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Abstract

In this paper, we show that (i) the volatility of worker flows increases with age
in US CPS data, and (ii) a search and matching model with life-cycle features,
endogenous separation and search effort, is well suited to explain this fact. With
a shorter horizon on the labor market, older workers’ outside options become less
responsive to new employment opportunities, thereby making their wages less sen-
sitive to the business cycle. Their job finding and separation rates are then more
volatile along the business cycle. The horizon effect cannot explain the significant
differences between prime-age and young workers as both age groups are far away
from retirement. A lower bargaining power on the youth labor market brings the
model closer to the data.
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1 Introduction

US labor market fluctuations actually hide a great deal of heterogeneity across age groups.
This paper first aims at providing new empirical evidence on the business cycle behavior
of unemployment and worker flows across age groups. We then propose a search and
matching model with life-cycle features, endogenous search effort and separation to shed
light on our empirical findings.

Average labor market flows differ by age, with a decreasing pattern in job separation
and job finding rates (Elsby et al. (2010) & (2011), Gervais et al. (2012), Choi et al.
(2015), Menzio et al. (2016)). However, little is known about the cyclical behavior of
these transition rates across age groups. This study addresses this issue by documenting
the patterns of volatility in job separation and job finding rates by age using monthly CPS
data. Even though individuals at the beginning and at the end of the working life are
fewer than prime-age workers, their age-specific business cycle behaviors are interesting
to further understand the life-cycle dimensions of the labor market. The volatilities of
separation and finding rates as well as unemployment display a significant age-increasing
pattern: the older the worker, the more volatile the labor flows. We perform several checks
to ensure that the stylized fact is robust.1 We find that worker flows’ volatility differs
across age groups, which calls for further analysis of life-cycle features. In addition, we
also show that the cyclicality of job separation accounts for 30 (45%) of youth (prime age
and old workers’) unemployment fluctuations, thereby suggesting that a relevant life-cycle
model shall include endogenous separations.

To explain these facts, we consider the standard Mortensen - Pissarides (hereafter MP)
model2, augmented with life-cycle features along the lines of Cheron et al. (2013). We
then face two interrelated challenges: the model must match aggregate and age-related

1As in Gomme et al. (2005) and Jaimovich & Siu (2009), our empirical study suggests that old workers’
labor market fluctuations are more volatile than prime-age workers’. Gomme et al. (2005) and Jaimovich
& Siu (2009) report a U-shaped pattern of fluctuations across age groups (fluctuations are highest for
younger and older workers, and are lowest for middle aged workers). Our empirical evidence differs from
theirs only on the youth labor market. This might be due to the difference in the data. While Gomme
et al. (2005) and Jaimovich & Siu (2009) focus on employment and hours, we examine unemployment,
job finding and separation. At the aggregate level, it is well known that employment is nearly as volatile
as output while unemployment is several times more volatile than output. Our stylized facts underline
that the discrepancy between the business cycle behavior of employment and unemployment also holds
at the disaggregate level, across age groups.

2The MP model is the textbook model of labor economics. It was widely used in applied macroeco-
nomics: it was first integrated into RBC models (see Merz (1994), Langot (1995), or Andolfatto (1996))
and later in New-Keynesian DSGE models (see Cheron & Langot (2000), Walsh (2005), Blanchard &
Gali (2010), and Christiano et al. (2016)).
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labor market volatility in a fully consistent way.3 We first show that the interactions
between endogenous search effort and endogenous separations allow the MP model to
reach the aggregate objective. We then show that these amplifying mechanisms are also
key to explaining the age-increasing volatility found in the data. In that sense, the
aggregate and the life-cycle approaches are strongly interrelated, though the life-cycle
features contribute marginally to the explanation of aggregate volatility.

Regarding the aggregate volatility issue, our results underline the complementary of two
approaches already discussed separately in the literature: the ability of the endogenous
search effort to magnify labor market fluctuation, as discussed in Gomme & Lkhagvasuren
(2015),4 and the necessity to introduce endogenous separation, as stressed by Fujita &
Ramey (2012).5 Moreover, we show that the complementary between search strategies
of firms and workers restores the Beveridge curve in the MP model with endogenous
separations.

Regarding the age-volatility issue, we focus on in this paper, any life-cycle quantitative
model faces a daunting quantitative challenge as the theoretical predictions must match
two types of targets: (i) age-specific average values of job finding, job separation and
unemployment (targets based on first-order moments) and (ii) volatility of labor market
fluctuations across age groups (targets based on second-order moments). First ((i)),
the levels of the unemployment, job finding and job separation generated by the model
must decrease with age as found in US data.6 Second, given these parameter restrictions
allowing to match the first-order moments, we show that volatilities of labor market stocks
and flows are age-increasing, as in the data. Moreover, the model is able to capture the
size of the cyclical fluctuations by age groups observed in the US ((ii)). These results
rely on life-cycle mechanisms, which effects turn out to be amplified in the presence of

3The MP model fails to explain the high responsiveness of job finding rate to the business cycle
(Shimer (2005)), volatile job separations (Fujita & Ramey (2009)) and the Beveridge curve (Fujita &
Ramey (2012), Krause & Lubik (2007)).

4Gomme & Lkhagvasuren (2015) show that endogenous search effort exacerbates the complementarity
between workers’ and firms’ investments in the search process. The intuitive view of a pro-cyclical search
effort was first disputed by Shimer (2004), who uses an indirect measure of the search effort based on
CPS data. Nevertheless, using a direct measure of the search effort based on ATUS data, Gomme &
Lkhagvasuren (2015) find that search effort is strongly pro-cyclical. See Appendix C in which we argue
that empirical evidence on search effort seems consistent with search effort dynamics predicted by the
model.

5Fujita & Ramey (2009) show that changes in separations are sizeable and accounts for at least one
third of unemployment fluctuations. Fujita & Ramey (2012) also stress that the Beveridge curve is lost
with endogenous separation in the MP model.

6By matching these first order moments, our paper contributes to the literature that studies the
pattern of worker flows over the life cycle: Ljungqvist & Sargent (2008), Cheron et al. (2013), Menzio
et al. (2016), Kitao et al. (2016).
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endogenous search effort and separation. Due to retirement, old workers expect to remain
on the labor market for a very short time (the "horizon effect"). As a result, their current
labor market status seems almost permanent: there is little room for future outside options
as retirement gets closer (older workers’ wage are less responsive to the business cycle),
which tends to make old workers’ flows very responsive to current productivity changes.
In contrast, for younger workers, with a long expected working life, many future search
opportunities can be seized, which tends to dampen their business cycle response to
current productivity shocks. This horizon effect cannot explain the significant differences
between volatilities of prime-age and young workers because both age groups are far away
from retirement. We show that a lower bargaining power for young workers, consistent
with their weaker union affiliation in US data, allows our model to replicate the volatility
of their transition rates.7 In addition to these mechanisms intrinsic to the life-cycle
framework, we show that the interaction between search effort and endogenous separations
help the model fit the age-pattern volatilities. In booms, younger workers are less willing
to remain within the firm as outside opportunities are expanding, all the more so when
workers’ search effort is endogenous. This widens the volatility gap between old workers’
worker flows and their younger counterparts’.

The paper is organized as follows. Section 2 documents workers’ transitions rates by
age group and the age-related pattern in their responsiveness to business cycles using
US data. Section 3 presents the MP model with life cycle features, and then examines
the theoretical age-pattern of labor market flows at the steady state and in response
to productivity shocks. Section 4 applies the model to the data after calibrating its
key parameters to match the level of transition rates by age. We also investigate wage
fluctuations by age in Section 4.3. Section 5 concludes.

2 Labor market fluctuations by age

In this section, we use CPS data for the male population8 to study the age profile of
transitions for 2 states in the labor market: from employment to unemployment (job
separation) and from unemployment to employment (job finding). Using monthly CPS
data between January 1976 and March 2013, we follow all steps described in Shimer (2012).

7Hence, unlike Hall (2005) or Hall & Milgrom (2008), but in line with Pissarides (2009), our approach
favors a Nash-bargained wage rather than an exogenously rigid wage that would apply in a similar fashion
to all age groups.

8Female transitions are also linked to fertility and child rearing, which we do not model here. We
check in Appendix A.4 the relevance of our stylized facts on data with male and female workers.
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We compute sample-weighted gross flows between labor market states and seasonally
adjusted time series using the same ratio-to-moving average technique as in Shimer (2012).
We correct these for time aggregation to account for the transitions that occur within the
month. We then average the time series of these instantaneous transition rates for each
age group on a quarterly basis to reduce noise, which gives quarterly data about workers’
instantaneous transition rates (job separation rates JSRt and job finding rates JFRt), and
the corresponding unemployment conditional steady state

(
ut = JSRt

JSRt+JFRt

)
. In order to

measure the volatility of these time series, we consider cyclical component of logged-data
extracted by the HP filter with a smoothing parameter λHP = 105. In doing so, we follow
the literature (Shimer (2005, 2012), Lise & Robin (2017)).

Figure 1: Job Separation Rate JSR, Job Finding Rate JFR, and Unemployment u by
age group: Levels fall with age, volatilities increase with age
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We consider 3 age groups: 16-24, 25-54, and, 55-61. Since we do not consider retirement
choices in the model, we discard individuals aged 62 and above.9

9In this model, we want to illustrate the effect of short distance to retirement on old workers’ business
cycle response. We then define old workers such that the short distance to retirement is likely to be
relevant. As male retirement age peaks at age 62 in the US (Gruber & Wise (1999), Hairault & Langot
(2016)), we consider male individuals aged 55-61.
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Levels of inflow and outflow rates of unemployment fall with age. Figure 1
reports the mean of the time series. Like Elsby et al. (2010), we find large differences in the
levels of separation rates by age group. Young workers have a separation rate 2.82 times
higher than that of prime-age workers. The average job tenure during youth amounts to
21 months ( 1

1−e−0.049 ) versus 91.4 months during older age ( 1
1−e−0.011 ). The differences in

job finding rates are less striking but significant: the length of an unemployment spell is
2.6 months ( 1

1−e−0.49 ) for young workers versus 3.6 months ( 1
1−e−0.33 ) for older workers.

The levels of inflow and outflow rates of unemployment fall with age. As Elsby et al. (2011)
stress for UK data, with faster exits from employment and shorter unemployment spells,
youth face a more fluid labor market than their older counterparts. This faster exit from
employment and unemployment does not appear when one simply looks at unemployment
rates across age groups. In addition, the differences in job finding rates would actually
predict an age increasing profile for unemployment. Thus, Figure 1 suggests that the high
level of unemployment rates for youth is actually driven by their high rates of exit from
employment.10 This is consistent with Elsby et al. (2011) and Gervais et al. (2012).11

Business cycle volatility increases with age. Figure 1 provides the standard devia-
tions of logged de-trended time data. Older workers’ transition rates are highly responsive
to the business cycle, much more so than young and prime-age individuals. The increase
in volatility in the job finding rate is weaker for young to prime-age individuals (the
volatility increases from 0.16 to 0.17) than for prime-age workers to older individuals
(the volatility goes up from 0.17 to 0.22). This gap is statistically significant at the 5%
level only between prime-age and older workers. Regarding the job separation rates, the
volatility gap between young and prime-age workers, as well as that between older and
prime-age workers, is significant. The cyclical behavior of the unemployment rate is also
consistently age-increasing.

Robustness. The age-increasing pattern of labor market volatility is robust when con-
sidering alternative age-groups (Appendix A.1), alternative smoothing parameter for the

10The unemployment steady state is consistent with the BLS unemployment rate across age groups:
11.07% for 20-24, 5.17% for 25-54, 4.12% for 55+, and 6.46% for 16+. Source: BLS monthly SA data,
1976 Jan-2013 March, Men

11The estimated means are consistent with the decreasing transitions with age found in the male
population in Choi et al. (2015), Menzio et al. (2016), and Gervais et al. (2012). The transition rates
in our data show higher levels than in their calculations because we discard labor market transitions
considered in these studies (namely inactivity for Choi et al. (2015) and job-to-job transitions for Menzio
et al. (2016)). Our results are not comparable to Menzio et al. (2016) because they restrict their sample
to individuals with a high school degree.

6



HP filter (Appendix A.2). Moreover, they are also robust to the number of labor market
states (Inactivity-Unemployment-Employment, Appendix A.3), gender (transitions for
men and women, Appendix A.4), or method for computing transition rates (we use Elsby
et al. (2010)’s publicly available data, they use the macroeconomic formula as in Shimer
(2005) to compute transition rates, see Appendix A.5). We also check that our age effect
is not a skill composition effect due to the higher proportion of low-skilled individuals
in the population of older workers: the level and volatilities have the same age profiles
within each sub-group, "High school degree and below" and "College and above" (Ap-
pendix A.6). We also check that the stylized fact holds when we look at age-specific labor
market responsiveness to the business cycle using a structural VAR (Appendix A.7). We
finally look at age-specific volatility of unemployment duration along the business cycle
(Appendix A.8). The stylized facts remain robust: the older the worker, the more volatile
the worker flows.

The contributions of age-specific fluctuations to aggregate cyclicality. In this
section, we quantify the contributions of age-specific fluctuations to aggregate cyclicality
using β decompositions as in Shimer (2012). In doing so, we consider the economy at the
conditional steady state: unemployment inflows equal unemployment outflows, such that(
ut = JSRt

JSRt+JFRt

)
.12

Transitions rates : We first consider the aggregate job finding rate and analyze whether
aggregates changes are due to changes in the age-composition of the economy, or to
changes in the propensity to find a job conditional on each age group. Using the log-
deviation with respect to the mean, we decompose the change in the job finding probability
due to changes in the age composition of unemployment βui and changes due to changes
in the job finding probability for each age-group βJFRi . We repeat the exercise for the
aggregate separation rate, with βni and βJSRi . Table 1 displays the results. As in Shimer
(2012), we find that observable changes in workers’ age composition explain little of the
overall fluctuations in the job finding probability (βui and βni are not significantly different
from zero). Virtually all of the change in the job finding probability is driven by the
cyclicality of age-specific unemployment outflows (βJFRi ). The same comment applies to
job separation rate βJSRi . This calls for a further understanding of age-specific cyclicality
of ins and outs of unemployment. This paper aims at filling this gap.

Table 1 suggests that the cyclicality of ins and outs of unemployment from prime-age
12See Appendix A.9 for further details.
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Table 1: Contribution of each age group to fluctuations in aggregate job flows

Changes in transitions rates Changes in age composition
Age group i 16-24 25-54 55-61 16-24 25-54 55-61
βJFRi 0.3575∗ (a) 0.5263∗ 0.0775∗∗ βui 0.1441� −0.0957� −0.0196�

βJSRi 0.2472∗ 0.6737∗∗ 0.0935∗∗ βni −0.0203� 0.0036� 0.0023�

pi 0.3918 0.5312 0.0770 pi 0.3918 0.5312 0.0770
CPS quarterly averages of monthly logged data, Men. 1976Q1 - 2013Q1. Authors’ calculations. See Appendix A.9.
βJFRi contribution of changes in Job Finding Rate of age group i in aggregate fluctuations of Job Finding Rate. Similarly
for the Job Separation Rate, βJSRi .

pi =
JFRi(ui/u)

JFR
share of JFR of age group i in total JFR. As we consider the economy at the conditional steady state

(unemployment ins equal unemployment outs), pi =
JSRi(ni/n)

JSR
is also the share of of JSR of age group i in total JSR.

∗∗: Statistically larger than pi (with a 95% confidence level). ∗: Statistically lower than pi. �: Statistically equal to
zero.

(a). Changes in young workers’ JFR explains 35.75% of changes in aggregate JFR. This is significantly lower than pi their
relative weight in worker flows (39.18%).

workers drive more than half of aggregate fluctuations of JFR and JSR. Fluctuations on
the youth labor market account for approximately a third (a fourth) of aggregate changes
in JFR (in JSR, respectively). The cyclicality of old workers account for a little bit less
than 10% of aggregate fluctuations of labor flows. Finally, we show that the contribution
of each age group to the aggregate labor flows is not a simple reflection of their relative
weight in the labour force. Young workers’ weight in worker flows is pi =39% but account
for less than 39% of changes in the aggregate job finding rate. In contrast, old workers’
contribution to aggregate volatility is larger than their relative weight in worker flows.

Unemployment : We then look at the contribution of age-specific transitions to aggregate
unemployment fluctuations. Using a log-linear approximation of steady state unemploy-
ment for each age group, we first compute the contribution of ins and outs of unemploy-
ment of each age group to age-specific unemployment changes. We report the results in
Table 2, rows 1-3. On the youth labor market, changes in job separation accounts for
approximately a 29% of young workers’ unemployment fluctuations. The contribution
of employment exits rises to 45% for prime age and old workers. This suggests that an
empirically relevant life-cycle model should include endogenous separations. As the con-
tribution of unemployment inflows is 45% for old workers, this suggests that omitting the
dynamics of job separations in a life-cycle model would provide bad predictions on the
cyclicality of old workers’ unemployment. Row 4 of Table 2 provides the contribution
of changes in age-specific transition rates to the volatility of aggregate unemployment.
The cyclicality of prime-age workers’ JFR alone accounts for 36.54% of fluctuations of
aggregate unemployment. Old workers’ contribution to aggregate unemployment volatil-
ity is approximately 11% (5.58% from changes in JSR and 5.97% from JFR), while youth
worker flows account for 27% of changes in aggregate unemployment.

Our empirical exercise shows that life cycle features are worth investigating as young and
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Table 2: Variance decomposition of unemployment fluctuations

βJSRY βJFRY βJSRA βJFRA βJSRO βJFRO

1. uY 0.2943 (a) 0.7057
2. uA 0.4497 0.5503
3. uO 0.4580 0.5420
4. u 0.0731 (b) 0.1970 0.2442 0.3654 0.0558 0.0597
Subscript Y ,A,O relates to young, prime-age and old workers, respectively. For in-
stance, uY denotes youth unemployment rate, uA prime-age workers’ unemployment
rate, uO old workers’ unemployment rate. u is the aggregate unemployment rate
"JFR" Job Finding Rate. "JSR" Job Separation Rate. β relates to variance decomposi-
tion. Example : βJSRY is the contribution of changes in young workers’ Job Separation
Rate to labor market fluctuations.

(a) Changes in young workers’ JFR accounts for 29.43% of youth unemployment fluctu-
ations.

(b) Changes in young workers’ JFR accounts for 7.31% of aggregate unemployment fluc-
tuations.

old workers’ labor market fluctuations differ from prime age workers’. In addition, a model
focusing on prime age workers’ fluctuations would capture approximately 60% of aggregate
fluctuations. We show that the contribution of youth labor market to aggregate changes
hovers around 30%, with 10% for old workers’ contribution. Old workers’ contribution
to aggregate fluctuations seem quantitatively small. However, we argue that old workers’
fluctuations are still worth investigating as they provide an interesting opportunity to
assess the relevance of the short distance to retirement, thereby providing an additional
opportunity to further test the DMP model.

3 A life-cycle matching model with aggregate uncer-

tainty

In this section, we extend Mortensen & Pissarides (1994)’s model that introduces en-
dogenous search effort and separation with aggregate shocks in a framework with life
cycle features. We model the life cycle as stochastic aging, as in Castañeda et al. (2003),
Ljungqvist & Sargent (2008), and Hairault et al. (2010). Unlike Cheron et al. (2013), we
consider (i) aggregate shocks, as in Fujita & Ramey (2012), and (ii) age-directed search, as
in Menzio et al. (2016).13 With age-directed search, there is no externality due to workers’
heterogeneity in the matching function. Following Bagger et al. (2014) and Menzio et al.
(2016), we also consider human capital accumulation through a deterministic exogenous
process. This allows the model to capture the evolution of wage over the life-cycle.

13For simplicity, we discard job-to-job transitions (as in Fujita & Ramey (2012)) and savings (as in
Lise (2013)). These extensions are left for future research.
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3.1 Demographic setting and aggregate shock

The Life Cycle. Consistent with our empirical results, we consider three age groups,
i, which is enough to describe the working-life cycle: young Y , prime-age A, and older
workers O. All young workers Y enter the labor market as unemployed workers. We
assume stochastic aging. The probability of remaining a prime-age (young) worker in
the next period is πA (πY ). Conversely, the probability of becoming older (prime-age) is
1−πA (1−πY ). To account for the non-linearity in the horizon effect, the period as older
workers is divided into N years: O = {Oi}Ti=T−N , with πOi the probability of remaining in
age group Oi next period.14 With probability 1− πOT , older workers reach the exogenous
retirement age of T + 1. To maintain a constant population size, we assume that the
number of exiting workers is replaced by an equal number of young workers.

More formally, we assume for simplicity that the matrix Π governing the age Markov-
process is:

Π =



πY 1− πY 0 0 · · · 0

0 πA 1− πA 0 · · · 0

0 0 πOT−N 1− πOT−N · · · 0

0 0 0
. . . . . . 0

1− πOT 0 0 0 · · · πOT


We deduct the size of each group from Π∞, the matrix of the unconditional probabilities,
given that the total size of the population is normalized to unity. We divide the population
of each group into two types of agents: unemployed ui and employed ni, such that mi =

ui+ni, with 1 =
∑

imi. We thereby discard the participation margin. In our view, this is
not a very restrictive assumption because we introduce an age-specific search effort that
can converge towards zero at the end of working life (before retirement). These older
unemployed workers with a zero-search can thus be considered as non-participants. Their
number is endogenously determined at equilibrium.

Shocks. A worker-firm match is characterized by the aggregate z and the match-specific
ε productivity factors. We assume that the aggregate productivity component follows the

14Our paper analyzes the effect of the short-distance to retirement on labor market fluctuations. The
question is: at which age does the old workers’ expected surplus start falling due to the short distance
to retirement? At which age is an old worker considered as "close to retirement"? This is an endogenous
outcome in the model. In addition, as discounting is exponential, the effect of the short distance to
retirement appears in a non-linear fashion in our model. By considering this demographic structure for
old workers, we let the model endogenously respond in a non-linear fashion at the end of the working life.
We then aggregate all old workers to fit the age group of 55-61 as in the data.
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exogenous process:
log(z′) = ρ log(z) + ν ′ (1)

where ν ′ is an i.i.d. normal disturbance with mean zero and standard deviation σν .

For a common aggregate component of productivity z, idiosyncratic productivity shocks
hit jobs at random. At the end of each period t, there is a new productivity level for
period t + 1 drawn with probability λi ≤ 1 in the distribution G(ε), with ε ∈ [0, 1]. The
higher λi, the lower the persistence of the current productivity draw. The probability
of drawing a new match-specific productivity may be specific to age i. Firms decide to
discard any job whose productivity is below an idiosyncratic productivity threshold (the
reservation productivity) denoted by Ri(z). Unlike in MP, new jobs are not opened at
the highest productivity: their productivity level is also drawn in the distribution G(ε).15

Age-(i− 1) workers become age-i workers (with probability 1−πi−1), and, if contacted at
the age i− 1, will be hired if and only if their productivity is above the threshold Ri(z),
i.e., the reservation productivity of an age-i worker, because their productivity value is
revealed after the firm has met the worker.

Finally, we account for human capital accumulation to mimic the observed pattern of
individual wage earnings over the life cycle. Human capital can be considered general
(related to experience) or specific (related to tenure).16 In the following, we assume that
hi denoting the human capital at age i, is a general human capital that is transferable
(it can be used in all jobs and in home production): individuals accumulate this capital
inside and outside firms. We assume that every age-group is associated with a particular
level of human capital hi, with hi < hi+1. The productivity of the job is then zεhi, and
the instantaneous opportunity cost of employment bi = bhi. Hence, this age-increasing
component of the individual productivity allow older workers to accept lower job-specific
productivity ε.17

15This assumption is a particular case of Nagypal & Mortensen (2007b)’s framework, where the ini-
tial value of the idiosyncratic productivity is drawn from a distribution G̃(ε) with G 6= G̃. With our
assumption, whether the worker is in the firm or in the pool of job seekers, their future opportunities are
easily comparable, either through unemployment search γeip(θi) or through labor hoarding (1−se)λi (see
Section 4.1.). Note that adopting this assumption in the MP model would give a comparative advantage
to job seekers relative to workers within the firms, which is not realistic.

16In the Mincerian wage equations, these two components explain the increase in wage earnings during
the workers’ life cycle.

17These simplifying assumptions are made for model tractability. Indeed, there is no depreciation in
worker’s human capital during unemployment spells, as in Ljungqvist & Sargent (2008) or stagnation of
this accumulation process during unemployment spells, as in Bagger et al. (2014). Nevertheless, given the
short-time duration of an unemployment spell in the US, this seems to be a reasonable approximation.
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Matching with directed search. We consider an economy in which labor market
frictions imply a costly delay in the process of filling vacancies. Age is perfectly observed
and a worker who applies to a job not matching the age-characteristic will have a nil
production, and thus a nil surplus. Firms choose how many and what type of vacancies
to open. The type of vacancy is simply defined by a worker’s age. Since search is directed,
the probability that a worker meets a firm depends on her age.

Since firms can ex-ante age-direct their search, there is one matching function by age. Let
vi(z) be the number of vacancies, ui(z) the number of unemployed workers, and ei(z) the
endogenous search effort for a worker of age i. The matching function gives the number
of contacts, M(vi(z), ei(z)ui(z)), where M is increasing and concave in both arguments
and with constant returns-to-scale. From the firm’s perspective, the contact probability
is q(θi(z)) ≡ M(vi(z),ei(z)ui(z))

vi(z)
= M(1, θ−1

i (z)) with θi(z) = vi(z)
ei(z)ui(z)

as the corresponding
labor market tightness. The probability for unemployed workers of age i to be employed is
then defined by ei(z)p(θi(z))[1−G(Ri(z))] with p(θi(z)) ≡ M(vi(z),ei(z)ui(z))

ei(z)ui(z)
= M(θi(z), 1)

as the contact probability of the effective unemployed worker. Note that the hiring process
is then age-differentiated via a firms’ age-specific search intensity (vi(z)), an age-specific
reservation productivity (Ri(z)), and an age-specific search effort from unemployed work-
ers (ei(z)).

3.2 Firms’ and workers’ intertemporal values

Firms’ problem. Any firm is free to open a job vacancy directed at an age-specific labor
market and engage in hiring. c denotes the flow cost of hiring a worker and β ∈ [0, 1] the
discount factor. Let Vi(z) be the expected value of a vacant position in the age-i labor
market, given the aggregate state of the economy z at time t, and Ji(z, ε) the value of a
job filled by a worker of age i with productivity ε in aggregate state z. The firm’s search
value is given by:

Vi(z) = −c+ q(θi(z))βEz

[
πi

∫ 1

0

Ji(z
′, x)dG(x) + (1− πi)Vi(z′)

]
+ (1− q(θi(z)))βEzVi(z

′)

where the operator Ez denotes the expectation with respect to aggregate productivity z.
Given that search is directed, if the worker ages between the meeting and the production
processes (with a probability 1 − πi), the job is not filled. We will assume hereafter the
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standard free-entry condition, i.e., Vi(z) = 0, ∀i, z, which leads to:

c

q(θi(z))
= βπiEz

∫ 1

0

Ji(z
′, x)dG(x)

Vacancies are determined according to the expected value of a contact with an age-i
unemployed worker, which depends on the uncertainty in the hiring process arising from
the two components of productivity, z and ε.

Given a state vector (z, ε) and for a bargained wage wi(z, ε), the expected value Ji(z, ε)
of a filled job by a worker of age i, ∀i ∈ {Y, ..., OT−1}, is defined by:

Ji(z, ε) = max



zεhi − wi(z, ε)

+βπi(1− se)

(
λiEz

∫ 1

0
Ji(z

′, x)dG(x)

+(1− λi)EzJi(z′, ε)

)

+β(1− πi)(1− se)

(
λi+1Ez

∫ 1

0
Ji+1(z′, x)dG(x)

+(1− λi+1)EzJi+1(z′, ε)

) ; 0


where se is the exogenous separation rate. Notice that, for i = OT , aging implies retire-
ment. The value function becomes:

JOT (z, ε) = max


zεhOT − wOT (z, ε)

+βπOT (1− se)

(
λOTEz

∫ 1

0
JOT (z′, x)dG(x)

+(1− λOT )EzJOT (z′, ε)

)
; 0


The short horizon reduces the value of a filled job for a given wage.

Workers’ problem. Values for employed (on a match of productivity ε) and unem-
ployed workers of any age i 6= OT , are respectively given by:

Wi(z, ε) = max



wi(z, ε)

+βπi

 (1− se)

(
λiEz

∫ 1

0
Wi(z

′, x)dG(x)

+(1− λi)EzWi(z
′, ε)

)
+seEzUi(z′)


+β(1− πi)

 (1− se)

(
λi+1Ez

∫ 1

0
Wi+1(z′, x)dG(x)

+(1− λi+1)EzWi+1(z′, ε)

)
+seEzUi+1(z′)


;Ui(z)


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Ui(z) = max
ei(z)



bhi − φ(ei(z))

+βπi

(
ei(z)p(θi(z))Ez

∫ 1

0
Wi(z

′, x)dG(x)

+(1− ei(z)p(θi(z)))EzUi(z′)

)

+β(1− πi)

(
ei+1(z)p(θi+1(z))Ez

∫ 1

0
Wi+1(z′, x)dG(x)

+(1− ei+1(z)p(θi+1(z)))EzUi+1(z′)

)


with bhi ≥ 0 denoting the instantaneous opportunity cost of employment indexed on
human capital hi and φ(.) The convex function capturing the disutility of search effort is
ei. For i = OT , these values are simply given by:

WOT (z, ε) = max


wOT (z, ε)

+βπOT

 (1− se)

(
λOTEz

∫ 1

0
WOT (z′, x)dG(x)

+(1− λOT )EzWOT (z′, ε)

)
+seEzUOT (z′)

 ;UOT (z)


UOT (z) = max

eOT (z)


bhOT − φ(eOT (z))

+βπOT

(
eOT (z)p(θOT (z))Ez

∫ 1

0
WOT (z′, x)dG(x)

+(1− eOT (z)p(θOT (z)))EzUOT (z′)

) 
The worker’s optimal search effort decision then satisfies the following condition:

φ′(ei(z)) = βπip(θi(z))Ez

[∫ 1

0

Wi(z
′, x)dG(x)− Ui(z′)

]
The marginal cost of the search effort at age i is equal to its expected marginal return.

3.3 Job surplus, Nash sharing rule, and reservation productivity

The surplus Si(z, ε) generated by a job of productivity zε is the sum of the worker’s and
the firm’s surplus Si(z, ε) ≡ Wi(z, ε)−Ui(z) +Ji(z, ε) given that Vi(z) = 0 at equilibrium.
Thus, using the definitions of Ji(z, ε), Wi(z, ε), and Ui(z), the surplus is given by:

Si(z, ε) = max



zεhi − bhi + φ(ei(z))

+βπi(1− se)

( [
λi − γei(z)p(θi(z))

1−se

]
Ez
∫ 1

0
Si(z

′, x)dG(x)

+(1− λi)EzSi(z′, ε)

)

+β(1− πi)(1− se)

( [
λi+1 − γei+1(z)p(θi+1(z))

1−se

]
Ez
∫ 1

0
Si+1(z′, x)dG(x)

+(1− λi+1)EzSi+1(z′, ε)

) ; 0


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Reservation productivity Ri(z) such that Si(z,Ri(z)) = 0. As in MP, a crucial implication
of this rule is that job destruction is mutually optimal for the firm and the worker.
Si(z, Ri(z)) = 0 indeed entails Ji(z,Ri(z)) = 0 and Wi(z,Ri(z)) = Ui(z). Note that the
lower bound of any integral over Si(z, ε) is actually the reservation productivity because
any productivity level below Ri(z) yields a negative job surplus. Given Si(z, ε), the Nash
bargaining leads to Wi(z, ε) − Ui(z) = γiSi(z, ε) and Ji(z, ε) = (1 − γi)Si(z, ε), where
worker’s bargaining power γi may be specific to age i. Using this sharing and value
functions, the wage rule is:

wi(z, ε) = γi

(
zεhi + cei(z)θi(z) +

1− πi
πi+1

γi+1

γi
cei+1(z)θi+1(z)

)
+ (1− γi) (bhi − φ(ei(z)))

Because workers age, the returns on search activity is an average between age i and i+ 1.

3.4 Equilibrium

Definition 1. The labor market equilibrium with directed search in a finite-horizon envi-
ronment is defined by labor market tightness, search effort and separation rule (reservation
productivity), respectively, θi(z), ei(z), and Ri(z):

c

q(θi(z))
= (1− γi)βπiEzSi(z′) (2)

φ′(ei(z)) = γip(θi(z))βπiEzSi(z
′) (3)

zhiRi(z) = bhi + Σi(z)− Λi(z)− Γi(z) (4)

given average and individual surpluses:

Si(z
′) ≡

∫ 1

Ri(z′)

Si(z
′, x)dG(x) (5)

Si(z, ε) = max


zhi(ε−Ri(z))

+βπi(1− λi)(1− se)Ez[Si(z′, ε)− Si(z′, Ri(z))]

+β(1− πi)(1− λi)(1− se)Ez[Si+1(z′, ε)− Si+1(z′, Ri(z))]

; 0

(6)
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where "search value", "labor hoarding value" and "continuation value" are respectively
defined as follows:

Σi(z) = −φ(ei(z)) + β

[
πiγiei(z)p(θi(z))EzSi(z

′)

+(1− πi)γi+1ei+1(z)p(θi+1(z))EzSi+1(z′)

]
(7)

Λi(z) = β(1− se)
[
πiλiEzSi(z

′) + (1− πi)λi+1EzSi+1(z′)
]

(8)

Γi(z) = β(1− se)

[
πi(1− λi)EzSi(z′, Ri(z))

+(1− πi)(1− λi+1)EzSi+1(z′, Ri(z))

]
(9)

The stock-flow dynamics on the labor market are described by equations (27), (28), (29),
and (30) in Appendix E.4, whereas the law of motion of aggregate shock z is driven by
equation (1).

As in Menzio & Shi (2010), directed search implies that the problem is block-recursive18:
after solving the dynamics of the forward variables, we deduce the dynamics of the back-
ward variables ((un)-employment rates) as well as the dynamics of the job distribution.

3.5 Identification of model parameters using age heterogeneity

We derive the restrictions allowing the model to fit the first-order moments of the data by
age (the levels, in section 3.5.1), and deduce the implications of these restrictions on the
second-order moments by age (volatilities, in section 3.5.2). In Appendix D, we propose
a stylized version of our model, in continuous time, which allows to recovers familiar
expressions of the labor market elasticities based on comparative statics of the steady
state.19

18See proposition 8 in Appendix E.2.
19In Appendix D, we first show that the interaction between search effort and endogenous separations

can solve the Shimer (2005) puzzle. In particular, the amplifying mechanism through the endogenous
search effort, discussed in Gomme & Lkhagvasuren (2015), is presented as a special case of our model with-
out age structure and without endogenous separations. We then mimic Nagypal & Mortensen (2007a)’s
analysis (another special case of our model without age heterogeneity and without endogenous search
effort) in order to show that the combination of endogenous separations and search effort allows the MP
model to generate a Beveridge curve. When the age structure is introduced, we show that a short horizon
distance to retirement affects the labor market elasticities with respect to aggregate productivity, as if
the interest rate were augmented with the risk of workers’ retirement. Notice that the finite horizon
on the labor market implies that this risk becomes infinite when the worker reaches the retirement age
(increasing risk with the worker’s age). For the youth labor market, we discuss the effects of changes in
the worker’s bargaining power on the labor market elasticities, in the spirit of Hagedorn & Manovskii
(2008)’s work.
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3.5.1 Steady state properties: why do levels of labor flows fall with age?

At the steady state,20 the model must generate an age-pattern of transition rates such
that, for age group i:

JSRi ≈ se + (1− se)λiG(Ri) > JSRi+1 (10)

JFRi ≈ eip(θi)[1−G(Ri)] > JFRi+1 (11)

These age pattern in the finding and separation rates is consistent with the evidence found
in US data if JFRi > JFRi+1 and JSRi > JSRi+1 (see Figure 1, top panels).21

Job separation rate falls with age. Equation (10) suggests that the job separation
rate is driven by the reservation productivity by age (Ri). Reservation productivity differs
across age groups because workers differ in terms of expected time on the labor market.
Intuitively, the economic mechanism is the following: with Ri > Ri+1, older workers
are less selective than younger workers when new opportunities are available. A shorter
horizon leads old workers to accept lower and lower job opportunities because they know
that the number of draws before retirement is falling. We refer to this effect as a "selection
effect". This can be seen in the model equations. For workers close to retirement, only
current surplus matters. Equation (4) shows that reservation productivity converges to
the unemployed worker’s current surplus bhi as the worker ages, i.e. when the expected
gains on labor market, contingent to their future status (Σi, Λi and Γi) tend towards
zero22. In contrast, prime-age workers have a long work-life expectancy: the expected
gains are larger than zero. Equation (4) shows that, if the return on search is larger than
the one on labor hoarding, i.e. if Σi > Λi,23 then Ri > hib. For prime-age workers, the
larger value of their unemployment option raises their wages and thus the reservation
productivity of their jobs. This leads to an age-decreasing pattern of job separation.24

20For the sake of brevity, we consider z = 1 in the steady state analysis.
21Cheron et al. (2013) analyze all the other cases: the age-increasing reservation productivity case and

the U -shaped pattern of the reservation productivity. Given that US data are not in line with these two
last cases, we restrict our analysis to the case where the steady state of the model matches the long run
values of JFR and JSR.

22The retirement age is a terminal condition and acts as if the discount factor β were tending towards
0 when worker gets closer to retirement.

23We show in proposition 9 in Appendix E.3 that this restriction is equivalent in our case to γieip(θi) >
(1− se)λi

24The separation rate also depends on the exogenous probability λi. Hereafter, we restrict our analysis
to a sufficiently flat age profile for this exogenous variable to ensure that our results are not exogenously
determined by the calibration of λ at the end of the working life. Were the growth of this probability
highly tilted over the life cycle, the age-pattern of R could have been dominant in shaping the separation
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Both Σi and Λi depend on the age-specific average surplus (Si), they are actually different
as the value of search Σi can be manipulated by agents through their choices for {ei, θi},
whereas labor hoarding Λi depends on an exogenous probability λi: in our paper, the
younger the worker, the lower λi, the larger the incentive to invest in search on the labor
market because a longer horizon allows them to recoup search costs, and thus the larger
the gap between the search value and the value of labor hoarding.

The job finding rate falls with age. Equation (11) shows that the job finding rate
depends on search efforts by unemployed workers ei and firms θi, but also on the reser-
vation productivity Ri. We have just discussed the "selection effect": a shorter horizon
leads old workers to accept lower and lower job opportunities because they know that
the number of draws before retirement is falling. This effect tends to increase the job
finding rate as the worker ages, which is counterfactual. In order for the model to be
consistent with the age-decreasing pattern of the job finding rate, it must be the case that
the age profile of {ei, θi} is prevalent and leads to a decline in the job finding rate with
age. The decline of {ei, θi} with age must be induced by the fall in the average surplus
with age (Si).25 Hence, the crucial point for the age profile of {ei, θi} is to generate an
age-decreasing pattern in Si. This is the case for the "horizon effect" because a shorter
horizon prior to retirement causes the match-specific surplus to decline with worker’s age:
the gains from the job are capitalized on a duration that falls when worker ages. The
falling average expected surplus (Si > Si+1) implies that the "horizon effect" dominates
the "selection effect," leading search effort (ei and θi) to decline with age. Note that the
horizon effect can be offset by a large increase in human capital at the end of the working
life. Its growth rate, δi = (hi+1 − hi)/hi, is calibrated to replicate the observed wage
age-profile.26

3.5.2 Cyclical properties: why do volatilities of labor flows increase with age?

Are the conditions that imply an age-decreasing pattern for the levels of the transition
rates compatible with the fact that older workers’ flows are more responsive to the business

rate. We exclude this case a priori, and we check that our calibration is consistent with this restriction.
25Equation (2) provides the link between firms’ search effort θi and EzSi(z′), whereas the combination

of equations (2) and (3) shows that unemployed workers’ search effort can be expressed as a function of
only θi, and thus depends only on EzSi(z′).

26In proposition 10 of Appendix E.3, we derive the conditions under which the horizon effect dominates
the selection effect and show analytically that the horizon effect dominates the selection effect if δi is
below a threshold value. Our quantitative results show that, with the calibrated δi, using US data, this
condition holds.
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cycle than for their younger counterparts? It can be shown that the restrictions for which
the model can reproduce the age-profile of worker transitions by age group at the steady
state ensure that the age-pattern of their volatility is also matched.27

Why a more volatile JFR for older workers? In the MP model, in order to under-
stand the response of labor market tightness with respect to aggregate productivity, one
needs to look at fluctuations in the value of a filled vacancy (as the free entry condition
provides a direct link between labor market tightness θ and job value J .28). Log-linear
approximation of the job creation condition leads to

Ĵi =
zhiX(Ri)

zhiX(Ri)− (bhi + Σi)(1−G(Ri))
ẑ − Σi(1−G(Ri))

zhiX(Ri)− (bhi + Σi)(1−G(Ri))
Σ̂i (12)

−→
Σi→0

ĴO =
zhOX(RO)

zhOX(RO)− bhO(1−G(RO))
ẑ (13)

where hat variables denote log-deviation from the steady state, Ji =
∫ 1

Ri
Ji(x)dG(x) and

X(Ri) =
∫ 1

Ri
xdG(x) are respectively the average job values for age-i worker and their

average productivity. Equation (12) illustrates previous results found in the literature.
Shimer (2005) finds a large wage elasticity to the aggregate shock z. Following a posi-
tive productivity shock (ẑ > 0), the increase in wages leaves profits nearly unchanged.
As a result, firms’ hiring incentives, captured by Ĵ , does not respond much to the busi-
ness cycle. This can be seen in equation (12), the pro-cyclical wage response is due to
improved labor market opportunities for unemployed workers (Σ̂i > 0), which tends to
dampen the response of firms’ hiring incentives (Ĵ > 0 but small). Hagedorn & Manovskii
(2008) match the volatility of market tightness after focusing on the size of the percentage
changes of profits in response to changes in productivity. They argue that these percent-
age changes are large if the size of profits is small and the increase in productivity is
not fully absorbed by an increase in wages. This leads them to consider a large firm’s
bargaining power (small γ) and high unemployment benefit b. Indeed, in equation (12),
a high unemployment benefit b tends to increase the response of firms’ hiring incentives
to the aggregate shock (the coefficient in front of ẑ goes up). In addition, with Nash bar-
gaining, search opportunities on the labor market expand in booms, which drives wages

27In Appendix E.5, we analytically derive the business cycle elasticity by age and show that older
worker’s responsiveness to the aggregate shock is larger than their younger counterparts’ if the restrictions
at the steady state (Propositions 9 and 10) are satisfied.

28J refers to the relevant hiring incentive upon entry (the firm still does not know the match-
productivity draw). J is the expected value of a filled vacancy, with expectations with respect to
micro-economic match-productivity draw.
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upward. Under Hagedorn & Manovskii (2008)’s calibration, with workers’ low bargaining
power, Σ̂i disappears from equation (12),29 thereby making hirings more responsive to the
business cycle.

In our paper, we consider business cycle response by age, without using Hagedorn &
Manovskii (2008)’s calibration. Old workers’ search value Σ converges to zero ("hori-
zon effect" implies Σi → 0). This leads the fluctuations of job value to depend only
on productivity shock (equation (13)). In contrast, for young and prime-age workers,
the search value is positive in economic boom and thus the impact of the productivity
shock is dampened by the pro-cyclical response of the search value to the business cycle
shocks. With Nash bargaining, wages react not only to productivity changes, but also
to fluctuations of outside opportunities. The higher the wage adjustment, the lower the
volatility in labor market. As generations of workers differ according to their sensitivity
to future opportunities, they differ in terms of wage adjustments. Specifically, this implies
that older workers have less pro-cyclical individual wages30, and thus higher volatility in
labor market tightness, which in turn also makes the search effort more responsive to the
business cycle. In contrast, as younger workers are more responsive to outside options,
their wages are more pro-cyclical. This dampens the firm’s incentives to post vacancies
directed to these younger workers. The age-varying influence of the outside options in
the Nash wage bargaining is then key to explain the age-pattern of the transition rates’
volatility.

Why a more volatile JSR for older workers? Log-linear approximation of the job
destruction condition leads to

R̂i = − bhi + Σi

bhi + Σi + Γi
ẑ +

Σi

bhi + Σi + Γi
Σ̂i −

Λi

bhi + Σi + Γi
Λ̂i −→

Σi,Λi→0
R̂O = −ẑ (14)

Equation (14) summarizes the business cycle response of job destruction. As in Mortensen
& Pissarides (1994), following an increase in aggregate productivity (ẑ > 0), reservation
productivity falls (R̂i < 0): firms want to keep more workers. Σ̂i captures changes in
opportunity cost of employment for the worker. In booms, the increase in expected gains
from search on the labor market (Σ̂i > 0) makes workers less willing to remain within

29In Appendix E.5., equation (31) shows that Σi = 0 when worker’s bargaining power γi tends to zero
in our model.

30This low elasticity of individual wages when workers age is not easy to measure in the data. Indeed,
data provides information about aggregate wages for each age group. However, theory predicts that, (i)
within each age class, there is substantial productivity heterogeneity and (ii) productivity distribution
changes along the business cycle. Hence, the dynamics of aggregate wage per age do not provide sufficient
information about the dynamics of individual wages. See Section 4.3 and Appendix B.1.
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the firm. This tends to raise the reservation productivity in booms (R̂i > 0). The third
term in equation (14) relates to changes in labor hoarding. Λ̂i measures the extent to
which the employer is willing to incur a loss now in anticipation of a future improvement
in the value of the match’s product. It is the option value of retaining an existing match.
In boom, firms keep more workers, rather than waiting for new workers to arrive from
the matching market. The value of labor hoarding increases in booms (Λ̂i > 0). Given
that the steady state restrictions allowing to match the age pattern of transition rates are
such that the search value dominates the labor hoarding value (Σi > Λi), we also have
Σ̂i > Λ̂i. Therefore, the impact of an aggregate shock on the reservation productivity is
dampened by pro-cyclical changes in the search value for young and prime age workers.
In contrast, for older workers, with a shorter horizon on the labor market, the "search
value" and "labor hoarding" are close to zero: this leads to the high response of reservation
productivity to current aggregate shocks.

4 Quantitative Analysis

In this section, we apply the model to the data. The model is calibrated to match the
first-order moments found in the data (section 4.1). Under this calibration, we assess
the model’s ability to generate second-order moments consistent with aggregate data
and stylized facts by age. This quantitative analysis aims to demonstrate that (i) the
parameter restrictions imposed to match the first-order moments are sufficient to generate
the age-increasing volatilities observed in the data (Sections 4.2.1 and 4.2.2), (ii) the size
of volatilities of labor market aggregates (flows and stocks) are well matched (Section
4.2.3) and (iii) the interaction between search effort and endogenous separations is key
for the replication of volatility across age groups as well as the size of aggregate labor
market volatility (Section 4.2.4). In Section 4.3, we assess the model’s fit with respect to
wage fluctuations by age.

4.1 Calibration

The vector of parameters is Φ = {Φ1,Φ2} with dim(Φ) = 48. Functional forms for the
matching process and search costs are respectively

M(vi, eiui) = Hv1−η
i (eiui)

η and φ(ei) = χ
e1+φ
i

1 + φ
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with 0 < η < 1 and φ > 0. All parameters calibrated using external information are:

Φ1 =
{
β, {πi}OTi=Y , {se,i}

O
i=Y , c, {γe,i}Oi=Y , η, φ, b, ρ, σν

}
dim(Φ1) = 22

The discount factor β is calibrated to match a weekly discount factor consistent with an
annual interest rate of 4%. We set πi such that an age class corresponds to the same
age groups as in the data: i = Y,A are 16 − 24 and 25 − 54 year-old workers, and
i = Oj for j = 1, ..., 7 (T = 7) are the 55, ..., 61 year-old workers. The parameters for
the aggregate productivity process ρ and σν are set to the values proposed by Shimer
(2005). For exogenous job separation rates by age, se,i, for i = Y,A,O, we follow Fujita
& Ramey (2012): at each age, the exogenous job separations represent 34 percent of total
separations. The calibration of the cost of vacancy posting c is based on Barron et al.
(1997) and Barron & Bishop (1985) who suggest an amount equal to 17 percent of a
40-hour workweek (nine applicants for each vacancy filled, with two hours of work time
required to process each application). The elasticity parameter of the matching function
η is arbitrary set at its standard value of 0.5 (Petrongolo & Pissarides (2001)), because
there is no information about the matching function by age. Moreover, the endogeneity
of search effort implies that the elasticity of the matching function also depends on the
elasticity of the cost function for search effort (Gomme & Lkhagvasuren (2015)). Finally,
we set φ = 0.45, which is an intermediate value of estimates of Lise (2013) and Christensen
et al. (2005).

For the other parameters, we need some restrictions in order to identify these parameters
using our first-order moments on labor market flows. Thus, we assume that (i) older
workers share the same level of human capital, leading to {hi}O7

i=Y = {1, hA, hO},(ii) older
workers share the same λi, leading to {λi}O7

i=Y = λO.. We are left with 3 parameters:
{λY , λA, λO}, and (iii) younger workers have a specific bargaining power γY 6= γ, where
γ = γA = γO. The bargaining power of age-i workers for i = A,O are such that γi = η.
This last restriction is also used by Shimer (2005). Hence, 10 parameters are estimated:

Φ2 = {H,χ, hA, hO, b, γY , λY , λA, λO, σε} dim(Φ2) = 10

The calibrated parameters are the solution to minΦ2 ||Ψtheo(Φ2)−Ψ||, where the numerical
solution for Ψtheo(·) is provided by the algorithm described in Appendix F.31 The 10 free
parameters are the elements of Φ2, whereas the 10 first-order moments provided by the

31We use a global solution method to avoid the lack of accuracy when solving DMP model (see Petrosky-
Nadeau & Zhang (2013)).
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data are:

Ψ = {b̂, w, JFRY , JFRA, JFRO, JSRY , JSRA, JSRO, wA/wY , wO/wY }

with dim(Ψ) = 10. We denote XO =
∑O7
i=O1

miniXi∑O7
i=O1

mini
for X = JSR,w and JFRO =∑O7

i=O1
miuiJFRi∑O7

i=O1
miui

. We choose as an additional target the value of the opportunity cost

of employment measured by Hall & Milgrom (2008), which is b̂ = 0.7.32 Note that, in
our model with endogenous search effort, this instantaneous value of leisure is actually
bi − φi(ei(z)), not bi where bi = bhi for age group i. We report the empirical targets in
Table 3, as well as the model fit: the estimation results show that the steady state of the
model is very close to empirical targets.

Table 3: First order moments: Ψ

JFRY JFRA JFRO JSRY JSRA JSRO
Data 0.44 0.41 0.33 0.047 0.017 0.011

Model fit 0.45 0.42 0.30 0.041 0.020 0.013
b̂ w wA/wY wO/wY

Data 0.7 1.37 1.47 1.45
Model fit 0.6786 1.39 1.50 1.48
Overbar refers to aggregate average. Data source in Appendix B.1.

Table 4: Benchmark calibration

External information Φ1

β η = γ c se,i φ
r = 4% 0.5 0.17 34% JSR 0.45

ρ σν πA {πi}O7

i=Y

0.9895 0.0034 25-54 55-56...60-61
Calibration Φ2

H b σε χ
HLS 0.125 0.92 0.15 0.75
FR 0.061 0.934 0.124 -

λY λA λO hA hO γY
HLS 0.0175 0.045 0.055 1.58 1.57 0.4
FR - 0.085 - - - -
HLS = Our weekly calibration

FR = Fujita and Ramey’s (2011) weekly calibration

Table 4 summarizes the calibration. Our calibration strategy matches the observed labor
flow rates per age at the steady state (Table 3). This imposes particular restrictions on
the model. Indeed, matching the gaps between flow rates across ages at the steady state
(i.e., the elasticities to some profitability differentials) is likely to discipline parameter
calibration. Especially that related to the age-pattern of search effort, and then the

32This value is also used by Menzio et al. (2016).
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elasticity of search cost function, which is key in the ability of the model to match these
gaps.

We must stress three other points about the calibrated parameters. First, younger workers
are less likely to benefit from changes in productivity. A smaller λ for young workers
indicates a lower ability to move within the firm, whereas the higher value of λ for prime-
age and older workers may reflect their ability to adapt to new tasks within the firm as
they have accumulated higher levels of specific human capital.

Secondly, to account for the differences between young and prime-age workers with respect
to the job finding rate JFR, at the steady state, bargaining power must be youth-specific:
a value equal to 0.4 for the younger workers is then able to match the relatively high
value of their job finding rate. This lower value is consistent with BLS statistics33, which
provides indirect evidence of an age-specific bargaining power. Indeed, for men aged 16
to 24 years old, the percentage of workers with a union affiliation equals 4.9%, versus 13%
for those aged 25 to 64 years.

Table 5: Implied values of the outside option

b̂ ≈
∑O7

i=Y mi
bhi−φ(essi )

hi

bhY −φ(essY )
hY

bhA−φ(essA )
hA

∑O7

i=O1
mi

bhO−φ(essi )
hO

0.6786 0.675 0.668 0.727
bhO−φ(essOi )

hO
for i = 1, ..., 7

0.69 0.69 0.69 0.69 0.70 0.737 0.891

The third comment deals with the value of b. The results reported in Table 4 show that
our calibrated value for b is lower than that used by Fujita & Ramey (2012) in their
calibration à la Hagedorn & Manovskii (2008). The net value of home production, shown
in Table 5, is closer to Hall & Milgrom (2008)’s estimated value for outside opportunities.
Nevertheless, the calibration leads to higher values for the outside option than that used
by Shimer (2005). This can help the model generate large responses to productivity
shocks.

4.2 Worker flows and unemployment fluctuations

Table 6 reports labor market volatility across age groups. Comparing row 1 (Model) to
row 5 (Data), the model can generate the observed age pattern in the volatility of labor
flows and unemployment. This suggests that, given the parameter restrictions found at
the steady state to match age-patterns of transition rates by age (section 3.5.1) hold, such
that the age-pattern of volatility is matched by the model.

33See http://www.bls.gov/news.release/union2.t01.htm
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Table 6: Model Predictions by Age Group i: 2nd Order Moments

i = Y (16-24) i = A (25-54) i = O (55-61)
Xi UY JFRY JSRY UA JFRA JSRA UO JFRO JSRO
σ(Xi) 1. Model 0.11 0.06 0.07 0.20 0.13 0.11 0.29 0.19 0.15

2. No Hete. 0.19 0.12 0.11 0.19 0.12 0.11 0.25 0.17 0.13
3. No HC 0.12 0.07 0.08 0.21 0.14 0.12 0.30 0.20 0.15
4. Low γY 0.17 0.11 0.10 0.20 0.13 0.11 0.25 0.17 0.13
5. Dataa 0.18 0.16 0.08 0.27 0.17 0.14 0.32 0.22 0.20

Corr(Xi, Ui) 6. Model 1 -0.81 0.88 1 -0.88 0.86 1 -0.93 0.89
7. No Hete. 1 -0.89 0.85 1 -0.89 0.86 1 -0.92 0.87
8. No HC 1 -0.83 0.87 1 -0.89 0.86 1 -0.94 0.90
9. Low γY 1 -0.90 0.88 1 -0.89 0.86 1 -0.92 0.87
10. Dataa 1 -0.91 0.68 1 -0.92 0.89 1 -0.81 0.76

a: CPS quarterly averages of monthly data, Men, 1976Q1 - 2013Q1, HP filtering of logged data with λHP = 105.

"Model": benchmark model, heterogeneous h and λ, low γY

"No HC": benchmark model with homogenous h: hi = 1

"No Hete": model with homogenous h & λ & γ: hi = 1, λ = λA, γi = η

"Low γY ": idem "No Hete" except γY = 0.4 and γi = η for i ≥ A.

4.2.1 Higher volatility for older workers on the labor market: the horizon
effect

The model slightly overestimates the volatility gaps across age of the job finding rate
(old workers’ JFR is 0.19/0.13 = 1.46 times higher than prime age workers’, versus
0.22/0.17 = 1.29 in the data; for young workers, the volatility gap is 0.06/0.13 = 0.46

versus 0.16/0.17 = 0.9 in the data), and matches those of the job separation rates
(old workers’ JSR is 0.15/0.11 = 1.36 times higher than prime age workers’, versus
0.2/0.14 = 1.42 in the data; for young workers, the volatility gap is 0.07/0.11 = 0.63

versus 0.08/0.14 = 0.57 in the data). The volatility levels of job finding, separation and
unemployment rates of the labor market of the prime-age worker are well reproduced,
compared to Shimer (2005).34

In order to understand these results, we explore the quantitative predictions of several
versions of the model.

The effect of the short distance to retirement. We consider the life-cycle model, in which
we remove any exogenous age-heterogeneity in the calibrated parameters (hi = h, γi = γ,
and λi = λ, ∀i). When all exogenous sources of heterogeneity by age are removed, hetero-
geneity across age groups only comes from the horizon effect: workers are heterogeneous
only with respect to their working-life expectancy, prior to retirement. Table 6 (row 2,
"No Hete") reports simulation results. Without heterogeneity, young workers obviously

34Search effort is also more volatile for older workers: we obtain σ(eO) = 0.18, versus σ(eA) = 0.12 for
the prime-age workers and σ(eY ) = 0.08 for young workers. The volatility of aggregate search effort is
σ(e) = 0.13, which is consistent with business moments found by Gomme & Lkhagvasuren (2015).
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display the same business cycle fluctuations as prime-age workers’. In order to have a sense
of the impact of the short distance to retirement, let us have a look at old versus prime
age workers. Older vs. prime-age workers display an age-increasing pattern in volatil-
ities (old workers’ JFR is 0.17/0.12 = 1.4 times larger than prime age workers’ versus
.19/.13=1.46 in the benchmark model; the volatility increase for JSR is 0.13/0.11 = 1.18

versus 0.15/0.11=1.36 in the benchmark model), when considering no other heterogeneity
than that created by the varying distance to retirement. This shows that the horizon
effect is key to generating the higher cyclicality of older workers’ labor market flows.

The impact of human capital. Human capital was introduced to match the life-cycle wage
profile, at the steady state. We simulate the model after removing only the increase in
human capital as the worker ages. The simulation results are displayed in row 3 of Table
6. Comparing rows 1 and 3, older workers’ volatilities slightly rise. Indeed, human capital
makes older workers more profitable, which increases older workers’ surplus while the
horizon effect lowers older workers’ surplus. By removing human capital, the model is left
with only the horizon effect, which lowers older workers’ surplus and makes them more
responsive to aggregate shocks. However, comparing rows 1 and 3 for older workers, the
volatility increase is small. This suggests that the life-cycle profile of human capital that
is necessary to reproduce the observed life-cycle wage is not large enough to dampen the
horizon effect in a sizable way.35

The impact of λi the age-specific probability of match-productivity draw. The impact of the
age-specific λ can be assessed by comparing the results of the model for old workers with
"No Hete" (row 2, where λO = λA) with those of the model with "No HC" (row 3, where
λO 6= λA). The main impact of a reduction in λ is to reduce all volatilities. When λ are
age-specific, older worker have the highest λ, leading all their job rates to be more sensitive
to the fluctuations of reservation productivity. As changes in reservation productivity
affects job separation but also job finding (by defining the range of acceptable jobs), this
exogenous heterogeneity in λ matters for the goodness of the fit. Notice that quantitative
results underline that the horizon effect is the main force at work for generating the large
volatility gaps across ages because a large fraction of the volatility gaps across age is
driven by the distance to retirement only, not by exogenous heterogeneity.

35Theoretical restrictions in proposition 10 of Appendix E.3 turn out to hold.
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4.2.2 Low volatilities for younger workers on the labor market: a market for
outsiders

As both young and prime-age workers are far away from retirement, specificities on the
youth labor market cannot be explained by the distance to retirement. We stress that
adding a lower bargaining power for younger workers is necessary to replicate their lower
volatility on the labor market. At the steady state, a low bargaining power for young
workers is essential to match their high level of job finding rate. In Table 6, we consider
the "Low γY " case, where the only exogenous heterogeneity comes from a lower bargaining
power for young workers. Notice that, in the "Low γY " case (row 4), fluctuations in
the youth labor market are less volatile than in the case where all workers have the
same bargaining power (row 2 "No Hete"). Indeed, with low bargaining power, two
opposing forces are at work: on the one hand, as in Hagedorn & Manovskii (2008), a
lower workers’ bargaining power tend to increase volatility; on the other hand, with low
workers’ bargaining power, the steady value of youth labor market tightness increases:
young workers get a lower share of the surplus, which makes firms more willing to hire
them. In a market with high tensions on the labor market, the wage is more responsive
to changes in job opportunities. This last effect dominates. In a boom, young workers’
wage respond more to aggregate shocks than their older counterparts’, which tends to
dampen the volatility of hiring incentives, hence JFR. In addition, as young workers are
responsive to changes in search value, they are less willing to stay within the firm, which
tends to dampen the fall in the reservation productivity in economic booms. Hence, youth
fluctuations in JSR are less volatile than their older counterparts’.36

Calibrating the model to replicate the labor market age-pattern at the steady state delivers
a rather good match for business cycle features.

4.2.3 Aggregate variables

This good fit of the age heterogeneity is convincing if the model can also match the dynam-
ics of US aggregate labor market variables. Table 7 reports the second-order moment of
aggregate labor market variables.37 Notice that (i) the model can predict the magnitude
of aggregate labor market volatilities. Concerning vacancies, their volatility is slightly un-
derestimated, and (ii) their correlation with unemployment (the Beveridge curve) is also
well reproduced. Hence, in spite of endogenous separation, our model captures the dynam-

36We also derive this result analytically in Appendix D.2.3.
37The Barnichon’s (2010) data are updated (see https://sites.google.com/site/regisbarnichon/data) and

rescaled as in Adjemian et al. (2017).
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Table 7: Model Predictions on Aggregate variables: 2nd Order Moments

u vb JFR JSR
Std. Dev. Dataa 0.24 0.09 0.16 0.11

Model 0.18 0.05 0.12 0.09
RA Model 0.17 0.06 0.12 0.07
Model 25-54 0.20 — 0.13 0.11

Corr. with u Dataa 1 -0.87 -0.95 0.88
Model 1 -0.55 -0.90 0.85

RA Model 1 -0.43 -0.98 0.93
Model 25-54 1 — -0.88 0.86

"u" aggregate unemployment, "v" vacancies, "JFR" Job Finding Rate, "JSR"
Job Separation Rate
"Std. Dev." Standard Deviation. "Corr. with u" Correlation with u
"RA" Representative Agent model

a: CPS quarterly averages of monthly data, Men, 1976Q1 - 2013Q1, HP-filtered
logged data, with λHP = 105.

b: Barnichon (2010)’s logged data.

ics around the aggregate Beveridge curve via a pro-cyclical search effort. Indeed, search
effort increases the elasticity of the vacancies-unemployment ratio with respect to pro-
ductivity at all ages.38 There are two channels leading to higher vacancies-unemployment
elasticity when search effort is endogenous: (i) the elasticity of vacancies-unemployment
ratio with respect to "net profits" is always larger when search effort is endogenous, be-
cause search effort is complement to investment in vacancies, (ii) the elasticity of "net
profits" with respect to productivity is always larger when search effort is endogenous
because the share of productivity in profits is larger than in an economy where search
effort is constant. Finally, while the correlation between unemployment and vacancies is
ambiguous without endogenous search effort39, it becomes negative for sufficiently high
values for the elasticity of search effort. Indeed, in the case without search effort, counter-
cyclical separations can amplify the counter-cyclical responses of the unemployment rate
to productivity shocks, and the small response of the vacancy-unemployment ratio can
lead to a counter-cyclical response in the vacancy rate. In contrast, with endogenous
search effort, a sufficiently high elasticity of search effort ensures that the vacancy rate
is pro-cyclical, leading to a negative correlation between vacancies and unemployment.40

Pro-cyclical response of the search effort eliminates incentives for firms to use recessions
to change the composition of their workforce, and preserves the Beveridge curve.

Finally, we also report in Table 7 simulations from a model with a "Representative Agent"
(RA model, endogenous separation and search effort), and for prime-age workers (25-54) of

38This result is consistent with findings in Gomme & Lkhagvasuren (2015) in a model with infinitely-
lived agents and exogenous separation and in the case of a wage posting equilibrium. See proposition 2
and corollary 1 in Appendix D for analytical results in the case of the MP model.

39Krause & Lubik (2007) show that a New Keynesian model with search and matching frictions in the
labor market fails to generate the negative correlation between vacancies and unemployment in the data.

40See proposition 3 in Appendix D for analytical results.
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our life-cycle model. As far as job finding rate is concerned, the RA model, the model with
life-cycle features or results for prime-age workers deliver similar business cycle statistics.
However, differences in the volatility of job separation rates are more sizeable. This comes
from the high non-linerarities, increasing with age, of decision rules on separations: the
RA model, or the group prime-age workers cannot account for the specificities of old
workers’ labor market.

4.2.4 The contributions of search effort and endogenous separations

In this section, we provide an evaluation of the interactions between search effort and
endogenous separations in our life cycle model of equilibrium unemployment. We want to
show that the interaction between the endogenous search effort and endogenous separa-
tions not only magnifies the volatilities of aggregate variables,41 but it also contributes to
magnify the differences across age, and thus allowing the model to be close to the data.42

We thus propose two simulations. First, we freeze the response of workers’ search effort
to the business cycle by imposing a low elasticity for search effort ("εe|z low"). Secondly,
we restrict separations to be exogenous (“Exo. Sep.").

Table 8: Model Predictions by Age Group i: 2nd Order Moments

i = Y (16-24) i = A (25-54) i = O (55-61)
Xi UY JFRY JSRY UA JFRA JSRA UO JFRO JSRO
σ(Xi) Bench 0.11 0.06 0.07 0.20 0.13 0.11 0.29 0.19 0.15

εe|z low 0.088 0.022 0.083 0.101 0.033 0.089 0.12 0.045 0.103
Exo. Sep. 0.157 0.144 0 0.163 0.151 0 0.18 0.16 0

Corr(Xi, Ui) Bench 1 -0.81 0.88 1 -0.88 0.86 1 -0.93 0.89
εe|z low 1 -0.54 0.97 1 -0.60 0.95 1 -0.77 0.97
Exo. Sep. 1 -0.99 0 1 -0.99 0 1 -0.99 0

"Bench": benchmark calibration

"εe|z low": φ = 2 and b = 0.8 to match u = 4.86. Exogenous search effort, endogenous separations.

"Exo. Sep.": λi = σε = 0 and se,i = JSRi, with b = 0.8 to match u = 4.86. Endogenous search effort. Exogenous separations.

We change the opportunity cost of employment in order to maintain the same level of aggregate unemployment in each model.

41In Appendix D, proposition 2 shows that the elasticity of labor market tightness is magnified by
endogenous search effort, leading JFR (JSR) to be more (less) volatile (see corollary 1). We also prove
that endogenous search effort allows the MP model with endogenous separation to generate a negative
correlation between u and v (see proposition 3).

42The Log-linear approximations of the transition are ĴFRi = êi + (1 − η)θ̂i − G(Ri)
1−G(Ri)

εG|RR̂i and

ĴSRi = (1−se)λiG(Ri)
se+(1−se)λiG(Ri)

εG|RR̂i. Given that θ̂|variable e > θ̂|constant e (proposition 2 in Appendix D),

obviously ê|variable e > ê|constant e = 0, and R̂|variable e < R̂|constant e (see the proof of proposition
11 in Appendix E.5), the interaction between endogenous search effort and separations magnifies the
volatilities of transition rates. Moreover, the age-increasing pattern of the volatilities is magnified by
the endogenous search effort: ĴFRi+1 − ĴFRi declines when φ→∞ (see the proof of proposition 11 in
Appendix E.5) as well ĴSRi+1 − ĴSRi as R̂|variable e < R̂|constant e.
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In Table 8, the model with a constant search effort can generate age-increasing volatilities.
This suggests that the horizon effect still prevails when distance to retirement affects
volatility across age-groups only through firms’ search effort θi. However, the magnitude
of volatility gaps across age groups can be matched only with endogenous search effort.
With constant search effort, the volatility gaps are reduced by 20pp on average, thereby
moving away from the stylized facts. Hence, the search effort channel is key to understand
the observed age heterogeneity over the business cycle.

Exogenous separations also lead to small increases in volatility as the worker ages. Hence,
it is not only the endogenous search effort that allows the model to generate significant
volatility gaps across age groups, but also the endogenous job separation rates. This is
consistent with CPS data: the contribution of fluctuations in the job separation rate to
age-specific unemployment fluctuations is sizable and increases as the worker ages (see
Table 2, rows 1-3). Hence, by omitting this age specificity in the job separation rates, the
model with exogenous separation rates also move the theory away from the data.

Hence, both experiments underline the key role of the interaction between endogenous
search effort and endogenous separations in order to account for the volatility gaps across
ages.

Table 9: Model Predictions on Aggregate variables: 2nd Order Moments

u v JFR JSR
Std. Dev. Bench 0.18 0.05 0.12 0.09

εe|z low 0.08 0.05 0.03 0.07
Exo. Sep. 0.16 0.10 0.14 0

Corr. with u Bench 1 -0.55 -0.90 0.85
εe|z low 1 0.53 -0.66 0.95
Exo. Sep. 1 -0.76 -0.99 0

"Bench": benchmark calibration. "u" aggregate unemployment rate. "v"
aggregate vacancies.
"εe|z low": φ = 2 and b = 0.8 to match u = 4.86. Exogenous search effort.
Endogenous separation.
"Exo. Sep.": λi = σε = 0, se,i = JSRi and b = 0.8 to match u = 4.86.
Exogenous separation, endogenous search effort.
We change the opportunity cost of employment in order to maintain the
same level of aggregate unemployment in each model.

The results for aggregate variables are reported in Table 9. The magnitudes of volatilities
can only be matched by the “complete” model. In the model with exogenous separation
rates (λi = σε = 0 & se,i = JSRi), search effort is variable: as in Gomme & Lkhagvasuren
(2015), our result on aggregate data suggest that search effort can be a sufficient mecha-
nism for solving the volatility puzzle.43 Hence, this simplified model can be considered as
a good approximation of the data for prime age workers, but it is not able to fully account
for life-cycle features. Results in Table 9 also show that a model with constant search ef-

43These quantitative results clearly support analytical results in Appendix D.
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fort fails to generate the magnitude of fluctuations observed on the aggregate of the labor
market. As in Fujita & Ramey (2012), this model with constant search effort generate a
positive correlation between unemployment and vacancies, which is counterfactual.

Our simulation results underline the interactions between search effort and endogenous
separations: these mechanisms allow a better match with the data than the sum of these
two channels, taken independently. This comes from the fact that, with an endogenous
search effort, reservation productivity is more sensitive to aggregate shocks, leading older
workers JSR and JFR to be more volatile. Indeed, we stressed in section 3.5.2 that,
in Equation (14), the response of reservation productivity to the business cycle is mainly
driven by current changes in aggregate productivity and fluctuations in the expected gains
from search on the labor market Σ, given the restriction parameters at the steady state.
The response of expected gains from search is magnified when search effort is endogenous.
There lies the interaction between endogenous separation and endogenous workers’ search
effort. When considering response of reservation productivity by age, we underlined in
section 3.5.2 that expected gains from search differ by age. We argue here that it is all
the more the case when search effort is endogenous. In booms, younger workers are less
willing to remain within the firm as outside opportunities are expanding, all the more so
when workers’ search effort is endogenous. This widens the volatility gap between old
workers’ worker flows and their younger counterparts’.

4.3 Wage cyclicality

We first present stylized fact based on monthly CPS data, and secondly discuss the im-
plications of our model in terms of wage age-dynamics. We then compare the model’s
cyclical properties with the observed volatility of real hourly wage.

Real wage in the data. Figure 2 reports the descriptive statistics for male real hourly
wages and weekly earnings.44 The level of wages increases between younger and prime-age
workers, and declines at the end of the life-cycle, which is consistent with the view that
experience makes workers more productive until the age when the depreciation of the
human capital becomes faster.

Cyclical wage volatility is U-shaped over ages, though the gaps between age volatilities
are not significant. It seems to be inconsistent with our findings on worker flows and
unemployment stock, which would imply an age-decreasing profile for wages, as, in a

44See appendix B.1.1 for a description of the data.
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Figure 2: Real wage by age
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market with more rigid prices, the large part of adjustments would fall on quantities.
However, the decline in the wage volatility over ages would be relevant in a model with a
representative worker by age class, ie. a model with an exogenous separation rate. In this
case, the age-increase of the volatilities of labor market flows would imply a more rigid
wage for older workers. As this property of the wage dynamics per age is not observed,
this provides some support to a model with endogenous separations where the average
wage dynamics are driven by fluctuations in individual wages combined with changes in
the productivity distribution of job-worker pairs, as it is the case in our model. Indeed, in
our model, individual wages differ from the average wage, as the latter takes into account
changes in employment composition. For older workers, the horizon effect generates wage
rigidity in individual wages. However, the composition of older workers’ employment also
responds to the business cycle.45

Real wage in the model. Table 10 compares the model prediction with the data. Only
the model with search effort and endogenous separation generates a U-shape pattern of the
wage volatilities per age.46 As suggested above, fluctuations in average productivity seem
to reduce the (average) wage fluctuations. This is why the benchmark model generates
smaller volatilities than the model with exogenous separations. Consistently, the volatility
of older workers’ average wage is larger than prime-age workers’, since this dampening
effect becomes smaller at the end of the life-cycle.

Table 10 shows that incomplete models (with low elasticity of search effort, or with ex-
ogenous separation rate) perform poorly: the aggregate wage dynamics is driven by the

45See the appendix B.1.2 for a analytical discussion.
46Notice that we obtain promising results with respect to the age-pattern of the wage cyclicalities, but

the model slightly under-predicts the level of these wage volatilities.
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Table 10: Second order moments: data versus theory

All: 16-61 Young: 16-24 Prime-age: 25-54 Old: 55-61
Std. Dev US Data 0.021 0.026 0.023 0.028

Model 0.0124 0.0127 0.0122 0.0123
εe|z low 0.0131 0.0126 0.0131 0.0133
Exo. Sep. 0.0128 0.0130 0.0128 0.0125

US data: Standard deviation of CPS Monthly HP-filtered logged data, Men, 1979 Q1 - 2013Q2
"εe|z low": φ = 2 and b = 0.8 to match u = 4.86. Exogenous search effort. Endogenous separation.
"Exo. Sep.": λi = σε = 0, se,i = JSRi and b = 0.8 to match u = 4.86. Exogenous separation, endogenous search
effort.
We change the opportunity cost of employment in order to maintain the same level of aggregate unemployment in
each model.

ones of individual wages. Hence, these findings on the wage volatilities across age groups
can be viewed as additional supports to our findings on worker flows and unemployment
stock: in the absence of interactions between endogenous search effort (highly dependent
on workers’ horizon) and the job separation rate (highly sensitive to workers’ horizon), it
seems more difficult to reproduce the age-pattern of wage volatilities.47

5 Conclusion

We document business cycle fluctuations in worker flows by age group for the US economy.
We extend the current literature by looking at the age profile of both average and volatil-
ities in workers’ transition rates on CPS data. We then develop a life cycle Mortensen
& Pissarides (1994) model with age-directed search, endogenous search effort and sep-
arations. Older workers’ shorter horizon endogenously reduces the cyclicality of their
outside options, thereby making their wages less sensitive to the business cycle. Thus,
in a market where wage adjustments are small, quantities vary considerably. This is the
case for older workers, whereas their younger counterparts behave like infinitively lived
agents. Furthermore, the horizon effect cannot explain the significant volatility differences
between prime-age workers and young workers because both age groups are far away from
retirement. The lower bargaining power for young workers consistent with their weaker
union affiliation allows us to replicate the volatility of their transition rates.

We also show that search effort and endogenous separations provide useful mechanisms
to magnify the volatility difference across ages as well as to understand the dynamics
of the aggregate labor market: the complementarity between firms’ and workers’ search
strategies generates a significant amplification mechanism. Endogenous separations also

47In Appendix B.2, we also discuss the model predictions on wage distribution conditional on separa-
tion and non-separation. We show that, in CPS data, young and prime-age workers exhibit the same
compositional effect as the one analyzed in Mueller (2017) for the whole population: in recessions, the
pool of unemployed shifts toward workers with higher wages in the previous job. Nevertheless, this is not
the case for older workers. We leave this issue for future research.
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help the model match aggregate volatilities. Moreover, workers’ pro-cyclical search efforts
reduce firms’ incentives to use recessions to change the composition of their workforce,
leading the model to generate a Beveridge curve.

We subscribe to the view that the understanding the age-differences of unemployment
are important because one needs to discipline any employment policy issue using data
coming from different age groups. We propose in this paper a model that could be used
to start thinking about the business cycle effects of policy reforms across age-groups. Our
work also suggests that future research should investigate endogenous retirement choices
in order to account for pathways to retirement, with transitions periods of bridge jobs, as
well as changes in worker heterogeneity in order to explain the age-specific changes in the
composition of unemployment over the business cycle.
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Online Appendix

A Stylized facts on worker flows

A.1 Alternative age-groups

We divide the working life into 10 age groups: 16-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,
55-59, and 60-64. Each age group includes individuals with a maximum age difference of 5 years,
except for younger workers, where the minimum working age is the lower bound. Figure 3 reports
the mean of the time series. It appears that JFR and JSR are age-decreasing. Compared to the
40-44 age group (the reference group), JFR is significantly larger for workers below 30 years of age,
and significantly lower for workers aged 55+. Given the highest accuracy of the estimates for JSR,
these gaps become significant for workers less than 34 years old, and those older than 50.

Figure 3: Job Separation Rate JSR, Job Finding Rate JFR, and Unemployment u by
age
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10 age-groups. CPS quarterly averages of monthly data, Men, 1976 Q1 - 2013Q2. "Std Dev": Standard
Deviation of logged HP-filtered data (with smoothing parameter 105). All moments are estimated using
GMM with a weighting matrix corrected for heteroskedasticity and serial correlation using Newey &
West (1987)’s method. 95% confidence band in shaded area. Horizontal lines are 95% band for prime-age
workers. The comparison between the shaded area and the 2 horizontal lines allows to compare prime-age
workers to younger or older workers. Authors’ calculations.

The cyclical behavior of logged transition rates are obtained using HP filter with a smoothing pa-
rameter of 105. Volatility of fluctuations in logged transition rates display a significant age-increasing
pattern. Figure 3 shows that older workers have significantly larger standard deviations than prime-
age workers do. Indeed, workers older than 54 have a significantly larger standard deviation than
those in the 40-44 age group. For young workers, significant differences appear between those younger
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than 24 and prime-age workers. The cyclical behavior of the unemployment rate also contains age-
increasing volatility. Nevertheless, this feature is less pronounced than for worker flows because the
variance of the unemployment rate, given by E[û2] = (1−u)2{E[ĴSR

2
]+E[ĴFR

2
]−2E[ĴSRĴFR]},

is dampened at the end of the life cycle by covariances between JSR and JFR (E[ĴSRĴFR]), which
are less negative than for prime-age workers. Overall, we synthesize the age-pattern of labor market
stock and flows based on these first results by considering only three age groups: 16-24, 25-54, and,
55-61.

A.2 HP-filtering with λ = 1600

Table 11 reports business cycle facts when the smoothing parameter is 1600 rather than 105. The
age-increasing pattern in volatility is robust.

Table 11: Standard deviation. CPS data, quarterly averages of monthly instantaneous
transition rates,1976Q1-2013Q1, Men, logged HP-filtered data with smoothing parameter
1600. Authors’ calculations.

All: 16-61 16-24 25-54 55-61
JSR 0.084492 0.077361 0.10856 0.17571

0.7126 1 1.6186 (a)

JFR 0.11897 0.1219 0.12439 0.18647
0.98004 1 1.4991

u 0.16976 0.13661 0.19427 0.25264
0.7032 1 1.3004

"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment
rate.

(a) Old workers’ JSR volatility equals 1.6186 times prime-age workers’. Small
numbers refer to values relative to prime-age workers’.

A.3 Accounting for inactivity

Using Shimer (2012)’s methodology for 3 employment states (Employment, Unemployment and Inac-
tivity), on CPS data for Men, we obtain the results reported in Tables 12 and 13. With 3 employment
states, steady state unemployment includes all transitions rates, including those involving inactivity.
Tables 12 and 13 suggest that our business cycle facts across age groups remain robust when separa-
tions and findings are purged from the transition to and from inactivity. Exit from employment as
well as the job finding rate fall with age while their volatility increases with age.

When we decompose unemployment fluctuations using β decomposition as in Shimer (2012), based
on hypothetical unemployment rates, we find that the transitions between unemployment and un-
employment account for 76% of unemployment fluctuations.48

48We compute counter-factual steady states predicted by time varying finding and separation rates,
while other transition rates are set at their historical mean. We log and HP-filter the time series using a
smoothing parameter of 105 and compute the variance decomposition of the cyclical component of steady
state unemployment based on βs. We find that βEU + βUE = 0.7575.
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Table 12: Mean. Quarterly averages of monthly CPS data, 3 states (Employment, Un-
employment, Inactivity), 1976Q1 - 2013Q1, Men. Authors’ calculations.

All: 16-61 16-24 25-54 55-61
JSR (eu) 0.022289 0.049672 0.017704 0.012269

2.8057 1 0.69298 (a)

JFR (ue) 0.38394 0.41585 0.37888 0.30254
1.0976 1 0.79851

u 0.062021 0.12627 0.049089 0.045553
2.5723 1 0.92796

ei 0.017989 0.060717 0.009086 0.01725
ui 0.25019 0.38769 0.173 0.2178
ie 0.087675 0.10631 0.089063 0.039792
iu 0.094369 0.12409 0.097061 0.026687
"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment rate. "ei"
transition rate from employment to inactivity. "ui" transition rate from unemployment
to inactivity. "ie" transition rate from inactivity to employment. "iu" transition rate
from inactivity to unemployment.

(a) Old workers’ JSR equals 0.69298 times prime-age workers’. Small numbers refer to
values relative to prime-age workers’.

Table 13: Standard deviation. Quarterly averages of monthly CPS logged data, 3 states
(Employment, Unemployment, Inactivity), 1976Q1 - 2013Q1, Men. Logged HP-filtered
data with smoothing parameter 105. Authors’ calculations.

All: 16-61 16-24 25-54 55-61
JSR 0.10936 0.095019 0.14095 0.19785

0.67413 1 1.4037 (a)

JFR 0.15626 0.15902 0.1637 0.21629
0.97144 1 1.3213

u 0.21511 0.15902 0.25506 0.29212
0.62344 1 1.1453

ei 0.066495 0.073621 0.074905 0.10924
ui 0.13181 0.098655 0.15932 0.23929
ie 0.094361 0.11697 0.10092 0.12961
iu 0.09026 0.09714 0.12326 0.23116
"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment
rate. "ei" transition rate from employment to inactivity. "ui" transition rate
from unemployment to inactivity. "ie" transition rate from inactivity to em-
ployment. "iu" transition rate from inactivity to unemployment.

(a) Old workers’ JSR equals 1.4037 times prime-age workers’. Small numbers
refer to values relative to prime-age workers’.
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A.4 Employment and Unemployment for all workers

Using Shimer (2012)’s methodology for 2 employment states (Employment, Unemployment), on CPS
data for Men and women, we get results reported in Tables 14 and 15. The main stylized facts remain
relevant : the mean transition rates fall with age while their volatility increases with age.

Table 14: Mean. Quarterly averages of monthly CPS data, Employment and Unemploy-
ment, 1976Q1 - 2013Q1, Men and Women. Authors’ calculations.

All: 16-61 16-24 25-54 55-61
JSR 0.018792 0.042009 0.015466 0.010627

2.7162 1 0.68713 (a)

JFR 0.42404 0.49514 0.39915 0.33679
1.2405 1 0.84376

u 0.044798 0.081417 0.039634 0.03305
2.0542 1 0.83387

"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment rate.
(a) Old workers’ average JSR equals 0.68713 times prime-age workers’. Small
numbers refer to values relative to prime-age workers’.

Table 15: Standard deviation. Quarterly averages of monthly CPS data, Employment
and Unemployment, 1976Q1 - 2013Q1, Men and Women, logged HP-filtered data with
smoothing parameter 105. . Authors’ calculations.

All: 16-61 16-24 25-54 55-61
JSR 0.086295 0.069806 0.11134 0.16103

0.62694 1 1.4463 (a)

JFR 0.15671 0.14693 0.16161 0.20154
0.90912 1 1.247

u 0.21221 0.16513 0.2388 0.28343
0.6915 1 1.1869

"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment
rate.

(a) Old workers’ JSR volatility equals 1.4463 times prime-age workers’. Small
numbers refer to values relative to prime-age workers’.

A.5 Robustness check using Elsby et al. (2010)’s data

We consider an alternative method of computing transition rates. Elsby et al. (2010) use Shimer
(2012)’s formula based on quarterly stocks of unemployed and employed workers (in which separations
are proxied by short-term unemployment) rather than disaggregated data as we do. Their approach
yields higher levels of transition rates. In order to test the sensitivity of our results to the transition
rate calculation method, we re-compute the same business cycle statistics on their database using
their methodology. Since the time series are now quarterly, the smoothing parameter on the HP
filter is equal to 1600. The results are reported in Tables 16 and 17. We do find that the levels of
transition rates fall with age while the standard deviations increase with age.
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Table 16: Mean. Elsby et al. (2010) data, 1977Q2 - 2009Q4, Quarterly data, Men and
Women.

All: 16+ Young: 16-24 Prime-age: 25-54 Old: 55+
JSR 0.03527 0.10047 0.023898 0.015542

4.2043 1 0.65034 (a)

JFR 0.54514 0.7111 0.46652 0.43876
1.5243 1 0.94049

"JSR" Job Separation Rate. "JFR" Job Finding Rate.
(a) Old workers’ average JSR equals 0.65034 times prime-age workers’. Small numbers refer to values
relative to prime-age workers’.

Table 17: Standard deviation. Logged HP-filtered data, smoothing parameter 1600,
1977Q2 - 2009Q4, Quarterly data, Men and Women. Elsby et al. (2010) data.

All: 16+ Young: 16-24 Prime-age: 25-54 Old: 55+
JSR 0.044485 0.046366 0.060651 0.092973

0.76447 1 1.5329 (a)

JFR 0.10627 0.095022 0.113 0.15079
0.8409 1 1.3344

"JSR" Job Separation Rate. "JFR" Job Finding Rate.
(a) Old workers’ JSR volatility equals 1.5329 times prime-age workers’. Small numbers refer to values
relative to prime-age workers’.

A.6 Employment and unemployment per skill

The data per age can mix an age effect and a skill effect. In order to deal with this identification
problem, we propose to distinguish two skill groups (high school diploma and less, and college or
more).

Table 18: Mean. Monthly CPS data, Employment and Unemployment, 1976Q1 - 2013Q1,
Men. Authors’ calculations.

High school and less College and more
16-24 25-54 55-61 16-24 25-54 55-61

JSR 0.065079 0.027775 0.016455 0.034743 0.012331 0.0085209
2.343 1 0.59242 (a) 2.8176 1 0.69104

JFR 0.45922 0.42343 0.35042 0.56922 0.39952 0.30959
1.0845 1 0.82757 1.4248 1 0.77491

u 0.12986 0.06568 0.050573 0.062228 0.032214 0.029889
1.9772 1 0.76999 1.9317 1 0.92782

"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment rate.
(a) Old workers’ average JSR equals 0.59242 times prime-age workers’. Small numbers refer to values relative to
prime-age workers’.

After controlling for educational attainment, the levels are age-decreasing and the volatilities are
age-increasing. Thus, our stylized facts account for phenomena linked to worker age, and are not the
result of a composition effect.
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Table 19: Standard deviation. Employment and Unemployment, Monthly CPS data,
1976Q1 - 2013Q1, Men, logged HP-filtered data, smoothing parameter 105, Authors’
calculations.

High school and less College and more
16-24 25-54 55-61 16-24 25-54 55-61

JSR 0.11934 0.16678 0.24422 0.15384 0.1669 0.27525
0.71555 1 1.4643 (a) 0.92172 1 1.6492

JFR 0.1803 0.17097 0.27954 0.19894 0.18454 0.28459
1.0546 1 1.635 1.078 1 1.5421

u 0.20022 0.27448 0.36584 0.24774 0.30167 0.38679
0.72945 1 1.3328 0.82122 1 1.2822

"JSR" Job Separation Rate. "JFR" Job Finding Rate. "u" unemployment rate.
(a) Old workers’ JSR volatility equals 1.4643 times prime-age workers’. Small numbers refer to values
relative to prime-age workers’.

A.7 Conditional variance: a structural VAR

In this section, we provide evidence that our stylized facts (based on unconditional standard deviation
of labor flows by age group) are robust when considering responses to structural shocks in a structural
VAR. Old workers’ response of job finding and job separation to aggregate shocks remain larger than
their younger counterparts. With a smaller sample size each month than for the other age groups,
the time series of the workers aged 55-61 may include a noise component. To deal with this problem,
we estimate a structural VAR where IRFs cannot then be driven by noise, that is uncorrelated with
structural shocks, by definition. Moreover, we restrict all the standard deviations of the structural
shocks to be equal to unity. Hence, the size of Impulse Response Function are comparable across
age-groups.

We follow Fujita (2011) who uses structural VARs with sign restrictions in order to study US worker
reallocation along the business cycle. We estimate a structural VAR for each age group (1976Q1-
2013Q2). A first trivariate VAR includes US CPI inflation, job separation and finding for male young
workers. The second (and third) VAR includes US CPI inflation, job separation and finding for male
prime-age (old) workers. As in Fujita (2011), we detrend the data using deterministic quadratic
trends. Lag length is set to 1 based on the AIC criteria. We impose sign restrictions to identify two
aggregate shocks (supply and demand) and a reallocation shock. All sign restrictions are imposed
for 1 quarter.

• Restriction 1: the supply shock. In response to a positive aggregate supply shock, inflation and
job separation respond negatively, while job finding increases

• Restriction 2: the demand shock. In response to a positive aggregate demand shock, job sepa-
ration responds negatively, while inflation and job finding increase

• Restriction 3: the reallocation shock. In response to a positive reallocation shock, job separation
and job finding both increase

Impulse Response Functions (IRF) to a one-standard-deviation shock are reported in Figure 4. In
response to an aggregate shock (whether supply or demand shock), older workers’ job finding and
separation respond more than their younger counterparts’.
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Figure 4: IRFs to aggregate shocks: Job Separation Rate JSR, Job Finding Rate JFR
by age group
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Median IRFs to aggregate structural shocks identified using a VAR on US data (1976Q1-2013Q2). Au-
thors’ calculations.

In order to gauge the significance of older workers’ larger response to aggregate shock, we compute
the probability that older workers’ IRF lies above the younger counterpart’s median IRF. Results
are displayed in Table 20. The results show that response of the job finding and separation rates to

Table 20: Probability that older workers’ IRF lies above younger counterparts’ median
IRF

Supply shock Demand shock
Young Prime age Young Prime age

JFR 0.67 0.76a 0.68 0.73
JSR 0.72 0.65 0.77 0.68
JFR Job Finding Rate. JSR Job Separation Rate.
a: Following a supply shock, 76% of old workers’ IRF

of JFR lie above median JFR IRF of prime age workers, 1 quarter after the shock.

demand and supply shocks are significantly larger for older workers. Hence, beyond unconditional
moments, conditional moments by age group suggest that older workers’ labor market fluctuations
are more volatile than their younger counterparts’.

A.8 Volatility of unemployment duration across age groups

In this section, we check the robustness of our stylized fact by looking at fluctuations of unemployment
duration across age groups. In the CPS survey, an unemployed person is not asked about her job
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separation rate or job finding rate. She is asked about how long she has been looking for work. The
answer to this question on unemployment duration might be seen as providing more direct evidence
on age-specific labor market responsiveness along the business cycle.

Unemployment duration is related to the job finding rate: by the law of large number, unemployment
duration equals the inverse of job finding rate. Intuitively, this corresponds to the idea that, if
unemployed workers face a 10% probability of getting a job each week, the average unemployment
duration is 10 weeks. Our focus on unemployment duration allows to assess the robustness of the
stylized fact on the job finding rate.

A.8.1 Measuring unemployment duration: conceptual and practical questions

Measuring unemployment duration is actually challenging due to the combination of several elements.

Censored data. CPS provides limited longitudinal data on unemployment episodes as each house-
hold entering the CPS is administered 4 monthly interviews, then ignored for 8 months, then inter-
viewed again for 4 more months. It is then difficult to follow each unemployed workers from the
beginning to the end of the unemployment spell. In the CPS, many unemployment spells are cen-
sored (Horrigan (1987)) as there is no continuous monitoring of spells of unemployment (from their
inception to their completion). In addition, respondents often round their amounts of time spent un-
employed and the amounts are sometimes inconsistent with the actual time between surveys (Bowers
& Horvath (2016)). In a nutshell, based on longitudinal data, the CPS cannot provide an accurate
measure of completed spells of unemployment.

Definition: In-progress spells of currently unemployed workers versus expected com-
pleted spells of newly unemployed. If we use the cross-sectional nature of CPS data, then the
replies to the question on how long the person is looking for work can only provide information on the
average age of unemployment spells among the currently unemployed. Indeed, BLS computes mea-
sure of average unemployment duration based on the in-progress spells of unemployment at the time
of the survey. However, such a measure does not capture the average length of completed spells of
unemployment, which is also the relevant measure in our model. The BLS measure is actually likely
to overestimate the average length of completed unemployment spells as, when computing length
of existing unemployment spells, the pool of currently unemployed workers also include long-term
unemployed who are more likely to leave the labor force.

CPS re-designs. Two CPS re-designs affected the measure of unemployment duration. First
re-design took place in 1994. This major CPS re-design actually introduced a trend break in the
measured duration of unemployment, increasing it relative to its measurement using the earlier survey
design (Polivka & Miller (1988)). This phenomenon is documented by Abraham & Shimer (2001),
Elsby et al. (2009) and Busch (2012), among others. The second re-design took place in 2011. The
CPS was modified to allow respondents to report longer durations of unemployment. Prior to that
time, the CPS accepted unemployment durations of up to 2 years; any response of unemployment
duration greater than this was entered as 2 years. Starting with data for January 2011, respondents
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were able to report unemployment durations of up to 5 years. This change affected estimates of
average (mean) duration of unemployment. This generated an unprecedented rise in the number of
persons with very long durations of unemployment.49

A.8.2 Our measure of unemployment duration across age-groups using matched CPS
Basic monthly data

In spite of the difficulties mentioned above, we propose here to measure unemployment duration. To
abstract from the 2 CPS re-design (as there is little consensus on the appropriate way of correcting
the survey data), we focus on data between 1995 and 2010. We show that business cycle volatility of
unemployment increases with age, which is consistent with our stylized fact on the job finding rate.

Empirical strategy Using CPS Monthly data, we compute age-specific unemployment duration
using the answers to the question on how long the person is looking for work.

• We want to measure completed spells of unemployment.

• As a result, we look at month-to-month matched CPS data. We focus on the unemployed in a
given month who subsequently report that they are employed in the next month’s survey

• We look at their answer to the question on unemployment duration.

• Unemployment duration UD is the number of weeks a person has been looking for a job, when
this person subsequently found a job in the next month’s survey.

• We compute average UD for men, aged 16-24.

• We repeat the process for men, aged 25-54, then 55-61 (same age-groups as in Section 2)50

Result: the volatility of unemployment duration increases with age We seasonally adjust
the data using x12, then proceed with the quarterly average of monthly data. The standard deviation
of HP-filtered logged data with smoothing parameter 105 is displayed in Table 21. Our stylized fact
holds: the volatility of unemployment duration increases with age.

49https://www.bls.gov/cps/duration.htm. U.S. Bureau of Labor Statistics. 2011. "Changes to Data
Collected on Unemployment Duration." Labor Force Statistics from the Current Population Survey.

50In order to check the empirical relevance of this measure of unemployment duration, we compute
this measure for the whole working-age population, we compare it with alternative measures, namely:
BLS average duration of unemployment, Kaitz (1970)’s measure of unemployment duration as the ratio
of unemployment level to the level of inflows, 1/JFR where the job finding rate JFR is based either on
Shimer (2005)’s formula or our JFR CPS from section 2. The volatility of HP-filtered logged data on
unemployment duration is similar across measures. Results are available upon request.
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Table 21: Business cycle volatility of unemployment duration by age group

Age std
16-24 0.171
25-54 0.180
55-61 0.259

CPS data, Men only, quarterly average of monthly data. "std": standard deviation of HP-filtered logged
data with smoothing parameter 105. 1995Q1-2010Q4.

A.9 Contributions of age-specific transition rates to aggregate fluctua-
tions

A.9.1 The contribution of age-specific transition rates to aggregate transition rates

Let us consider the economy at the conditional steady state in which unemployment ins equal unem-
ployment outs. We use the following decomposition to measure the contribution of each age group
in the fluctuations of the aggregate job flows:

xt =
∑
i

xi,t$i,t ⇒ x̂t ≈
∑
i

pix̂i,t +
∑
i

pi$̂i,t

with x = JSR (x = JFR) then $i = ni/n ($i = ui/u), knowing that pi = JSRi(ni/n)
JSR

= JFRi(ui/u)
JFR

.
x̂ denotes log deviation with respect to the mean. We denote βxi as the contribution of age-i worker
flow xi to the variance of the corresponding aggregate job flow x. Following Shimer (2012), we have:

E[(x̂t)
2] ≈

∑
i

piE[x̂tx̂i,t] +
∑
i

piE[x̂t$̂i,t] ⇒ 1 ≈
∑
i

βxi +
∑
i

β$i

We can then decompose the contribution of each age group to the total volatility into two elements:
the first one captures the volatility of age-specific transition rate and the second is associated with
changes in the age composition of labor flows. To compute these statistics, we use the employment
and unemployment conditional steady states, and the time series of worker flows.

A.9.2 The contribution of age-specific transition rates to aggregate unemployment
fluctuations

In this section, to simplify the notation, job separation rate is denoted s and job finding is denoted
f .

The unemployment volatility for age-i workers. For each state z, the unemployment rate for
the age-i worker is given by

ui,z =
si,z

si,z + fi,z
= ũ(si(1 + εi,s), f i(1 + εi,f )) with

{
fi,z = f i(1 + εi,f )
si,z = si(1 + εi,s)
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implying that εi,x = x−x
x
≈ log(x/x) for x = s, f . Within each age-group, the volatility of the

unemployment rate is given by

V ar(log(ui)) =
∑
t

π(zt)(log(ui,t)− log(ui))
2 =

∑
t

π(zt)(log(ũ(si(1 + εs,i,t), fa(1 + εf,i,t)))− log(ui))
2

≈ (1− ui)2
[
σ2
i,s + σ2

i,f − 2cov(si, fi)
]

Using the approximation of the steady state unemployment rate by age (ûi = log(ui/ui) = (1 −
ui)(ŝi − f̂i)), we deduce the contributions of each transition rate in the unemployment fluctuations:

E(û2
i ) = E[(1− ui)ŝiûi] + E[(1− ui)(−f̂i)ûi]

⇒ 1 =
(1− ui)2(σ2

s,i − cov(si, fi))

σ2
u,i

+
(1− ui)2(σ2

f,i − cov(si, fi))

σ2
u,i

⇔ 1 = βu,si + βu,fi

Aggregate unemployment. At the conditional steady state, the impact of the age specific volatil-
ities of JFRi and JSRi on the fluctuations of the aggregate unemployment is deduced from

V ar(log(u)) =
∑
t

π(zt)

(
log

(∑
i

ςiui,t

)
− log

(∑
i

ςiui

))2

≈
∑
t

π(zt)

(
1∑
i ςiui

∑
i

ςi
[
εs,i,tsiũ

′
1(si, f i) + εf,i,tf iũ

′
2(si, f i)

])2

≈ ς2
Y

(
uY
u

)2

V ar(log(uY )) + ς2
A

(
uA
u

)2

V ar(log(uA)) + ς2
O

(
uO
u

)2

V ar(log(uO))

+2

(
1

u

)2
[
ςY ςAuY (1− uY )uA(1− uA) (cov(sY , sA)− cov(sY , fA)− cov(fY , sA) + cov(fY , fA))
+ςY ςOuY (1− uY )uO(1− uO) (cov(sY , sO)− cov(sY , fO)− cov(fY , sO) + cov(fY , fO))
+ςAςOuA(1− uA)uO(1− uO) (cov(sA, sO)− cov(sA, fO)− cov(fA, sO) + cov(fA, fO))

]

where the weight of each age-class in working age population is ςa. These weights are those used in
the calibrated model. By rearranging this formula, we can obtain the contribution of each age-specific
transition rates in the volatility of aggregate unemployment:

βufi =
ς2
i

(
ui
u

)2
(1− ui)2

[
σ2
i,f − cov(si, fi)

]
+
(
ςiui(1−ui)

u2

)∑
j 6=i ςjuj(1− uj) [cov(fi, fj)− cov(fi, sj)]

V ar(log(u))

βusi =
ς2
i

(
ui
u

)2
(1− ui)2

[
σ2
i,s − cov(si, fi)

]
+
(
ςiui(1−ui)

u2

)∑
j 6=i ςjuj(1− uj) [cov(si, sj)− cov(fi, sj)]

V ar(log(u))

which satisfies 1 =
∑

i

(
βufi + βusi

)
.
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B Wage

B.1 Cyclicality of real hourly wage across age groups

B.1.1 Computing average real hourly wage by age in CPS data

We compute the average real hourly wage by age in order to compute the empirical targets wA/wY
and wO/wY in Table 3. Using monthly CEPR MORG data between January 1979 and June 2013,
we document the business cycle response of male real hourly wages (w). Hourly wage is usual weekly
earnings divided by usual weekly hours. Data represent earnings before taxes and other deduc-
tions and include any overtime pay, commissions, or tips usually received. The data excludes all
self-employed persons, regardless of whether their businesses are incorporated. After dealing with
outliers51, we divide the time series of nominal hourly wages by a trend derived from the aggregate
wage time-series. This trend captures long-term increases in inflation and technology. After correct-
ing for seasonal movements using x12, we consider the quarterly averages of monthly observations
and then look at logged-HP filtered real hourly wages using 105 as a smoothing parameter. We check
that levels of real hourly wages are consistent with findings in Heathcote et al. (2010), as well as BLS
data on weekly earnings by age. We also check that business cycle features are close to Jaimovich
& Siu (2009)’s statistics on annual wage data. We get age-increasing levels of real hourly wages,
which is consistent with the view that experience makes workers more productive. We then compute
wA/wY and wO/wY , values are reported in Table 3.

B.1.2 Wage cyclicality: From theory to data

One might wonder what are the model’s predictions with respect to wage volatility by age, and com-
pare the model’s predictions with the corresponding data. In this section, we argue that answering
this question would not be very informative.

In the data. Using CEPR-MORG data, we can compute only average real hourly wage by age
group, not individual wages.

In the model. Wages are heterogeneous within each age group because each job has a match-
specific productivity. Thus, the model generates a wage distribution by age. If we want to compare
the model predictions with wages in the data, it is then necessary to compute an average wage by
age group, defined as follows:

Wi(z) = γizG(Ri(z)) + (1− γi) (b+ Σi(z)) (15)

where G(Ri(z)) = 1
ni(z)

∫ 1

Ri(z)
xdni(z, x) denotes the average productivity of age-i workers, dni(z, x) is

the number of age-i employees on a x-productivity job. This distribution is endogenous and subject
to cyclical changes, and depends on the cyclical changes in separation, finding, and productivity

51Hourly wages higher than 250 US dollars, wages less than half the net minimum wage, and young
workers working more than 45 hours per week

A12



changes: dni(z, ε) changes with the business cycle. Given that the average wage depends on both
individual wages and the wage distribution, a rigid individual wage and a volatile average wage could
be mutually consistent. The log-linear approximation of equation (15) leads to

Ŵi = γi
zG(Ri)

Wi

(
ẑ + Ĝi

)
+ (1− γi)

Σi

Wi

Σ̂i with Ĝi = Γzi ẑ + Γri R̂i + Γsi Σ̂i

where the term Ĝi accounts for the changes in the job composition on wage fluctuations.52 The
parameters Γzi , Γri and Γsi ≡ γsiΣi are the elasticities of the average productivity with respect to
z, Ri, and Σi, respectively53. This approximation underlines the channels through which average
productivity Gi depends on the business cycle. The signs of these elasticities Γxi , for x = z, r, s,
are ambiguous. Aggregate productivity (z) has a positive effect on aggregate employment, and thus
lowers average productivity, but also raises employment at each level of the productivity distribution
through its impact on search efforts (ei(z) and θi(z)). In boom, the fall in Ri increases the set of jobs
(the integral has a larger span) but lowers their quality (more jobs are concentrated at the bottom),
Moreover, when Ri declines, employment increases, thus average productivity falls. Finally, a rise in
the search value Σi reduces incentives to post new vacancies. This has a negative effect on the two
dimensions of employment: by reducing its aggregate level, it raises average productivity, whereas
its negative effect on each point lowers average productivity. Finally, we deduce that the average
wage dynamics is given by:

Ŵi = γi
zG(Ri)

Wi

(
(1 + Γzi )ẑ + Γri R̂i + Γsi Σ̂i

)
+ (1− γi)

Σi

Wi

Σ̂i

Thus, for older workers, i.e., when ΣO → 0, the average wage can be proxied by:

ŴO = γi
zG(Ri)

Wi

(
(1 + ΓzO)ẑ + ΓrOR̂O

)
This shows that this average wage can be highly pro-cyclical if Γri > 0 is large enough. Moreover,
given that the volatility of the JSR is age-increasing, implying R̂i < R̂i+1, the impact of R̂O on ŴO

can be reinforced by the large volatility in the reservation productivity.

In a nutshell, in our model, individual wages differ from the average wage, as the latter takes into
account changes in employment composition. For older workers, the horizon effect generates wage
rigidity in individual wages. However, the composition of older workers’ employment also responds
to the business cycle. The final effect of workers’ age on the volatility of average wage is therefore
theoretically ambiguous.

B.2 Wage conditional on separation and non-separation

We use CPS data from Mueller (2017) in order to investigate the wage cyclicality. Mueller (2017)
compares the wage of continuing jobs (wage conditional on non-separation) with pre-displacement

52See Appendix E.5 for the derivation of the formula for Ĝi
53The notation Γsi ≡ γsiΣi allows us to use the property that ΓsO → 0 for older workers, simply because

ΣO → 0, and γsO is bounded.
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wage of unemployed workers (wage conditional on separation). In his paper, using CPS data, Mueller
(2017) shows that, in recessions, the pool of unemployed shifts towards high-wage workers. Mueller
(2017) stresses that the standard MP model with endogenous separation fails to account for this
empirical feature. He then proposes two extensions to the model to bring the theory closer to the
data: the first one is based on an ad-hoc calibration of the variance of match-specific productivity
among high-ability workers, the second relies on credit constraints. We extend his empirical analysis
by looking at age-groups.

Data. We use Mueller (2017)’s data available of the American Economic Review website. We
first replicate his results on the whole population using CPS March supplement. This annual survey
collects information on wages in the prior year, which allows to compute the average wage from the
previous year by current labor market status (employed versus unemployed). We also consider his
data based on matched CPS ORG. Using the rotating panel structure of CPS basic monthly surveys,
Mueller (2017) looks at the wage of those who lose their job and become unemployed. He focuses on
wage data at the 4th interview and analyzes the employment status in subsequent months. We then
extend Mueller (2017)’s work by focusing on age groups.

Results. Results are reported in Table 22.

Table 22: Changes in the unemployment composition: wages conditional on separation
and non-separation by age

Decomposition of predicted wage Residual
Raw Educ. Marital wage
wage Total Exp. attain. Gender status Race State Indus. Occ. Total

Results in Mueller’s paper (Table 1 in his paper, Panel B, March CPS, page 2092)
1 Cyclicality 2.59 1.64 0.23 0.10 0.12 0.23 0.02 0.05 0.70 0.19 0.95

(0.28)*** (0.19)*** (0.04)*** (0.06)* (0.02)*** (0.02)*** (0.01)** (0.05) (0.08)*** (0.08)** (0.13)***
Young (16-24)

2 Cyclicality 1.92 1.32 0.12 0.11 0.16 0.21 0.03 0.05 0.43 0.20 0.61
(0.52)*** (0.29)*** (0.03)*** (0.06)* (0.03)*** (0.07)*** (0.02)** (0.08) (0.15)*** (0.13) (0.32)*

Prime age (25-54)
3 Cyclicality 2.50 1.44 0.03 0.09 0.13 0.20 0.03 0.04 0.73 0.21 1.06

(0.30)*** (0.17)*** (0.03) (0.07) (0.03)*** (0.02)*** (0.01)** (0.06) (0.08)*** (0.08)** (0.18)***
Old (55-61)

4 Cyclicality 0.67 0.42 -0.03 -0.03 0.02 0.04 -0.05 0.06 0.60 -0.19 0.25
(0.72) (0.48) (0.03) (0.17) (0.08) (0.08) (0.03) (0.07) (0.20)*** (0.13) (0.52)

Results in Mueller’s paper (Table 1 in his paper, Panel A, Matched CPS ORG, page 2092)
5 Cyclicality 2.77 2.01 0.32 0.17 0.14 0.24 -0.03 0.12 0.69 0.37 0.75

(0.51)*** (0.38)*** (0.08)*** (0.10) (0.03)*** (0.04)*** (0.04) (0.10) (0.10)*** (0.10)*** (0.20)***
Young (16-24)

6 Cyclicality 1.89 0.98 0.03 0.09 0.12 0.04 -0.13 0.11 0.50 0.22 0.92
(0.39)*** (0.25)*** (0.07) (0.05)* (0.05)** (0.03) (0.07)* (0.09) (0.16)*** (0.12)* (0.27)***

Prime age (25-54)
7 Cyclicality 2.47 1.63 0.06 0.13 0.14 0.24 -0.01 0.09 0.66 0.31 0.84

(0.50)*** (0.30)*** (0.06) (0.11) (0.03)*** (0.04)*** (0.05) (0.10) (0.11)*** (0.11)*** (0.30)***
Old (55-61)

8 Cyclicality 0.44 0.54 -0.07 -0.31 0.21 0.11 -0.11 0.47 0.53 -0.29 -0.11
(0.91) (0.51) (0.03)** (0.22) (0.08)*** (0.11) (0.06)* (0.17)** (0.29)* (0.24) (0.76)

Source: Mueller (2017). Merged CPS Outgoing Rotation Group sample for the years 1980 to 2012, the CPS March supplement for the years
1968 to 2012 (the years 1962-1967 were not included as no information was available on industry in previous year).
Notes: Newey-West corrected standard errors in parentheses. * p<0.1 ** p<0.05 *** p<0.01. All series are yearly averages, HP-filtered with
a smoothing parameter of 100. Note that the coefficients on the predicted and residual wage add up to the coefficient on the raw wage.
Rows 1 and 5 : same estimates as in Mueller (2017). Line 1: from March CPS. Line 5: from Matched CPS ORG.

We measure the cyclicality of the compositional changes in the unemployment pool as the coefficient
β in the regression log(wut )− log(wt) = α+βUt + εt, where wut is the average wage from the previous
year for those unemployed at time t, wt is the average wage from the previous year for the full
sample, and Ut is the official unemployment rate from the Bureau of Labor Statistics. As in Mueller
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(2017), rows 1 and 5 in Table 22 show that the unemployed in recessions are more experienced,
more educated, more likely to be male, more likely to be married, more likely to be white, and
more likely to come from industries and occupations that pay high wages, compared to periods of
low unemployment. These results are based on data with all workers of all ages. We find similar
results when we restrict the sample to young or prime-age workers (rows 2-3 and 6-7 in Table 22).
Interestingly, when we look at older workers, the results are different (rows 4 and 8 in Table 22). In
recession, for older workers only, the pool of unemployed does not shift towards high-wage workers.

New challenges. The empirical investigation of wages conditional on separation and non-
separation over the life cycle shows that old workers’ labor market is not affected by the same
compositional effect as the labor market of young and prime age workers. This non-homogeneity of
the empirical results conditional on workers’ age suggest that the extensions proposed by Mueller
(2017) are not well suited for an analysis that accounts for life cycle features.

Obviously, for young and prime-age workers, it would be possible to assume a low variance of the
match-specific productivity for high-ability workers, as suggested by Mueller (2017) (in the context of
a model without life-cycle). However, this assumption would need to be less relevant for old workers,
as Mueller (2017)’s stylized fact is not observed on older workers. It is difficult to argue that such
an assumption holds for all workers, except at the end of the working life. It would be interesting
to find an endogenous mechanism, related to workers’ age, to account for the age-specific changes
in the composition of unemployed workers along the business cycle. Therefore, the inspection of the
data raises new questions, which paves the way for future developments that lie beyond the scope of
our current paper.

C Empirical evidence on search effort

We present (i) the methods allowing to measure the search effort, (ii) the debate on its cyclicality,
and (iii) its age pattern.

C.1 Measuring search effort

There are two main data sets used to measure search effort by unemployed workers: the first one, the
American Time Use Survey (ATUS), provides a measure of the time spent on job-searching activities
per day, whereas the second, the Current Population Survey (CPS), gives an indirect measure via the
types and number of search methods used. If the first measure is the most natural quantitative proxy
for job search effort, ATUS suffers from its small sample size and its short sample period (starting
in 2003), unlike the CPS.

C.2 Pro-cyclicality of aggregate search effort

Shimer (2004) uses CPS data to build an indirect measure of search effort (the number of methods
used). His main result is that this search effort measure is counter-cyclical. These first investigations
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are supported by the more recent work of Mukoyama et al. (2014) who use CPS data to infer the
average time used to search for job prior to the ATUS sample. Nevertheless, the results reported
by Mukoyama et al. (2014) cast some doubt on the quality of the econometric method allowing to
compute this "imputed" time used to search for a job. In particular, if one looks at unemployed
workers, the "actual" and the "imputed" time series are consistent only during the periods 2007-2008,
displaying counter-cyclical movements during the periods 2003-2007 and 2009-2011. Moreover, the
use of this measure of search effort proposed in Shimer’s pioneer work has been criticized by Tumen
(2014) who shows that the probability of exiting unemployment is a decreasing function of the
number of search methods, whereas, if he uses the number of search methods per week unemployed
as an alternative measure of search effort, search intensity becomes strongly pro-cyclical. This result
confirms the one in DeLoach & Kurt (2013). After controlling for composition bias, Gomme &
Lkhagvasuren (2015) also find that search effort (measured by time spent on this activity) is strongly
pro-cyclical. Moreover, Gomme & Lkhagvasuren (2015) underline that (i) the "OLS regressions of
search time on the number of search methods delivers a very low R2, well below 10%, even after
controlling for the individual level characteristics"54 and (ii) "despite the positive individual-level
link between the two variables, they do not move in the same direction over the business cycle".
These empirical findings favor the view that the supply side of labor market adjustments (via search
effort) can complement the demand driven adjustments, usually analyzed in the simplified version of
the DMP model. Given that the measure of search effort is highly debated in the literature, one can
favor the empirical approaches that use worker flows to estimate the dynamics of search effort. This
is the path followed by Hornstein & Kudlyak (2016) who show that structural estimation of worker
flows cannot reject the scenario of a pro-cyclical job search effort, if the weight of vacancies in the
matching function is small enough. These results echo the ones in Elsby et al. (2015) who note that
a counter-cyclical search effort is difficult to reconcile with movements in the Beveridge curve during
and after the Great Recession.

C.3 Levels of search effort by age

C.3.1 Levels of search effort falls with age

Regarding search effort by age based on the ATUS data (the direct measure of the search effort),
Aguiar et al. (2013) find that search effort has an inverted U-shaped profile with age.55 Nevertheless,
using time use surveys in the UK, Germany, France, Italy, and Spain (MTUS), they also show that
search effort is an age-decreasing in all other countries. Hence, the US appear as an outliers with
respect to this behavior. Aguiar et al. (2013) do not provide any hint about the reason why the US
seems an outlier. We suggest that this surprising result for the US comes from the use of the raw
ATUS data, whereas some other components of the time use are age specific. With respect to Aguiar
et al. (2013), we measure search effort as search activities divided by total time available during the
day, which differs across age groups. This point is very important: the available time appears shorter

54This regression shows that a unit increase in search methods is correlated with a 10 minute increase
in search time. This positive correlation between the two measures is also underlined by Mukoyama et al.
(2014)

55These results based on the direct measure of search intensity are in accordance with those provided
by Mukoyama et al. (2014).
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Table 23: Search effort by age group: ATUS data

22-34 35-54 55+ Total
Median 0.161 0.143 0.138 0.146
] Obs 302 544 171 1061

for young people than for their older counterpart (11.90 hours a day for respondents younger than 34,
13.6 hours a day for prime age respondents of 35-54 years old, 13.3 hours for 55-70 years-old), as they
spend more time on education, sleeping, eating and drinking. Moreover, we consider respondents
with positive search effort, in accordance with the definition of unemployment status. Search effort
is then computed as the number of minutes of job search activities divided by the total available
time each day (see the presentation of our sample in section C.3.2). Table 23 shows that the older
the respondent, the lower the search effort in the US, which is consistent with the empirical pattern
found for all countries in Aguiar et al. (2013).

C.3.2 Search effort data in ATUS

In order to estimate search effort by age, we use 2003-2015 waves of the ATUS (American Time Use
Survey). The BLS conducts the ATUS based on a sample drawn from the outgoing panel of the CPS
(Current Population Survey). Each respondent reports activities from the previous day.

• Total length of each day by age. In the model, search effort is measured as time spent on
activities undertaken to find a job relative to the total length of the period, that is normalized to
1. In the data, the total length of each day can differ across age as time spent on activities that
are not modeled in the paper (such as sleep, eating and drinking, education) can differ across
age. For each respondent, we compute the sum of activities that individuals do not choose in our
model (personal care, eating and drinking, education, respectively mnemonics t01, t11 and t06,
with the associated travel time t1801, t1811 and t1806). We then infer the time available for
activities that are chosen by economic agents in our model. This available time appears shorter
for young people than for their older counterpart, as they spend more time on education, eating
and drinking, or personal care.

• Positive search effort. Job search activities are recorded under mnemonics 0504 (t050403,
t050404, t050405, t050481 and t050499). They include time spent on filling out job application,
sending resumes, interviewing, etc... We consider respondents with positive search effort, in
accordance with the definition of unemployment status (not employed and looking for a job).

D Analytical analysis

In order to provide analytical results, we use simplifying assumptions with respect to the model
presented in the main text: Time is continuous; we also characterize the steady-state and derive
comparative statics results that describe how the vacancy-unemployment ratio changes with aggre-
gate productivity across steady states. We also adopt a gradual approach.

• Representative-agent model: In section D.1, we first look at the elasticity of the vacancy-
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unemployment ratio with respect to productivity in a representative agent model with constant
versus variable search effort. We then show that variable search effort magnifies the responsive-
ness of the vacancy-unemployment ratio to aggregate productivity. This first step allows the
reader to recover Nagypal & Mortensen (2007a)’s results as a special case of constant search ef-
fort (and endogenous separation) and Gomme & Lkhagvasuren (2015)’s conclusions as a special
case of constant separation (and variable search effort). In addition, as Gomme & Lkhagvasuren
(2015) consider only exogenous separation, they do not assess the role of variable search effort on
the elasticity of separations to aggregate productivity. This section fills this gap. In particular,
we show how endogenous search effort helps the model match the slope of the Beveridge curve,
which is missed by the standard DMP model with no search effort and endogenous separation
(Krause & Lubik (2007), Fujita & Ramey (2012)).

• With life-cycle features: In section D.2, we then look at a simplified version of our model with
variable search effort, endogenous separations and life-cycle features. We analyze how life-
cycle alters the discount rate. To illustrate how the short distance to retirement amplifies the
responsiveness to aggregate shock, we will focus on older workers’ elasticity to aggregate shock.
Using the results from section D.1, we illustrate the interaction between life-cycle features on the
one hand, and endogenous search effort and separations on the other hand. Endogenous search
effort and separations magnify the effect of the short distance to retirement on the elasticity of
vacancy-employment ratio and reservation productivity to aggregate shocks. Finally, in section
D.2.3, using the simplified version of our full model, we analytically derive the impact of workers’
bargaining power on the elasticity to aggregate shock. This section relates to our quantitative
results on the effect of young workers’ bargaining power on their labor market volatility (Section
4.2.2).

For expositional simplicity, the disutility of search effort is given by φ(e) = e1+φ

1+φ
and the matching

function is given by M(v, eu) = v1−η(eu)η, with φ > 0 and η ∈ (0; 1). γ refers to workers’ bargaining
power. Labor market tightness is defined as θ ≡ v

eu
, whereas the vacancy-unemployment ratio is

denoted ϑ ≡ v
u
. As usual in the literature, we assume that time is continuous (the discount rate is

r), and we focus on the steady state.

D.1 Infinite lifetime horizon and endogenous search effort

Proposition 1. In the infinitely-lived agent model, the elasticities of the vacancy-unemployment
ratio (ϑ ≡ v

u
) with respect to aggregate productivity z are:

Endogenous Search Effort Constant Search Effort

ϑ̂ =
(r+JSR) 1+φ

φ
+γJFR

(r+λ)η+γJFR
1

1−b̃
ẑ ϑ̂ = r+JSR+γJFR

(r+λ)η+γJFR
1

1−b̃+φ̃(e)
ẑ

(16)

Proof. With exogenous search effort. In an infinite lifetime horizon model, with exogenous
search effort e, equilibrium of the labor market is defined by the intersection of job destruction (JD)
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and job creation (JC):

z

(
R +

λ

r + λ

∫ 1

R

[1−G(x)]dx

)
= b− φ(e) +

γ

1− γ
cϑ (JD)

cϑη = (1− γ)
z

r + λ

∫ 1

R

[1−G(x)]dx (JC)

(JD) and (JC) are equations (7) and (8) in Nagypal & Mortensen (2007a)’s paper. These equations
determine the equilibrium values of the vacancy-unemployment ratio, ϑ, and reservation productivity,
R. Log-linear approximation of this system leads to:(

R(r + λ) + λ

∫ 1

R

[1−G(x)]dx

)
ẑ + (r + JSR)RR̂ =

γ

1− γ
cϑ

z
(r + λ)ϑ̂

ηϑ̂ = ẑ − 1−G(R)∫ 1

R
[1−G(x)]dx

RR̂

Using (JC) and (JD) conditions at the steady state,

(r + λ) cϑ
(1−γ)JFR

= z
∫ 1
R[1−G(x)]dx

1−G(R)

(r + λ) zR−(b−φ(e))
γJFR+JSR−λ = z

∫ 1
R[1−G(x)]dx

1−G(R)

 ⇒

{
zR = (γJFR+JSR−λ)cϑ+(1−γ)JFR(b−φ(e))

(1−γ)JFR

cϑ = (1−γ)JFR(zR−(b−φ(e)))
γJFR+JSR−λ

and their log-linear approximations, we deduce :(
(b− φ(e))(1− γ)JFR

cϑ
+ γJFR + JSR + r

)
ẑ = ((r + JSR)η + γJFR) ϑ̂

Given the definition of aggregate productivity z = z
(
R +

∫ 1
R[1−G(x)]dx

1−G(R)

)
, and the definition of the

replacement rate

b̃e ≡
b− φ(e)

z
=

b− φ(e)
(γJFR+JSR−λ)cϑ+(1−γ)JFR(b−φ(e))

(1−γ)JFR
+ (r + λ) cϑ

(1−γ)JFR

=

(
b−φ(e)
c

)
(1− γ)JFRλ

(γJFR + JSR)(r + λ)ϑ+ (1− γ)JFRλ b−φ(e)
c
− (1− γ)JFRr zR−(b−φ(e))

c

we obtain:
(b− φ(e))(1− γ)JFR

cϑ
=
b̃e(r + λ)(JSR + γJFR)− b̃erΓ

(1− b̃e)λ

where Γ = (1− γ)JFRr zR−(b−φ(e))
cϑ

= γJFR+JSR−λ. We then get the equation on the right-hand
side of (16) where b̃e = b̃ − φ̃(e). The expression of b̃e is similar to equation (15) in Nagypal &
Mortensen (2007a)’s paper.

With endogenous search effort. After using the FOC on search effort in both the JC and the
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JD curves, the equilibrium is defined by:

z

(
R +

λ

r + λ

∫ 1

R

[1−G(x)]dx

)
= b+

φ

1 + φ

γ

1− γ
cϑ (JD)

c

(
1− γ
γc

) η
1+φ

ϑ
ηφ
1+φ = (1− γ)

z

r + λ

∫ 1

R

[1−G(x)]dx (JC)

where ϑ = v
u
and thus ϑ = eθ. Log-linear approximations of these two equations lead to:(

R(r + λ) + λ

∫ 1

R

[1−G(x)]dx

)
ẑ + (r + JSR)RR̂ =

φ

1 + φ

γ

1− γ
cϑ

z
(r + λ)ϑ̂

η
φ

1 + φ
ϑ̂ = ẑ − 1−G(R)∫ 1

R
[1−G(x)]dx

RR̂

Using (JC) and (JD) conditions at the steady state,

(r + λ) cϑ
(1−γ)JFR

= z
∫ 1
R[1−G(x)]dx

1−G(R)

(r + λ) zR−b
γ φ

1+φ
JFR+JSR−λ

= z
∫ 1
R[1−G(x)]dx

1−G(R)

 ⇒

 zR =
(γ φ

1+φ
JFR+JSR−λ)cϑ+(1−γ)JFRb

(1−γ)JFR

cϑ = (1−γ)JFR(zR−b)
γ φ

1+φ
JFR+JSR−λ

and their log-linear approximations, we deduce :(
b(1− γ)JFR

cϑ
+ γ

φ

1 + φ
JFR + JSR + r

)
ẑ =

φ

1 + φ
((r + JSR)η + γJFR) ϑ̂

Given the definitions of aggregate productivity and replacement rate

b̃ ≡ b

z
=

(
b
c

)
(1− γ)JFRλ(

γ φ
1+φ

JFR + JSR
)

(r + λ)ϑ+ (1− γ)JFRλ b
c
− (1− γ)JFRr zR−b

c

we get:

b(1− γ)JFR

cϑ
=
b̃(r + λ)

(
JSR + γ φ

1+φ
JFR

)
− b̃rΓ

(1− b̃)λ

where Γ = (1−γ)JFRr zR−b
cϑ

= γ φ
1+φ

JFR+JSR−λ. We then deduce the equation on the left-hand
side of (16) where b̃ = b/z.

Proposition 2. The elasticity of vacancy-to-unemployment ratio with respect to aggregate productiv-
ity is higher with endogenous search effort than with constant search effort, given the same calibration
targets.

Proof. For given values of observed data (r, JFR, and JSR), and parameters (γ, η, and b), we
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deduce from (16) that
(r+JSR) 1+φ

φ
+γJFR

(r+λ)η+γJFR
> (r+JSR)+γJFR

(r+λ)η+γJFR
and 1

1−b̃
> 1

1−b̃+φ̃(e)
, leading unambiguously

to ϑ̂
∣∣∣
variable e

> ϑ̂
∣∣∣
constant e

.

Even if the calibrations of b̃
∣∣∣
variable e

and b̃
∣∣∣
constant e

are different in order to ensure that b̃
∣∣∣
variable e

=

b̃− φ̃(e)
∣∣∣
constant e

, Proposition 2 holds.

Proposition 2 generalizes the result found by Gomme & Lkhagvasuren (2015) where separations are
exogenous. The intuition behind this result is the following: in booms, an increase in productivity
increases the value of a match. As a consequence, firms post more vacancies, which boosts workers’
job finding rate, thereby raising workers’ outside option (the value of being unemployed). With
constant search effort, as the outside option increases, wages increase, thereby eating up the gains
received by firms (due to increased productivity), thereby lowering the response of vacancy. With
variable search effort, in booms, unemployed search more, which dampens the rise of the value
of being unemployed, and so the wage increase. The business cycle response of the flow value of
unemployment is a key determinant of the success of the DMP model.

Using these first results, we then analyze the volatility of worker flows with and without variable
search effort.

Corollary 1. There exists a set of realistic parameters such that the volatilities of the job separation
and the job finding rates are larger in the model with endogenous search effort than in the model with
constant search effort.

Proof. Let us define the log deviations around the steady state values of the job finding rates in
economies with variable and constant search effort, as respectively ĴFR

∣∣∣
var e

= ê+(1−η)θ̂− G′(R)R
1−G(R)

R̂

and ĴFR
∣∣∣
const e

= (1− η)ϑ̂− G′(R)R
1−G(R)

R̂. Job separation rates have the same expression for the two

economies ĴSR = εG|RR̂. Using the free entry conditions, θ̂ = 1
η
(ẑ − εI|RR̂) and ϑ̂ = 1

η
(ẑ − εI|RR̂),

we deduce:

∆ĴSR =
εG|R
εI|R

η

(
− φ

1 + φ
ϑ̂
∣∣∣
var e

+ ϑ̂
∣∣∣
const e

)
∆ĴFR =

η

1 + φ
ϑ̂+ (1− η)∆ϑ̂− G(R)

1−G(R)
εG|R∆R̂

given that θ̂ = ϑ̂− ê and ê = 1
φ
θ̂.

Let us define $ ∈ (0; 1) such that $ 1
1−b = 1

1−b+φ(e)
. Using (16), we deduce that Sign

(
∆ĴSR

)
=

Sign
(

($ − 1) (r + JSR) +
(
$ − φ

1+φ

)
γJFR

)
, and it is negative if $

1−$ < φ. Under this condition,
the job separation rate is more countercyclical in a model with endogenous job search. This is then
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true for R, ie. ∆R̂ < 0. As a result, ∆ĴFR is unambiguously positive because Proposition 2 implies
∆ϑ̂ ≥ 0. Finally, the restrictions on the parameters allowing to obtain this equilibrium are realistic.
Indeed, if we take a value for the same home production as Hall & Milgrom (2008), approximatively
0.7, and an elasticity of the job search effort close to one estimated by Christensen et al. (2005),
approximatively 0.5, we deduce that b = 0.9 and φ(e) = 0.2 are admissible, by using $

1−$ < φ and
given that b = 0.9 is lower than the upper bound of the value in Hagedorn & Manovskii (2008).

Proposition 2 and Corollary 1 show that search effort allows the MP model to generate larger volatil-
ities of worker flows than the models with constant search effort.56

Proposition 3. While the correlation between unemployment and vacancies is ambiguous with con-
stant search effort, it becomes negative for sufficiently high values of the elasticity of search effort.

Proof. Given θ = 1
e
ϑ ⇒ θ̂ = −ê + ϑ̂ and using the log-linear approximation of the FOC on e

(leading to ê = 1
φ
θ̂), we deduce θ̂ = φ

1+φ
ϑ̂ =

(r+JSR)+γ φ
1+φ

JFR

(r+λ)η+γJFR
1

1−b̃
ẑ, showing that the "efficient"

labor market tightness is less volatile that the vacancies-unemployment ratio and is bounded θ̂ ∈[
(r+JSR)

(r+λ)η+γJFR
1

1−b̃
ẑ; (r+JSR)+γJFR

(r+λ)η+γJFR
1

1−b̃
ẑ
]
for respectively φ → 0 and φ → ∞. Hence, the dynamics of

the Beveridge curve is determined by:

Variable search effort Constant search effort
û = (1− u)

(
εG|R

1−G(R)
R̂− (1− η)θ̂ − 1

φ
θ̂
)

û = (1− u)
(

εG|R
1−G(R)

R̂− (1− η)ϑ̂
)

v̂ = (1− (1− η)(1− u))θ̂ + u 1
φ
θ̂ +

(1−u)εG|R
1−G(R)

R̂ v̂ = (1− (1− η)(1− u))ϑ̂+
(1−u)εG|R

1−G(R)
R̂

given that û = (1− u)
(
ĴSR− ĴFR

)
. With constant search effort, if the volatility of the vacancy-

unemployment ratio is small, v̂ can be countercyclical and driven by the dynamics of R̂ allowing to
match the volatility of the JSR. With endogenous search effort, it exists φ such that v becomes
procyclical for bounded values of ϑ̂.

In the case with constant search effort, counter-cyclical separations can amplify the counter-cyclical
responses of unemployment to aggregate productivity shocks, and the small response of the vacancy-
unemployment ratio can lead to a counter-cyclical response in the vacancy rate (v̂ = ϑ̂ + û). In
contrast, with endogenous search effort, a sufficiently small value for φ (a high elasticity of search
effort) ensures that the vacancy rate is pro-cyclical (v̂ = θ̂ + ê + û with ê = 1

φ
θ̂), leading then to a

negative correlation between v and u.

Gomme & Lkhagvasuren (2015) consider only exogenous separation. They do not assess the role of
variable search effort on other dimensions of the DMP model. This section fills this gap. In particular,
Fujita & Ramey (2012) show that the MP model without search effort generates a counterfactual
positive slope of the Beveridge curve, as it the case in Krause & Lubik (2007) in a New Keynesian
DMP model with endogenous separations but without search effort. Beyond its amplifying properties,

56Note that the case with endogenous search effort converges to the case with constant e when φ→∞.
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we show how endogenous search effort helps the model with endogenous separation match the negative
slope of the Beveridge curve.

D.2 Labor market elasticities in a life-cycle model

For simplicity, we assume that there are 3 age groups i ∈ {Y,A,O} on the labor market. When an
older worker exits the labor market, she is replaced by a young worker. Transition rates between
ages are denoted by πi.

D.2.1 Elasticity of vacancy-unemployment ratio with respect to aggregate productivity

Proposition 4. In a life-cycle model, the elasticities of vacancy-unemployment ratio (ϑi ≡ vi
ui
) with

respect to aggregate productivity z are:

Variable Search Effort Constant Search Effort

ϑ̂i =
(r̃i+λ+Ωi(JSRi−λ)) 1+φ

φ
+γiJFRi

(r̃i+λ)η+γiJFRi

1

1−b̃i
ẑ ϑ̂i = r̃i+λ+Ωi(JSRi−λ)+γiJFRi

(r̃i+λ)η+γiJFRi

1

1−b̃i+φ̃i(e)
ẑ

(17)

where r̃i = r + πi, ΩO = 1 and Ωi = 1 + πi
r̃i+1+λ

Ωi+1 for i < O.

Proof. The surplus from a match at age i is given by Si(ε) = Ωi
z(ε−Ri)
r̃i+λ

. These expressions for the
surplus implies that Si = zΩi

r̃i+λ

∫ 1

Ri
[1−G(z)]dz where Ri is the reservation productivity at age i.

With constant search effort, job destruction (JD) and job creation (JC) determine the equilib-
rium at age i:

z

(
Ri +

λΩi

r̃i + λ

∫ 1

Ri

[1−G(z)]dz

)
= b− φ(e) +

γ

1− γ
cϑi (JD)

cϑηi = (1− γ)
zΩi

r̃i + λ

∫ 1

Ri

[1−G(z)]dz (JC)

With endogenous search effort. The equilibrium is defined by

z

(
Ri +

λΩi

r̃i + λ

∫ 1

Ri

[1−G(x)]dx

)
= b+

φ

1 + φ

γ

1− γ
cϑi (JD)

c

(
1− γ
γc

) η
1+φ

ϑ
ηφ
1+φ

i = (1− γ)
zΩi

r̃i + λ

∫ 1

Ri

[1−G(x)]dx (JC)

Using exactly the same algebra than for the proof of proposition 1, we get (17), where b̃i = b/zi and

φ̃i(e) = φ(e)/zi, given that aggregate productivity is zi = z

(
Ri +

∫ 1
Ri

[1−G(x)]dx

1−G(Ri)

)
.
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For simplicity, we now focus on older workers’ labor market and analyze the impact of their short
horizon prior to retirement on the elasticity of this labor market segment.

Proposition 5. Propositions 2 and 3 as well as Corollary 1 apply to older workers’ labor market.

Proof. Obviously, because ΩO = 1 and thus only the definition of r changes in (JC) and (JD).

The properties of the infinitely-live agent model carry through the life-cycle model.

Proposition 6. With the range of parameter values used in the calibrated model,
(i) the elasticity of vacancy-employment ratio increases as the worker gets closer to retirement.
(ii) The impact of the shorter distance to retirement is larger in the model with endogenous search
effort.

Proof. With constant search effort. Let us define F (r̃O, JFRO, JSRO) ≡ r̃O+JSRO+γJFRO
(r̃O+λ)η+γJFRO

and
C ≡ 1

1−b̃O+φ̃O(e)
, leading to

ϑ̂O = F (r̃O, JFRO, JSRO)× C × ẑ (18)

C is considered as a constant because, even if zO can change when parameters change, C keeps its
initial value because parameters b and φ(e) must adjust in order to match the calibrated value of
outside opportunities.

Distance to retirement, captured by πO, has 2 effects on the multiplier F (r̃O, JFRO, JSRO)

• A direct effect captured by the first derivative of F with respect to F (r̃O, JFRO, JSRO), denoted
F ′1

• An indirect effect: πO affects steady state values of JFR and JSR. Indeed, when πO changes,
the definition of older workers changes and thus the steady-state flows of these populations.

Therefore, we have

dF

dr̃O
= F ′1 + F ′2

∂JFRO

∂ϑO

dϑ

dr̃O
+

(
F ′2
∂JFRO

∂RO

+ F ′3
∂JSRO

∂RO

)
dRO

dr̃O

The direct effect is given by

F ′1 =
∂F

∂r̃O
= 2

λ+ (1/2)JFRO − JSRO

[r̃ + λ+ JFRO]2

and is positive for our calibrated parameters (see Figure 5).

The indirect effect goes through steady state values of worker flows. Indeed, at the steady state, we
have JFRO = p(ϑO)[1 − G(RO)] and JSRO = λG(RO), which depend on r̃O though ϑO and RO.
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After differentiating (JC) and (JD), we get

dRO =
c

JFRO

(JFRO + JSRO − λ) dϑO

dr̃O = − 1

ϑO
[η (r̃O + JSRO) + γJFRO] dϑO

Normalizing z = 1 and assuming that γ = η = 1/2 as in the calibration (Table 4), these expressions
lead to

F ′2
∂JFRO

∂ϑO

dϑ

dr̃O
= 2

(1/2)(r̃O + λ)− JSRO

[r̃O + λ+ JFRO]2
JFRO

r̃O + JSRO + JFRO

> 0(
F ′2
∂JFRO

∂RO

+ F ′3
∂JSRO

∂RO

)
dRO

dr̃O
= −2

r̃O+λ
1−GO

(JFR + 2λ− 2JSR) + 2JFRO
1−GO

(λ− 2JSRO)

[r̃O + λ+ JFRO]2

×
c

q(ϑO)

G′O
1−GO

(JFR + JSR− λ)

r̃O + JSRO + JFRO

< 0

where the signs are deduced from numerical analysis of these functions with our calibrated parameters
(see Figure 5).

Figure 5: Elasticity of ϑ to z as function of the worker’s horizon: exogenous e
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All the parameters and job flows are those presented in the calibration (Table 4).

Figure 5 shows that, for the calibrated values of the model (Table 4), we always have ∂F
∂r̃O

> 0: a
shorter horizon (a rise of r̃O), increases the labor market sensitivity to the business cycle.

With variable search effort. Let us define G(r̃O, JFRO, JSRO) ≡ (r̃O+JSRO) 1+φ
φ

+γJFRO

(r̃O+λ)η+γJFRO
and C ′ ≡

1

1−b̃O
, leading to

ϑ̂O = G(r̃O, JFRO, JSRO)× C ′ × ẑ (19)

As previously, C ′ is kept constant in the calibration procedure and does not change when the worker’s
horizon shortens.
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The function G can be decomposed as follows:

G = F +
1

φ

r̃O + JFRO

(r̃O + λ)η + γJFRO︸ ︷︷ ︸
=g(r̃O,JFRO)

Distance to retirement, captured by πO, has 2 effects on the multiplier G

• A direct effect captured by G ′1
• An indirect effect as πO affects steady state values of JFR and JSR.

Assuming that γ = η (as in the calibration, Table 4), the direct impact of the worker’s horizon on
the elasticity is given by

G ′1 = F ′1 + g′1 = 2
λ+ (1/2)JFRO − JSRO

[r̃ + λ+ JFRO]2
+

2

φ

λ

rO + λ+ JFRO

> F ′1 > 0

Therefore, endogenous search effort magnifies the impact of the worker’s horizon changes on the
elasticity of the labor market tightness. This comes from the complementarity between search on
both sides of the market: if firms invest less in vacancies because the horizon is too short to recoup
hiring costs, then unemployed workers face a lower incentive to search for a job.

As for the indirect effect, any change in r̃O modifies the steady state values of JFRO and JSRO,

given that JFRO =
(
c γ

1−γ

) η
1+φ

ϑ
1+φ(1−η)

1+φ

O [1− G(RO)] when the search effort is endogenous, implying
∂JFRO
∂ϑO

= 1+φ(1−η)
1+φ

JFRO
ϑO

and ∂JFRO
∂ϑO

= −JFRO
GO

1−GO
G′O
GO

. By differentiating the equations (JC) and
(JD), we get

dRO

dϑO
=

φ

1 + φ

c

JFRO

(JFRO + JSRO − λ)

dϑO
dr̃O

= −1 + φ

φ
2ϑO

1

r̃O + JSRO + JFRO

Using these expressions, we deduce that the impact of changes in ϑO is given

G ′2
∂JFRO

∂ϑO

dϑO
dr̃O

= 2
(1/2)r̃O + λ((1/2)− (1/φ))− JSRO

(r̃O + λ+ JFRO)2

(2 + φ)JFRO

φ(r̃O + JSRO + JFRO)

The impact of the changes in RO is given by the sum of two terms:

(F ′2 + g′2)
∂JFRO
∂RO

dRO
dr̃O

= −4
JFRO
1−GO

(
(1/2)r̃O + λ((1/2)− (1/φ))− JSRO

(r̃O + λ+ JFRO)2

)(
c

qO

G′O
1−GO

)(
JFRO + JSRO − λ
r̃O + JSRO + JFRO

)
F ′3
∂JSRO
∂RO

dRO
dr̃O

= −4λ

(
1

r̃ + λ+ JFRO

)(
c

qO

G′O
1−GO

)(
JFRO + JSRO − λ
r̃O + JSRO + JFRO

)
Figure 6 shows that the indirect effect is dominated by the direct effect: a shorter horizon increases
the sensitivity of the labor market tightness to the business cycle. Figure 6 also shows that the
interaction between the incentives for firms to invest in vacancies and the incentives for workers to
search for a job magnifies the impact of the worker’s horizon on the elasticity of the labor market
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Figure 6: Elasticity of ϑ to z as function of the worker’s horizon: endogenous e
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All the parameters and job flows are those presented in the calibration (Table 4). The dotted lines
correspond to a calibration with low elasticity of the search effort φ = 2.

tightness.

D.2.2 Elasticity of reservation productivity with respect to aggregate productivity

Corollary 2. With the range of parameter values used in the calibrated model, a fall in the worker’s
horizon magnifies the sensitivity of reservation productivity RO to the business cycle.

Proof. The elasticity of reservation productivity with respect to aggregate productivity is given by

R̂O = − I(RO)

[1−G(RO)]RO

(
ηφ

1 + φ
G × C ′ − 1

)
︸ ︷︷ ︸

=Ψ

ẑ

which, using (19), can be written as

R̂O = − I(RO)

[1−G(RO)]RO

(
ηφ

1 + φ

ϑ̂

ẑ
− 1

)
︸ ︷︷ ︸

=Ψ

ẑ (20)

As in Nagypal & Mortensen (2007a)’s paper, we can ensure that the elasticity of the reservation
productivity to the business cycle is negative (ie. G × C ′ > 1+φ

ηφ
). It is the case with our cali-

bration. In addition, in equation (20), as in Nagypal & Mortensen (2007a)’s paper, the elasticity
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of reservation productivity with respect to aggregate productivity also depends on the elasticity of
vacancy-unemployment ratio ϑ̂

ẑ
, which is larger with variable search effort and magnifies the effects

of the distance to retirement on worker’s elasticity (Proposition 6). This illustrates the intuition
behind the idea that the model correctly predicts the labor market volatility by age group because
of the interaction between endogenous search effort and separation on the one hand, and life-cycle
features on the other hand.

Let us now demonstrate formally this point. For simplicity, assuming G(x) = x and setting γ = η (as
in the calibration), we obtain R̂O = −Ψẑ, with Ψ = 1−RO

2RO

(
φ

2(1+φ)
G × C ′ − 1

)
, it is easy to deduce

that ∂Ψ
∂RO

= − 2
4R2

O
< 0, ∂RO

∂r̃0
= − 2cϑO

JFRO

(
JFRO+JSRO−λ
r̃O+JSRO+JFRO

)
< 0 and ∂Ψ

∂Θ
= 1−RO

2RO

φ
2(1+φ)

> 0. Using the

previous analysis of G × C ′, we get dΨ
dr̃O

= ∂Ψ
∂RO

∂RO
∂r̃0

+ ∂Ψ
∂Θ

∂Θ
∂r̃0

> 0. This elasticity (in absolute value)
increases when the worker’s horizon is shorter.

D.2.3 Bargaining power and elasticity of the labor market

In our calibrated model (section 4.2.2.), we introduce a lower bargaining power for young workers.
We derive here, in our simplified model, the impact of changes in young workers’ bargaining power
on labor market elasticity. Our analytical results are consistent with the simulation results found in
section 4.2.2.

Proposition 7. For our range of calibration, a fall in worker’s bargaining power reduces the respon-
siveness of the vacancy-employment ratio to aggregate shocks.

Proof. Let us define H(γi, JFRi, JSRi) ≡
(r̃i+λ+Ωi(JSRi−λ)) 1+φ

φ
+γiJFRi

(r̃i+λ)η+γiJFRi
and C ′′ ≡ 1

1−b̃i
, leading to

ϑ̂i = H(γi, JFRi, JSRi) × C ′′ × ẑ where C ′′ is kept constant during the calibration procedure. For
i = Y , the signs of H ′1 and H ′2 are ambiguous, whereas H ′3 > 0. However, using our calibration
(Table 4), we have H ′1 < 0 and H ′2 < 0. Therefore, two opposite forces are at work:

• H ′1 < 0 refers to Hagedorn & Manovskii (2008)’s effect, ie. a low bargaining power increases
the elasticity,

• whereas H ′2 < 0 and H ′3 > 0 refer to the indirect effect of a change in γY through the change in
the steady state values of JFRY and JSRY .

The total effect is given by

∂H

∂γY
= H ′1 +H ′2

∂JRFY
∂ϑY

∂ϑY
∂γY

+

(
H ′2

∂JRFY
∂RY

+H ′3
∂JSFY
∂RY

)
∂RY

∂γY

The impact of a change in γY on the steady state is obtained by differentiating the system (JC)-(JD).
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For simplicity, we assume that G is an uniform distribution. ∂ϑY
∂γY

and ∂RY
∂γY

are deduced from

φ

1 + φ

1

1− γY
c

(
ϑY

1− γY
dγY + γY dϑY

)
=

(
1− λ ΩY

r̃Y + λ
(1−RY )

)
dRY

η

1 + φ
c

(
1− γY
γY c

) η
1+φ

ϑ
ηφ
1+φ

Y

(
1

γY (1− γY )
dγY +

φ

ϑY
dϑY

)
= − ΩY

r̃Y + λ

(1−RY )2

2
dγY

−(1− γY )
ΩY

r̃Y + λ
(1−RY )dRY

Therefore, using the definitions of worker flows, we obtain the numerical results reported in Figure
7, showing that ∂H

∂γY
> 0 for our range of calibration. Figure 7 shows that this results is robust to

the choice of the value of γY .

Figure 7: Sensitivity of the elasticity of ϑ to z to worker’s bargaining power ( ∂H
∂γY

) as a
function of the worker’s bargaining power (γY ): endogenous e
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All the parameters and job flows are those presented in the calibration (Table 4). Worker’s bargaining
power (γY ) varies in the interval [0.1; 0.5].

First, Hagedorn & Manovskii (2008)’s effect is always negative: this direct effect implies that a fall
in worker’s bargaining power increases the elasticity of ϑ to z. However, the indirect effect (via
the changes in steady state values of ϑY and RY ) overcompensates the direct effect. Therefore, a
fall in worker’s bargaining power reduces the responsiveness of the vacancy-employment ratio ϑ to
aggregate shocks z. This analytical result is consistent with the simulation results found in section
4.2.2.

E The Model with Life Cycle Features

This section provides additional material on the model described in section 3 of the paper. We
assume again that φ(e) = e1+φ

1+φ
and M(v, eu) = v1−η(eu)η, with φ > 0 and η ∈ (0; 1).
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E.1 Steady state surplus

The surplus function is defined by:

Si(z, ε) = max

{
zhi(ε−Ri(z)) + βπi(1− λi)(1− se)Ez[Si(z′, ε)− Si(z′, Ri(z))]
+β(1− πi)(1− λi+1)(1− se)Ez[Si+1(z′, ε)− Si+1(z′, Ri(z))]

; 0

}

Thus, at age i+ 1 and for ε = Ri(z), we have, at the conditional steady state:

Si+1(z,Ri(z)) = max

{
zhi+1(Ri(z)−Ri+1(z)) + βπi+1(1− λi+1)(1− se)Si+1(z, Ri(z))
+β(1− πi+1)(1− λi+2)(1− se)[Si+2(z,Ri(z))− Si+2(z,Ri+1(z))]

; 0

}
Assuming that Si+1(z,Ri(z)) > 0, we obtain:

Si+1(z,Ri(z)) =
zhi+1(Ri(z)−Ri+1(z))

1− βπi+1(1− λi+1)(1− se)

+
β(1− πi+1)(1− λi+2)(1− se)
1− βπi+1(1− λi+1)(1− se)

[Si+2(z,Ri(z))− Si+2(z, Ri+1(z))]

For age i+ 2, we then have:

Si+2(z,Ri(z)) =
zhi+2(Ri(z)−Ri+2(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri(z))− Si+3(z, Ri+2(z))]

We deduce the value for Si+2(z,Ri(z))− Si+2(z,Ri+1(z)), which is:

Si+2(z,Ri(z))− Si+2(z,Ri+1(z)) =
zhi+2(Ri(z)−Ri+1(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri(z))− Si+3(z,Ri+1(z))]

Introducing this result in the expression of Si+1(z,Ri(z)), we obtain:

Si+1(z,Ri(z)) =
zhi+1(Ri(z)−Ri+1(z))

1− βπi+1(1− λi+1)(1− se)

+
β(1− πi+1)(1− λi+2)(1− se)
1− βπi+1(1− λi+1)(1− se)

[
zhi+2(Ri(z)−Ri+1(z))

1− βπi+2(1− λi+2)(1− se)

+
β(1− πi+2)(1− λi+3)(1− se)
1− βπi+2(1− λi+2)(1− se)

[Si+3(z,Ri(z))− Si+3(z,Ri+1(z))]

]
This leads to Si+1(z, Ri(z)) = Ωi+1z(Ri(z) − Ri+1(z)). More generally, the surplus is given by
Si(z, ε) = Ωiz(ε − Ri(z)), ∀ε ≥ Ri(z), where Ωi = ai {hi + ai+1bi+1 [hi+1 + ai+2bi+2(. . .)]} with ai =

1
1−βπi(1−λi)(1−se) and bi = β(1−πi)(1−λi+1)(1− se) and until i+n ≤ O7. Thus, we have, e.g., ΩOT =

hOT
1−βπOT (1−λOT )(1−se) and ΩOT−1

= 1
1−βπOT−1

(1−λOT−1
)(1−se)

[
hOT−1

+ hOT
β(1−πOT−1

)(1−λOT )(1−se)
1−βπOT (1−λOT )(1−se)

]
...
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E.2 Model solution: a block recursive equilibrium

Proposition 8. The equilibrium is block recursive.

Proof. As in Menzio & Shi (2010), if we find a fixed point for SOT (z, ε), which is a function of choices
at age OT (the terminal age) only, we then obtain SOT (z, ε), θOT (z), ROT (z), and eOT (z) ∀z, ε using
equations (2), (3), and (4). Given these solutions for the labor market for age-OT workers, we can
solve for the age-OT−1 workers using the equation system given in definition 1 until age i = Y .

E.3 Steady-state properties

At the steady-state, for age i, the model must generate an age-pattern of transition rates such that

JSRi ≈ se + (1− se)λiG(Ri) > JSRi+1 (21)
JFRi ≈ eip(θi)[1−G(Ri)] > JFRi+1 (22)

At the conditional steady state, we have (we omit z for the sake of simplifying the notations):

c

q(θi)
= (1− γi)βπiSi (JC) (23)

Ri = b+ Σi − Λi − Γi(Ri) (JD) (24)

where Σi, Λi and Γi(Ri) are given by (7), (8) and (9).
Proposition 9. In the data, we observe (i) by JSRi > JSRi+1 and (ii) JFRi > JFRi+1. (i) is
compatible with the steady state equilibrium of the model if λi+1

λi
< G(Ri)

G(Ri+1)
, i.e. for a sufficiently flat

age dynamic of λi, allowing to rewrite JSRi > JSRi+1 as Ri > Ri+1. (ii) is compatible with the
steady state equilibrium of the model if {ei, θi} > {ei+1, θi+1} and if the age pattern of search effort e
and labor tightness θ dominates the age profile of reservation productivity R.

Proof. Assume for simplicity that λi = λi+1, an extreme case where the age dynamic of λi is suffi-
ciently flat. Straightforward from Equation (10) for Ri > Ri+1. For JFRi > JFRi+1, as Ri > Ri+1, it
is also straightforward from Equation (11) that eip(θi) > ei+1p(θi+1) is needed. Given that φ′(ei(z)) =
γi

1−γi cθi(z), we deduce that ei and θi share the same dynamics. Hence {ei, θi} > {ei+1, θi+1} is needed.
From Equation (11), it is obvious that the {ei, θi} > {ei+1, θi+1} may be not sufficient to compensate
for Ri > Ri+1. The job finding rate (Equation (22)) declines with worker age if the fall in ei and θi
dominates the decline in Ri; i.e. if [eip(θi)− ei+1p(θi+1)]

∫ 1

Ri+1
dG(x) > eip(θi)

∫ Ri
Ri+1

dG(x).

As the value of a match is determined by a single variable, its surplus, the observed age-decreasing
pattern of the worker flows may be puzzling. The following proposition decomposes the main forces
at work in the agent behaviors.
Proposition 10. If the "search value" is larger than the "labor hoarding value", i.e. if γieip(θi) >
(1 − se)λi ∀i, then Ri > Ri+1. If the "horizon effect" dominates the "selection effect", i.e. if
Si > Si+1, and if human capital accumulation is moderate, then {ei, θi} > {ei+1, θi+1}.
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Proof. Under the restriction on λi given by Proposition 9, Ri > Ri+1 ensures that JSRi > JSRi+1.
Using (24), we deduce that we have Ri > b as long as Σi > Λi + Γi(Ri). If we consider the marginal
job, we have Γi(Ri) → 0. Thus, a sufficient condition for Ri > Ri+1 is Σi > Λi. Using (7) and (8),
this last condition becomes γieip(θi) > (1− se)λi, ∀i.

From Equation (22), we deduce that the decline in the reservation productivity must be dominated
by the a large decline in search efforts ({ei; θi}) in order to generate JFRi > JFRi+1 (See Proposition
9). {ei, θi} are positively linked to the expected surplus Si. If Ri > Ri+1, then Si(ε) = Ωi(ε−Ri) (see
appendix E.1). We have Si =

∫ 1

Ri
Si(x)dG(x) = Ωi

∫ 1

Ri
(x − Ri)dG(x) = Ωi

∫ 1

Ri
[1 − G(x)]dx. Finally,

the age profile of the expected surplus can be defined as follows:

Si − Si+1 = (Ωi − Ωi+1)

∫ 1

Ri

[1−G(x)]dx︸ ︷︷ ︸
“horizon effect”

−Ωi+1

∫ Ri

Ri+1

[1−G(x)]dx︸ ︷︷ ︸
“selection effect”

The expected surplus is age-decreasing when the horizon effect dominates the selection effect. A
necessary condition is that the human capital accumulation is not too strong. Indeed, Ωi > Ωi+1 iff

R1 :
hi+1 − hi

hi
= δi < δ̃i ≡

β(1− πi)(1− λi+1)(1− se)
1− β(1− πi)(1− λi+1)(1− se)

The restriction R1 is necessary to get a decreasing age-pattern for the expected surplus. In this case
(Si > Si+1), we have {ei; θi} > {ei+1; θi+1}.

E.4 Stock-flow dynamics

E.4.1 Levels of employment and unemployment

The number of age-i workers employed during period t in a firm such that τ ∈ [Ri,t, x], is ni(z, x) =∫ x
Ri(z)

µ(τ)dτ , where µ(τ) the number of firms with a productivity z. This stock of jobs evolves as
follows:

If i = Y

nY (z′, x) = πY

[
[(1− se)λY (mY − uY (z)) + eY (z)p(θY (z))uY (z)][G(x)−G(RY (z′))]
+(1− se)(1− λY )[nY (z, x)− nY (z,RY (z′))]

]
(25)

If i 6= Y

ni(z
′, x) = πi

[
[(1− se)λi(mi − ui(z)) + ei(z)p(θi(z))ui(z)][G(x)−G(Ri(z

′))]
+(1− se)(1− λi)[ni(z, x)− ni(z,Ri(z′))]

]
+(1− πi−1)

[
[(1− se)λi+1(mi−1 − ui−1(z)) + ei(z)p(θi(z))ui−1(z)][G(x)−G(Ri(z

′))]
+(1− se)(1− λi+1)[ni−1(z, x)− ni−1(z,Ri(z

′))]

]
(26)

where, as in Hairault et al. (2010), we assume that when worker ages (from i−1 to i), his job contact
probability (ei(z)p(θi(z))), and his reservation productivity Ri(z) are those of a worker of age i.
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E.4.2 Unemployment and employment rates

The dynamics of unemployment rates by age are given by ui(z) = mi − ni(z, 1) ⇔ uri (z) ≡ ui(z)
mi

=

1− ni(z,1)
mi
≡ 1− nri (z, 1), ∀i, z. The dynamics of employment rates are given by

If i = Y

nrY (z′, x) = πY

[
[(1− se)λY (1− urY (z)) + eY (z)p(θY (z))urY (z)][G(x)−G(RY (z′))]
+(1− se)(1− λY )[nrY (z, x)− nrY (z,RY (z′))]

]
(27)

If i 6= Y

nri (z
′, x) = πi

[
[(1− se)λi(1− uri (z)) + ei(z)p(θi(z))u

r
i (z)][G(x)−G(Ri(z

′))]
+(1− se)(1− λi)[nri (z, x)− nri (z,Ri(z′))]

]
+(1− πi−1)

mi−1

mi

[
[(1− se)λi+1(1− uri−1(z)) + ei(z)p(θi(z))u

r
i−1(z)][G(x)−G(Ri(z

′))]
+(1− se)(1− λi+1)[nri−1(z, x)− nri−1(z,Ri(z

′))]

]
(28)

Given equations (27) and (28), G(1) = 1 and uri (z) = 1− nri (z, 1), we obtain for i = Y and i 6= Y

urY (z′) = πY

 [1− eY (z)p(θY (z))(1−G(RY (z′)))]urY (z)
+(1− se)(1− λY )nrY (z, R1(z′))
+[se + (1− se)λYG(RY (z′))](1− uY (z))

+ (1− πOT )
mOT

mY

(29)

uri (z
′) = πi

 [1− ei(z)p(θi(z))(1−G(Ri(z
′)))]uri (z)

+(1− se)(1− λi)nri (z, Ri(z
′))

+[se + (1− se)λiG(Ri(z
′))](1− uri (z))


+(1− πi−1)

mi−1

mi

 [1− ei(z)p(θi(z))(1−G(Ri(z
′)))]uri−1(z)

+(1− se)(1− λi+1)nri−1(z, Ri(z
′))

+[se + (1− se)λi+1G(Ri(z))](1− uri−1(z))

 (30)

Unemployed workers of age i in period t+ 1 are those of age i in period t who do not age, and

• who do not find a job (first term of the first line of the right-hand side of equations (29) and
(30)),

• employed workers of age i who lose their job in period t + 1 due to a change in aggregate
productivity leading to a change in the reservation productivity. When Ri(z) < Ri(z

′), the
number of obsolete jobs depends on job creations over the past. Obviously, if Ri(z) > Ri(z

′),
these jobs do not exist. (second term of the first line),

• the age-i employed workers who lose their jobs due to a separation, which can result from
an exogenous reason with a probability se and from endogenous decisions with a probability
(1− se)λiG(Ri(z

′)) (first term of the second line),

• and new participants (last term of the second line).

Due to aging for those unemployed of age-i, there is a number of unemployed aged age-i − 1 who
age without finding a job (the last lines of (30)). Note that unemployment dynamics are a function
of ni(z, Ri(z

′)) and ni−1(z,Ri(z
′)), which are themselves function of past values of unemployment.

This underlines the interdependence between age-i unemployment stock and unemployment level at
previous age i− 1. Average unemployment rate is: urt =

∑T
i=1 ui,t.
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E.4.3 Transition rates

The job finding rate (JFR) and the job separation rate (JSR) are respectively:

JFRi(z) =
ei(z)p(θi(z))(1−G(Ri(z

′))
[
πiu

r
i (z) + (1− πi−1)mi−1

mi
uri−1(z)

]
uri (z)

JSRi(z) =
(1− se)(1− λi)

[
πin

r
i (z,Ri(z

′)) + (1− πi−1)mi−1

mi
nri−1(z,Ri(z

′))
]

nri (z, 1)

+
[se + (1− se)λiG(Ri(z

′))]
[
πi(1− uri (z)) + (1− πi−1)mi−1

mi
(1− uri−1(z))

]
nri (z, 1)

In the basic infinite horizon model, we have πi = 1, ∀i, mi = 1, and ni(z,Ri(z
′)) = ni−1(z,Ri(z

′)) = 0
leading to JFR(z) = e(z)p(θ(z))(1 − G(R(z′)) and JSR(z) = se + (1 − se)λiG(R(z′)). These
definitions of worker flows have an empirical counterpart and are used by Fujita & Ramey (2012)
to test the ability of the MP model to match labor market features. In the data, it is only possible
to detect the worker’s age before a labor market transition. Thus, we compute the transition rate
conditionally on being of a given age prior to the labor market transition. In this case, all workers
have “the same” age in our measure of the transition rates by age. The counterparts in the model
are:

JFRi(z) = ei(z)p(θi(z))[1−G(Ri(z
′))]

JSRi(z) =
(1− se)(1− λi)nri (z, Ri(z

′)) + [se + (1− se)λiG(Ri(z
′))]nri (z, 1)

nri (z, 1)

where nri (z, 1) = 1− uri (z). We use this usual approximation of the worker flows per age in order to
measure the ability of the theory to explain the observed data, computed using the same formula.

E.5 The derivation of the model elasticity to the business cycle

In order to decompose the impact of the aggregate productivity shock on {θi, ei, Ri}, we consider the
following system:

(JC)


c

q(θi(z))
= βπiJi(z)

Ji(z) = zhiX(Ri(z))− wi(z) + (1− γi)[(1−G(Ri(z)))Λi(z) + Γi(z)]
wi(z) = γizhiX(Ri(z)) + (1− γi) (bhi + Σi(z)) (1−G(Ri(z)))

(JD)

{
zhiRi(z) = wi(z, Ri(z))− (1− γi)[Λi(z) + Γi(z, Ri(z))]

wi(z, Ri(z)) = γizhiRi(z) + (1− γi) (bhi + Σi(z))

where Ji(z) =
∫ 1

Ri(z)
Ji(z, x)dG(x), wi(z) =

∫ 1

Ri(z)
wi(z, x)dG(x), X(Ri(z)) =

∫ 1

Ri(z)
xdG(x) and

Γi(z) =
∫ 1

Ri(z)
Γi(z, x)dG(x). The decision rule on θ leads to p(θi(z))

∫ 1

Ri(z)
Si(z, x)dG(x) = 1

(1−γi)βπi cθi(z).
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The decision rule on e leads to φ′(ei(z)) = γi
1−γi cθi(z). Using the functional form, we obtain

ei(z)1+φ

1 + φ
=

1

1 + φ

γi
1− γi

cei(z)θi(z)⇒ êi(z) =
1

φ
θ̂i(z)

Given the solution for the surplus (see appendix E.1), we have Si(z, ε) = Ωiz(ε − Ri(z)), implying
Si(z) = ΩizI(Ri(z)), where I(Ri(z)) =

∫ 1

Ri(z)
(1 − G(x))dx, and thus Ŝi(z) = ẑ − εI|RR̂i(z), where

εI|R =
∣∣ I′R
I

∣∣. Finally, given the free entry condition, the FOC with respect to e and the solution for
the surplus, the implied solution for Σi(z), Λi(z), and Γri (z), are

Σi(z) = c

[
γi

1− γi
φ

1 + φ
ei(z)θi(z) +

1− πi
πi+1

γi+1

1− γi+1

ei+1(z)θi+1(z)

]
(31)

Λi(z) = (1− se)c
[

λi
1− γi

θi(z)η +
λi+1

1− γi+1

1− πi
πi+1

θi+1(z)η
]

(32)

Γri (z) = β(1− se)(1− πi)(1− λi+1)Ωi+1z(Ri(z)−Ri+1(z)) (33)

Hence, log-linear approximation of equilibrium consists of the approximation of (JC)−(JD) systems.
For the (JC) curve, we have:

(JC)


θ̂i = 1

1−η Ĵi

Ĵi = zhiX(Ri)
zhiX(Ri(z))−wi(z) ẑ −

wi
zhiX(Ri(z))−wi(z)ŵi −RiG

′(Ri)
zhiRi+(1−γi)Λi

zhiX(Ri(z))−wi(z)R̂i

ŵi = γi
zhiX(Ri)

wi
ẑ + (1− γi)Σi(1−G(Ri))

wi
Σ̂i −RiG

′(Ri)
w(Ri)
wi

R̂i

Using the approximation 1−πi
πi+1

→ 0 that allows us to obtain Λi(z) = β(1 − se)πiλi Ji(z)1−γi , leading to
Ji(z) = zhie(Ri(z))−wi(z)

1−β(1−se)πiλi
1−(1−λi)G(Ri(z))

1−λi

and Λ̂i = Ĵi, we deduce:

Ĵi =
zhiX(Ri(z))

zhiX(Ri(z))− (bhi + Σi)(1−G(Ri(z)))
ẑ − Σi(1−G(Ri(z)))

zhiX(Ri(z))− (bhi + Σi)(1−G(Ri(z)))
Σ̂i (34)

Hence, Log-linear approximation of the (JD) system is given by:

(JD)

{
R̂i = −ẑ + wi(Ri)

bhi+Σi
ŵri −

(1−γi)Λi
bhi+Σi

Λ̂i − (1−γi)Γi
bhi+Σi

Γ̂ri
ŵri = γ zhiRi

wi(Ri)
(ẑ + R̂i) + (1− γi) Σi

wi(Ri)
Σ̂i

where Γri (z,Ri(z)) = β(1− se)(1−πi)(1−λi+1)Si+1(z,Ri(z)), leading to Γ̂ri ≈ R̂i, given the equation
of the surplus. The (JD) system then leads to

R̂i = − bhi + Σi

bhi + Σi + Γi
ẑ +

Σi

bhi + Σi + Γi
Σ̂i −

Λi

bhi + Σi + Γi
Λ̂i

Given that Log-linear approximations of the free entry condition and FOC with respect to e lead to
Σ̂i ≈ 1+φ

φ
θ̂i and Λ̂i ≈ ηθ̂i respectively, we deduce that Σ̂i > Λ̂i.
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Using the free-entry condition c
q(θi)

= (1−γi)βπiŜi, which leads to ηθ̂i ≈ Ŝi⇔ θ̂i ≈ 1
η

[
ẑ − εI|RR̂i(z)

]
,

the FOC on the search effort, which leads to êi(z) = 1
φ
θ̂i(z), the Log-approximation of the "search

value" Σ̂i ≈ 1+φ
φ
θ̂i and the one of the "labor hoarding value Λ̂i ≈ ηθ̂i, we deduce from the JD system

R̂i ≈ − b+Σi−Λi−Γi
b+Σi−Λi

ẑ +
Σi

1+φ
φ
−Λiη

b+Σi−Λi
θ̂i, under the assumption that when 1−πi

πi+1
→ 0, we also have Γi → 0.

Hence, we find the system of equations (35), (36) and (37).

The log-linear approximation of the equilibrium (Definition 1) is given by:

R̂i ≈ −Miẑ (35)

θ̂i ≈
1

η

[
1 + εI|RMi

]
ẑ (36)

êi ≈
1

φ

1

η

[
1 + εI|RMi

]
ẑ (37)

where εI|R =
∣∣ I′R
I

∣∣, with I(R) =
∫ 1

R
(1−G(x))dx andMi =

bhi+Σi(1− 1+φ
φ

1
η )

bhi+Σi(1+ 1+φ
φ

1
η
εI|R)−Λi(1+εI|R)

.

Proposition 11. If the restrictions in Propositions 9 and 10 are satisfied, volatilities of transition
rates are age-increasing, which is consistent with the data.

Proof. If the restrictions in Proposition 10 is satisfied, implying that Σi > Σi+1 and Σi > Λi, ∀i, and
given that ∂Mi

∂Σi
< 0 for any xi ∈ (0; 1) such that Λi = xiΣi, we conclude that R̂i+1 < R̂i. The same

arguments apply for θ̂i+1 > θ̂i and êi+1 > êi using equations (36) and (37). The age profile of worker
flows are given by ĴFRi ≈ êi + (1 − η)θ̂i − G(Ri)

1−G(Ri)
εG|RR̂i and ĴSRi ≈ (1−se)λiG(Ri)

se+(1−se)λiG(Ri)
εG|RR̂i, where

εG|R denotes the elasticity of function G with respect to R. Equations (35), (36), and (37) lead to
ĴFRi ≈

[
1+φ(1−η)

φη

(
1 + εI|RMi

)
+ G(Ri)

1−G(Ri)
εG|RMi

]
ẑ and ĴSRi ≈ − (1−se)λiG(Ri)

se+(1−se)λiG(Ri)
εG|RMiẑ. Given

that the restrictions in Proposition 10 implies thatMi increases with worker age because Σi > Σi+1,
Σi > Λi, and ∂Mi

∂Σi
< 0 ∀i, we deduce that ĴSRi < ĴSRi+1. For the dynamics of the finding rates,

we have:

ĴFRi+1 − ĴFRi =


(

1+φ(1−η)
φη εI|R + G(Ri)

1−G(Ri)
εG|R

)
(Mi+1 −Mi)

−
∫Ri
Ri+1

dG(x)

[1−G(Ri+1)][1−G(Ri)]
εG|RMi+1

 ẑ
Using the restrictions in Proposition 9,Mi+1 −Mi > 0 dominates

∫ Ri
Ri+1

dG(x) > 0.

Proposition 11 shows that the restrictions for which the model can reproduce the shape of worker
transitions per age at the steady state ensure that the age-pattern of their volatility is also matched.

F Numerical algorithm

In order to solve the model, we extend Fujita & Ramey (2012)’s algorithm along 2 dimensions.
First, we take into account endogenous search effort, which was not included in Fujita & Ramey
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(2012)’s paper. Secondly, we include life-cycle features (while Fujita & Ramey (2012) look at an
infinitely-lived representative agent).

The model has three exogenous state variables: worker’s age i, match-specific productivity ε and
aggregate productivity z. For the grid of the match-specific productivity ε, we do not follow Fujita &
Ramey (2012): its highest value xh is set to sufficient large value to generate mean match productivity
of 1, given that G(ε) is approximated by a discrete distribution with support X = {x1, ..., xM},
satisfying x1 = 1/M , xm − xm−1 = xM/M . The associated probabilities {g1, ..., gM} are gm =
g(xm)/M for m = 1, ...,M − 1, where g(x) is the Log-normal density, and gM = 1 −

∑M−1
i=1 gi.

For the aggregate shock, we also follow Fujita & Ramey (2012) in order to represent the process
zt as a Markov chain with a state space Z = {z1, ..., zI}. The transition matrix of this process
is Πz = [πzij], where πzij = Pr(zt+1 = zj|zt = zi). We then form two transition matrices: first,
the matrix Πz,ε = [πz,εij ] where πz,mij = Pr(zt+1 = zj|zt = zi)gm, which gives the joint probability
when both aggregate and match-specific shocks can change simultaneously, and second, the matrix
Πz = [πzij], where πzij = Pr(zt+1 = zj|zt = zi)Im, which gives the probability when only aggregate
shock can change, for each level of match-specific productivity.

Solving recursively, starting from the oldest worker OT . Let SOT the vector
[S(x1, z1), · · · , S(xM , z1), · · · , S(x1, zI), · · · , S(xM , zI)], and R be the vector Z

⊗
X. Then, for an

initial guess for eOT (z) and θOT (z), we find the fixed point of

SOT = max
{
R− z + πOTβ

[
λOTΠz,εSOT + (1− λOT )ΠzSOT − Πe,θ,OT

z,ε SOT
]

; 0
}

where Πe,θ,OT
z,ε SOT is deduced from the definition of the opposite of the search value, which is φ(eOT )−

γOT eOT p(θOT )πOTβΠz,εSOT . At each iteration, we use the FOC with respect to e to substitute φ(eOT )
by 1

1+φ
γOT eOT p(θOT )πOTβΠz,εSOT ≡ Πe,θ,OT

z,ε SOT . When convergence criteria are satisfied, we obtain
the decision rules θ?OT (z), e?OT (z) and R?

OT
(z), and the optimal value for the surplus S?OT (x, z), ∀z

and ∀x.

Working backward, by looking at worker aged OT−1. For i = OT−1, we solve the same
problem, except that we integrate the solution for the age i = OT in the agents’ expectations. Then,
we find the fixed point of

SOT−1
= max

{
R− z + πOT−1

β
[
λOT−1

Πz,εSOT−1
+ (1− λOT−1

)ΠzSOT−1
− Π

e,θ,OT−1
z,ε SOT−1

]
(1− πOT−1

)β
[
λOTΠz,εS?OT + (1− λOT )ΠzS?OT − Πe?,θ?,OT

z,ε S?OT
] ; 0

}

which gives, when the convergence criteria are satisfied, {θ?OT−1
(z), e?OT−1

(z), R?
OT−1

(z)}, and S?OT−1
(x, z),

∀z and ∀x.

Working backward. We repeat the procedure until i = Y . Given this complete set of decision
rules, we can simulate the Markov chain for JFR and JSR and get the theoretical distribution of
the employment per age, using equations (2), (4) and (3).
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