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1 Introduction

The work of Eeckhoudt and Schlesinger (2006) provided a refreshing perspective for
the study of decisions under risk. Until the publication of their seminal article, and
since Friedman and Savage (1948) at least, specific properties of the von Neumann-
Morgenstern utility function were associated to specific traits of attitudes towards risk.
A negative second derivative of the utility function reflected risk aversion (Friedman
and Savage, 1948; Pratt, 1964). A positive third derivative reflected prudence (Kimball,
1990) and was associated to precautionary behavior. A negative fourth derivative was
defined as temperance and invoked to explain the demand for risky assets in the presence
of background risks (Kimball, 1992). In the same vein, a positive sign of the fifth deriva-
tive was more recently associated to edginess to explain the effects of background risk
on precautionary saving (Lajeri-Chaherli, 2004). Similarly, a S-shaped utility function
or a state-dependent utility function was used to rationalize simultaneous purchasing
of insurance and lottery tickets, etc.

Instead of focusing ab initio on properties of the utility function, the two authors
started from individual choices in simple equal-probability lotteries in order to define
risk aversion, prudence, temperance, and so on, and they coined the term “risk appor-
tionment” to describe how these behavioral traits were reflected in individual choices.
For example, temperance reflects the preference for not associating an additional zero-
mean risk ε2 to a situation where the decision maker is already exposed to a prevailing
zero-mean risk ε1. The 50-50 lottery [ε1, ε2] is preferred to the 50-50 lottery [0, ε1 + ε2].
Preference for risk apportionment means preference for disaggregation of harms, given
risk aversion. The beauty of this more primitive approach to attitudes towards risk is
that it does not need familiarity with utility theory to be understood, although it is per-
fectly consistent with the traditional approach based on specific properties of the utility
function. Preference for risk apportionment (or harms disaggregation) in successive in-
creasingly complex lotteries translates into alternating signs of successive derivatives of
the utility function (mixed risk aversion, as defined by Caballé and Pomansky, 1996).

The approach proposed by Eeckhoudt and Schlesinger (2006) using zero-mean risks
received support in experimental work (Deck and Schlesinger, 2010, 2014, 2018; Attema
et al., 2019). It was also generalized by Eeckhoudt et al. (2009b) to any couple of
risks linked together by properties of increases in risk or stochastic dominance at any
order.1 Indeed, considering four mutually independent risks X1, Y1, X2 and Y2 such
that Yi dominates Xi by sthi -order stochastic dominance for i = 1, 2, an expected utility
maximizer with a mixed risk averse (MRA) utility function up to order s = s1 + s2

1Increases in risk were introduced by Rothshild and Stiglitz (1970) and generalized to any order
by Ekern (1980). Stochastic dominance was introduced by Hadar and Russel (1969) and Hanoch and
Levy (1969) and extended to any order by Ingersoll (1987). The generalization has shown that there
is a correspondence between nth degree stochastic dominance and the preference for a non dominated
risk by an expected utility maximizer with a mixed risk averse utility function up to order n. An
equivalent but less stronger relationship holds for increases in risk of order n (see Ekern, 1980).
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prefers the 50-50 lottery [X1 + Y2;Y1 + X2] to the 50-50 lottery [X1 + X2;Y1 + Y2]. In
the former lottery risk apportionment holds. There is disaggregation of harms. In the
latter lottery this is not the case. Instead of combining “good with bad” in the two
possible lottery outcomes, the lottery yields “bad with bad” in the first outcome and
“good with good” in the second outcome.

Eeckhoudt and Schlesinger (2006), as well as Eeckhoudt et al. (2009b), consider ad-
ditive risks. In the above lotteries, the final outcomes are either X1 + Y2 and Y1 + X2

on one hand, or X1 + X2 and Y1 + Y2 on the other hand. Subsequent research ad-
dressed risk apportionment for multiplicative risks. The analysis is thus restricted to
non-negative random variables. Multiplicative risks are observed in various circum-
stances in economic and social life. For example, investing in an asset denominated in
foreign currency exposes the domestic investor to two multiplicative risks, the risk of
the asset itself and the risk of variations in the domestic currency value of the foreign
currency. Similarly, taking a job with a variable income in a firm exposed to bankruptcy
results for the wage earner in a range of final outcomes where the two risks interact
multiplicatively. Wang and Li (2010) addressed risk apportionment with multiplicative
risks specifically. Building on results obtained by Eeckhoudt et al. (2009a) in a related
context – see also Eeckhoudt and Schlesinger (2008) – they reach the conclusion that
there is a direct link between multiplicative risk apportionment at order n+ 1 and the
value of nth degree relative risk aversion. 2 A similar result was obtained by Chiu et al.
(2012) using a model combining two additive risks with a multiplicative effect on the
first risk, a n-degree shift of stochastic dominance on this risk, and a first-degree shift
of stochastic dominance on the second risk. Again, the value of nth degree relative risk
aversion is critical to conclude whether risk apportionment in the sense of Eeckhoudt
and Schlesinger (2006) is obtained or not.

This literature was soon superseded by work addressing risk apportionment in a
bivariate context, a context where the decision-maker’s preferences are driven by the
joint effects of two independent risks, for instance risks affecting wealth and health.
This work is based on a paper by Denuit et al. (1999) defining mixed risk aversion for
bivariate functions. In particular, Jokung (2011) and Denuit and Rey (2013) provided a
new look on risk apportionment with additive or multiplicative risks by analyzing these
cases as specific cases of risk apportionment in a bivariate context. Indeed, when the
two attributes defined in the bivariate context are of the same nature (financial risks,
for instance), they can be combined (additively or multiplicatively) to yield a single
attribute of utility. This allows the application to the univariate context of the more
general results derived in a bivariate context.

In this paper, we start with additive risks and we obtain a simple result for risk
apportionment preferences of one decision-maker (DM) in different situations. When
the DM displays a preference for risk apportionment when risk X1 is dominated by

2Their definition of relative risk aversion at order n + 1 corresponds to what is generally defined
now as relative risk aversion at order n (see Section 3 below).
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risk Y1 at order s1 and risk X2 dominated by risk Y2 at order s2, then the same DM
necessarily displays a preference for risk apportionment when two other couples of risks
(X ′1, Y

′
1) and (X ′2, Y

′
2) are related by stochastic dominance orderings at orders s′1 and s′2,

si 6= s′i for i = 1, 2, if s1 +s2 = s′1 +s′2. This is our Proposition 1. Its contribution to the
literature is to emphasize a correspondence between risky choices by one DM in two
different circumstances involving risk combinations, as long as the sum of stochastic
dominance orders linking the risk combinations in each circumstance is the same. Our
main motivation is then to check whether this result holds when the two risks combine
multiplicatively, instead of additively. We find that the answer is negative in general
and we explain why. The answer is positive only in the case where one of the two
couples of risks is related by a first-degree stochastic dominance (FSD) relationship,
and provided relative risk aversion at order n is larger than n.

However, by turning to a specific case, the case where the DM’s preferences are
reflected in a Constant Relative Risk Aversion (CRRA) utility function – the function
most commonly used in the literature – we obtain that our Proposition 1 is valid for
multiplicative risks (Proposition 3). In addition, prior to obtaining this result, we also
obtain in Proposition 2 that risk apportionment holds with multiplicative risks and a
CRRA utility functions for all such functions where relative risk aversion exceeds one,
independently of the stochastic dominance orders relating the two couples of variables X
and Y . This much stronger result is driven by a property of CRRA utility functions that
we also unveil. If relative risk aversion (at order 1) is larger than one, then relative risk
aversion at order n is larger than n, and conversely (The result applies mutatis mutandis
if relative risk aversion is less than one). This means that the above-mentioned results
(Wang and Li, 2010; Chiu et al., 2012), dealing with multiplicative risk apportionment
in a specific context, and pointing to the role of relative risk aversion at order n, are
down-graded to the role of relative risk aversion at order 1, even in a general stochastic
dominance context, if CRRA utility is considered.

Our paper is organized as follows. Section 2 presents the Eeckhoudt et al. (2009b)
result on risk apportionment in a univariate additive risks context and derives our result
of equivalence between risk apportionment at order s1 + s2 and risk apportionment at
order s′1 + s′2 (si 6= s′i for i = 1, 2) when s1 + s2 = s′1 + s′2. Section 3 addresses risk
apportionment in a bivariate and univariate multiplicative risks contexts and explains
why our result from section 2 does not hold in the latter context, except in the specific
cases s2 = 1 and s′1 = 1, or s1 = 1 and s′2 = 1, and provided relative risk aversion at
order n is larger than n. Section 4 turns to the specific case of CRRA utility functions
and shows that our result from Section 2 holds generally in a univariate multiplicative
risks context, even when s1 + s2 6= s′1 + s′2, provided relative risk aversion is larger than
1. This result derives from a property of CRRA utility functions so far only known
for orders 2 and 3 and that we generalize to order n: if relative risk aversion (order 1)
is larger/less than 1, relative risk aversion at order n is larger/less than n. Section 5
concludes briefly.
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2 Additive risks and preserved preference ranking

Eeckhoudt et al. (2009b) show that mixed risk aversion (MRA), characterized by a
utility function u such that (−1)(1+k)u(k) ≥ 0 ∀k, means preference for harms disag-
gregation or – equivalently – preference to combine good with bad and bad with good
rather than good with good and bad with bad where bad is defined as stochastically dom-
inated. More formally, let us consider four mutually independent risks, X1, X2, Y1, Y2
such that Yi dominates Xi by sthi order stochastic dominance for i = 1, 2 (Xi �si−SD Yi
for i = 1, 2). Eeckhoudt et al. (2009b) show that a MRA DM from 1 to s1 + s2 (i.e.
a DM with a utility funtion u such that (−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , s1 + s2) will
allocate the state-contingent risks in such a way as not to gather the two bad risks in
the same state. Such an individual prefers the 50− 50 lottery [X1 + Y2, Y1 +X2] to the
50− 50 lottery [X1 +X2, Y1 + Y2]:

1

2
E [u(X1 + Y2)] +

1

2
E [u(Y1 +X2)] ≥

1

2
E [u(X1 +X2)] +

1

2
E [u(Y1 + Y2)] . (1)

Equation (1) means that the DM prefers to disaggregate bad outcomes rather than
aggregate them. In what follows, we denote this disaggregation preference relation
(Eq. 1) by PD({(X1, Y1); (X2, Y2)}(s1,s2)).

Let us consider a given DM with a MRA utility function from 1 to 4. We consider
a first set of four mutually independent risks X1, X2, Y1, Y2 such that X1 �2−SD Y1
and X2 �2−SD Y2, i.e. a first set of four mutually independent risks with a total
order equal to 4 (s1 + s2 = 2 + 2 = 4). The EST (2009b) theorem states that
PD({(X1, Y1); (X2, Y2)}(2,2)) holds for the given DM. Let us now consider a second
set of four mutually independent risks X ′1, X

′
2, Y

′
1 , Y

′
2 such that X ′1 �s′1−SD Y ′1 and

X ′2 �s′2−SD Y ′2 with s′1 = 1 and s′2 = 3, i.e. such that the total order is also equal
to 4. For the same given DM and using Eeckhoudt et al. (2009b), we obtain that
PD({(X ′1, Y ′1); (X ′2, Y

′
2)}(1,3)) holds since s′1 + s′2 = 4 and since u(s1+s2) = u(s

′
1+s

′
2) for all

s1, s2, s
′
1, s
′
2 such that s1 + s2 = s′1 + s′2 with s1 6= s′1 and s2 6= s′2.

We can then derive the following result. Preference ranking is preserved when we
replace the first set of risks by the second one and vice-versa. We understand that this
result can be easily extended to the more general case s1 + s2 = s′1 + s′2 with s1 6= s′1
and s2 6= s′2. This is our first proposition.

Proposition 1. Let X1, X2, Y1, Y2 be a first set of four mutually independent risks
such that X1 �s1−SD Y1 and X2 �s2−SD Y2, and let X ′1, X

′
2, Y

′
1 , Y ′2 be a second set

of four mutually independent risks such that X ′1 �s′1−SD Y ′1 and X ′2 �s′2−SD Y ′2 with
s1 + s2 = s′1 + s′2 = s, s1 6= s′1 and s2 6= s′2. For a given mixed risk-averse DM from
1 to s, the disaggregation preference relation is preserved when the first set of risk is
replaced by the second set of risks and conversely.

More formally, PD({(X1, Y1); (X2, Y2)}(s1,s2))⇐⇒ PD({(X ′1, Y ′1); (X ′2, Y
′
2)}(s′1,s′2)).
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This result deals with additive risks. Our question is then the following: does
the result still hold when risks are multiplicative? More generally, let us denote by
PDM({(X1, Y1); (X2, Y2)}(s1,s2)) the disaggregation preference relation when risks inter-
act multiplicatively:

1

2
E [u(X1 · Y2)] +

1

2
E [u(Y1 ·X2)] ≥

1

2
E [u(X1 ·X2)] +

1

2
E [u(Y1 · Y2)] , (2)

i.e. the preference to disaggregate bad outcomes rather than to aggregate them when
outcomes combine in a multiplicative form. Assume that s′1+s′2 = s1+s2 = s with s1 6=
s′1 and s2 6= s′2. Our question is then the following. Is preference ranking preserved when
we replace {(X1, Y1); (X2, Y2)} by {(X ′1, Y ′1); (X ′2, Y

′
2)} and conversely? More formally,

is PDM({(X1, Y1); (X2, Y2)}(s1,s2)) equivalent to PDM({(X ′1, Y ′1); (X ′2, Y
′
2)}(s′1,s′2))?

In section 3, we show that the answer is no in the general case of a MRA DM from
1 to s and we explain why. In section 4, we restrict our attention on CRRA utility
functions. In this specific case, we show that the result holds and we explain why.
We also show that with CRRA utility functions, we obtain a stronger result than the
general one obtained in the additive case.

3 Additive and multiplicative contexts: two partic-

ular cases of the bivariate context

Consider the preferences for disaggregation displayed in equations (1) and (2) – respec-
tively PD({(X1, Y1); (X2, Y2)}(s1,s2)) in the additive context and PDM({(X1, Y1); (X2, Y2)}(s1,s2))
in the multiplicative context. Introducing a bivariate utility function V such that
V (x1, x2) = u(x1 + x2) in the additive case and V (x1, x2) = u(x1 · x2) in the multiplica-
tive case, the two relations (1) and (2) can be summarized by

1

2
E [V (X1, Y2)] +

1

2
E [V (Y1, X2)] ≥

1

2
E [V (X1, X2)] +

1

2
E [V (Y1, Y2)] . (3)

Considering bivariate utility functions quite generally, Denuit and Rey (2013) – see
also Jokung (2011) – obtain the following result. The inequality (3) holds for all
bivariate utility function V such that (−1)(k1+k2+1)V (k1,k2) ≥ 0 ∀k1 = 1, . . . , s1 and
∀k2 = 1, . . . , s2. Eq. (3) states the condition for observing risk apportionment as well
for general bivariate functions, as for univariate functions where u reflects u(x1 +x2) in
the additive case and u(x1 · x2) in the multiplicative case. Note that cross-derivatives
play a key role in this condition.

Let us make several important remarks.

Remark 1. When V takes the additive form V (x1, x2) = u(x1 + x2), the inequality (3)
holds provided that X1 �s1−SD Y1 and X2 �s2−SD Y2 and the single-attribute utility
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function u exhibits MRA from 1 to s1 + s2. This is the result obtained by Eeckhoudt et
al. (2009b). In the additive case, the analysis is simple because all the cross-derivatives
of V for a given total order are captured by the expression of a unique derivative of
u. Indeed V (s2,s1) = u(s1+s2) = u(s

′
1+s

′
2) = V (s′2,s

′
1) for all s1 + s2 = s′1 + s′2 and that is

why we obtain Proposition 1, i.e. the result of preserved preference ranking replacing
{(X1, Y1); (X2, Y2)}(s1,s2) by {(X ′1, Y ′1); (X ′2, Y

′
2)}(s′1,s′2) and conversely.

Remark 2. When the bivariate utility function V reads u(x1 + x2) or u(x1 · x2), for
all k1 and k2, sgnV (k1,k2) = sgnV (k2,k1) since the utility function is symmetric in its
arguments x1 and x2. Indeed, the combination of x1 and x2 yields one single variable x,
and u = u(x). For instance, in the additive case, we have V (3,2)(x1, x2) = u(5)(x1+x2) =
V (2,3)(x1, x2). In the multiplicative case, the equality does not hold, but the signs remain
equal, given that x1 and x2 are both assumed positive. For instance, V (3,2)(x1, x2) =
x2 · Ω(x) and V (2,3)(x1, x2) = x1 · Ω(x), where Ω(x) = x2u(5)(x) + 6xu(4)(x) + 6u(3)(x).

Remark 3. However, when V takes the multiplicative form, the signs of the cross-
derivatives are not necessarily equal if k1 + k2 > 3. Consider the above example again.
With V (3,2) and V (2,3), k1 +k2 = 5. A total derivative order of 5 can also be obtained by
1+4 and 4+1 in the case of cross-derivatives V (1,4) and V (4,1). These two derivatives are
respectively equal to (x1)

3Ψ(x) and to (x2)
3Ψ(x) where Ψ(x) = xu(5)(x)+4u(4)(x). They

have same signs. But since Ω 6= Ψ, sgnV (2,3) and sgnV (1,4) may differ. Proposition 1
does not apply. Of course, the possibilities of divergence increase when the sum k1 + k2
increases. For instance, when k1 + k2 = 9, four different pairs of cross-derivatives need
to be considered.

Remark 4. Several authors remarked that relative risk aversion plays a role when risks
are multiplicative. See Eeckhoudt and Schlesinger (2008), Eeckhoudt et al. (2009a),
Wang and Li (2010), Chiu et al. (2012), Denuit and Rey (2013). More specifically,
starting from Eeckhoudt and Schlesinger (2006), and using lotteries with multiplicative
risks defined by Eeckhoudt et al (2009a), Wang and Li (2010) generalize the latter
contribution by showing that risk apportionment of order n + 1 occurs if and only if
the nth degree relative risk aversion r

(n)
u exceeds n:

r(n)u = −xu
(n+1)(x)

u(n)(x)
≥ n . (4)

We observe then the important following point. A MRA DM from 1 to s, who
prefers to disaggregate risks X1, X2, Y1, Y2 with X1 �s1−SD Y1 and X2 �s2−SD Y2 and
s1 + s2 = s, when risks are additive does not necessarily disaggregate them when they
are multiplicative. Indeed, a MRA utility function does not necessarily imply r

(n)
u ≥ n.

Denuit and Rey (2013) show that they can adapt their general result above (Eq. 3) to
the multiplicative case if they set s1 = 1 (and s2 ≥ 1). Indeed, they show that the
condition (−1)(1+k+1)V (1,k) ≥ 0 for all k (which is equivalent to (−1)(k+1+1)V (k,1) ≥ 0

following remark 2) reads equivalently r
(k)
u ≥ k for all k when risks are multiplicative.

Specifically, they consider the degenerate lotteries X1 = a and Y1 = b where a and b
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are two positive constants such that a < b (then X1 �1−SD Y1 obviously holds). They
obtain the following result (see also Eeckhoudt et al. (2009a) and Chiu et al., 2012):
the inequality

1

2
E [u(aY2)] +

1

2
E [u(bX2)] ≥

1

2
E [u(aX2)] +

1

2
E [u(bY2)] , (5)

holds for all utility function u that satisfies r
(k)
u ≥ k for all k = 1, . . . , s2.

These authors explain that they cannot extend their result to higher values of s1 (or
s2), because for a given total order s (s1+s2 = s), the signs of the higher cross-derivatives
of V are not necessarily the same, i.e. (−1)(1+s2+1)V (1,s2) ≥ 0 is not equivalent to
(−1)(2+(s2−1)+1)V (2,s2−1) ≥ 0 for all s2 ≥ 3 (see remark 3).

Let us now return to our question of Section 2. If the total order s1 +s2 = s′1 +s′2 ≤ 3
then we can extend Proposition 1 to multiplicative risks. Indeed sgnV (1,2) = sgnV (2,1)

(see remarks 2 and 3). The result still holds when the total order is equal to 1 +n with
s1 = 1 and s2 = n on the one hand, and s′1 = n and s′2 = 1 on the other hand. But
when the total order is greater than or equal to four (s ≥ 4) with s1 > 1 and s2 > 1,
then we cannot extend the result.

4 Multiplicative risks and CRRA utility functions

CRRA utility functions u verify

d

dx

(−xu′′(x)

u′(x)

)
= 0 ∀x , (6)

and they read

u(x) =

{
x1−γ

1−γ , γ > 0, γ 6= 1 ,

lnx, γ = 1 .
(7)

In this case, the relative risk aversion index, r
(1)
u , is equal to the constant γ:

−xu′′(x)

u′(x)
= γ . (8)

We can state the following (see proof in appendix).

Lemma 1. Consider multiplicative risks and a CRRA utility function with γ > 0.

(a) For all n ≥ 2, the relation

sgnV (1,n) = sgnV (2,n−1) = sgnV (3,n−2) = · · · = sgnV (n,1) ,

holds
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(b) Additionally, V (m−p,p) and V (m,0), with m > p for all p ≥ 1, have the same
(opposite) sign if and only if γ > 1 (γ < 1).

As V (m,0) is negative when m is even and positive when m is odd, we obtain from
item (b) of Lemma 1:

(−1)(1+(m−p)+p)V (m−p,p) > 0⇔ r(1)u = γ > 1. (9)

Using Denuit and Rey (2013) – see equation (3) above – this means that risk ap-
portionment holds, by item (b) of Lemma 1, for all p ≥ 1 and m > p, if and only
if γ > 1. The restrictions spelt out in equation (4) about the value of s1 (or s2) and
about the value of relative risk aversion at orders greater than 1 do not apply any more.
For instance, if s2 = p = 10, and s1 = m − p = 5, multiplicative risk apportionment
holds assuming a CCRA utility function with X1 �5−SD Y1 and X2 �10−SD Y2 provided
γ > 1. This result is expressed in the following proposition.

Proposition 2. Let us assume that (ı) Yi dominates Xi in the sense of the sthi or-
der stochastic dominance for i = 1, 2 (X1 �s1−SD Y1 and X2 �s2−SD Y2) and (ıı)
X1, X2, Y1, Y2 are mutually independent risks. The inequality

1

2
E [u(X1 · Y2)] +

1

2
E [u(Y1 ·X2)] ≥ (≤)

1

2
E [u(X1 ·X2)] +

1

2
E [u(Y1 · Y2)] ,

holds for all CRRA utility function u verifying r
(1)
u > (<)1.

Turning now to part (a) of Lemma 1, we see that, if risk apportionment holds for a
total order s = 1+n, with s1 = 1 and s2 = n, it also holds for the same total order with
s1 = 2 and s2 = n − 1, or s1 = 3 and s2 = n − 2, and so on. We can then reproduce,
for multiplicative risks and CCRA utility, the same result as in Proposition 1 dealing
with additive risks. This is our Proposition 3.

Proposition 3. Given a decision maker with a CRRA utility function u such that
r
(1)
u > 1. Given a first set of four mutually independent risks X1, X2, Y1, Y2 such that
X1 �s1−SD Y1 and X2 �s2−SD Y2 and given a second set of four mutually independent
risks X ′1, X

′
2, Y

′
1 , Y

′
2 such that X ′1 �s′1−SD Y ′1 and X ′2 �s′2−SD Y ′2 for all s1, s2, s

′
1, s
′
2

with s1 6= s′1 and s2 6= s′2. When risks are multiplicative, the disaggregation preference
relation is preserved when the first set of risk is replaced by the second set of risks and
conversely.

More formally, PDM({(X1, Y1); (X2, Y2)}(s1,s2))⇐⇒ PDM({(X ′1, Y ′1); (X ′2, Y
′
2)}(s′1,s′2)).

Remark 5. Note that the inequality with ≥ (≤) of proposition 2 holds for all CRRA

utility function u verifying r
(1)
u > (<)1 whatever the total derivative order s1 + s2 = s.

Consequently, the inequality holds for s1 + s2 = s, it holds for s′1 + s′2 = s with s1 6= s′1,
s2 6= s′2, but it also holds for s′1+s′2 6= s, i.e. for s′1+s′2 < s1+s2 and for s′1+s′2 > s1+s2.
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Thus, the disaggregation preference relation is preserved when the first set of risk is
replaced by the second set of risks and vice-versa: PDM({(X1, Y1); (X2, Y2)}(s1,s2))⇐⇒
PDM({(X ′1, Y ′1); (X ′2, Y

′
2)}(s′1,s′2)) for all total order level i.e. such that s′1+s′2 = s1+s2 or

s′1 + s′2 6= s1 + s2. For this last reason, with CRRA utility functions, the result obtained
when risks are multiplicative (Proposition 3) is stronger than the one obtained with
additive risks (Proposition 1). Indeed, in the additive case, the condition (−1)(1+s)u(s) ≥
0, that holds for a s−order MRA DM, does not necessarily hold at order s + 1, if the
DM is only MRA up to order s. Note, however, that CRRA utility yields MRA at any
order. In this sense, even in the additive case, a preference for harm disaggregations at
total order s implies a preference for disaggregation at order s+n, whatever n, provided
the DM is endowed with a CRRA utility function. This remark underlines the power
of CRRA utility functions.

Let us denote by PAM({(X1, Y1); (X2, Y2)}(s1,s2)) the aggregation preference relation
when risks are multiplicative:

1

2
E [u(X1 · Y2)] +

1

2
E(u(Y1 ·X2)) ≤

1

2
E [u(X1 ·X2)] +

1

2
E [u(Y1 · Y2)] . (10)

We can derive the following result.

Proposition (3’). Given a decision maker with a CRRA utility function u such that

r
(1)
u < 1. Given a first set of four mutually independent risks X1, X2, Y1, Y2 such that
X1 �s1−SD Y1 and X2 �s2−SD Y2 and given a second set of four mutually independent
risks X ′1, X

′
2, Y

′
1 , Y

′
2 such that X ′1 �s′1−SD Y ′1 and X ′2 �s′2−SD Y ′2 for all s1, s2, s

′
1, s
′
2 with

s1 6= s′1 and s2 6= s′2. When risks are multiplicative, the aggregation preference relation
is preserved when the first set of risk is replaced by the second set of risks and conversely.

More formally, PAM({(X1, Y1); (X2, Y2)}(s1,s2))⇐⇒ PAM({(X ′1, Y ′1); (X ′2, Y
′
2)}(s′1,s′2)).

Finally, having in mind that the condition (−1)(1+k+1)V (1,k) ≥ 0 for all k (which is

equivalent to (−1)(k+1+1)V (k,1) ≥ 0 following remark 2) reads equivalently r
(k)
u ≥ k for

all k when risks are multiplicative (see remark 4), we derive two noteworthy properties
of CRRA utility functions.

Property 1 of CRRA utility function u, with γ > 0.

r
(n+1)
u = r

(n)
u + 1 for all n ≥ 1.

(See proof in the appendix). From Property 1, one easily derives Property 2.

Property 2 of CRRA utility function u, with γ > 0.

(a) r
(1)
u > 1⇔ r

(n)
u > n for all n ≥ 2,

(b) r
(1)
u < 1⇔ r

(n)
u < n for all n ≥ 2.

Note that the equivalence r
(1)
u > 1 ⇔ r

(2)
u > 2 already appears in the literature

(see, for instance, Eeckhoudt et al., 2005), but the generalization to order n is new

10



to our knowledge and is a direct implication of Property 1. Note also that these two
properties are in the background of our Proposition 2, that holds with the simple
condition r

(1)
u > (<)1, given CRRA utility.

5 Conclusion

In this paper, we extend the Eeckhoudt et al. (2009b) results on risk apportionment
with two additive risks by showing that, for one DM, risk apportionment at total order
s = s1 + s2 implies risk apportionment at total order s′ = s′1 + s′2, with s1 6= s′1 and
s2 6= s′2, provided s = s′. Our main motivation is then to check whether this simple
property holds in a multiplicative risk context. We show that this is not the case, in
general. We also show that the property is however recovered, when we restrict the
analysis to CRRA utility functions. In this case, the property is even stronger, as it
holds also, and more generally, for all s 6= s′, and as well for multiplicative risks as for
additive risks, provided relative risk aversion is larger than 1. We are able to link these
last results to a particular feature of constant relative risk aversion functions ignored
so far: relative risk aversion at order n+ 1 is equal to relative risk aversion at order n,
plus one.
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Appendix

Proof of Property 1 of CRRA utility function.

Let us show that, for any CRRA utility function u(·)

r(n+1)
u = r(n)u + 1 . (11)

Let us recall that

r(n)u (x) := −x · u
(n+1)(x)

u(n)(x)
. (12)

For all n ≥ 0, with u given by eq. (7)

u(n)(x) = (−1)n+1γ(γ + 1)(γ + 2) · · · (γ + n− 2) · x−γ−n+1 , (13)

= (−1)n+1

[
n−2∏
j=0

(γ + j)

]
· x−γ−n+1 . (14)
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Hence

−x · u
(n+1)(x)

u(n)(x)
= −x ·

(−1)n+2
[∏n−1

j=0 (γ + j)
]
· x−γ−n

(−1)n+1
[∏n−2

j=0 (γ + j)
]
· x−γ−n+1

, (15)

= γ + n− 1 . (16)

So

−x · u
(n+2)(x)

u(n+1)(x)
= γ + n− 1 + 1 , (17)

= −x · u
(n+1)(x)

u(n)(x)
+ 1 , (18)

that is
r(n+1)
u = r(n)u + 1 , (19)

which concludes the proof.

Proof of Lemma 1

We consider a CRRA utility function u with γ 6= 1 (if γ = 1, all the cross-derivatives
of V (x1, x2) = ln(x1 · x2) vanish). Let us express the cross-derivatives of V .

We start with the first order derivatives:

V (1,0)(x1, x2) =
∂

∂x1
u(x1x2) , (20)

= x2 · u′(x1x2) , (21)

= x−γ1 · x
1−γ
2 , (22)

and
V (0,1)(x1, x2) = x1 · u′(x1x2) . (23)

It shows that V (1,0)(x1, x2) and V (0,1)(x1, x2) have both the same sign and have the sign
of u′, i.e. are positive.

For the second order derivatives, we get

V (2,0)(x1, x2) = x22 · u(2)(x1x2) , (24)

V (1,1)(x1, x2) = −1− γ
γ

x1x2 · u(2)(x1x2) , (25)

V (0,2)(x1, x2) = x21 · u(2)(x1x2) , (26)

meaning that V (2,0) and V (0,2) always have the same signs (are negative as u(2)) but
have the same sign as V (1,1) if and only if γ > 1.
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Let us now consider the nth order derivatives. A straightforward recursion shows that

V (n,0)(x1, x2) = xn2 · u(n)(x1x2) , (27)

from which we obtain, with n ≥ 2,

V (n−1,1)(x1, x2) =
∂

∂x2
V (n−1,0)(x1, x2) , (28)

(27)
= (n− 1) · xn−22 · u(n−1)(x1x2) + x1x

n−1
2 · u(n)(x1x2) , (29)

(16)
=

γ − 1

γ + n− 2
· x1xn−12 · u(n)(x1x2) , (30)

(27)
=

γ − 1

γ + n− 2
· x1
x2
· V (n,0)(x1, x2) , (31)

so that V (n,0) and V (n−1,1) have same signs if and only if γ−1
γ+n−2 > 0 that is γ > 1

whenever n ≥ 2.

We then get, with n ≥ 3,

V (n−2,2)(x1, x2) =
∂

∂x2
V (n−2,1)(x1, x2) , (32)

(27, 31)
=

(γ − 1) · (n− 2)

γ + n− 3
· x1xn−32 · u(n−1)(x1x2)

+
γ − 1

γ + n− 3
· x21xn−22 · u(n)(x1x2) , (33)

(16)
=

(γ − 1) · γ
(γ + n− 3) · (γ + n− 2)

· x21xn−22 · u(n)(x1x2) , (34)

(27)
=

(γ − 1) · γ
(γ + n− 3) · (γ + n− 2)

· (x1
x2

)2 · V (n,0)(x1, x2) , (35)

(31)
=

γ

γ + n− 3
· x1
x2
· V (n−1,1)(x1, x2) , (36)

so that

• V (n,0) and V (n−2,2) have the same sign if and only if (γ−1)·γ
(γ+n−3)·(γ+n−2) > 0 that is

γ > 1,

• V (n−2,2) and V (n−1,1) always have the same sign (irrespective of γ ≶ 1),

whenever n ≥ 3.
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We can proceed one step further, with n ≥ 4,

V (n−3,3)(x1, x2) =
∂

∂x2
V (n−3,2)(x1, x2) , (37)

(34)
=

(γ − 1) · γ · (n− 3)

(γ + n− 4) · (γ + n− 3)
· x21xn−42 · u(n−1)(x1x2)

+
(γ − 1) · γ

(γ + n− 4) · (γ + n− 3)
· x31xn−32 · u(n)(x1x2) , (38)

(16)
=

(γ − 1) · γ · (γ + 1)

(γ + n− 4) · (γ + n− 3) · (γ + n− 2)
· x31xn−32 · u(n)(x1x2) , (39)

(27)
=

(γ − 1) · γ · (γ + 1)

(γ + n− 4) · (γ + n− 3) · (γ + n− 2)
· (x1
x2

)3 · V (n,0)(x1, x2) , (40)

(36)
=

γ + 1

γ + n− 4
· x1
x2
· V (n−2,2)(x1, x2) , (41)

so that

• V (n,0) and V (n−3,3) have the same sign if and only if (γ−1)·γ·(γ+1)
(γ+n−4)·(γ+n−3)·(γ+n−2) > 0

that is γ > 1,

• V (n−3,3) and V (n−2,2) always have the same sign (irrespective of γ ≶ 1),

whenever n ≥ 4.

The recursion is now straightforward and we derive the following results.

• By generalization of equation (40), we obtain the relation between V (n−p,p) and
V (n,0) for all n > p ≥ 1:

V (n−p,p) (x1, x2) =

p−1∏
k=0

γ + k − 1

γ + n− k − 2
·
(
x1
x2

)p
· V (n,0) (x1, x2) . (42)

It shows that V (n−p,p) and V (n,0) have the same sign if and only if
∏p−1

k=0
γ+k−1

γ+n−k−2 >
0. Since γ > 0, all the terms of the product are necessarily positive excepted the
term corresponding to k = 0, that is the term γ−1

γ+n−2 , which is positive if and only

if γ > 1. This result establishes statement (b) of lemma 1.

• By generalization of equation (41), we have

V (n−(p+1),p+1) (x1, x2) =
γ + p− 1

γ + n− p− 2
· x1
x2
· V (n−p,p) (x1, x2) , ∀n > p . (43)

Replacing n by n+ 1, we obtain

V (n−p,p+1) (x1, x2) =
γ + p− 1

γ + n− p− 1
· x1
x2
· V (n+1−p,p) (x1, x2) , ∀n ≥ p , (44)
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and, with p = n− k, k ≤ n, we finally get

V (k,n−k+1) (x1, x2) =
γ + n− k − 1

γ + k − 1
· x1
x2
· V (k+1,n−k) (x1, x2) , ∀n ≥ k . (45)

Hence V (k,n−k+1) and V (k+1,n−k) have the same sign if and only if γ+n−k−1 > 0,
that is, if and only if n−k > 1−γ. When γ > 1, this condition holds for all n ≥ k
since n and k are integers. When γ ≤ 1, the condition still holds for all n > k but
is not met when n = k. It is however sufficient for our purpose since statement
(a) in lemma 1 does not involve derivatives of the form V (0,n) nor V (n,0).

Eventually irrespective of γ ≷ 1, we conclude that sgn V (k,n−k+1) = sgn V (k+1,n−k)

while, with k+1 instead of k, sgn V (k+1,n−k) = sgn V (k+2,n−k−1) so that sgn V (k,n−k+1) =
sgn V (k+1,n−k) = sgn V (k+2,n−k−1). Repeating this substitution for all k ranging
from 1 to n− 1, we obtain the set of equalities that establishes statement (a) in
lemma 1.
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