexts.
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