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Technological changes and population growth:
the role of land in England

Abstract

This paper emphasizes the role of land and technological progress in eco-
nomic and population growth. The model is calibrated using historical data
on England concerning both economic growth rate and the factor shares
(land, capital, and labor) in total income, as well as mortality tables. It is
able to reproduce the dynamics of population since 1760. Moreover, it is pos-
sible to disentangle the relative effect of technical changes and mortality fall
on the evolution of population. We conduct a counterfactual analysis elimi-
nating successively the increase in life expectancy and the technological bias.
With no increase in life expectancy, population would have been respectively
10% and 30% lower in 1910 and in the long run. The figures would have
been respectively 40% and 60% lower, with no bias in the technical progress.
Finally, population would have been 45% smaller in 1910 and 70% smaller in
the long run, neutralizing both the effect of life expectancy and technological
bias. So the major part of population increase is due to the technological bias
evolution between land and capital.

Keywords: endogenous fertility, land.
JEL Classification: D9, J1, O11, R21.

1 Introduction

During the industrial revolution, England has experienced a significant in-
crease in total population, associated with a decrease in mortality. The out-
standing growth rate was driven by a technical progress biased in favor of
capital that generated an unbalanced growth process. The value added pro-
duced by capital increased dramatically with respect to the one produced by
land (see Allen, 2009). At the same time, the expected life at birth rose and
infant mortality decreased (see Cervellati and Sunde, 2005, and Maddison,
2013).

In this paper, we build a model able to reproduce the actual data on
population since 1760. This model incorporates capital, land, and endoge-
nous fertility. Two main mechanisms will determine population dynamics:
for households, the trade-off between housing and fertility; for firms, the
trade-off between land and physical capital as production factors. Moreover,
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two external forces will drive the dynamics of capital and population: the
capital biased technical progress and mortality rates. The model is able to
mimic the historical evolution of population. Moreover, it allows to make
a counterfactual analysis, and to disentangle the relative effect of technical
changes and mortality fall on population dynamics.

Many articles have tried to provide explanations of the historical dynam-
ics of population, growth, and industrialization. Kremer (1993) is interested
in the empirical relation between technology growth and population. Aggre-
gate relations are assumed without microeconomic foundations; technological
progress depends on population size and technology limits population growth.
Combining these assumptions leads to the prediction that the growth rate
and the size of population are positively related. Galor and Weil (2000) pro-
pose a unified growth theory to explain the qualitative features of the demo-
graphic evolution. The main mechanisms are the quantity quality trade-off
in fertility (as described in Doepke, 2015) and a human capital accumula-
tion technology that depends negatively on the growth rate of the economy.
Kongsamut et al. (2001) propose a theoretical explanation of the unbalanced
growth of different sectors (agriculture, manufacturing, and services), using
non constant consumption elasticities that vary with the level of consump-
tion in each sector. Hansen and Prescott (2002) replicate fertility behaviors
during the industrialization process, driven by the substitution of capital to
land in production, which is induced by biased technical progress. Fertility
behaviors are assumed to follow an ad hoc function of consumption. Cervel-
lati and Sunde (2005) provide an explanation of the development process
that is based on the interplay between human capital formation, technologi-
cal progress, and life expectancy, all endogenous in the model. But, fertility
is not taken into account, neither land. Leukhina and Turnovsky (2016) in-
vestigate the roles of technology and trade in the structural transformation
from farming to manufacturing of England. Population is taken as exogenous
in their model.

All these contributions investigate the role of some particular variables in
the development process. Our contribution is to emphasize the role of land,
life expectancy, and biased technical progress in the population growth. We
adopt a perspective close to Hansen and Prescott (2002), with three improve-
ments: a microfoundation of the fertility behavior, an explicit land market
allocation, and a confrontation of the model with historical data. We build
on Loupias and Wigniolle (2013) which have developed a theoretical model
on the same topic. The present paper adopts a very different perspective. Its
aim is to reproduce historical data of population in England. To do that, we
simplify the technology in taking the technical progress as exogenous. The
model is fully calibrated using historical data and succeeds in reproducing
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the historical population growth.
The present paper develops an overlapping generations model in which

fertility is endogenous. The utility of the parents is a function of good con-
sumptions, of the number of their children, and of the consumption of a
fixed asset: land. Under the form of housing services, land provides utility
to households. Moreover, as the demand for housing services depends on
the number of children, land is also related to fertility behaviors. Each child
implies a financial cost and induces a congestion effect on the utility of land.
These assumptions introduce a trade-off between housing and fertility.

To complement our model we introduce two types of survival probabilities:
a child survival rate and an adult survival rate. As shown in Aghion et al.
(2011), improvement in life expectancy has a significant positive impact on
per capita GDP growth.

In our analysis, land can be also used as a production factor by firms.
Production uses three factors: labor, capital, and land. Capital and land are
both affected by a specific technical progress term. These two technical pro-
gresses generate a GDP growth at aggregate level and a shift in the relative
income shares of capital and land in GDP.

The model is calibrated using historical data for mortality rates, GDP
growth rates, and the shares of capital and land incomes in GDP.

The model is able to reproduce the dynamics of population since 1760.
Moreover, it is possible to disentangle the relative effect of technical changes
and mortality fall on the evolution of population. We conduct a counter-
factual analysis eliminating successively the increase in life expectancy and
the technological bias. With no increase in life expectancy, population would
have been respectively 10% and 30% lower in 1910 and in the long run. The
figures would have been respectively 40% and 60% lower, with no bias in
the technical progress. Finally, population would have been 45% smaller in
1910 and 70% smaller in the long run, neutralizing both the effect of life
expectancy and technological bias. According to our model, the major part
of population increase is due to the technological bias evolution between land
and capital.

The dynamics of the model is driven by two mechanisms.
First, land and capital are assumed to be substitutable. An increase in

technical progress in favor of capital allows firms to substitute capital to
land, which leaves more land services available for households. Since cost of
child rearing depends partly on land rent rates, more supply of land services
for households decreases the effective cost of child rearing. This leads to an
increase in fertility, which coupled with falling mortality, leads to a higher
population growth rate.

Secondly, as utility depends on land with a congestion effect, the model
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generates a long run equilibrium value for population density. Starting with
a population density lower than the long run value leads to a higher fertility
rate in the short run.

These two mechanisms add up and drive an increase in population.
In the long run, the trade-off between housing and fertility for the house-

holds leads, via the congestion effect, to a constant population level. Remov-
ing the congestion effect assumption would lead to a constant population
growth rate, but not to a constant population level. The actual level of pop-
ulation in England in the long run is assumed to stabilize at 58 millions of
inhabitants. The model is calibrated to match this data and to reproduce
the historical population dynamics. Thanks to our calibration, the model is
able to reproduce population dynamics. Nevertheless, we have neglected a
lot of other possible mechanisms that have been studied in the literature, as
the quantity quality trade-off or the introduction of an old age insurance.

Section Two presents the model. Section Three analyzes the dynam-
ics of the intertemporal equilibrium. Section Four describes the calibration.
Section Five compares simulation results to the stylized facts and gives coun-
terfactual analysis. Section Six concludes and section Seven gives references.
A last section of appendix provides the numerical results obtained through
counterfactual analysis.

2 The Model

We develop a two-period overlapping generations model à la Diamond (1965)
where fertility is endogenous. The life cycle of agents consists of one working
period and one retirement period. Childhood implicitly exists as an initial
period of life during which agents have a probability η to survive. The number
of units of labor is equal to the number of young people and thus determined
by households’ fertility decisions in the previous period. In every period the
economy produces a single homogenous good, using land, labor, and capital
as inputs. Production benefits from two biased technical progress in favor of
capital and land. The single good is used both for consumption and capital
accumulation. Land is a fixed factor that includes agricultural land, business
building, and housing. Services of land may be used both by firms as input
in the production process and by households as housing. For the sake of
simplicity, its supply is assumed to be constant and exogenous.

The first subsection is devoted to the firm, the second to the households,
and the last one to market equilibrium.
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2.1 The firm

Production occurs according to a constant-returns-to-scale technology that
is subject to technological progress. The output produced at time t, Yt, is:

Yt =

[
λ(AStKt)

1− 1
ε + (1− λ) (AMtXt)

1− 1
ε

] εα
ε−1

L1−α
t (1)

with 0 < α < 1, 0 < λ < 1, ε > 1, where Kt, Lt, and Xt are the quantities
of capital, labor, and land used in production at time t. ASt > 0 is a
capital augmenting technical progress and AMt a land augmenting technical
progress.

The aggregate formulation of the production function (1) can be inter-
preted as a reduced form of a two-sector model, such as Hansen and Prescott
(2002), Galor et alii (2009) or Matsuyama (1992). To show this, let us as-
sume a sector one more intensive in land:

F 1(L1
t , Xt) = [AMtXt]

α (L1
t

)1−α

and a sector two more intensive in capital:

F 2(AtKt, L
2
t ) = (AStKt)

α (L2
t

)1−α

where L1
t is the quantity of labor in sector one and L2

t the quantity of labor
in sector two. The final good is a CES aggregation of the goods produced by
the two sectors:

Yt =

{
a
[
(AStKt)

α (L2
t

)1−α
] δ−1

δ
+ b
[
[AMtXt]

α (L1
t

)1−α
] δ−1

δ

} δ
δ−1

where a and b are positive coefficients. The elasticity of substitution δ is
assumed to be higher than 1. The case considered in Hansen and Prescott
(2002) is the limit case δ → +∞. Labor is shared between the two sectors:

Lt = L1
t + L2

t

In a competitive economy, labor is allocated optimally among the two sec-
tors, and it is possible to derive an aggregate production given by (1) for
appropriate values of δ, a and b. See Appendix 1 for more details.

The capital is fully depreciated in one period. The number of units of
labor is determined by households’ decisions in the preceding period regard-
ing the number of their children. Households have property rights over land.
The land used as an input by the firm is rented from households. The rent
rate is taken as given by the firm.
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The firm maximizes its profit, taking the wage rate wt, the interest rate
(Rt − 1), and the rent rate πt as given.

First order conditions for the optimization problem are derived below.
All markets are perfectly competitive. On the labor market the quantity of
labor used in production Lt is equal to Nt the number of young households at
period t. Defining, kt ≡ Kt

Nt
and xt ≡ Xt

Nt
, the competitive wage, the interest

factor, and the rent rate are:

wt = (1− α)

[
λ(AStkt)

1− 1
ε + (1− λ) (AMtxt)

1− 1
ε

] εα
ε−1

(2)

Rt = αλ(ASt)
1− 1

εk
− 1
ε

t

[
λ(AStkt)

1− 1
ε + (1− λ) (AMtxt)

1− 1
ε

] εα
ε−1
−1

(3)

πt = α(1− λ)(AMt)
1− 1

εx
− 1
ε

t

[
λ(AStkt)

1− 1
ε + (1− λ) (AMtxt)

1− 1
ε

] εα
ε−1
−1

(4)

2.2 Households

Households are behaving as in Loupias and Wigniolle (2013). In each period t
a generation consists of Nt identical adult individuals. Members of generation
t live with probability pt for two periods and die with probability (1− pt) at
the end of the first period. pt is taken as exogenous, as it will be calibrated
following historical data. Generation t agents work in the first period and
are retired during the second one. Members of generation t choose at date t
consumption while young (ct) and old (dt+1), as well as the number of their
children per adult (mt), and their use of land (vt). Only a fraction ηt of
the children mt survives. Individuals of generation t implicitly live for three
periods: childhood (in t− 1), young adult (in t), and old adult (in t+ 1).

The preferences of members of generation t are represented by the utility
function:

U(ct, dt+1,mt, vt) = Γ1 ln ct+ptΓ2 ln dt+1 + Γ3 ln ηtmt+ Γ4 ln(vt− ξηtmt) (5)

where ξ is a positive parameter and Γ1 + Γ2 + Γ3 + Γ4 = 1.

Households maximize their expected utility taking into account the prob-
ability of reaching the second period. One can define ζt ≡ vt − ξηtmt that
measures the services of land per adult. It is increasing with the total amount
of land per adult and decreasing with the number of surviving children per
adult. For tractability, it is assumed that households value the land services
only when young adults.
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Since Dusansky and Wilson (1993), it is a standard assumption to con-
sider that land services are an argument of the utility function. What is
new here is the congestion effect due to children introduced by Loupias and
Wigniolle (2013).

Land plays two roles for households. The first role is housing for which
they pay the rent πtvt when young adult. Secondly, land is a portfolio asset
that is bought in period t, that yields rents in t+ 1, and that is sold in t+ 1
to the next generation. In t+ 1, rents are paid both by households and firms
to owners.

Each newborn child entails a rearing cost of φ1wt. Moreover, for each
surviving child, an additional cost of φ2wt is borne: the costs of rearing
children are proportional to the standard of living of their parents. Through
the paper φ1 and φ2 are assumed to be constant parameters. The total cost
of children in consumption good (housing not included) is thus:

(φ1 + φ2ηt)wtmt

The number of surviving children per adult is m′t ≡ ηtmt. The corre-
sponding cost is φtwtm

′
t with:

φt =
φ1

ηt
+ φ2

The agent saves an amount st that is shared between two assets: produc-
tive capital and land. As agents can arbitrate between the two assets, the
non arbitrage condition implies that land offers the same return as capital.
The gross return on capital is Rt+1. One unit of land has a price qt in period
t and is resold qt+1 in t+ 1. Moreover, it allows to earn a rent πt+1. The non
arbitrage condition is written as follows:

Rt+1 =
qt+1 + πt+1

qt
(6)

Members of generation t maximize their intertemporal utility function
under the following budget constraints:

ct + st + φtwtm
′
t + πtvt = wt (7)

dt+1 =
Rt+1

pt
st (8)

The actual return on savings is ρt+1 ≡ Rt+1

pt
as the savings of the dead

agents are redistributed to the surviving ones. This is equivalent to assume
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the existence of a perfect annuity market. Note that using ζt (the services of
land per adult), one can easily make clear the real cost of one surviving child
(φtwt+ξπt) which can be broken down as the sum of the cost in consumption
good and the cost in land:

ct + st + (φtwt + ξπt)m
′
t + πtζt = wt (9)

The intertemporal budget constraint may be rewritten as:

ct +
dt+1

ρt+1

+ (φtwt + ξπt)m
′
t + πtζt = wt (10)

In macroeconomics models with representative agents, it is usual to con-
sider that fertility and cost of children are continuous variables, even if at
a microeconomic level, the number of children is discrete and the cost of
children may jump because of indivisibilities. The assumption of continuous
variables is a simplifying assumption that may be viewed as a consequence
of aggregation.

In the model, the total cost of children (φtwt + ξπt)m
′
t is linear in the

number of surviving children. The cost per child φtwt + ξπt is the sum of
the cost of land renting ξπt and the rearing cost φtwt which depends on
the standard of living. The assumption of linear costs with respect to the
number of children has been used in some macroeconomic models (see for
instance Eckstein et alii 1988, Becker et alii 1990, Galor and Weil 2000, de la
Croix and Doepke 2003). It is a simplification with respect to microeconomic
analysis that points out the possible economies of scale. In Appendix 2, we
show that it is possible to add non linearities in the cost functions related
to economies of scale. This more general framework would require a change
in the calibration of the model, but the main qualitative properties would
remain.

First order conditions for the optimization problem lead to the following
solutions:

ct = γ1,twt (11)

st = γ2,twt (12)

dt+1 = γ2,twtρt+1 (13)

m′t =
γ3,twt

(φtwt + ξπt)
(14)

vt =
ξγ3,twt

(φtwt + ξπt)
+ γ4,t

wt
πt

(15)
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with

γ1,t =
Γ1

Γ1 + ptΓ2 + Γ3 + Γ4

(16)

γ2,t =
ptΓ2

Γ1 + ptΓ2 + Γ3 + Γ4

(17)

γ3,t =
Γ3

Γ1 + ptΓ2 + Γ3 + Γ4

(18)

γ4,t =
Γ4

Γ1 + ptΓ2 + Γ3 + Γ4

(19)

As shown in equations (11) to (19), a rise in life expectancy (pt) increases
γ2,t, and savings st. It decreases first period consumption ct, fertility m′t, and
demand for land vt.

The number of young households at date t+ 1 is by definition equal to:

Nt+1 ≡ m′tNt (20)

Total population at date t can be written as:

N tot
t = pt−1Nt−1 +Nt +Nt+1 (21)

Thus, the survival probability at old age p has a direct effect on total
population (via the number of old individuals) and indirect effects via m′t−1

and m′t as γ3,t−1 and γ3,t are respectively depending on pt−1 and pt.
From now on, the lower case designates the upper case variable divided

by the number of young individuals. For instance, xt is defined as X
Nt

the
quantity of land available per young living agent. The evolution of land per
young alive can thus be described by the following equation:

xt+1 =
xt
m′t

(22)

2.3 Market equilibrium

Land has two prices: the rent rate πt and the price for sale qt.
1 There are

thus two markets: one for land services and one for ownership. It is the rent

1These two prices are not similar to the two prices for durable goods as in M. Morishima
(1995) : i) land is not produced: ii) contrarily to capital, there are no vintage effects on
land; iii) the existence of the two markets come from the two uses of land (land services
- either for firms as production factor or for households as housing-, and allocation of
savings).
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rate πt that determines the allocation of rented land between firms (xt) and
consumers (vt). The equilibrium on the rent market expressed per head of
young household is:

vt + xt = xt (23)

The price of land for sale qt depends on the global equilibrium on savings
market. Household savings have to be split into physical capital and land.

γ2,twt = m′tkt+1 + qtxt (24)

where kt+1 stands for the capital per young household at date t + 1. The
amount of physical capital per young household available in the economy in
t+ 1 is thus depending on the value of land qtxt.

Agents are indifferent in investing in capital or land as long as the non
arbitrage condition in portfolios holds (6).

3 Dynamics

In this section, we characterize the dynamics and transform the model in
a way that makes it comparable to historical data. The first subsection de-
fines the intertemporal equilibrium. In the second subsection variables are
deflated with respect to technological progress parameters. The third sub-
section replaces some unobservable variables by observable ones, and the
fourth conducts a theoretical analysis of the dynamics.

3.1 Intertemporal equilibrium

The dynamics of the economy is characterized by the set of the nine previous
equations:

- (2), (3), and (4), the equilibrium prices of production factors wt, Rt, πt,
- (14), and (15), the optimal behavior of households for fertility m′t, and

housing vt,
- (22), the evolution of land per young alive, xt,
- (23), the equilibrium allocation of rented land between firms and house-

holds,
- (24), the equilibrium allocation of savings between land and capital,
- (6), the non arbitrage condition between the yields of land and capital.
These equations determine the nine endogenous variables kt, xt, vt, m

′
t,

Rt, πt, wt, qt, and xt.
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3.2 Deflated model

Variables are deflated in order to be stationary in the long run.
We define Gt and At as follows:

Gt =
ASt+1

ASt

At =
AMt

(ASt)
1/(1−α)

Gt is the growth factor of the capital productivity level andAt is a measure
of the technological bias between the capital and the land factor. Defining
the deflated variables k̃t, π̃t, w̃t, and q̃t, as:

h̃t =
ht

(ASt)
α/(1−α)

we rewrite the model of the previous section as a system of nine equations
with nine endogenous variables (k̃t, xt, vt, m

′
t, Rt, π̃t, w̃t, q̃t, and xt) and two

exogenous variables (Gt and At).

Substituting in the model of the previous section, one has:

w̃t = (1− α)

[
λ(k̃t)

1− 1
ε + (1− λ) (Atxt)

1− 1
ε

] εα
ε−1

(25)

Rt = αλk̃
− 1
ε

t

[
λ(k̃t)

1− 1
ε + (1− λ) (Atxt)

1− 1
ε

] εα
ε−1
−1

(26)

π̃t = α(1− λ)(At)
1− 1

εx
− 1
ε

t

[
λ(k̃t)

1− 1
ε + (1− λ) (Atxt)

1− 1
ε

] εα
ε−1
−1

(27)

m′t =
γ3,tw̃t

(φtw̃t + ξπ̃t)
(28)

vt =
ξγ3,tw̃t

(φtw̃t + ξπ̃t)
+ γ4,t

w̃t
π̃t

(29)

xt+1 =
xt
m′t

(30)

vt + xt = xt (31)
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γ2,tw̃t = m′tk̃t+1G
α/(1−α)

t + q̃txt (32)

Rt+1 =
q̃t+1 + π̃t+1

q̃t
G
α/(1−α)

t (33)

So we have a system of nine equations with nine endogenous variables
(k̃t, xt, vt, m

′
t, Rt, π̃t, w̃t, q̃t, and xt) and two exogenous variables (Gt and

At).
Unfortunately, Gt and At are not directly observable. In the next subsec-

tion we find a way to replace Gt and At by observable exogenous variables.

3.3 Capital share and growth rate

From the theoretical model we can compute the three factor shares in pro-
duction:

βXt =
π̃txt

w̃t +Rtk̃t + π̃txt

βKt =
Rtk̃t

w̃t +Rtk̃t + π̃txt

βWt =
w̃t

w̃t +Rtk̃t + π̃txt

We define Zt as the growth factor of production:

Zt =
Yt+1

Yt

Our aim is to calibrate the model using historical data. As Gt (the growth
factor of the capital productivity level) and At (a measure of the technological
bias) are unobservable, we replace them in the equations of the model by Zt
and βKt , which are observable in the data.

Computations are given in appendix 3. Two key equations allow under-
standing how it is possible to identify At and Gt from Zt, β

K
t , and the other

endogenous variables of the model:

At =
λk̃t
xt

(
α

βKt
− 1

) ε
ε−1
(

1

1− λ

) ε
ε−1

(34)

Gt =

(
Zt
m′t

) (1−α)
α
(
βKt+1

βKt

) ε(1−α)
ε−1

(
k̃t

k̃t+1

)(1−α)

(35)
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(34) shows the relation between technical bias At and the share of capital
income in total production βKt . When At becomes close to zero, the bias in
favor of capital is huge, the share of capital income in total production βKt
becomes close to α, and the share of land income in total production βXt
close to zero.

(35) shows that the technical progress on capital Gt is the main determi-
nant of production growth Zt.

Using historical data for βKt and Zt, the model allows to recover the values
for At and Gt through equations (34) and (35). In other words, these two
observable variables βKt and Zt are substituted to the two exogenous variables
At and Gt, as they are functions of At and Gt and the three endogenous
variables m′t, k̃t, and xt.

In the end, the dynamics of the economy can be written as:

w̃t = (1− α)k̃αt

[
λα

βKt

] εα
ε−1

(36)

Rt = βKt k̃
α−1
t

[
λα

βKt

] εα
ε−1

(37)

π̃t =
α− βKt
xt

k̃αt

[
λα

βKt

] εα
ε−1

(38)

m′t =
γ3,tw̃t

(φtw̃t + ξπ̃t)
(39)

vt =
ξγ3,tw̃t

(φtw̃t + ξπ̃t)
+ γ4,t

w̃t
π̃t

(40)

xt+1 =
xt
m′t

(41)

xt = vt + xt (42)

γ2,tw̃t = Zt

(
βKt+1

βKt

) εα
ε−1

k̃αt k̃
1−α
t+1 + q̃txt (43)

Rt+1 =
q̃t+1 + π̃t+1

q̃t

Zt
m′t

(
βKt+1

βKt

) εα
ε−1

(
k̃t

k̃t+1

)α

(44)

So we have a system of nine equations with nine endogenous variables
(k̃t, xt, vt, m

′
t, Rt, π̃t, w̃t, q̃t, and xt) and two observable variables βKt and

Zt.
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3.4 Theoretical analysis of the dynamics

The dynamics of the variables xt, vt, m
′
t, and xt can be studied as an au-

tonomous subsystem as:

w̃t
π̃t

=
(1− α)

(α− βKt )
xt

and thus only depends on the quantity of land used by firms xt, and not on
k̃t.

Using this property, equation (57) can be written:

m′t =
γ3,t(1− α)xt

φt(1− α)xt + ξ(α− βKt )
(45)

Equation (58) can be written:

vt =
ξγ3,t(1− α)xt

φt(1− α)xt + ξ(α− βKt )
+
γ4,t(1− α)xt

(α− βKt )

Replacing in (42), we obtain a relation between xt and xt:

xt = xt +
ξγ3,t(1− α)xt

φt(1− α)xt + ξ(α− βKt )
+
γ4,t(1− α)xt

(α− βKt )
(46)

Thus, one can get xt from xt as xt is monotonically increasing in xt.
Finally, equation (41) with (45) determines the dynamics of xt:

xt+1 = xt
φt(1− α)xt + ξ(α− βKt )

γ3,t(1− α)xt
(47)

In the end, the dynamics of Nt does not depend on k̃t due to the homoth-
etic assumptions on the utility and the production functions combined with
a child cost proportional to wages.

Zt has no effect on population. βKt , ηt (via φt), and pt (via γ3,t) are the
exogenous shocks that determine Nt.

Equations (45), (46) and (47) allow to understand how the technological
progress affects fertility and population growth. The bias of technological
progress in favor of capital induces an increase in βKt , which increases the
net fertility factor m′t, all other things being equal. Firms substitute capital
to land, w̃t/π̃t increases, fertility increases as relative cost of land is cheaper
for households. As long as population increases, both xt and xt decrease.
The decrease of the quantity of land per adult used by firms xt leads to
a decrease in fertility m′t. These two antagonistic effects on m′t lead to an
inverse U-shaped evolution of fertility.
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The two equations (43) and (44) determine the dynamics of k̃t and q̃t, with
the prices Rt, w̃t, and π̃t, given by (37), (36), and (38). The other variables,
m′t and xt, have been determined by the autonomous system analyzed above.

Introducing the variable,

χt =
q̃t

k̃αt

the system of the two equations (43) and (44) becomes:

γ2,t(1− α)

[
λα

βKt

] εα
ε−1

= Zt

(
βKt+1

βKt

) εα
ε−1

k̃1−α
t+1 + χtxt (48)

βKt+1k̃
α−1
t+1

[
λα

βKt+1

] εα
ε−1

=
χt+1 +

α−βKt+1

xt+1

[
λα
βKt+1

] εα
ε−1

χt

Zt
m′t

(
βKt+1

βKt

) εα
ε−1

(49)

Eliminating k̃1−α
t+1 between these two equations, an autonomous dynamic

equation in χt is obtained. χt is a forward looking variable determined by the
terminal condition. As χt is determined, equation (48) allows to find k̃t+1.
Thus, k̃0 has no impact on the dynamics, as k̃t+1 does not depend on k̃t.
This is a usual property in endogenous fertility models with Cobb-Douglas
production function and log-linear preferences.

4 Calibration

Subsection 1 is devoted to the value of parameters and exogenous variables
and subsection 2 to the simulation strategy.

4.1 Parameters and exogenous variables

Parameters
The model incorporates ten parameters:

• ε, λ, and α for technology,

• Γ1, Γ2, Γ3, Γ4, and ξ for households’ preferences,

• φ1 and φ2 for child costs.

The parameters used to simulate the dynamics are given in table 1. α is
taken from historical data from the share of labor in GDP (1 − α), see the
next subsection.
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1730 1760 1790 1820 1850 1880 1910 1940 1970 2000
βKt 0.21 0.23 0.25 0.30 0.35 0.40 0.43 0.43 0.44 0.44
Zt - 1.31 1.20 1.66 1.75 1.90 1.72 1.60 1.81 2.02

Table 2: Share of capital incomes and growth

Parameters
Technology λ = 0.5 ε = 10 α = 0.45

Utility Γ1 = 0.35 Γ2 = 0.25 Γ3 = 0.3 Γ4 = 0.1 ξ = 1
Cost of a child φ1 = 0.08 φ2 = 0.07

Table 1: Calibration

Exogenous variables
There are four exogenous variables, taken from historical data:
- ηt and pt for surviving probabilities,
- βKt and Zt for the share of capital in production and the growth factor.
Details on parameters and historical data are given below.

4.1.1 Technology

We recall that the production function is:

Yt =

[
λ(AStKt)

1− 1
ε + (1− λ) (AMtXt)

1− 1
ε

] εα
ε−1

L1−α
t (50)

Parameters ε and λ are taken as ε = 10 and λ = 0.5. We assume a high
substitutability between capital and land. As mentioned previously, our tech-
nology might be viewed as the aggregation of two sectors as in Hansen and
Prescott (2002). In their model, perfect substitutability is assumed (thus
ε→∞). We have chosen a high degree of substitutability (ε = 10), but not
infinite.

The impact of the two technological progresses ASt and AMt is measured
indirectly by Zt and βKt , where Zt is the growth factor and βKt the share
of capital in production. Zt is measured as the England production growth
factor on 30 years for periods between 1730 and 1910, and βKt is the share
of capital incomes in production for England at the same dates.

The share of capital income in production βKt is taken from Allen (2009),
see Figure 1 below.
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Figure 1: Historical factor shares 1770-1913, Source: Allen (2009)

From these data, the share of labor income βWt = 1−α can be considered
as constant over the period and equal to 0.55. Therefore, α = 0.45. The rest
of the income is shared between land βXt and capital βKt . The figure for 1730
is not available, so we have taken βKt = 0.21 assuming that the evolution is
the same between 1730 and 1760 than between 1790 and 1760. The share of
capital income in production βKt is bounded by 0.45 as βKt + βXt = 0.45. As
the share of agricultural land income in GDP for UK is around 1% in 2000
(from the World Bank database), we report 0.44 for 2000. Note that the
data from Allen (2009) about the share of land in income βXt correspond to
the geographical area of England and include neither the rest of the United
Kingdom nor the colonies.

The growth factor Zt reported in the 1760 column is the one from 1730 to
1760, and so on. The figures come from the Historical Statistics of the World
Economy: 1-2006 AD from Maddison (2009). Details at the beginning of the
18th century are inferred from Craft (2004). Data for the growth factor Zt
have been also reported after 1910 from Maddison (2009) for U.K. in order
to be consistent with demographic data (see above).

4.1.2 Preferences and costs

As mentioned above, utility is written as (5):
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U(ct, dt+1,mt, vt) = Γ1 ln ct + ptΓ2 ln dt+1 + Γ3 ln ηtmt + Γ4 ln(vt − ξηtmt)

The parameters are fixed to Γ1 = 0.35, Γ2 = 0.25, Γ3 = 0.3, Γ4 = 0.1,
and ξ = 1. With this choice, the rate of time preference δ is such that
(1 + δ)30 = ptΓ2/Γ1. The rate of time preference δ is thus decreasing from
6.7% per year to 1.3%, thanks to the increase in the surviving probability pt.
Γ3 determines fertility and is chosen to replicate the evolution of population.
Population also crucially depends on φt, and we can find several combinations
of Γ3 and φt able to match data on population growth.

The cost in consumption good of one surviving child is φt =
φ1

ηt
+φ2. We

have chosen φ1 = 0.08 and φ2 = 0.07. The total cost of one surviving child
including housing, expressed as a fraction of time per adult, is:

φt + ξ
πt
wt

In the long run, according to equation (57), as m′t = 1, we get ξ π∞
w∞

=
γ3,∞ − φ∞. Thus the total cost of one surviving child (φ∞ + γ3,∞ − φ∞) per
adult including housing in the long run is γ3,∞ = 0.354 which is in line with
the calculations of Apps and Rees (2001), and Bargain and Donni (2012).
Some sensitivity analysis have shown that what matters for the results is
mainly the relative values of γ3,∞ and φ∞, and not their level.

4.1.3 Demographics

Population for England before 1870 is taken from Wrigley and Schofield
(1989). Other figures are taken from University of Portsmouth (2015). The
figures are reported below. All figures are expressed in millions. Note that
we focus on population of England and not of United Kingdom.

1730 1760 1790 1820 1850 1880 1910 1940 1970 2000
5.5 6.2 7.4 10.4 15.3 24.4 33.6 38.1 43.5 49.1

Table 3: Total population in England (in millions)

We use the surviving probability of young children (from birth to seven
years old included) ηt, and the surviving probability at 50 years old pt.
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1730 1760 1790 1820 1850 1880 1910 1940 1970 2000
ηt 0.64 0.66 0.67 0.68 0.69 0.73 0.83 0.94 0.98 0.99
pt 0.20 0.21 0.23 0.24 0.35 0.33 0.43 0.57 0.78 0.95

Table 4: Surviving probabilities

ηt is computed from the death rates of England and Wales from the
Human Mortality Database (2015) of the University of California (USA)
and the Max Planck Institute for Demographic Research (Germany) that
gives mortality per age from 1841. Figures for previous years are taken from
Maddison (2013) on England.

The surviving probability at 50 years old pt are computed in the following
way. We assume that the childhood period is of 20 years, and that the two
periods of adulthood last both for 30 years. Thus, children born in period t
arrive on the eleventh year of this period. The three stages of life are then
0-20 years, 21-50 years, and 51-80 years. Observed expected life at birth is
taken from Cervellati and Sunde (2005). Theoretical expected life at birth
in our model is equal to (20 years) ηt+ (30 years) ηt+(30 years) ηtpt; this
allow us to compute pt in a way that is consistent with the model. Computed
values are reported in the above table.

4.2 Simulation strategy

Each simulation date t corresponds to an historical year.

Historical dates 1730 1760 1790 1820 1850 1880 1910 1940 1970 2000
Simulation dates 0 1 2 3 4 5 6 7 8 9

Table 5: Model chronology

The model has two state variables (backward looking) xt and k̃t. For k̃t,
the initial condition k̃0 has no impact on the dynamics, as shown in section
3.4, as k̃t+1 does not depend on k̃t. x0 is chosen in order to reproduce the
historical dynamics of population.

Using equations (46) and (47), the limit value of x̄t can be determined:

x∞ =
ξ

(1− α)(γ3,∞ − φ∞)

[
(1− α)(γ3,∞ − φ∞) + (α− βK∞) + γ4,∞(1− α)

]
The limit value of the size of the young adult generation tends to N∞ =

X̄
x∞

. The value of X̄ is chosen such that the limit value of population is 58
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million, where the total population tends to N∞ +N∞ + p∞N∞. Thus,

X̄ = 58
x∞

2 + p∞

The value of x0 is chosen in order that the computed value for population
in our model for date t = 2 fits the observed value in 1790. Indeed, population
at date t = 2 is equal to N2 +N1 +p0N0, thus it is the first computation that
depends only on one initial condition N0.

Total population in dates t = 0 and t = 1 in our model are taken from
historical values. It is consistent with the model as population in t = 0
depends on N−1 and on N−2, and population in t = 1 depends on N0 and on
N−1. Thus, N−1 and N−2 are chosen in order to get the historical values for
population in t = 0 and t = 1.

5 Simulations and stylized facts

This section presents different results obtained through simulations with
Dynare (cf. Adjemian et al., 2011). The central scenario tries to reproduce
historical data. Then, different counterfactual analyses are computed.

The different scenario focus on the period 1760-1910, although graphics
are shown for 1730-2000 for historical data and to the end of the convergence
process for counterfactual analysis. The initial condition in 1730 is due to
the availability of data and allows encompassing the pre-industrial revolution
period. We interpret the results from 1760, since this is the first simulated
point. To avoid the effects of the two world wars, we restrict interpretations
to the period 1760-1910.

Appendix 4 provides all computed data corresponding to the figures for
all subsections.

5.1 The central scenario

The model is able to reproduce the dynamics of population on the period
1760-1910 as shown by Figure 2, where Nhist is the historical value for total
population in England and Ntot model is the value computed from the model.
All figures are expressed in millions. Note that we focus on population of
England and not of United Kingdom.

20



Figure 2: Historical and Computed Total Population for England

Moreover, it is possible to disentangle the relative effect of technical
changes and mortality fall on the evolution of population. We conduct a coun-
terfactual analysis eliminating successively the increase in life expectancy, the
technological bias, and both of them.

5.2 Life expectancy

In this section, we successively neutralize the impact of the increase in
life expectancy at 50 years old and the decrease in child mortality. Re-
sults are presented in Figure 3. Ntot pinitial is the computed total popu-
lation for a surviving probability at 50 years pt that keeps its value of 1730.
Ntot pinitial etatinitial is the computed total population for both the sur-
viving probability of young children ηt and the surviving probability at 50
years pt that keep their values of 1730.
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Figure 3: Counterfactual Analysis With no Improvement in Life Expectancy

With no increase in life expectancy, neither during childhood nor at 50
years old, the population would have been 10% lower in 1910 and 30% lower
in the long run, according to our model.

5.3 Technological Bias

In this section, we neutralize the impact of the technological bias: βKt keeps
its 1730 value.

Figure 4 displays the evolution of the computed population without the
technological bias (Ntot technoinit).
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Figure 4: Counterfactual Analysis with No Technological Bias

The population would have been 40% lower in 1910 with no bias in the
technical progress and 60% lower in the long run.

5.4 Life expectancy and Technological Bias

In this section, we neutralize successively the impact of surviving probabili-
ties, the impact of the technological bias, and both of them. Results are all
depicted in Figure 5 where Ntot technoinit pinitial etainitial stands for total
computed population without any increase in surviving probabilities and no
technological bias.
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Figure 5: Total Decomposition: Life Expectancy, Technological Bias, and
Both

Population would have been 45% smaller in 1910 and 70% smaller in the
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long run, without any technological progress and without life expectancy
increase. This scenario gives the natural evolution of population for the 1730
parameter values.

We observe that the major part of population increase from 1730 is due
to the technological bias evolution between land and capital.

6 Conclusion

In this paper, we reproduce the dynamics of population in England since
1760, using an overlapping generations model with endogenous fertility and
land. The population growth is driven by a bias technological progress and
life expectancy improvement. It is possible to disentangle the relative effect
of technical changes and mortality fall on the evolution of population. We
conduct a counterfactual analysis eliminating successively the increase in life
expectancy and the technological bias. With no increase in life expectancy,
population would have been respectively 10% and 30% lower in 1910 and
in the long run. The figures would have been respectively 40% and 60%
lower, with no bias in the technical progress. Finally, population would have
been 45% smaller in 1910 and 70% smaller in the long run, neutralizing both
the effect of life expectancy and technological bias. So the major part of
population increase is due to the technological bias evolution between land
and capital.
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8 Appendix

8.1 Appendix 1

Along a competitive equilibrium, L1
t and L2

t are allocated optimally in such
a way that total production is maximized. Total production is equal to:

Yt =

{
a
[
(AStKt)

α (L2
t

)1−α
] δ−1

δ
+ b
[
[AMtXt]

α (L1
t

)1−α
] δ−1

δ

} δ
δ−1

Therefore, the optimal allocation of labor results from the program: max
(L1
t ,L

2
t )
a
[
(AStKt)

α (L2
t )

1−α
] δ−1

δ
+ b
[
[AMtXt]

α (L1
t )

1−α
] δ−1

δ

s. t. L1
t + L2

t = Lt

To simplify calculations, the power δ
δ−1

has been removed without any
consequence on the result of the program as δ > 1. The Lagrangian of this
program is

L = a
[
(AStKt)

α (L2
t

)1−α
] δ−1

δ
+ b
[
[AMtXt]

α (L1
t

)1−α
] δ−1

δ
+ z

[
Lt − L1

t + L2
t

]
with z the shadow price. The optimality conditions are:

b (AMtXt)
(δ−1)α

δ
(
L1
t

) (δ−1)(1−α)
δ

−1 (δ − 1) (1− α)

δ
= z (51)

a (AStKt)
(δ−1)α

δ
(
L2
t

) (δ−1)(1−α)
δ

−1 (δ − 1) (1− α)

δ
= z (52)

We set:

z̄ =
zδ

(1− α) (δ − 1)

From (51) and (52) we obtain L1
t and L2

t :

L1
t =

(
b

z̄

) δ
1−α+δα

(AMtXt)
(δ−1)α
1−α−δα

L2
t =

(a
z̄

) δ
1−α+δα

(AStKt)
(δ−1)α
1−α−δα

The constraint Lt = L1
t + L2

t allows to calculate the value of z̄ with respect
to Lt:

Lt =

(
b

z̄

) δ
1−α+δα

(AMtXt)
(δ−1)α
1−α+δα +

(a
z̄

) δ
1−α+δα

(AStKt)
(δ−1)α
1−α+δα
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or

z̄ = L
−1+α−δα

δ
t

[
b

δ
1−α+δα (AMtXt)

(δ−1)α
1−α+δα + a

δ
1−α+δα (AStKt)

(δ−1)α
1−α+δα

] 1−α+δα
δ

Finally, the resulting total production can be written, using optimality con-
ditions (51) and (52):

Y
δ−1
δ

t = z̄
[
L1
t + L2

t

]
= z̄Lt

or

Yt = z̄
δ
δ−1L

δ
δ−1

t

Replacing z̄ by its value, one gets:

Yt =
[
b

δ
1−α+δα (AMtXt)

(δ−1)α
1−α+δα + a

δ
1−α+δα (AStKt)

(δ−1)α
1−α+δα

] 1−α+δα
δ−1

L1−α
t

δ is chosen such that:

δ =
α + ε− 1

α

which is equivalent to:
1− α + δα

δ − 1
=

εα

ε− 1

a and b are chosen such that:

a
δ

1−α+δα = λ

b
δ

1−α+δα = 1− λ

This allows to recover (1).

8.2 Appendix 2: Economies of scale and non linear
cost of children

This appendix considers the case in which the cost of children is non linear.
This cost has two direct components (the rearing cost and the cost of sur-
viving children), and one indirect (the congestion effect on land in the utility
function).

First we consider the two direct costs. The first one, the rearing cost of
mt children is now φ1wtm

ψ
t , with 0 < ψ < 1. The second one associated to

the ηtmt surviving children becomes: φ1wt (ηtmt)
ψ . Then, the total direct

cost can be written: (
φ1

ηψt
+ φ2

)
wt (ηtmt)

ψ
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The number of surviving children per adult is m′t ≡ ηtmt. The corre-
sponding cost is φ̂twt (m′t)

ψ with:

φ̂t =
φ1

ηψt
+ φ2

The parameter ψ < 1 implies a cost of children that is less than proportianal,
or some economies of scale.

We now turn to the indirect congestion cost of children, and we assume
that some economies of scale may exist. The preferences of members of
generation t are represented by the utility function:

U(ct, dt+1,mt, vt) = Γ1 ln ct + ptΓ2 ln dt+1 + Γ3 ln ηtmt + Γ4 ln(vt − ξ (ηtmt)
ψ)

In this new formulation, the cost of surviving children for land is less than
proportional. This translate the idea that part of land surfaces may be
shared by children. With this new assumption, introducing the variable
ζ̂t ≡ vt − ξ (ηtmt)

ψ , the intertemporal budget constraint of an household
may be rewritten as:

ct +
dt+1

ρt+1

+
(
φ̂twt + ξπt

)
(m′t)

ψ
+ πtζ̂t = wt (53)

To simplify, it is assumed that each type of children cost implies the same
degree of economies of scale: all costs become proportional to (m′t)

ψ.
Let us define n′t = (m′t)

ψ . The household problem can be written:

max
(ct,dt+1,n′t,ζ̂t)

Γ1 ln ct + ptΓ2 ln dt+1 +
Γ3

ψ
lnn′t + Γ4 ln ζ̂t

s. t. ct +
dt+1

ρt+1

+
(
φ̂twt + ξπt

)
n′t + πtζ̂t = wt

First order conditions for this optimization problem lead to the following
solutions:

ct = γ̂1,twt (54)

st = γ̂2,twt (55)

dt+1 = γ̂2,twtρt+1 (56)

n′t =
γ̂3,twt(

φ̂twt + ξπt

) (57)

vt =
ξγ̂3,twt(

φ̂twt + ξπt

) + γ̂4,t
wt
πt

(58)
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with

γ̂1,t =
Γ1

Γ1 + ptΓ2 + (Γ3/ψ) + Γ4

(59)

γ̂2,t =
ptΓ2

Γ1 + ptΓ2 + (Γ3/ψ) + Γ4

(60)

γ̂3,t =
(Γ3/ψ)

Γ1 + ptΓ2 + (Γ3/ψ) + Γ4

(61)

γ̂4,t =
Γ4

Γ1 + ptΓ2 + (Γ3/ψ) + Γ4

(62)

The number of young households at date t+ 1 becomes equal to:

Nt+1 ≡ (n′t)
1/ψ

Nt (63)

The evolution of land per young alive is:

xt+1 =
xt

(n′t)
1/ψ

(64)

The equilibrium conditions are slightly modified. The equilibrium on the
rent market remains the same, but for different equilibrium values:

vt + xt = xt (65)

The equilibrium on the capital market becomes:

γ̂2,twt = (n′t)
1/ψ

kt+1 + qtxt (66)

Our basic formulation appears as the special case with ψ = 1. Calibrat-
ing the model with ψ < 1 would modify the parameters values. But the
qualitative properties would remain the same.

8.3 Appendix 3

As the production technology is Cobb-Douglas between Lt and the other
factors, βWt = 1−α and βKt + βXt = α. Using equations (26), (27), and (25),

βKt =
αλk̃

1− 1
ε

t

λk̃
1− 1

ε
t + (1− λ) (Atxt)

1− 1
ε

then

λk̃
1− 1

ε
t + (1− λ) (Atxt)

1− 1
ε

=
αλk̃

1− 1
ε

t

βKt
(67)
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then from equation (25),

w̃t = (1− α)

(
αλ

βKt

) εα
ε−1

k̃αt (68)

Thus, we write Zt as:

Zt =
Nt+1

Nt

(ASt+1)
α

1−α

(ASt)
α

1−α

(
w̃t+1 +Rt+1k̃t+1 + π̃t+1xt+1

)
(
w̃t +Rtk̃t + π̃txt

)
As the share of wages βWt = 1−α, w̃t = (1−α)

(
w̃t +Rtk̃t + π̃txt

)
, thus

Zt = m′tG
α/(1−α)

t

w̃t+1

w̃t

and using (68), we get

Zt = m′tG
α/(1−α)

t

(
βKt
βKt+1

) εα
ε−1

(
k̃t+1

k̃t

)α

and so

G
α/(1−α)

t =
Zt
m′t

(
βKt+1

βKt

) εα
ε−1

(
k̃t

k̃t+1

)α

(69)

We can also rewrite Rt and π̃t given by (26) and (27), using (67), thus

Rt = βKt k̃
α−1
t

[
λα

βKt

] εα
ε−1

π̃t =
α− βKt
xt

k̃αt

[
λα

βKt

] εα
ε−1

Using equation (69), (32) becomes

γ2,tw̃t = Zt

(
βKt+1

βKt

) εα
ε−1

k̃αt k̃
1−α
t+1 + q̃txt

Using equation (69), (33) becomes
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Rt+1 =
q̃t+1 + π̃t+1

q̃t

Zt
m′t

(
βKt+1

βKt

) εα
ε−1

(
k̃t

k̃t+1

)α

Note that from equations (67) and (69), it is possible to recover At and
Gt from βKt and Zt.

At =
λk̃t
xt

(
α

βKt
− 1

) ε
ε−1
(

1

1− λ

) ε
ε−1

(70)

Gt =

(
Zt
m′t

) (1−α)
α
(
βKt+1

βKt

) ε(1−α)
ε−1

(
k̃t

k̃t+1

)(1−α)

(71)

8.4 Appendix 4

Table 6: counterfactual Analysis on Total Population for England
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