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Abstract
We estimate the yield curve gap in Japan and examine whether it has contributed to the
sustained low growth and low inflation rates observed since the beginning 2000s. We use a
semi-structural empirical model that generalizes Laubach and Williams’ approach, considering
the entire range of maturities of the interest rates and dealing with the issue of mixed frequency
sampling. We consider global factors exerting downward pressures on inflation and examine
how the neutral yield curve has affected the snowball effect in the dynamics of the Japanese
public debt ratio.

JEL classification: C32; E43; E52.
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1 Introduction
This paper examines the following issue. Does Japan’s persistently low potential growth rates and
weak inflation rates emanate from the the Bank of Japan’s inadequate intervention to increase
medium-term growth and to combat deflation? Should we blame monetary policy for not allowing
the economy to fully return its full employment/full capacity levels? Why Japan’s economy was
sent into several lost decades and did not succeed in rebounding to inflation and potential growth
of the late 1980s is still an enigma. While there are certainly diverse reasons for such a situation
(for instance the lack of rapid structural reforms), some economists blame the conduct of monetary
policy in a specific context very similar to what happened in other industrialized countries in the
wake of the 2008 financial crisis: the burst of unsustainable financial bubbles that has contributed
to deflationary pressures and has implied steep declines in cyclical and medium-term output. What
has been termed as “lost decades” to describe the Japanese experience of slow growth/deflationary
spiral is now referred to as “secular stagnation” in the United States, Europe and other industri-
alized countries (see, Summers (2015), Teulings and Baldwin (2014)).

Both in Japan from the 1990s onward and in the industrialized countries after the 2008 finan-
cial crisis, central banks reacted by drastically lowering their policy rates and then resorted to
unconventional monetary policies to maintain market rates at levels close to zero or even negative.
It is surprising that inflation rates and potential growth rates seem not to respond to these expan-
sionary monetary policies in spite of their effects on the long-term yields. Two types of explanations
can be mentioned here.
The first is that the situations of lost decades in Japan, and of today secular stagnation in the
developed countries, are due to structural factors that have nothing to with unsuccessful monetary
∗This work was supported by French National Research Agency Grant ANR-17-EURE-0020.
†Email : gilles.dufrenot@univ-amu.fr
‡Email : meryem.rhouzlane@univ-amu.fr
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policies. Some authors highlight slowing population growth and the slowdown in productivity gains
(Gordon (2016), Cette et al. (2016) Bergeaud et al. (2016)). Others suggest that aggregate demand
is structurally weak stemming from a “saving glut”, rising income inequalities, excess global net
saving, or a downward shift in investment (Delong and H. (2012), Eggertsson et al. (2016), Glaeser
(2014), Stiglitz (2016)).

A second interpretation for the the low potential growths and deflation regimes, is the inability of
fiscal and monetary policies to provide the right response to reverse the dynamics that generated
the so-called lost decades in Japan and secular stagnation in the United States and Europe. The
standard analysis is that, to counter the great recessions caused by the financial crises of high
magnitude like those experienced by Japan during the 1990s and by the United States and Europe
in 2008, central bankers sought to bring long-term interest rates down as much as possible. These
rates were assumed to be those influencing the agents’ decisions in the goods and credit markets.
To do this, they first targeted very low short-term rates (through both unconventional and conven-
tional monetary policies) and then turned to targeting the monetary base (through unconventional
monetary policies like quantitative easing). The financial markets forces were supposed to activate
the transmission channels from the policy rates and monetary base to long-term rates (forward
guidance, portfolio rebalancing effects, etc).

This view has recently been challenged by the Japanese monetary authorities who turned in Septem-
ber 2016 to a new unconventional monetary policy with the control of the entire yield curve. As
explained by Amemiya (2012), executive director of the Bank of Japan, the yield curve control
policy is an old idea though not implemented by the Japanese monetary authorities so far. In an
open letter to President Roosevelt in 1933, Keynes advocated this policy at the time of the Great
Depression. During the second world war, to curb the cost of the financing of expenses for war,
the fiscal and monetary authorities adopted a framework that set caps on both the short-term and
long-term government bond yields. The control of long-term rates continued until the beginning
of the 1950s. In another country, the United Kingdom, a similar Government bond price support
was adopted after the end of the war. Another historical illustration of central bankers’ desire to
act simultaneously on short and long rates is known as Operation Twist. It was first introduced by
the US Federal Reserve in 1961 to prevent capital outflows and defend the dollar, while stimulating
the economy. Massive sales of short-term securities and, conversely, large purchases of securities
with longer maturities led to a rise in short-term rates and a fall in long-term rates. As explained
by Masayoshi Amemiya, this raised a controversy among the academics because there was no solid
empirical evidence about its efficiency and the idea was progressively abandoned. In 2011 and
2012, the Federal Reserve has adopted a program based on Operation Twist by buying long-term
treasuries and simultaneously selling short-term bonds.

A policy of yield curve control aims at changing the shaping of interest rates at different ma-
turities, because mortgage rates and corporate borrowing costs are influenced by interest rates at
different “intermediate” maturities (and not necessarily only at the short end or long end of the
yield curve). Such a policy is, however, not the one usually favored by central bankers because
it is thought that its effects on the economy are very weak to boost growth and bring down the
unemployment rate. This paper argues against this view and proposes a new evidence about the
conditions under which a policy of yield curve control can be or cannot be fully efficient to curb
deflation and increase potential growth, taking Japan as an illustration.

A policy of yield curve control is adequate when, in the financial markets, the private sector
borrows at different maturities. This is indeed the case in Japan where consumers and firms pre-
dominantly borrows in the short-to-intermediate part of the yield curve and not only at long-term
maturities. Besides, targeting exclusively the long-term interest rate can result in a flattening of
the yield curve that affects the financial sector’s long-term profitability with a disincentive effect
on loans to the private sector. Finally, when there is no room for a further decline of the long-term
rate because they are near zero and the central bank faces limits in purchases of government bond
yields, the monetary authorities may attempt to change the interest rates at other maturities to
overcome this difficulty.
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To know which part of the yield curve is effective in stimulating medium-term growth and ris-
ing inflation, we must compare the real yield curve with its equilibrium path corresponding to
the "neutral" yield curve. When the yield curve is equalized to its equilibrium path (neutral yield
curve) and there are no changes in the other policy instruments (for instance fiscal and exchange
rate policies), aggregate investment equals aggregate saving. In this case the output gap is zero
and the real yield curve is neither expansionary nor contractionnary. Theoretically, one would
require that the observed real yield curve lies below the neutral yield curve for monetary policy
to be expansionary. However, given that a flatten curve at the longer end of the yield curve over
long time periods can have detrimental effects on the economy, the monetary authorities can seek
to make this portion of the curve steeper. In this case, an expansionary monetary policy could be
reflected by a negative yield curve gap over the short-to intermediate portion of the curve, with
actual long-term rates above the neutral long-term rates. This means that, not only the long-term
and the slope of the yield curve are important, but also the curvature.

This paper builds on the rapidly growing literature on the estimation on natural interest rates
initiated since the seminal paper by Laubach and Williams (2003). However, rather than focusing
on the natural short-term rate, we extend the estimation to the entire range of the yield curve.1
We focus on the Japanese case since the beginning 1990s. To our knowledge very few papers have
addressed this issue. Two exceptions are Brzoza-Brzezina and Kotłowski (2014) and Imakubo et al.
(2017). The first paper is an application to the United States, while the second applies to Japan.
In contrast to these papers, we propose a model that is general enough to encompass many of
the stylized facts of an economy experiencing a prolonged period of recession and low level of in-
flation. We make several new contributions in the modelling of the neutral yield curve components.

Firstly, we generalize to the entire yield curve the assumption made by Holston et al. (2017)
that the natural rate is time-varying.

Secondly, changes in the yield curve gap are not only correlated with changes in monetary policy
actions, but also with other macroeconomic fundamentals. Indeed, some papers suggest that term
spread changes are caused by intertemporal consumption or investment smoothing (see Hu (1993)).
For instance, the term structure in Japan could be explained by consumers’ and firms’ expectations
of prolonged recession, thereby implying an increase in current saving that rises future income (by
substituting future for present income). To capture the influence of intertemporal smoothing we
choose changes in the current account (measured as share of GDP) as reflecting the dynamics of
aggregate net saving in a country. Other papers find that the following macro-financial funda-
mentals also contain valuable information that account for the impact of the term structure on
future output: the exchange rate (Bernard and Gerlach (1998)), inflation rates (Rouwenhorst and
Plosser (1994)) and asset prices (Smets (1997)). We account for these factors by considering the
following variables as determinants of the yield curve gap: changes in the real effective exchange
rate, lagged inflation rates, changes in financial prices measured as a weighted average of the stock
market price, the real estate prices and credit to the private sector as share of GDP. In addition
to macroeconomic fundamentals, changes in the yield curve can also come from economic policy
changes. We consider fiscal and monetary policies. Fiscal policy is measured by changes in the ratio
of primary deficit in total GDP. For monetary policy, we choose changes in the Bank of Japan’s
money base and the policy rate.

Thirdly, in addition to proposing a new model of the yield curve gap, another contribution of the
paper concerns the modelling of inflation. Recent works on Phillips curves find that the trade-off
between inflation and the unemployment gap has become weak in a context where price expecta-
tions are anchored on low inflation rates and prevent any resumption of inflation (see Blanchard
et al. (2015), Blanchard (2016)). Unemployment is not necessarily a good predictor of the inflation
rate (Dotsey et al. (2017)). Instead of the traditional supply curve used in many models, we take
stock of the results of the recent empirical literature suggesting the following structural drivers of

1In what follows we shall interchangeably use the expression "neutral" yield curve or "natural" yield curve.
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the downward trend in prices observed in Japan (and more generally in the industrialized coun-
tries): changes in the share of wages, world inflation, technical progress, capacity utilization rate.

Fourthly, we address the issue of frequency mismatch which is rarely considered in the estima-
tion of the natural interest rates. Indeed, the real yield curve gap series is sampled at a monthly
frequency, while GDP, inflation rate, potential growth and the macroeconomic variables that ex-
plain the yield curve gap are recorded at a quarterly frequency. To combine monthly and quarterly
data, our output gap equation is estimated as a state-space MIDAS regression (Mixed Data Sam-
pling) and the yield curve gap is modelled as a function of several macroeconomic variables using
a state-space VAR-MIDAS regression.

Taking a close look at the case of Japan, the paper proposes a semi-structural state-space model
that provide a joint estimation of the natural (or neutral) yield curve, declining potential growth
and weak inflation performance since the beginning nineties. It helps us to judge whether monetary
policy has been sufficiently accommodative under different monetary policy regimes.

The remainder of the paper is organized as follows. In Section 2, we present a brief historical
overview of monetary policy in Japan since 1990s. In Section 3, we propose an estimation of the
real yield curve in Japan using a dynamic Nelson-Siegel decomposition to obtain three components:
the level, the slope and the curvature. This allows us to have a general picture of the term structure
of the interest rates across different monetary policy regimes. Section 4 contains our state-space
model and joint estimation of the natural yield curve and potential growth. Section 5 explains the
results. Finally, the last section concludes.

2 A brief history of monetary policy in Japan
Since the late 1990s, five monetary easing programs have been implemented in Japan : the zero
interest rate policy (ZIRP), the quantitative easing policy, the comprehensive monetary easing
policy (QE), the quantitative and qualitative monetary easing (QQE) policy and quantitative and
qualitative monetary easing (QQE) with yield curve control. In each program, the Bank of Japan
(BOJ) chose different targets as shown in Table 1. The decrease in yields throughout the different
regimes can be observed in Figure 1

Table 1: Monetary policy regimes in Japan
Period Monetary policy Target

1999/02 - 2000/06 Zero Interest Rate Policy
(ZIRP) O/N call rate

2001/03 - 2006/02 Quantitative Easing (QE) current account
balances of BOJ

2010/10 - 2013/03 Comprehensive Monetary
Easing (CME) O/N call rate

2013/04 - 2016/09 Quantitative and Qualita-
tive Easing (QQE) monetary base

2016/09 - onward QQE with yield curve con-
trol

short-term and
long-term rates
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Figure 1: Nominal government bond yields under different monetary policy regimes in Japan

In the 1980s, Japan experienced an economic miracle. However, the appreciation of the domestic
currency, coupled with higher inflationary pressures and uprising financial asset prices,led the BOJ
to adopt a restrictive monetary policy. This resulted into a financial bubble burst. The central
bank then turned to easing its policy by cutting its policy rate. Unfortunately, because this de-
cision was taken lately, the economy sank into depression. This paved the way to the so-called
lost decade which was characterized by low potential growth, low interest rates, low inflation and
several bad bank loans.

In this context, the BOJ implemented a Against this situation, Japan implemented the ZIRP in
February 1999. This policy consisted in making the overnight call rate move at very low levels
through the provision of higher amounts of liquidity to the monetary and financial markets. In the
mean time, forward guidance intended to lower down the long-term interest rates.

The decline on the nominal interest rates was followed in March 2001 by a QE policy. The economy
rebounded during the 2000s until the rise of the 2008 financial crisis. From that moment, monetary
authorities introduced several unconventional monetary easing measures known as Comprehensive
Monetary Easing (CME) (that included the purchase of both sovereign bonds and risky assets from
the private sector like corporate bonds, real estate investment trusts (REITs)). In addition, the
central bank engaged into a forward guidance policy and set an inflation target of 2% to anchor
inflation expectations.

These measures were not enough to boost the real activity and to raise inflation. The BOJ accord-
ingly moved to a new policy called Quantitative and Qualitative easing (QQE) in April 2013. The
central bank pursued a large-scale 10-year JGBs purchases in order to decrease long-term interest
rates, and continued to purchase of risk assets in an effort to reduce the risk premia. In addition,
the monetary authorities announced negative interest rates in January 2016 to remove the ZLB.

In spite of the positive effects on the real activity, inflation expectations remained low (below the
2% target). This led to a new policy know as QQE with yield curve control in September 2016,
and to target the level of prices - rather than inflation. Under QQE the operating target is interest
rates that determine the amount of JGBs purchases in a flexible manner. No central bank has ever
made such commitment. More precisely, this new policy consists of 2 major components Kuroda
(2016) :

1. Yield curve control : the BOJ targets the short-term policy rates at -0.1% and sets a level of
10-year japanese government bond yields as an operating target (close to 0%). It purchases
JGBs at a price it designates in order to cap long-term interest rates (close to 0%) and thus
to control the entire yield curve smoothly.
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2. Inflation-overshooting commitment : the bank commits itself to maintain an increase in the
monetary base until the price stability target of 2% is reached and stays above the target in
a stable manner. The aim is to increase inflation expectations and to overcome the secular
stagnation.

Today, inflation is certainly not negative but still far away from the price stability target of 2%.
This is due to low inflation expectations because of the so-called deflationary mindset that has been
anchored among people during the lost decades. Moreover, they’re seeking, in the near future, to
steepen the yield curve depending on economic conditions to improve bank margins, since a flat
yield curve may have a negative effect on economic activity.

3 Estimation of the Japanese yield curve
3.1 The empirical framework : the Nelson-Siegel model
The first step consists in estimating three components of the yield curve that will then be consid-
ered as observed variables in our state-space model of the next section: the level, the slope and the
curvature of the yield curve. Such a decomposition is now quite standard in the literature. Among
the several methods available to obtain this decomposition, we choose the Nelson-Siegel approach.

Denote the level factor Lt, the slope factor St and the curvature factor Ct. They are useful to
characterize the short-end, the long-end and the intermediate part of the term-structure. It has
been shown in the empirical literature that they replicate most of the variations of the shape of
the yield curves (see, among others, Diebold and Li (2006), Diebold and Rudebusch (2013)), Joslin
et al. (2014)).

The Dynamic Nelson-Siegel representation of an n-period zero-coupon bond yield is:

y
(n)
t = Lt + St

1− e−n/λ

n/λ
+ Ct

(
1− e−n/λ

n/λ
− e−n/λ

)
+ ε

(n)
t , (1)

where ε(n)
t ∼ N (0, σ2), t ∈ [[1, T ]], n ∈ N with n the maturity of the bond and λ ∈ R a scale pa-

rameter that determines where the "bow center" (i.e the maximal curvature interest rate) is located.

More specifically, we define the following measurement equation:

Yt = ΛXt + εt, (2)

where Yt = (y(n1)
t , y

(n2)
t , ..., y

(nN )
t )′ with N the number of yields observed, Xt = (Lt, St, Ct)′,

εt ∼MVN (0,Σε) with εt = (ε(n1)
t , ε

(n2)
t , ..., ε

(nN )
t )′ is the vector of observation errors and

Λ ∈MN×3(R) is the matrix of loadings filled with Equation (1), (see details in Appendix A).

The State equation is described by a first-order auto-regressive process:

Xt = µ+ ΘXt−1 + ζt, (3)

where µ = (µL, µS , µC)′ is the vector of intercept, ζt ∼ MVN (0,Σζ) with ζt = (ξLt , ξSt , ξCt )′ and
Θ ∈MN×3(R) an unrestricted feedback matrix.

As is common practice (see Diebold and Li (2006) and Imakubo et al. (2017), we assume that
the deviations of the observed yields at various maturities from the model-implied yield curve
are uncorrelated (i.e variance-covariance matrix Σε ∈ MN×N (R) from Equation (2) is diagonal)
and that ξLt , ξSt and ξCt can be correlated (i.e Σζ ∈M3×3(R) from Equation (3) is left unrestricted).

Data are monthly average of nominal Japanese government bond yields of maturity 1, 2, 3, 4,
5, 6, 7, 8, 9 and 10 years from January 1989 to December 2017. In this framework, we estimate Lt,
St and Ct using a Bayesian estimation of the parameters through the Kalman filter using priors
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from Imakubo et al. (2017), as detailed in Appendix A.

3.2 Fitting the yield curves
Our Nelson-Siegel model provides a very good fitting of the term structure. Figure 2 presents the fit-
ted and observed median Japanese government bond yield curves over the period 1989:M01—2017:M12.
Figure 10 in Appendix E shows the loading components and we also report there the estimated
parameters of the models. We also graph the government bond yield surface (Figure 3) and the
loading factors under different monetary policy regimes (Figure 4).

In Figure 4, the negative slope suggests a typical ascending yield curve with the maturities, except
between 1989 and 1991. This period is indeed known as one of restrictive monetary policy. The
BOJ started hiking its policy rate in May 1989 until the early 1991 (it reached 8%) to tackle infla-
tion. The induced deteriorating growth conditions then led the central bank to react by adopting
a series of rate cuts after July 1991. After 1991, the level shows a steady fall after 1991. Over the
whole period, the average nominal interest rate is 1.46% at the longest maturity and 0.44% at the
shortest maturity. However, as shown in Table 3.2, the gap between the short and long-term rates
has been narrowing rapidly since the beginning 1990s, which reflects a flattening yield curve (this
is confirmed by Figures 11 to 16 in Appendix E, which show the yield curves over the successive
monetary policy regimes).

The estimated factor λ corresponds to a maximum of the curvature at 4 years (see Figure 10).
The curvature displays higher variations than the other latent factors, which is usual in the litera-
ture. We observe a strongly positive correlation with the slope. Lower negative values of the slope
(flatter ascending curves) are associated to lower negative values of the curvature (less pronounced
concavities).

Figure 2: Median government bond yield curve over 1989:M01-2017:M12
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Figure 3: Government bond yield surface over 1989:M01-2017:M12

Figure 4: Nelson-Siegel factors under different monetary policy regimes in Japan

Years Short and long maturities Difference
Until 1999 [2,5% ; 4,4%] 1.90%

1999-2000 : ZIRP [0,2% ; 1,8%] 1.60%
2001-2006 : QE [0% ; 1,3%] 1.30%
2010-2013 : CME [0,1% ; 0,82%] 0.72%
2013-2016 : QQE [0,05% ; 0,45%] 0.40%
Since 2016 : YCC [-0,2% ; 0,01%] 0.21%

Table 2: Intervals of the interest rates for short and long maturities

4 A model for estimating the neutral yield curve
4.1 The general model
Our approach to estimating the neutral yield curve draws on an empirical literature where time-
varying neutral interest rates are obtained by the estimate of a saving-investment equilibrium
semi-structural model, in line with Wicksell (1898)’s view of a natural interest rate. In this litera-
ture, the neutral rates are estimated as the results of an aggregate demand and supply equilibrium.

8



Based on the original paper by Laubach and Williams (2003), the bulk of the models estimated in
the literature include an aggregate demand curve in which the output gap is related to the interest
rate gap, a Phillips curve in which inflation depends on the output-gap and an equation relating the
neutral rate (usually the unobserved target of monetary policy short-term rate) to potential growth
and some unobserved determinants that are supposed to capture shifts in preferences, demographic
factors, changes in productivity, global saving. Potential growth is defined as the first-difference
of potential GDP and is assumed to follow a random walk or mean-reverting autoregressive process.

Here, we extend the baseline framework. The unobserved variables (state variables) are written
with a ∗.

4.1.1 Aggregate demand

The IS curve - written in terms of log-deviations of real GDP from potential - relates the output
gap to the real yield curve gap (to capture the stance of monetary policy) and changes in the
government’s overall fiscal balance ratio to assess the stance of fiscal policy as follows:

yt − y?t = φ1(yt−1 − y?t−1) + µ

[∫
n

φn(r(n)
t−1 − r

?(n)
t−1 ) dn− πt−1

]
+ ηob∆obt−1 + u∆y

t , (4)

where rnt and rn?t are, respectively, the actual nominal interest rate of maturity n at time t and
the natural rate of interest of maturity n at time t. yt is actual real GDP, y?t is potential GDP,
and u∆y

t ∼ N (0, σ2
∆y). µ is a parameter that describes the sensitivity of the output gap to the

real yield curve gap. For purpose of simplicity, we retain one lag to capture the influence of the
yield curve. obt is the ratio of the overall fiscal to GDP. ∆obt > 0 indicates a contractionary fiscal
stance, while ∆obt < 0 means an expansionary fiscal stance. Therefore, in contrast to the common
wisdom, we assume that a deficit or a surplus is not per se an indication of whether fiscal policy is
becoming lax or tight. What matters is whether fiscal authorities are reducing or increasing their
fiscal balance2. We assume µ < 0 : an expansionary monetary policy (for instance when the actual
yield curve is below the neutral yield curve) increases the real GDP. However, we do not impose
the constraint ηob < 0 : fiscal policy may have Ricardian effects.

Our motivation for considering a demand-based approach of the policy-mix is the following. Since
the sharp deceleration of the Japanese growth in the mid-1990s and the accompanying marked de-
cline in potential growth and inflation, the successive governments have searched to restore them
through a policy-mix focused on the demand side of the economy. On the monetary policy side,
as we already observed in the preceding section, the policy rate was lowered and a quantitative
easing policy was introduced. On the fiscal policy side, higher deficits have been geared with a
view to boosting aggregate demand in a context whereby the governments enjoyed exceptionally
low interest rates on public debt. The combination of loose monetary and fiscal policies culminated
in the so-called "Abenomics" in 2013.

Since the neutral rate, potential growth and the medium-term fiscal deficits jointly determine
the dynamics of public debt in the medium term, we also consider an equation for the dynamics
of the public debt ratio. Changes in the public debt ratio ∆bt (nominal debt over nominal GDP)
depend upon the so-called snowball effect and on the primary balance ratio pbt (primary balance
as share of GDP. The snowball effect is captured by the difference between the "average" natural
rate computed over the different maturities and potential growth gt3:

2In contrast to what is observed in the other OECD countries, the automatic stabilizers are very weak in Japan.
We therefore interpret the changes affecting the overall balance as stemming from the governments’ counter-cyclical
policies.

3Since these variables refers to medium term values of growth and interest rate, the primary deficit should be
the structural deficit. However, the accumulation of deficits over time is a source of hysteresis in the dynamics
of the overall balance, thereby implying that the cyclical balance has an impact on the public debt ratio in the
medium-term.
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∆bt =
(∫

n

φnr
?
t dn− gt

)
bt−1 − pbt,

⇔ ∆bt = (L?t + µ′SS
?
t + µ′CC

?
t − gt)bt−1 − pbt. (5)

where µ′S and µ′C are defined below.

Using the Nelson-Siegel decomposition, r(n)
t and r

?(n)
t can be rewritten in terms of their three

latent factors :

r
(n)
t = Lt + St

1− e−n/λ

n/λ
+ Ct

(
1− e−n/λ

n/λ
− e−n/λ

)
, (6)

r
?(n)
t = L?t + S?t

1− e−n/λ

n/λ
+ C?t

(
1− e−n/λ

n/λ
− e−n/λ

)
. (7)

where we assumed that the two curves have the same scale parameter λ.

Subtracting (6) to (7), we obtain :

r
(n)
t − r?(n)

t = (Lt − L?t ) + (St − S?t )
(

1− e−n/λ

n/λ

)
+ (Ct − C?t )

(
1− e−n/λ

n/λ
− e−n/λ

)
, (8)

and putting (8) into (4), we obtain :

yt − y?t = φ1(yt−1 − y?t−1) + µL(Lt−1 − L?t−1) + µS(St−1 − S?t−1) + µC(Ct−1 − C?t−1)− µπt−1+

ηob∆obt−1 + u∆y
t .

φn(.) in Equation (4) is a weighting function of the interest rate gaps of different maturities. For
purpose of simplicity we assume that this function is described by a Uniform law. The Uniform
weighting amounts to assigning the same weight to the different interest rates so that no particular
maturity has more or less influence on the output gap than another. It can be shown that, under
such a distribution, the coefficients µL, µS and µC can be rewritten as follows (see Imakubo et al.
(2017)):

µL = µ,

µS = µ
Tn

∫
n

1−e−n/λ
n/λ dn = µ× µ′S ,

µC = µ
Tn

∫
n

(
1−e−n/λ
n/λ − e−n/λ

)
dn = µ× µ′C .

Replacing in the IS curve yields :

yt − y?t = φ1(yt−1 − y?t−1) + µ
[
(Lt−1 − L?t−1) + µ′S(St−1 − S?t−1) + µ′C(Ct−1 − C?t−1)− πt−1

]
+

ηob∆obt−1 + u∆y
t .

(9)

Since the value of λ and n are known, µ, µ′S and µ′C are parameters to be estimated.

Potential output y? is represented as the result of a unit root process with a time-varying drift.
Potential growth gt is assumed to follow an AR(1) process with a drift (with possibly unit root if
φg1 = 1):

y?t = y?t−1 + gt−1 + wy
?

t , (10)
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where wy
?

t ∼ N (0, σ2
y?) and

gt = φg0 + φg1gt−1 + wgt , (11)

where wg
?

t ∼ N (0, σ2
g).

The yield curve gap is endogenous and determined according to the following system:

 Lt − L?t
St − S?t
Ct − C?t

 =

 φL 0 0
0 φS 0
0 0 φC

 Lt−1 − L?t−1
St−1 − S?t−1
Ct−1 − C?t−1

+

 α1 ... α6
γ1 ... γ6
κ1 ... κ6




Policyt−1
BOJbaset−1

∆obt−1
Financialt−1
REERt−1
Inflationt−1

+

 u∆L
t

u∆S
t

u∆C
t


(12)

with

u∆L
t

u∆S
t

u∆C
t

 ∼MVN (0,Ω2), Ω2 =

 l 0 0
0 s 0
0 0 c


The equation for the latent factors is:

 L?t
S?t
C?t

 =

 β 0 0
0 δ 0
0 0 η

 L?t−1
S?t−1
C?t−1

+

 cL

cS

cC

 gt−1 +

 wL
?

t

wS
?

t

wC
?

t

 (13)

and

wL?twS?t
wC

?

t

 ∼MVN (0,Ω1), Ω1 =

l? 0 0
0 s? 0
0 0 c?


The definitions of the variables that enter as control variables in the right-hand side of the yield
curve gap Equation (12) are the following. Policy : changes in the BOJ’s policy rate, BOJbase:
changes in the BOJ’s base money (M3), ∆obt: changes in the overall fiscal balance, Financial:
changes in the current financial environment, REER: changes in the real effective exchange rate
and Inflation: inflation rate. Our financial cycle index is a weighted average of credit to non-
financial corporations, stock prices and real estate prices, smoothed with a Christiano-Fitzgerald
filter.

This equation can be motivated with regards to the vast theoretical and empirical literature on
the macroeconomic determinants of the yield curve. Not only their shocks, but also the variables
themselves, affect the components of the yield curve. For instance, inflation drives the level of the
real yield curve by changing long-run inflation expectations. The literature also emphasizes the
role of macroeconomic management in the determination of the risk premium (fiscal and mone-
tary policies, trade and exchange rate policies). Whether or not the monetary policy programs
implemented by the industrialized countries (asset purchase programs, zero interest rate, quali-
tative easing) have been able to affect the global yield curve is still a matter of debate in the
literature (see Diez de los Rios and Maral (2017)). Considering changes in the BOJ’s money base
and policy rates will help us examine this issue in the case of Japan.4 In addition, the inclusion

4For recent papers about the influence of macroeconomic fundamentals on the term structure of interest rate,
the reader can refer to Bikbov and Chernov (2010), Evans and Marshall (2007), Rudebusch and Wu (2008), Chen
and Tu (2018).
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of a proxy for financial conditions is justified by our will to better capture business cycle dynam-
ics as well as other aspects of monetary transmission not contained in our first two policy variables.

The equation of the latent factors generalizes the commonly used equation in models à la Laubach-
Williams in which the natural policy rate has a time-varying dynamics according to the time-path
of potential growth. We assume a similar relationship.

4.1.2 Aggregate supply

Aggregate supply is described by an equation in which inflation is explained by lagged inflation, by
lagged output and by some variables that reflect some key determinants of the decline in historical
inflation found in the literature:

πt = dππt−1 + η1(capt−1 − cap?t−1) + η2π
wages
t−1 + η3π

US,PPI
t−1 + η4TOT

emerg
t−1

+ η5π
energy
t + uπt , (14)

where η1 is assumed to be positive and uπt ∼ N (0, σ2
π).

This formulation broadly reflects the main findings of the empirical literature on Phillips curves.

Firstly, wage inflation is taken as a proxy of the role of unionization in the bargaining process
in the workers-employers relations. The bargaining power of employees has decreased over time
due to factors such as technology, tighter credit constraints, diminishing saving. These provided
more leverage to firms to hold down wages and in turn has implied that employers have been able
to afford lower margins to keep competitiveness in markets.
Secondly, a consensus seems to emerge in the literature about a weakening of the relationship be-
tween inflation and unemployment gap, thereby implying that the latter is not necessarily a good
predictor of the former. One implication is that demand-pull inflation is better described by an
equation relating price changes to an indicator of tension in the market of goods and services (here
the capacity utilization gap).
Thirdly, there are some empirical evidence that domestic inflation rates in open economies are de-
termined by global factors (for instance, international prices -captured here by the producer price
index in the US, πUS,PPI -, the emerging countries’ terms of trade -here TOT emerg-, energy prices
-here πenergy-)5

The formalization of capacity utilization gap is standard. It depends on the output gap and
has an autoregressive component. The variable cap refers to capacity utilization and cap? to the
long-term capacity utilization which can be thought of as a NAICU (non-accelerating inflation rate
capacity utilization):

capt − cap?t = θ0 + θ1(capt−1 − cap?t−1) + θ2(yt−1 − y?t−1) + u∆cap
t , (15)

where θ2 is assumed to be positive, and :

cap?t = χ0 + χ1cap
?
t−1 + wcap

?

t , (16)

where u∆cap
t ∼ N (0, σ2

∆cap) and wcap
?

t ∼ N (0, σ2
cap?).

4.2 Matching the frequencies
In the aggregate demand Equation (9), output gap measured at a low frequency (quarter) is
explained by yield curve series sampled at higher frequency (monthly). To deal with this mixed
data sampling, we employ the methodology of MIDAS (mixed-data sampling) models originally
suggested by Ghysels et al. (2007). The original equation is now written as follows:

5Nowadays, there is an abundant literature about supply driven and demand-pull inflation to which the interested
reader can refer. See, among many others, Auer et al. (2017), Leduc and Wilso (2017), Blanchard (2018).
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yt−y?t = φ1(yt−1−y?t−1)+µL
jmax∑
j=1

bL(j, θL1 , θL2 )
(
Lt− j

m
− L?

t− j
m

)
+µS

jmax∑
j=1

bS(j, θS1 , θS2 )
(
St− j

m
− S?

t− j
m

)
+

µC

jmax∑
j=1

bC(j, θC1 , θC2 )
(
Ct− j

m
− C?

t− j
m

)
− µπt−1 + ηob∆obt−1 + u∆y

t , (17)

with



bL(j, θL1 , θL2 ) = eθ
L
1 j+θL2 j

2∑jmax

j=1
e
θL1 j+θL2 j

2 ,

bS(j, θS1 , θS2 ) = eθ
S
1 j+θS2 j

2∑jmax

j=1
e
θS1 j+θS2 j

2 ,

bC(j, θC1 , θC2 ) = eθ
C
1 j+θC2 j

2∑jmax

j=1
e
θC1 j+θC2 j

2 .

θ = [θL1 , θL2 ; θS1 , θS2 ; θC1 , θC2 ] is a set of parameters to estimate, with θL,S,C1 and θL,S,C2 unconstrained.
We fix the lag jmax to 6, which amounts to assuming that the influence of the yield curve gap on
the output gap lasts a maximum of 6 months. The notation ( jm ) refers to a month defined as a
fraction of a quarter (1/3). We examine how the output gap of a given quarter t is explained by
the yield curve gap of the last month within the current quarter, the preceding month, the month
before,..., and ( jmaxm ) months backward. The Almon lag distribution captures different shapes of
the weighting of the months.

Now, in the yield curve gap equation we also have variables sampled at mixed frequencies. This
time the endogenous variable has a higher frequency (the yield curve gap measured at a monthly
frequency) than the quarterly macroeconomic variables. The issue of exploiting the information
contained in low frequency data to forecast high frequency data has been addressed in several pa-
pers, among which Ghysels (2016), Mariano and Murasawa (2010), Schorfheide and Song (2015).
Here, we use the MIDAS-VAR representation which is simple. For purpose of clarity in the ex-
position, we consider each of the components of the yield curve gap separately. For purpose of
parsimony, we reduce the dimension of the vector of the macroeconomic fundamentals. Instead of
gathering all the variables simultaneously, we consider them one by one.

Under our assumption of one single quarterly lag, the MIDAS-VAR representation of the level,
slope and curvature gaps are as follows:


Lt,1 − L?t,1
Lt,2 − L?t,2
Lt,3 − L?t,3
Macrot

 =


αL11 αL12 αL13 α1
αL21 αL22 αL23 α2
αL31 αL32 αL33 α3
αL1 αL2 αL3 αM




Lt−1,1 − L?t−1,1
Lt−1,2 − L?t−1,2
Lt−1,3 − L?t−1,3
Macrot−1

+


u∆L
t,1
u∆L
t,2
u∆L
t,3

uMacro
t

 (18)


St,1 − S?t,1
St,2 − S?t,2
St,3 − S?t,3
Macrot

 =


γS11 γS12 γS13 γ1
γS21 γS22 γS23 γ2
γS31 γS32 γS33 γ3
γS1 γS2 γS3 γM




St−1,1 − S?t−1,1
St−1,2 − S?t−1,2
St−1,3 − S?t−1,3
Macrot−1

+


u∆S
t,1
u∆S
t,2
u∆S
t,3

uMacro
t

 (19)


Ct,1 − C?t,1
Ct,2 − C?t,2
Ct,3 − C?t,3
Macrot

 =


κC11 κC12 κC13 κ1
κC21 κC22 κC23 κ2
κC31 κC32 κC33 κ3
κC1 κC2 κC3 κM




Ct−1,1 − C?t−1,1
Ct−1,2 − C?t−1,2
Ct−1,3 − C?t−1,3
Macrot−1

+


u∆C
t,1
u∆C
t,2
u∆C
t,3

uMacro
t

 (20)

Macro is a macroeconomic variable that influences the latent factors (Policy, BOJbase, ∆obt,
Financial, REER or Inflation). When we write Xt,j the time index refers to the quarter while
the couple (t, j) indicates the month j within the quarter t, j = 1 being the most recent month of
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the quarter and j = 3 the oldest. The last vector contains the residual terms. This representation
has several advantages. First, it allows considering bi-causality in the relationship between the
level gap and the macroeconomic fundamentals. Secondly, it does not impose any restriction on
the aggregation of high frequency to low frequency.

Similarly, one defines the dynamics of the neutral latent factors by a MIDAS-VAR:


L?t,1
L?t,2
L?t,3
gt

 =


βL

?

11 βL
?

12 βL
?

13 β1
βL

?

21 βL
?

22 βL
?

23 β2
βL

?

31 βL
?

32 βL
?

33 β3
βL1? βL2? βL3? βg




L?t−1,1
L?t−1,2
L?t−1,3
gt−1

+


wL
∗

t,1
wL
∗

t,2
wL
∗

t,3
wg
∗

t

 (21)


S?t,1
S?t,2
S?t,3
gt

 =


δS

?

11 δS
?

12 δS
?

13 δ1
δS

?

21 δS
?

22 δS
?

23 δ2
δS

?

31 δS
?

32 δS
?

33 δ3
δS1? δS2? δS3? δg




S?t−1,1
S?t−1,2
S?t−1,3
gt−1

+


wS
∗

t,1
wS
∗

t,2
wS
∗

t,3
wg
∗

t

 (22)


C?t,1
C?t,2
C?t,3
gt

 =


ηC

?

11 ηC
?

12 ηC
?

13 η1
ηC

?

21 ηC
?

22 ηC
?

23 η2
ηC

?

31 ηC
?

32 ηC
?

33 η3
ηC1? ηC2? ηC3? ηg




C?t−1,1
C?t−1,2
C?t−1,3
gt−1

+


wC

∗

t,1
wC

∗

t,2
wC

∗

t,3
wg
∗

t

 (23)

4.3 Estimation
4.3.1 Restrictions

The estimation of our model has the inconvenient of the proliferation of coefficients that need to
be estimated. Therefore, some of them must be restricted.

A first issue to deal with is the under-identification of some parameters. Potential GDP gt is
determined in four equations : it is defined in Equation (10) as an endogenous variable and also
appears as an endogenous variable in the MIDAS-VAR system. The equation of gt is identified
under the following restrictions implying that the components of the natural yield curve do not
impact directly potential growth:


βg = δg = ηg = φg1

βL1? = βL2? = βL3? = 0
δS1? = δS2? = δS3? = 0
ηC1? = ηC2? = ηC3? = 0

(24)

Some equality restrictions are also imposed on some coefficients in such a way that the autocorre-
lation dynamics in the latent and gap components of the yield curve is considered at low frequency
sampling (but not at the monthly frequency):



βL
?

ij = β, (i, j) = {1, 2, 3}
δS

?

ij = δ, (i, j) = {1, 2, 3}
ηC

?

ij = η, (i, j) = {1, 2, 3}
αLij = φL, (i, j) = {1, 2, 3}
γSij = φS , (i, j) = {1, 2, 3}
κCij = φC , (i, j) = {1, 2, 3}

(25)
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Then, we assume that a quarterly macro variable loads equally on each month of the monthly yield
curve factors: αL1 = αL2 = αL3 = αL

γL1 = γL2 = γL3 = γS
κL1 = κL2 = κL3 = κC

(26)

Reciprocally, we have: α1 = α2 = α3 = α
γ1 = γ2 = γ3 = γ
κ1 = κ2 = κ3 = κ

(27)

Finally, we need the following additional identifying restriction for the parameters of the equations
in which the macroeconomic variables depend upon their lagged values in the latent factor gap
systems:

αM = γM = κM = ρ (28)

As we actually have 6 macro variables, we order them by exogeneity as in Equation (12). We
therefore assume that ρ is a higher triangular matrix to reduce the number of parameters to
estimate.

4.3.2 Two-step estimation

How to estimate the model is not only an econometric issue, but also depends on our interpretation
of the neutral yield curve. There are two opposite views in the literature about whether neutral
rates should be interpreted using a short- or long-run perspective.

On the one hand, the long-run interpretation relies on the following assumption : the neutral
rates are driven by structural factors determining trend GDP (total factor productivity growth,
the growth rate of population, saving resulting from individual’s preferences, etc). This approach
is adopted in papers based on Laubach and Williams’ methodology. Potential growth enters as a
determinant of the natural rate and is considered as a proxy of trend growth.

On the other hand, a short-term interpretation relies on the assumption that most of the changes
in the actual real rates come from changes in the interest rate gaps rather than in the neutral rates.
The reference to a neutral rate is useful because it serves as an indicator of the stance of monetary
policy and provides the central bankers with a benchmark. In this case, the neutral rate does not
depends upon any indicator reflecting trend growth and the interest rate gap is correlated with the
business cycle.

Choosing between these two alternative approaches is usually an empirical issue and the liter-
ature is still inconclusive6. Here, we adopt a short-term perspective for two reasons. Firstly, the
aim of the paper is to see whether the growth and inflation performances in Japan were related or
not to the stance of monetary policy. Secondly, we consider a maximum maturity horizon of 10
years which corresponds to a typical duration of the business cycle (Juglar cycles). Under these
assumptions, we set cL, cS , cC = 0 (potential growth does not drive the neutral yield curve) in the
equation of the latent components of the yield curve and their dynamics is described by autore-
gressive processes.

The model is estimated using a two-step approach.

Step 1. Estimation of the yield curve gap using the restricted MIDAS-VAR model

6For an overview of the empirical literature, the reader can refer to Garnier and Wilhelmsen (2009).
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This step consists in estimating a state-space model in order to obtain time series of neutral level,
slope and curvature at a monthly frequency. It corresponds to the system of equations (18) to (28).

The state equation is written in compact form as

Xt = AXt−1 +Wt (29)

where Xt is a matrix with dimension 9× 1, X ′t = (X ′1t, X
′

2t, X
′

3t) with:

X
′

1t = (L∗t,1, L∗t,2, L∗t,3)
X
′

2t = (S∗t,1, S∗t,2, S∗t,3, )
X
′

3t = (C∗t,1, C∗t,2, C∗t,3)

A ∈M9×9(R), W ′

t = (wL∗t,1 , wL
∗

t,2 , w
L∗

t,3 , w
S∗

t,1 , w
S∗

t,2 , w
S∗

t,3 , w
C∗

t,1 , w
C∗

t;2 , w
C∗

t,3 ) with Wt ∼MVN (0,Ω1) and
Ω1 as a diagonal variance-covariance matrix. We are constrained to impose this latter restriction
due to the high-dimensionality of the system.

The measurement equation is written as

Yt = EXt +DXt−1 +BYt−1 + Ut (30)

where Yt has dimension 10× 1, Y ′t = (Y ′1t, Y
′

2t, Y
′

3t,Macrot), with:

Y ′t,1 = (Lt,1, Lt,2, Lt,3)
Y ′t,2 = (St,1, St,2, St,3)
Yt,3 = (Ct,1, Ct,2, Ct,3)

E ∈M10×9(R),D ∈M10×9(R), B ∈M10×10(R), U ′t = (uLt,1, uLt,2, uLt,3, uSt,1, uSt,2, uSt,3, uCt,1, uCt,2, uCt,3, uMacro
t )

with Ut ∼MVN (0,Ω2) and Ω2 as a diagonal variance-covariance matrix. Matrices A,E,D,B are
filled with Equations (18) to (28). Details are presented in Appendix B.

In this framework, we estimate L?t , S?t and C?t using a Bayesian estimation of the parameters
through the Kalman filter, as detailed in B.

Step 2. Plugging the estimated yield curve gap into the MIDAS model

The first step provides us with estimations of (Lt,1 − L∗t,1), (St,1 − S∗t,1) and (Ct,1 − C∗t,1), that
is the components of the yield curve gap at a monthly frequency. These are considered as observ-
able variables, in a second step, to estimate the system that consists of Equations (10), (11), (14),
(15), (16) and (17). The second step involves the estimation of a new state-space model. We use
the same notations: X for the state vector, Y for the observed endogenous variables that define
the measurement equation and Z as a vector of exogenous variables.

The state equation is written in compact form as :

Xt = α+AXt−1 +Wt (31)

Xt is a matrix with dimensions 3 × 1 : X ′t = (y?t , gt, cap?t ),

α is a 3 × 1 vector, A ∈ M3×3(R) and W ′t = (wy
?

t , w
g
t , w

cap?

t ) with Wt ∼ MVN (0,Ω3) and
Ω3 as a diagonal variance-covariance matrix. We are constrained to impose this latter restriction
due to the high-dimensionality of the system.

The measurement equation is written as :

Yt = β + EXt +DXt−1 +BZt−1 + Ut (32)

Yt is a matrix with dimensions 3 × 1 : Y ′t = (πt, capt, yt),
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Zt−1 is a 3jmax + 8× 1 vector of pre-determined variables:

Z ′t−1 = (πt−1, π
wages
t−1 , πUS,PPIt−1 , TOT emergt−1 , πenergyt , yt−1, capt−1,∆obt−1, L̃t−j/m, S̃t−j/m, C̃t−j/m),

L̃′t−j/m = (Lt−1/m − L?t−1/m, ..., Lt−jmax/m − L
?
t−jmax/m),

S̃′t−j/m = (St−1/m − S?t−1/m, ..., St−jmax/m − S
?
t−jmax/m),

C̃ ′t−j/m = (Ct−1/m − C?t−1/m, ..., Ct−jmax/m − C
?
t−jmax/m),

β has dimension 3 × 1, E ∈ M3×3(R), D ∈ M3×3(R), B ∈ M3×3jmax+8(R), where j =
(1, 2, 3..., jmax) and U ′t = (uπt , u

cap
t , uyt ) with Ut ∼ MVN (0,Ω4) and Ω4 as a diagonal variance-

covariance matrix. Matrices α, β,A,E,D,B are filled with Equations (10), (11), (14), (15), (16)
and (17). Details are presented in Appendix C.

In this framework, we estimate y?t , gt and cap?t using a Bayesian estimation of the parameters
through the Kalman filter, as detailed in C.

4.3.3 A challenging estimation

It is well known that estimating the natural rate within semi-structural models is a challenging task.
Problem usually encountered are a high estimation uncertainty and the so-called ’pile up’ issue. As
illustrated in Fiorentini et al. (2018), a high uncertainty in filtering the state variables (rather than
the model’s parameters) arises when the IS and Phillips curves are too flat. In that case, a high
uncertainty in the filtered zt component of Laubach & Williams type of models emerges, which
leads to an imprecise estimate of the natural rate. An accurate estimate requires the slope of the
IS and Phillips curve to be steep, much more than we usually observe in the data. Nevertheless,
our model is not subject to the same source of uncertainty, as we estimate the natural yield curve
and the trend components of the economy (gt, y?t and cap?t ) in two distinct steps. Our natural
yield curve therefore remains unaffected by the trend variables.

Second, the so-called ’pile up’ issue, which consists in the variance of the residuals of some of
the latent factors being biased towards zero (see Stock and Watson (1998)), can arise when the
data are not informative enough in a model simultaneously estimated via maximum-likelihood. As
illustrated by Brand and Mazelis (2018), the problem can be solved by turning to Bayesian with
the use of relatively tight priors on the variance of the residuals, provided that one has any prior
information.7 That is also what we do.

However, if the usual estimation issues arising in small-size semi-structural models à la Laubach
and Williams are avoided, the high dimension of our state-space models leads to other serious
challenges. First, the high number of parameters to be estimated in the context of the frequency
mismatch adjustment may lead to large standard errors of the estimated parameters.8 Indeed, as
our sample size is only 115 for the MIDAS-VAR model and 113 for MIDAS model (with jmax = 6),
unrestricted models would contain too little degrees-of-freedom to provide accurate estimations.
Thus, many economically reasonable restrictions are set to address this point, as described in Sec-
tion 4.3.1. Still, the number of parameters that we need to estimate in Step 1 is 87 (and 28 in
Step 2), which can be a challenge for a software’s optimization algorithm if no relevant initial point
is given. For this reason, we initialize the Kalman Filters with parameters and state variables
values that we believe are very close to the true ones. To do so, we conduct OLS regressions on
the HP-Filtered trends of the nominal yield curve, output, output growth and capacity utiliza-
tion. We assume that the low-frequency component of these variables is a good approximation
of their natural and potential level. In addition, we use these preliminary estimations as priors
in the Bayesian estimation of the MIDAS-VAR and MIDAS parameters. On the other hand, the

7Which may not be the case for a undefined zt component.
8The standard errors being themselves imprecise as the high dimension of the Hessian matrix to be inverted also

leads to imprecise results.
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Dynamic Nelson-Siegel model is initialized with preliminary estimations from OLS on the approx-
imated Level, Slope and Curvature by linear combinations of selected yields (see Appendix A).
Plus, we use Imakubo et al. (2017) estimated values as priors in our Bayesian estimation. Fur-
thermore, the high dimension of our systems can lead to sizeable run-off errors when inverting the
MSE matrix of the Measurement Equation in the Kalman Filter algorithm, especially because we
impose a lot of restrictions to the feedback matrices, that may render the MSE matrix nearly rank
deficient in some situations. Hence, we compute the Kalman gain without inversion of the MSE
matrix, using a Modified Cholesky decomposition, as presented in Appendix A. Additionally, the
presence of lags in the State and Measurement Equations of our MIDAS-VAR and MIDAS models,
due to the frequency mismatch adjustment, requires the Kalman Filter Algorithm to be amended
as in Qian (2014).

Overall, the maximization of our penalized-likelihood is relatively time consuming in our mod-
els, especially for the MIDAS-VAR. We therefore transferred all Matlab codes into C++ and run
the optimization in a pool of 20 parallel workers.9

5 Results
Appendices E,F,G presents the detailed results of estimates. In the main text, we summarize our
main findings.

5.1 Determinants of the yield curve gap
Figure 5 shows the natural yield curve surface throughout our sample period (1989:M04-2017-M12).
We see a downward trend in the natural rates at all maturities. This finding suggests that former
results obtained in the literature on the historical decline of the neutral short-term interest rates
(see, for instance, Holston et al. (2017), and Fujiwara et al. (2016)) also apply to the longer end
of the yield curve. Figure 6, shows the natural latent factors. There are some similarities between
the neutral curves and the historical latent factors estimated in Section 3.

However, as shown in Table 3, they display some substantial gaps. On average, over the different
sub-periods, the natural rates are below their estimated historical level for both the shortest and
longest maturities. Appendix F shows some graphs on the gap of the different loading factors, as
well as the differences between the natural and historical yield curves during the different monetary
policy regimes. All graphs show that the yield curve has rarely been at its equilibrium path. The
most symptomatic case is the QQE period. The economic conditions would have required a yield
curve with negative rates at all maturities, but the historical rates remained positive. What factors
have prevented the yield curve from reaching its neutral level?

In Table 4, we investigate the key determinants of the loading factors gaps (defined as the difference
between the historical and natural level, slope, and curvature). We propose to call “push” factors
those leading to a narrower gap and “pull” factors those increasing the gap. From the estimations,
we see that cuts in the BOJ policy rate, higher public deficits and high inflation rates were push
factors that should have led to narrower slope gap. On the opposite, exchange rate appreciation,
higher financial prices and fiscal consolidation (positive changes in overall budget balance) were
pull factors to the level gap. Moreover, the curvature gap increased with higher financial prices.
The persistently opened gap in the yield curve can be explained by, either by a dominance of the
pull factors, or because the strength of push factors have been moderate.

9We use Matlab Mex functions to do so.
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Figure 5: Natural yield surface across different monetary policy regimes in Japan.

Figure 6: Natural factors under different monetary policy regimes in Japan

To explain the insufficient strength of push factors to close the slope gaps, here are several possible
explanations. First, regarding the role of monetary policy, the BOJ has been too slow in cutting
rates during the years of economic contraction that followed the financial bubble burst in the early
1990s. Even during the period of ZIRP, between 1998 and 2001, one had to wait until 2001 before
the call rate fell to zero. During the first half of the years of the QE policy, the purchases of
Japanese Governments Bonds (JGB) were not designed to cut the long-term rates, but they were
done at the short-end of the yield curve. Until the “break” of the Abenomics policy, the loosing
of monetary policy has been moderate. Some explanations to this moderation are investigated
in the literature: fear of inflation, failure to recognize the severity of the zero-lower bound, non-
cooperation with fiscal policy (see, among others, Bernanke (2000), Kuttner (2014)).

Second, from the early 1990s until the Abenomics policy, the successive governments have avoided
turning to expansionary fiscal policies. When fiscal stimuli were implemented, they were followed
by restrictive policies. For instance, the fiscal expansion of the period 1998-2000 was followed
by fiscal consolidation in 2001 (going back to the restrictive policies that had been implemented
between 1996 and 1998). Similarly, fiscal deficits were widened in the aftermath of the Great De-
pression in 2008 and 2009 (under Taro Aso), but Naoto Kan and Yoshuhiro Noda turned to fiscal
retrenchment between 2010 and 2012 by raising taxes.
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The regime of low inflation, in which Japan has been for three decades, also prevented the slope
components from being adjusted to its natural level. The explanation is simply that the zero lower
bound constraint creates an aggregate demand that is nonlinear (kinked). In case of a negative
shock, the real interest rate would have to fall sharply in order to pull the economy out of the
recession, which in turn would raise the interest rate. However, this mechanism does not operate
if inflation does not increase enough.

Regarding the pull factors, our variable of financial prices is defined as the average of housing
prices, equity prices and credit to the private sector. One would expect that, during financial
booms, when prices peak up, investors have a more pronounced appetite for risk and invest in
riskier assets at short-term maturities. This should reduce prices and induce an increase in the
yields at longer maturities. However, the positive and statistically significant coefficient of the
financial cycle variable in the level gap and curvature gap equations suggests an alternative expla-
nation in the Japanese case. Against a backdrop of falling interest rates at all maturities, Japanese
banks - which are among the biggest investors in the financial markets – have favored an increase
in their profitability over risk-taking strategies. In search of further income growth, they expanded
their loan activities in the Asian countries – as new asset classes. Such behaviors, by inducing a
shift in the composition of their asset portfolios, tend to exert an upward pressure on the long-term
yields of the other -classical- financial assets.

Turning to the real exchange rate, since the early 1990s Japan is stuck into a disinflation path
(during the lost decades, the country even suffered from a deflationary spiral), thereby implying
that the yen’s real exchange rate has, on average, followed a depreciation trend. In addition to this
nominal exchange rate effects, the productivity gains, though slowing down, have helped increasing
competitiveness and have prevented a strong fall in potential growth. Since the latter is one of the
drivers of the natural long-term rate, this could explain why we find a positive correlation between
the coefficient of REER and the level gap.

Years Short and long maturities (neutral) Short and long maturities (historical)
Until 1999 [1.90% ; 4%] [2.5% ; 4.4%]

1999-2000 : ZIRP [0.05% ; 1.3%] [0.2% ; 1.8%]
2001-2006 : QE [-0.1% ; 0.7%] [0% ; 1.3%]
2010-2013 : CME [0.1% ; 0,6%] [0.1% ; 0.82%]
2013-2016 : QQE [-0.35% ; -0.2%] [0.05% ; 0.45%]
Since 2016 : YCC [-0.07% ; -0.1%] [-0.2% ; 0.01%]

Table 3: Intervals of the natural rates for short and long maturities
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Level gap Coefficients P-values
Policy rate α11 = −0.021 1.932E-01

BOJ base money α12 = 0.022 4.895E-01
Change in overall budget balance α13 = 0.054∗∗ 2.713E-02

Financial cycle α14 = 0.057∗∗∗ 3.653E-05
REER α15 = 0.036∗∗ 1.663E-02
inflation α16 = 0.018 5.395E-01

Slope gap Coefficients P-values
Policy rate γ11 = 0.185∗∗∗ 3.552E-05

BOJ base money γ12 = −0.020 5.946E-01
Change in overall budget balance γ13 = −0.050∗ 4.718E-02

Financial cycle γ14 = 0.021 2.173E-01
REER γ15 = −0.047 1.045E-01
Inflation γ16 = −0.047∗ 8.749E-02

Curvature gap Coefficients P-values
Policy rate κ11 = −0.038 3.750E-01

BOJ base money κ12 = 0.058 3.137E-01
Change in overall budget balance κ13 = −0.050 2.720E-01

Financial cycle κ14 = 0.047∗ 7.796E-02
REER κ15 = −0.052 2.510E-01
Inflation κ16 = 0.015 7.627E-01

Table 4: Key determinants of the yield curve gap natural factors

Figure 7: Snowball effect

5.2 Influence of the yield curve gap on the macroeconomic variables
Tables 5 and 6 present the estimates of aggregate demand and supply equations. To save place, we
present a selection of graphs: potential growth and output and the interest rate-growth differential
(Figures 7, 8 and 9).

The yield curve gap coefficient µL enters the aggregate demand equation with a negative and sta-
tistically significant sign. A 10% decrease in the nominal yield curve below the nominal natural
curve implies a gain in production relative to its potential by 0.76%. This positive effect works
through long-run maturity interest rates (the coefficient of the level gap is positive and statistically
significant). For medium-term maturities, the positive effect on output is, however, reversed (the
coefficient µC is negative). This happens if the economy is on the portion of the aggregate demand
curve where it is upward sloping, because of the lower bound on the interest rates. In this case,
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only higher inflation rates can trigger an increase in the output. As short-term maturities the
interest rate is not statistically significant. We therefore see that the policy rate did not, directly,
influenced the real activity.

The coefficient of changes in fiscal balance aims to capture the behavior of governments when they
commit themselves to maintain the same orientation of their fiscal policy over several consecutive
periods. According to our estimates, if fiscal balance is initially in surplus and the government
decides to increase this surplus further by 10%, this makes the GDP increase from above its po-
tential level by 0.47%. Symmetrically, an additional increase of deficit by 10% reduces the output
by 0.47% below its potential. There are two alternative explanations to this finding. The first
interpretation is that, over the whole period, fiscal policies have had non-Keynesian effects.

This issue was one of the main topics of fiscal policy debated in Japan during the 1990s and
has regained popularity in recent years. The usual hypothesis is that consumption has remained
stagnant due to Barro-Ricardo effects, because people had concerns over fiscal sustainability. In
Figure 7, we compute the differences between the weighted average of the loading factors of the
yield curve and the estimated potential growth. This difference captures the snowball effect in the
debt dynamics. We see that it has been positive until 2013, thereby suggesting that public debt
has been unsustainable since 1990. To avoid an explosion of future debt, fiscal policy has been
restrictive over several periods.

An alternative view is that expansionary fiscal policies have had Keynesian effects, by increasing
the output, but always below potential GDP. Figure 9 shows the level of GDP, the estimated po-
tential GDP and, for comparison purpose, the trend computed from an HP filter. There are two
interesting features. First, the trend GDP is always below the estimated potential GDP. Second,
the historical GDP is very often below the potential. This is a typical characteristic of the Japanese
economy over this period: the output-gap has remained negative from 1991 onwards, thereby re-
flecting that the economy has been operating under low capacity utilization.

Figure 8 shows the estimated potential growth. It has been regularly decreasing from a 0.5% low
level from 1990 to 2006, where it becomes negative until 2013. Since then, we observe a rebound
but potential growth reaches half of its 1990 level.

In aggregate supply equation (Table 6), cost-push inflation is caused by higher energy prices and
decreases in terms of trade (caused for instance by rises in import prices). Demand-pull inflation
stems from production over-capacities. The relationship between inflation and wage growth is neg-
ative. This suggests that the moderate wage growth added disinflationary pressures on the CPI,
because aggregate consumption has remained weak.

Independent variables Coefficients Z-ratio P-values
Real yield curve µ = −0.076??? -3.66 2.50E-04

Lagged output-gap yt−1 − y?t−1 φ1 = 0.924??? 27.56 3.09E-167
Change in fiscal balance ηob = 0.047??? 2.24 2.49E-02

Level-gap L-L? µ′L = −0.076??? -3.66 2.50E-04
Slope-gap S-S? µ′S = −0.034 -1.047 2.95E-01

Curvature-gap C-C? µ′C = −0.129? -1.947 5.15E-02

Table 5: Coefficients for the Midas model-Aggregate demand (see equations (32) and (17))
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Independent variables Coefficients Z-ratio P-values
Lagged inflation πt−1 dπ = −0, 078 -0.94 3,47E-01
Wage inflation πwagest−1 η2 = −0, 344??? -5.64 1,72E-08
US inflation πUS,PPIt−1 η3 = 0, 019 0.65 5,15E-01

Terms of trade TOTemergt−1 η4 = −0, 028??? -2.26 2,37E-02
Energy prices πenergyt η5 = 0, 123??? 6.75 1,53E-11

Cap. Util. gap cap-cap?t−1 η1 = 0, 210??? 4.56 5,09E-06

Table 6: Coefficients for the Midas model-Aggregate supply (see equations (32) and (14))

Figure 8: Potential growth

Figure 9: Potential Output

6 Conclusion
While most of the works in the literature have focused on the analysis of the causes of the drastic
decline in the natural interest rates, this paper provides estimates of the natural yield curve. Con-
sidering the case of Japan, we observe a decline in the natural interest at all maturities. Potential
growth is one of the driving factors explaining the evolution of the neutral rates. We document
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the existence of a persistent gap between the natural and observed interest rates at all maturities.
The methodology proposed is new. We exploit the information in our data at different frequencies.
First, we investigate the low frequency (quarterly) sources of the yield curve gap measured at high
frequency (monthly). Second, we study how the monthly interest rate gaps influences macroeco-
nomic variables at quarterly frequencies (inflation, output-gap, debt ratio). We proposed estimates
based on Mixed-frequency Data sampling (MIDAS) and VAR-MIDAS models, which provides more
precise results than those based on interpolation and aggregation of data. The neutral yield curve
is considered as an unobserved variable and is estimated using a semi-structural model containing
information in macroeconomic and financial data.

Taking the neutral yield curve as the benchmark level required for the economy to be at long-term
equilibrium, we investigate the sources of discrepancy between the observed historical yields and
the natural yields. We find that one needs to go beyond the traditional explanation based on the
sole role of monetary policy and consider the additional influence of fiscal policy, of the financial
cycle, of inflation and real exchange rates. We show that the difficulty to adjust the yield curve
to its neutral level have had negative consequences on the Japanese economy: potential growth
has remained at low levels and decreased over several decades, the debt ratio has been subject to
snowball effects and the output-gaps have remained negative up until the recent Abenomics policies.

Our paper shed some lights on the results that one could expect, in the future, from the recent
BOJ’s yield curve control policy. The Central bank wants to steepen the slope by increasing the
difference between short-term and long-term maturities. Our estimations lead us to conclude that
the success in reaching some targeted slope – for instance the neutral slope – will depends upon the
strength of both monetary and fiscal policies, which mean that both policies need to be oriented in
the same direction. Some side effect may, however, be the unsustainable level of debt. Moreover,
we find a positive correlation between the financial cycle and the level gaps, thereby implying that
in the current context of booming financial prices and high levels of credit to the private sector,
it makes sense raising the longest end of the yield curve to increase the financial sector’s profitability.

The next step to this paper is to do a similar exercise for the other industrialized countries for
purpose of comparison.
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Appendices
A Kalman Filter - Dynamic Nelson-Siegel model
Here, we present the Bayesian estimation of the parameters in the Dynamic Nelson-Siegel model
using the Kalman Filter. In particular, we consider the following state-space model:

State Equation:

Xt = µ+ ΘXt−1 + ζt with ζt ∼MVN (0,Σζ) (A.1)

Measurement Equation:

Yt = ΛXt + εt with εt ∼MVN (0,Σε) (A.2)

where

µ =

 µL
µS
µC

 Θ =

 θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

 Λ =


1 1−e−n1/λ

n1/λ
1−e−n1/λ

n1/λ
− e−n1/λ

1 1−e−n2/λ

n2/λ
1−e−n2/λ

n2/λ
− e−n2/λ

...
...

...
1 1−e−nN/λ

nN/λ
1−e−nN/λ
nN/λ

− e−nN/λ



Σζ =

 σζ,11 σζ,12 σζ,13
σζ,21 σζ,22 σζ,23
σζ,3 σζ,32 σζ,33

 Σε =


σε,11 0 ... 0

0 σε,22 ... 0
...

...
...

...
0 0 ... σε,NN

 (A.3)

We stack all the parameters to be estimated from Equation (A.1) and (A.2) in a vector Ω ∈ R22+N :

Ω = (λ, µL, µS , µC , θ11, θ12, θ13, θ21, θ22, θ23, θ31, θ32, θ33, ...

σζ,11, σζ,12, σζ,13, σζ,21, σζ,22, σζ,23, σζ,31, σζ,32, σζ,33, σε,11, ..., σε,NN )′ (A.4)

as Ny = 11 yields in our case, where σε,ii is the element found on line i column i in matrix Σε
from Equation (2) and σζ,ij is the element found on line i column j in matrix Σζ from Equation (3).

By Bayes rule, the marginal posterior distribution of Ω conditional on the sequence of observations
YT = (Y1, ..., YT )′ is:

p(Ω | YT ) = p(Ω,YT )
p(YT ) (A.5)

where p(Ω,YT ) is the joint density and p(YT ) is the marginal density of the sample.

p(Ω | YT ) = p(YT | Ω)p(Ω)
p(YT ) (A.6)

where p(YT | Ω) is the marginal likelihood and p(Ω) is the prior density.

We also have that:

p(YT ) =
∫ +∞

−∞
p(YT | Ω)p(Ω)dΩ (A.7)
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is a normalization constant that does not depend on the parameters Ω: it can be left aside. Then,

p(Ω | YT ) ∝ p(YT | Ω)p(Ω) (A.8)

Using the prediction error decomposition, we have that:

p(YT | Ω) =
T∏
t=1

p(Yt | Yt−1; Ω) (A.9)

For convenience, we will not work with the marginal posterior distribution p(Ω | YT ) but with an
energy function φT defined as:10

φT (Ω) = −log[p(YT | Ω)]− log[p(Ω)] (A.10)

and using Equation (A.9), we have that:

φt(Ω) = φt−1(Ω)− log[p(Yt | Yt−1; Ω)] (A.11)

where φ0(Ω) = −log[p(Ω)]

Then, the maximum a posteriori (MAP) of the parameter vector Ω is given by:

Ω̂MAP = arg min
Ω

[φT ] (A.12)

Note that it reduces to a Maximum Likelihood (ML) problem if priors are uniform: p(Ω) ∝ 1

Besides, under the linear Gaussian assumption, the distribution of Yt conditional on the sequence
of observations Yt−1 = (Y1, ..., Yt−1)′ is multivariate normal such that:

Yt | Yt−1 ∼MVN (ΛX̂t|t−1, Ft) (A.13)

where Ft = ΛPt|t−1Λ′ + ΣεΣ′ε

with Pt|t−1 is the Mean Squared Error (MSE) matrix:

Pt|t−1 = Et−1[(Xt − X̂t|t−1)(Xt − X̂t|t−1)′] (A.14)

In this framework, the conditional density of Yt can be written as:

p(Yt | Yt−1; Ω) =
exp[− 1

2 (Yt − ΛX̂t|t−1)′F−1
t (Yt − ΛX̂t|t−1)]

(2π)N/2 | Ft |1/2
(A.15)

Plugging Equation (A.15) into (A.11), we finally obtain:

φt(Ω) = φt−1(Ω) + N

2 ln (2π) + 1
2 ln | Ft |+

1
2(Yt − ΛX̂t|t−1)′F−1

t (Yt − ΛX̂t|t−1) (A.16)

where φ0(Ω) = −log[p(Ω)] is the prior.

In order to specify the prior density p(Ω), we split the parameter vector Ω in four blocks: Ω1, Ω2,
Ω3 and Ω4. Ω1 and Ω2 respectively contain the autoregressive coefficients and residuals variance-
covariance matrix from Sate Equation (3). Similarly, Ω3 and Ω4 contain the autoregressive coeffi-
cients and residual variance-covariance matrix from Measurement Equation (2).

Ω1 = (µL, µS , µC , θ11, θ12, θ13, θ21, θ22, θ23, θ31, θ32, θ33)′ (A.17)

Ω2 = Σζ (A.18)
10Our energy function is just the mathematical opposite of the penalized log-likelihood.
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Ω3 = λ (A.19)

Ω4 = Σε (A.20)

Assuming independence between these blocks leads to:

p(Ω) = p(Ω1)p(Ω2)p(Ω3)p(Ω4) (A.21)

Besides, we assume independant Normal-Wishart priors, so that Ω1 follows a normal distribution:

Ω1 ∼MVN (ω1,Σ1) (A.22)

where ω1 is the vector of likelihood estimates parameters taken from Imakubo et al. (2017) (Table
1 page 14). Besides, we set Σ1 = 0.8× I12

Then, we assume that Ω2 follows an inverse-Wishart distribution:11

Ω2 ∼ W−1(S2, α2) (A.23)

where, α2 = 4 and the scale matrix S2 is the variance-covariance matrix from the preliminary OLS
regressions.

Similarly, Ω3 = λ follows a Normal distribution:

Ω3 ∼ N (ω3, σ3) (A.24)

where we set ω3 = 1.36 (Diebold and Li (2006) value), and σ3 = 0.8

Elements of Ω4 follow inverse-Gamma distributions:

σε,ii ∼ Γ−1(α4, β4) (A.25)

where α4 = 2, and β4 is the preliminary OLS variance.

Let us now specify the Kalman filter algorithm:

We start at i = 0, where i is the number of iterations.

Step 0: Setup
Ω = Ω0
i = i+ 1

Step 1: Initialization
Set X̂0|0 = X̂0 and P0|0 = P0
t=1

Step 2: Prediction 1 ≤ t ≤ T
1) X̂t|t−1 = µ+ ΘX̂t−1|t−1
2) Pt|t−1 = ΘPt−1|t−1Θ′ + Σζ
3) Ft = ΛPt|t−1Λ′ + Σε

Step 3: Updating at t
11See Kadiyala et al. (1989)
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1) Kt = Pt|t−1Λ′F−1
t

2) X̂t|t = X̂t|t−1 +Kt(Yt − ΛX̂t|t−1)
3) Pt|t = Pt|t−1 −KtFtK

′
t

Step 4: Compute the energy function
Compute the φt(Ω) using Equation (A.16)

Step 5: Loop
If t < T then t = t+ 1 and go to Step 2, else go to Step 6

Step 6: Compare the energy function
If | φT (Ω)− φT (Ω0) |≤ ε, where ε = 10−6 is the convergence criterion, then stop.
Else go to Step 0

Starting values X̂0|0 are rough estimates of (Lt, St, Ct) taken from linear combination of yields,
as in Diebold et al. (2006). This enables us to conduct OLS regressions to find estimates for Ω0.
Besides, we set P0|0 = I3

We employ the interior-point optimization algorithm included in the function "fmincon" avail-
able in MatLab Optimization Toolbox to minimize the energy function φT (Ω).12

Proof : Kalman gain Kt

First, we compute Pt|t :

Pt|t = Et[(Xt − X̂t|t)(Xt − X̂t|t)′]
= Cov(Xt − X̂t|t)
= Cov(Xt − X̂t|t−1 −Kt(Yt − Ŷt|t−1))
= Cov(Xt − X̂t|t−1 −Kt(ΛXt + εt − ΛX̂t|t−1))
= Cov[(I −KtΛ)(Xt − X̂t|t−1)] + Cov(−Ktεt)
= (I −KtΛ)cov(Xt − X̂t|t−1)(I −KtΛ)′ +KtΣεΣ′εK ′t
= (I −KtΛ)Pt|t−1(I −KtΛ)′ +KtΣεΣ′εK ′t
= Pt|t−1 − Pt|t−1Λ′K ′t −KtΛPt|t−1 +KtΛPt|t−1Λ′K ′t +KtΣεΣ′εK ′t
= Pt|t−1 − Pt|t−1Λ′K ′t −KtΛPt|t−1 +Kt(ΛPt|t−1Λ′ + ΣεΣ′ε)K ′t

Second, as Pt|t is a MSE matrix, the sum of the diagonal elements is the sum of the mean squared
errors for the elements of Xt. Therefore, we can minimize the MSE by minimizing the trace of Pt|t:

tr(Pt|t) = tr(Pt|t−1)− 2tr(KtPt|t−1Λ′) + tr[Kt(ΛPt|t−1Λ′ + ΣεΣ′ε)K ′t]

Third, we differentiate the trace of Pt|t with respect to K :

∂tr(Pt|t)
∂K

= 0 ⇔ −2Pt|t−1Λ′ + 2Kt(ΛPt|t−1Λ′ + ΣεΣ′ε) = 0

⇔ Kt = Pt|t−1Λ′(ΛPt|t−1Λ′ + ΣεΣ′ε)−1

⇔ Kt = Pt|t−1Λ′F−1
t

12See Lütkepohl (2005), Section 12 for a discussion concerning the optimization algorithms.
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Kalman gain without inversion of Ft:13

So as to avoid round-off errors linked to the inversion of Ft and ensure numerical stability in the
computation of the Kalman gain, we do not directly compute F−1

t . Instead, we form the term
Λ′F−1

t by solving the following equation:

X(UDU ′) = Λ′

where X = Λ′F−1
t and Ft = UDU ′ is a modified Cholesky (UD) decomposition of Ft, symmetric

positive-definite, with U a unit upper triangular matrix and D a diagonal matrix.

Solving for X without matrix inversion requires to:

1) solve for X1 in X1U
′ = Λ′ by backward substitution,

2) solve for X2 in X2D = X1 by linear combination,

3) solve for X in XU = X2 by forward substitution.

B Kalman Filter - MIDAS-VAR model
The following presents the Bayesian estimation of the parameters in the MIDAS-VAR model using
the Kalman Filter.

We consider the following state-space model:

State Equation:

Xt = AXt−1 +Wt with Wt ∼MVN (0,Ω1) (B.1)

Measurement Equation:

Yt = EXt +DXt−1 +BYt−1 + Ut with Ut ∼MVN (0,Ω2) (B.2)

where:

A =

A1 03 03
03 A2 03
03 03 A3

, A1 =

β β β
β β β
β β β

, A2 =

δ δ δ
δ δ δ
δ δ δ

, A3 =

η η η
η η η
η η η

 ,

Ω1 = diag(l?1, l?2, l?3, s?1, s?2, s?3, c?1, c?2, c?3)

E=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


, D =


D1 03 03
03 D2 03
03 03 D3
D4 D5 D6

, D1 =

−φL −φL −φL
−φL −φL −φL
−φL −φL −φL

,

13See Grewal and Andrews (2008), Section 6.4.3.4 page 248
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D2 =

−φS −φS −φS
−φS −φS −φS
−φS −φS −φS

, D3 =

−φC −φC −φC
−φC −φC −φC
−φC −φC −φC

, D4 =
(
−αL −αL −αL

)
,

D5 =
(
−γS −γS −γS

)
, D6 =

(
−κS −κS −κS

)
,

B =



φL φL φL 0 0 0 0 0 0 α
φL φL φL 0 0 0 0 0 0 α
φL φL φL 0 0 0 0 0 0 α
0 0 0 φS φS φS 0 0 0 γ
0 0 0 φS φS φS 0 0 0 γ
0 0 0 φS φS φS 0 0 0 γ
0 0 0 0 0 0 φC φC φC κ
0 0 0 0 0 0 φC φC φC κ
0 0 0 0 0 0 φC φC φC κ
αL αL αL γS γS γS κS κS κS ρ


, Ω2 = diag(l1, l2, l3, s1, s2, s3, c1, c2, c3,m),

where zeros in bold either indicate squared sub-matrices of zeros with dimension k × k (0k).
We stack all the parameters to be estimated from Equation (B.1) and (B.2) in a vector Ψ ∈ R32:

Ψ = (β, δ, η, l?1, l?2, l?3, s?1, s?2, s?3, c?1, c?2, c?3, φL, φS , φC , αL, γS , κC , α, γ, κ, ρ, ...
l1, l2, l3, s1, s2, s3, c1, c2, c3,m)′ (B.3)

Under the same Gaussian assumptions presented in Appendix A for Nelson-Siegel model, we obtain:

φt(Ψ) = φt−1(Ψ) + N

2 ln(2π) + 1
2 ln | Ft |+

1
2R
′
tF
−1
t Rt

Rt = Yt − EX̂t|t−1 −DX̂t−1|t−1 −BŶt−1|t−1

Ft = EPt|t−1E
′ + Ω2 +DPt−1|t−1D

′ + EAPt−1|t−1D
′ +DPt−1|t−1A

′E′ (B.4)

where φ0(Ψ) = −log[p(Ψ)] is the prior.

Again, we split Ψ in 4 blocks to specify the prior densities according to an independant Normal-
Wishart setting:

Ψ1 = (β, δ, η)′ ∼MVN (ψ1,Σ1) (B.5)

where ψ1 is found in previous OLS estimations on filtered series and we set Σ1 = 0.005× I3.

Ψ2 = (φL, φS , φC , αL, γS , κC , α, γ, κ, ρ)′ ∼MVN (ψ2,Σ2) (B.6)

where ψ2 is found in previous OLS estimations on filtered series and we set Σ2 = 0.005× I10.

Besides, elements of Ω1 and Ω2 contained in Ψ3 and Ψ4 follow inverse-Gamma distributions:

(l?i , s?i , c?i , li, si, ci,m) ∼ Γ−1(α3, β3) (B.7)

where we set α3 = 2, and β3 is the OLS-variance.

As the Measurement equation contains a lag of the state and of the observed variables, we rely on
Qian (2014) for the Kalman filter algorithm. Here, we only present the steps that differ from the
ones introduced in Appendix A

Step 2 : Prediction 1 ≤ t ≤ T
1) X̂t|t−1 = AX̂t−1|t−1
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2) Pt|t−1 = APt−1|t−1A
′ + Ω1

3) Ft = EPt|t−1E
′ + Ω2 +DPt−1|t−1D

′ + EAPt−1|t−1D
′ +DPt−1|t−1A

′E′

Step 3: Updating at t
1) Kt = (Pt|t−1E

′ +APt|t−1D
′)F−1

t

2) X̂t|t = X̂t|t−1 +Kt(Yt −BŶt−1|t−1 − EX̂t|t−1 −DX̂t−1|t−1)
3) Pt|t = Pt|t−1 −KtFtK

′
t

Starting values X̂0|0 are the HP-filtered trends of (Lt, St, Ct). Ψ0 is initialized with OLS esti-
mates and we set P0|0 = I3

We employ the sqp optimization algorithm included in the function "fmincon" available in MatLab
Optimization Toolbox to minimize the energy function φT (Ψ).

Proof : Kalman gain Kt

First, we compute Pt|t :

Pt|t = Et[(Xt − X̂t|t)(Xt − X̂t|t)′]
= Cov(Xt − X̂t|t)
= Cov(Xt − X̂t|t−1 −Kt(Yt − Ŷt|t−1)
= Cov(Xt − X̂t|t−1 −Kt(EXt +DXt−1 +BYt−1 + Ut − EX̂t|t−1 −DX̂t−1|t−1 −BYt−1)
= Cov(AXt−1+Wt−AX̂t−1|t−1−Kt(EAXt−1+EWt+DXt−1+Ut−EAX̂t−1|t−1−DX̂t−1|t−1)
= Cov[((I −KtE)A−KtD)(Xt−1 − X̂t−1|t−1) + (I −KtE)Wt −KtUt]
= ((I −KtE)A−KtD)Pt−1|t−1((I −KtE)A−KtD)′ + (I −KtE)Ω1(I −KtE)′ +KtΩ2K

′
t

= APt−1|t−1A
′ −KtEAPt−1|t−1A

′ −KtDPt−1|t−1A
′ −APt−1|t−1A

′E′K ′t...

+KtEAPt−1|t−1A
′E′K ′t +KtDPt−1|t−1A

′E′K ′t −APt−1|t−1D
′K ′t...

+KtEAPt−1|t−1D
′K ′t +KtDPt−1|t−1D

′K ′t + (I −KtE)Ω1(I −KtE)′ +KtΩ2K
′
t

= APt−1|t−1A
′−KtEAPt−1|t−1A

′−KtDPt−1|t−1A
′−APt−1|t−1A

′E′K ′t−APt−1|t−1D
′K ′t...

+ (I −KtE)Ω1(I −KtE)′...
+Kt(EAPt−1|t−1A

′E′ +DPt−1|t−1A
′E′ + EAPt−1|t−1D

′ +DPt−1|t−1D
′ + Ω2)K ′t

= APt−1|t−1A
′−KtEAPt−1|t−1A

′−KtDPt−1|t−1A
′−APt−1|t−1A

′E′K ′t−APt−1|t−1D
′K ′t...

+ (I −KtE)Ω1(I −KtE)′...
+Kt(E(Pt|t−1 − Ω1)E′ +DPt−1|t−1A

′E′ + EAPt−1|t−1D
′ +DPt−1|t−1D

′ + Ω2)K ′t
= APt−1|t−1A

′ −KtE(APt−1|t−1A
′ + Ω1)− (APt−1|t−1A

′ + Ω1)E′K ′t...
−KtDPt−1|t−1A

′ −APt−1|t−1D
′K ′t + Ω1 +KtFtK

′
t

= APt−1|t−1A
′−KtEPt|t−1−Pt|t−1E

′K ′t+Ω1−KtDPt−1|t−1A
′−APt−1|t−1D

′K ′t+KtFtK
′
t

Second, as Pt|t is a MSE matrix, the sum of the diagonal elements is the sum of the mean squared
errors for the elements of Xt. Therefore, we can minimize the MSE by minimizing the trace of Pt|t:

tr(Pt|t) = tr(APt−1|t−1A
′ + Ω1)− 2tr(Pt|t−1E

′K ′t)− 2tr(APt−1|t−1D
′K ′t) + tr(KtFtK

′
t)
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Third, we differentiate the trace of Pt|t with respect to K :

∂tr(Pt|t)
∂K

= 0 ⇔ −2Pt|t−1E
′ − 2APt−1|t−1D

′ + 2KtFt = 0

⇔ KtFt = Pt|t−1E
′ +APt−1|t−1D

′

⇔ Kt = (Pt|t−1E
′ +APt−1|t−1D

′)F−1
t

Kalman gain without inversion of Ft

The procedure is similar to the one described in the previous section. One only needs to replace
Λ′ by (Pt|t−1E

′ +APt−1|t−1D
′)

C Kalman Filter - MIDAS model
The following presents the Bayesian estimation of the parameters in the MIDAS model using the
Kalman Filter.

We consider the following state-space model:

State Equation:

Xt = α+AXt−1 +Wt with Wt ∼MVN (0,Ω3) (C.1)

Measurement Equation:

Yt = β + EXt +DXt−1 +BZt−1 + Ut with Ut ∼MVN (0,Ω4) (C.2)

where:

α′ = (0, φg0 , χ0), A =

1 1 0
0 φg1 0
0 0 χ1

 , Ω3 = diag(σ2
y? , σ

2
g , σ

2
cap?), β′ = (0, θ0, 0),

E =

0 0 0
0 0 1
1 0 0

, D =

 0 0 −η1
−θ2 0 −θ1
−φ1 0 0



B′ =



dπ 0 −µ
η2 0 0
η3 0 0
η4 0 0
η5 0 0
0 θ2 φ1
η1 θ1 0
0 0 ηob
0 0 µL× bL(1, θL1 , θL2 )
...

...
...

0 0 µL× bL(jmax, θL1 , θL2 )
0 0 µS× bS(1, θS1 , θS2 )
...

...
...

0 0 µS× bS(jmax, θS1 , θS2 )
0 0 µC× bC(1, θC1 , θC2 )
...

...
...

0 0 µC× bC(jmax, θC1 , θC2 )



, Ω4 = diag(σ2
π, σ

2
cap, σ

2
y),
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We stack all the parameters to be estimated from Equation (C.1) and (C.2) in a vector Γ ∈ R28:

Γ = (φg0 , χ0, φg1 , χ1, σ
2
y? , σ

2
g , σ

2
cap? , θ0, θ1, θ2, φ1, dπ, ηobs, η1, η2, η3, η4, η5, µ, ...

θL1 , θ
L
2 , θ

S
1 , θ

S
2 , θ

C
1 , θ

C
2 , σ

2
π, σ

2
cap, σ

2
y)′; (C.3)

Under the same Gaussian assumptions presented in Appendix A and B, we obtain:

φt(Γ) = φt−1(Γ) + N

2 ln(2π) + 1
2 ln | Ft | +

1
2R
′
tF
−1
t Rt,

Rt = Yt − β − EX̂t|t−1 −DX̂t−1|t−1 −BẐt−1|t−1,

Ft = EPt|t−1E
′ + Ω4 +DPt−1|t−1D

′ + EAPt−1|t−1D
′ +DPt−1|t−1A

′E′, (C.4)

where φ0(Γ) = −log[p(Γ)] is the prior.

Again, we split Γ in 4 blocks to specify the prior densities according to an independant Normal-
Wishart setting :

Γ1 = (φg0 , φg1 , χ0, χ1)′ ∼MVN (τ1,Σ1) (C.5)

where τ1 is found in previous OLS estimations on filtered series and we set Σ1 = 0.005× I3.

Γ2 = (θ0, θ1, θ2, φ1, dπ, ηobs, η1, η2, η3, η4, η5, µ, θ
L
1 , θ

L
2 , θ

S
1 , θ

S
2 , θ

C
1 , θ

C
2 )′ ∼MVN (τ2,Σ2) (C.6)

where τ2 is found in previous OLS estimations on filtered series and we set Σ2 = 0.005× I18.

Besides, elements of Ω3 and Ω4 contained in Γ3 and Γ4 follow inverse-Gamma distributions:

(σ2
y? , σ

2
g , σ

2
cap? , σ

2
π, σ

2
cap, σ

2
y) ∼ Γ−1(α4, β4), (C.7)

where we set α4 = 1, and β4 = 0.02.

The Kalman Filter algorithm does not differ from the one described in Appendix B.
Starting values X̂0|0 are the HP-filtered trends of (yt, yt − yt−1, capt). Γ0 is initialized with OLS
estimates and we set P0|0 = I3
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D Data

Variable name Data Source
y(n) nominal yields Ministry of Finance

REER Real Effective Exchange
Rate Bank of Japan***

Policy
Call Rate, Uncollateral-
ized Overnight/Average
(% per annum)

Bank of Japan

BOJbase M3 growth FRED database
π Consumer Price OECD

πenergy Energy Price OECD

πUS,PPI
Producer Price Index (To-
tal, US) OECD

cap

Rate of Capacity Utili-
sation, EC and National
Indicators, Manufacturing
SA

OECD/Datastream***

y (real GDP per capita) Quarterly nominal GDP
(AR,SA), level

Cabinet Of-
fice/Datastream

y (real GDP per capita) GDP Deflator OECD/Datastream
y (real GDP per capita) Yearly population level World Bank*

financial
Residential property
prices: all houses (Tokyo)
- pure price

BIS/Datastream

financial Share prices index Oxford Eco-
nomics/Datastream

financial

Credit to Private Non-
Financial Sector, Pro-
vided by Domestic Banks,
Adjusted For Breaks,
Market Value

BIS/Datastream***

πwages
Labour Market wage rate
index IMF/Datastream

TOT emerg
Terms of trade emerging
and developing countries
(goods and services)

IMF/Datastream**

ob Government Balance (%
GDP)

Oxford Eco-
nomics/Datastream

Table 7: * Interpolated from yearly to quarterly data using a Quadratic Match average method -
Population for 2017 is assumed to be as in 2016:Q4
** Interpolated from yearly to quarterly data using a Quadratic Match average method
*** Data are divided by their standard deviation for homogeneity with other series
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E Results for NS model

Nelson-Siegel Initial values (Kalman) Posterior (Results)
RMSE 0.228 0.165

Standard errors Z-ratio P-valuesLog-Likelihood 717 4526
µ′L 0.005 0.062 0.031 2.017 0.0437
µ′S 0.030 -0.034 0.033 -1.047 0.2950
µ′C -0.021 -0.129 0.066 -1.947 0.0515
θ′11 0.998 0.997 0.007 148.072 0.0000
θ′12 -0.014 -0.006 0.007 -0.829 0.4072
θ′13 -0.044 0.005 0.015 0.308 0.7580
θ′21 -0.002 0.005 0.012 0.438 0.6612
θ′22 0.973 0.998 0.013 78.980 0.0000
θ′23 0.057 0.054 0.026 2.066 0.0389
θ′31 0.007 0.025 0.012 2.117 0.0342
θ′32 0.009 -0.023 0.013 -1.784 0.0744
θ′33 0.937 0.897 0.026 34.162 0.0000
σ′ζ11

0.020 0.055 0.006 9.657 0.0000
σ′ζ12

0.002 -0.048 0.005 -8.980 0.0000
σ′ζ13

0.006 -0.068 0.010 -6.602 0.0000
σ′ζ22

0.013 0.062 0.006 10.280 0.0000
σ′ζ23

0.003 0.070 0.011 6.414 0.0000
σ′ζ33

0.010 0.257 0.027 9.698 0.0000
σ′ε11

0.934 0.000 0.000 0.000 1.0000
σ′ε22

0.519 0.002 0.000 7.257 0.0000
σ′ε33

0.267 0.001 0.000 8.058 0.0000
σ′ε44

0.106 0.000 0.000 2.564 0.0103
σ′ε55

0.032 0.002 0.000 10.272 0.0000
σ′ε66

0.006 0.005 0.000 11.928 0.0000
σ′ε77

0.008 0.003 0.000 11.366 0.0000
σ′ε88

0.019 0.000 0.000 2.481 0.0131
σ′ε99

0.035 0.004 0.000 10.924 0.0000
σ′ε1010

0.050 0.014 0.001 11.827 0.0000
λ 1.368 2.409 0.063 38.210 0.0000

Table 8: Parameters of NS model

Figure 10: Loadings of the yield curve
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Figure 11: Yield curve during the pre-regime period

Figure 12: Yield curve during the ZIRP regime period

Figure 13: Yield curve during the QE regime period
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Figure 14: Yield curve during the CME regime period

Figure 15: Yield curve during the QQE regime period

Figure 16: Yield curve during the QQE with yield curve control regime period
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F Results for MIDAS-VAR model

MIDAS-VAR Initial values (Kalman) Posterior (Results)
RMSE 0.607 0.547

Standard errors Z-ratio P-valuesLog-Likelihood -1284 -920
β 0.330 0.328 0.001 220.66 0.00
δ 0.333 0.331 0.002 136.43 0.00
η 0.333 0.331 0.004 91.41 0.00
φL 0.170 0.224 0.025 8.91 0.00
φS 0.192 0.146 0.025 5.76 0.00
φC 0.156 0.176 0.021 8.21 0.00
αL1 0.027 -0.002 0.020 -0.09 0.93
αL2 -0.143 -0.108 0.027 -3.92 0.00
αL3 -0.123 -0.099 0.041 -2.40 0.02
αL4 -0.394 -0.475 0.053 -8.95 0.00
αL5 0.025 0.028 0.025 1.13 0.26
αL6 0.059 0.043 0.039 1.09 0.28
γS1 -0.014 -0.146 0.024 -5.95 0.00
γS2 -0.088 -0.041 0.019 -2.22 0.03
γS3 0.007 -0.015 0.025 -0.60 0.55
γS4 -0.216 -0.149 0.057 -2.62 0.01
γS5 0.021 0.016 0.014 1.11 0.27
γS6 -0.008 0.069 0.027 2.52 0.01
κC1 0.001 0.007 0.009 0.77 0.44
κC2 -0.012 -0.017 0.013 -1.24 0.21
κC3 -0.034 -0.018 0.023 -0.78 0.44
κC4 -0.075 -0.114 0.027 -4.18 0.00
κC5 -0.008 -0.006 0.013 -0.47 0.64
κC6 0.003 -0.030 0.025 -1.21 0.22
α11 0.002 -0.021 0.016 -1.30 0.19
α12 0.010 0.022 0.031 0.69 0.49
α13 0.055 0.054 0.025 2.21 0.03
α14 0.038 0.057 0.014 4.13 0.00
α15 0.001 0.036 0.015 2.39 0.02
α16 0.027 0.018 0.030 0.61 0.54
γ11 0.014 0.185 0.045 4.13 0.00
γ12 0.053 -0.020 0.038 -0.53 0.59
γ13 -0.052 -0.050 0.025 -1.98 0.05
γ14 0.007 0.021 0.017 1.23 0.22
γ15 -0.008 -0.047 0.029 -1.62 0.10
γ16 -0.057 -0.047 0.027 -1.71 0.09
κ11 -0.035 -0.038 0.042 -0.89 0.38
κ12 0.071 0.058 0.057 1.01 0.31
κ13 -0.009 -0.050 0.046 -1.10 0.27
κ14 0.027 0.047 0.027 1.76 0.08
κ15 -0.003 -0.052 0.045 -1.15 0.25
κ16 0.002 0.015 0.051 0.30 0.76

Table 9: Parameters of the MIDAS-VAR model
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MIDAS-VAR Initial values (Kalman) Posterior
RMSE 0.607 0.547

Standard errors Z-ratio P-valuesLog-Likelihood -1284 -920
ρ11 0.960 1.099 0.032 34.26 0.00
ρ12 0.251 0.143 0.035 4.12 0.00
ρ13 0.044 0.020 0.019 1.06 0.29
ρ14 0.029 0.034 0.012 2.90 0.00
ρ15 -0.024 -0.049 0.021 -2.29 0.02
ρ16 0.022 0.031 0.022 1.41 0.16
ρ22 0.785 0.773 0.041 18.69 0.00
ρ23 -0.024 -0.019 0.032 -0.59 0.56
ρ24 0.009 0.012 0.018 0.66 0.51
ρ25 0.017 0.041 0.016 2.56 0.01
ρ26 0.056 0.067 0.039 1.73 0.08
ρ33 0.658 0.662 0.049 13.60 0.00
ρ34 0.072 0.071 0.028 2.53 0.01
ρ35 -0.001 0.020 0.018 1.10 0.27
ρ36 -0.188 -0.187 0.055 -3.41 0.00
ρ44 0.974 1.010 0.036 27.74 0.00
ρ45 0.007 0.095 0.053 1.78 0.08
ρ46 -0.046 -0.019 0.051 -0.38 0.70
ρ55 0.995 0.986 0.010 94.47 0.00
ρ56 0.071 0.061 0.039 1.56 0.12
ρ66 -0.068 -0.113 0.057 -2.00 0.05
L?11 0.013 0.159 0.031 5.14 0.00
L?22 0.008 0.100 0.029 3.49 0.00
L?33 0.003 0.001 0.001 1.33 0.18
S?11 0.029 0.186 0.030 6.21 0.00
S?22 0.016 0.111 0.024 4.65 0.00
S?33 0.007 0.054 0.016 3.40 0.00
C?11 0.022 0.688 0.168 4.09 0.00
C?22 0.012 0.004 0.003 1.53 0.13
C?33 0.005 0.002 0.001 1.51 0.13
L11 0.148 0.051 0.021 2.38 0.02
L22 0.128 0.057 0.024 2.39 0.02
L33 0.091 0.099 0.013 7.43 0.00
S11 0.164 0.040 0.015 2.62 0.01
S22 0.144 0.060 0.020 2.95 0.00
S33 0.090 0.037 0.014 2.68 0.01
C11 0.770 0.348 0.131 2.66 0.01
C22 0.629 0.664 0.089 7.45 0.00
C33 0.412 0.417 0.056 7.44 0.00
m11 0.033 0.018 0.003 5.24 0.00
m22 0.079 0.077 0.010 7.59 0.00
m33 0.289 0.281 0.036 7.73 0.00
m44 0.383 0.166 0.033 5.02 0.00
m55 0.088 0.084 0.011 7.72 0.00
m66 0.363 0.327 0.043 7.58 0.00

Table 10: Parameters of the MIDAS-VAR model

Figures 17, 18, 19, 20, 21 and 22 show the yield curve gap across different monetary policy regimes
in Japan.
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Figure 17: Yield curve gap during the pre-regimes period

Figure 18: Yield curve gap during the ZIRP regime period

Figure 19: Yield curve gap during the QE regime period

43



Figure 20: Yield curve gap during the CME regime period

Figure 21: Yield curve gap during the QQE regime period

Figure 22: Yield curve gap during the QQE with yield curve control regime period

Figures 23, 24 and 25 show the level gap, slope gap and the curvature gap across different monetary
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policy regimes in Japan.

Figure 23: Level gap under different monetary policy regimes

Figure 24: Slope gap under different monetary policy regimes

Figure 25: Curvature gap under different monetary policy regimes
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G Results for MIDAS model

MIDAS Initial values (Kalman) Posterior
RMSE 0.398 0.370

Standard errors Z-ratio P-valuesLog-Likelihood -163 -133
χ0 -0.041 -0.022 0.021 -1.08 0.281683539
φg0 0.000 0.070 0.040 1.75 0.079538818
φg1 0.976 0.246 0.089 2.77 0.00567438
χ1 0.966 0.965 0.014 70.20 0
σ2
y? 0.000 0.002 0.001 1.95 0.051350525
σ2
g 0.000 0.170 0.023 7.29 3.1132E-13

σ2
cap? 0.005 0.002 0.001 1.78 0.075015937
θ0 0.007 0.531 0.209 2.54 0.011179914
η1 0.259 0.210 0.046 4.56 5.08832E-06
θ2 -0.140 1.027 0.199 5.17 2.35155E-07
θ1 0.996 0.746 0.096 7.77 7.60324E-15
φ1 0.778 0.924 0.034 27.56 3.0857E-167
dπ 0.019 -0.078 0.083 -0.94 0.347271653
η2 -0.224 -0.344 0.061 -5.64 1.71773E-08
η3 0.027 0.019 0.029 0.65 0.515224315
η4 -0.033 -0.028 0.012 -2.26 0.023672322
η5 0.126 0.123 0.018 6.75 1.52503E-11
ηob 0.076 0.047 0.021 2.24 0.024925381
µ 0.000 -0.076 0.021 -3.66 0.000250085
θL1 0.020 0.032 0.314 0.10 0.918355008
θL2 0.020 0.048 0.101 0.47 0.63482697
θS1 0.020 0.029 0.316 0.09 0.927465717
θS2 -0.201 -0.169 0.335 -0.50 0.614356266
θC1 -0.200 -0.174 0.314 -0.55 0.579490017
θC2 -0.200 -0.139 0.242 -0.57 0.567447228
σ2
π 0.215 0.131 0.017 7.68 1.62663E-14

σ2
cap 0.063 0.021 0.007 3.05 0.002277343
σ2
y 0.138 0.009 0.004 2.18 0.029582637

Table 11: Parameters of the MIDAS model

Figure 26: Potential output growth and yield curve gap
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Figure 27: Financial cycle and yield curve gap

Figure 28: Output gap and yield curve gap
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