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DECOMPOSITION OF GAMES: SOME STRATEGIC CONSIDERATIONS

JOSEPH ABDOU, NIKOLAOS PNEVMATIKOS, MARCO SCARSINI, AND XAVIER VENEL

Abstract. Candogan et al. (2011) provide an orthogonal direct-sum decom-
position of finite games into potential, harmonic and non-strategic components.
In this paper we study the issue of decomposing games that are strategically
equivalent from a game-theoretical point of view, for instance games obtained
via duplications of strategies or suitable linear transformations of payoffs. We
consider classes of decompositions and show when two decompositions of equiv-
alent games are coherent.

1. Introduction

Potential games are an interesting class of games that admit pure Nash equilibria
and behave well with respect to the most common learning procedures. Some
games, although they are not potential games, are close—in a sense to be made
precise—to a potential game. It is therefore interesting to examine whether their
equilibria are close to the equilibria of the potential game, (see Candogan et al.
(2013)). With this in mind, in their seminal paper Candogan et al. (2011) were
able to show that the class of strategic-form games having a fixed set of players and
a fixed set of strategies for each player is a linear space that can be decomposed into
the orthogonal sum of three components, called the potential, harmonic and non-
strategic component. Games in the harmonic component have a completely mixed
equilibrium where all players mix uniformly over their strategies; games in the non-
strategic component are such that the payoff of each player is not affected by her
own strategy, but only by other players’ strategies. To achieve this decomposition
the authors associate to each game a graph where vertices are strategy profiles
and edges connect profiles that differ only for the strategy of one player. The
analysis is then carried out by studying flows on graphs and using the Helmholtz
decomposition theorem.

The decomposition of Candogan et al. (2011) refers to games having all the same
set of players and the same set of strategies for each player. In their construction
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2 J. ABDOU, N. PNEVMATIKOS, M. SCARSINI, AND X. VENEL

nothing connects the decomposition of a specific game g with the decomposition of
another game qg that is obtained from g by adding a strategy to the set Si of Player
i’s feasible strategies. One may argue that this is reasonable, since the two games
live in linear spaces of different dimension and the new game with an extra strategy
may have equilibria that are very different from the ones in the original game, so,
in general, the two games may have very little in common. In some situations,
though, the two games are indeed strongly related. For instance, consider the case
where the payoffs corresponding to the new strategy are just a replica of the payoffs
of another strategy. In this case, from a strategic viewpoint, the two games qg and
g are actually the same game and every equilibrium in qg can be mapped to an
equilibrium in g. It would be reasonable to expect the decomposition of g and qg to
be strongly related. Unfortunately this is not the case. Consider for instance the
matching-pennies game g:

L R

T 1 ´1 ´1 1

B ´1 1 1 ´1

g

and the game qg, obtained by replicating strategy B of the row-player:

L R

T 1 ´1 ´1 1

B1 ´1 1 1 ´1

B2 ´1 1 1 ´1

qg

.

This game qg admits a continuum of equilibria where the column player mixes
uniformly and the row-player mixes p1{2, α{2, p1 ´ αq{2q with α P r0, 1s. Notice
that in each of these mixed equilibria the mixed strategy of the row-player assigns
probability 1{2 to B1 Y B2. The decomposition result of Candogan et al. (2011)
(Theorem 4.1) applied to qg yields:

L R

T 4{15 3{5 ´4{15 ´3{5

B1 ´2{15 2{10 2{15 ´2{10

B2 ´2{15 2{10 2{15 ´2{10

pqgqP

L R

T 16{15 ´8{5 ´16{15 8{5

B1 ´8{15 4{5 8{15 ´4{5

B2 ´8{15 4{5 8{15 ´4{5

pqgqH

L R

T ´1{3 0 1{3 0

B1 ´1{3 0 1{3 0

B2 ´1{3 0 1{3 0

pqgqNS

,
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DECOMPOSITION OF GAMES: SOME STRATEGIC CONSIDERATIONS 3

where pqgqP , pqgqH, and pqgqNS are the potential, harmonic, and non-strategic com-
ponents of qg, respectively.

The matching-pennies game g admits a unique Nash equilibrium where each
player randomizes uniformly between the two available strategies. This game is
harmonic, so its decomposition has the potential and non-strategic component iden-
tically equal to zero and the harmonic component gH equal to g.

We see that, although the two games g and qg are strategically equivalent in
the sense described before, their decompositions are quite different. In the sequel,
when considering a game g with duplicate strategies, we will call the game where
duplication of strategies have been eliminated the reduced version of g and we will
use the notation pg for it.

A similar problem appears in games whose payoffs are suitable affine transfor-
mation of some other game’s payoffs. For instance, given a game g, consider the
game rg which is obtained by multiplying the payoffs of each player in g by the
same positive constant. Multiplying the payoff of a player by a positive constant
is innocuous with respect to strategic considerations. To illustrate this, if g is the
matching-pennies game, consider the game rg where the payoffs of the row-player
in g have been multiplied by 2.

L R

T 2 ´1 ´2 1

B ´2 1 2 ´1

rg

.

This game admits a unique equilibrium where each player plays uniformly over
her set of strategies. The decomposition result of Candogan et al. (2011) applied
in rg yields the following decomposition:

L R

T 1{2 1{2 ´1{2 ´1{2

B ´1{2 ´1{2 1{2 1{2

prgqP

L R

T 3{2 ´3{2 ´3{2 3{2

B ´3{2 3{2 3{2 ´3{2

prgqH

.

Although the games g and rg share the same Nash equilibrium set, they admit dif-
ferent decompositions. Notice that g and prgqH are both harmonic games and admit
the same unique mixed equilibrium, since they are related by an affine transforma-
tion that does not affect the harmonic property: one is obtained from the other
by multiplying all payoffs by the same positive constant. In the sequel we will be
interested in affine transformations where payoffs are multiplied by a positive con-
stant which depends not only on the players but also on their strategies. We will
refer to this kind of transformations as dilations.

The question that we want to address in this paper is the following: is it possible
to conceive a procedure such that the decompositions of g and its duplication qg and
the decompositions of g and its dilation rg are coherent in some sense? To achieve
our goal, instead of considering a unique decomposition and the Euclidean inner
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4 J. ABDOU, N. PNEVMATIKOS, M. SCARSINI, AND X. VENEL

product in the space of games, as it is the case in Candogan et al. (2011), we deal
with a family of decompositions. We use two product measures, µ and η, on the set
of strategy profiles to parametrize a class of inner products that are in turn used to
define the decompositions. The need for two product measures, rather than one, lies
in the fact that duplications and dilations are radically different transformations.
One way to see this difference is that the duplication of a strategy of some player
affects only her own equilibrium strategy, whereas dilation of some player’s payoffs
changes the equilibrium strategies of all the other players, but not her own.

First, we generalize the decomposition result of Candogan et al. (2011) using
several metrics induced in the space of games by the product measures µ and η

on the set of strategy profiles. Then, given a decomposition of the game g having
duplicate strategies based on the two product measures µ and η, we show that
there exists a new measure pµ, which only depends on µ, such that the pµ, ηq-
decomposition of g is coherent with the ppµ, ηq-decomposition of pg. Similarly, the
introduced family of decompositions further allows to bridge decompositions for
dilations. Given a decomposition of the game g based on the two product measures
µ and η, we prove that there exists a new measure rη, which only depends on η,
such that the pµ, rηq-decomposition of rg is coherent with the pµ, ηq-decomposition
of g.

1.1. Related literature. In the context of non-cooperative game theory, several ap-
proaches have been proposed to decompose a game into simpler games that admit
more flexible and attractive equilibrium analysis. Sandholm (2010) proposes a
method to decompose n-player normal-form games into 2n simultaneously-played
component games. As a by-product, this decomposition provides a characteriza-
tion of normal-form potential games. Kalai and Kalai (2013) introduce a novel
solution concept founded on a decomposition of two-player games into zero-sum
and common-interest games. This decomposition result is based on the fact that
all matrices can be decomposed into the sum of symmetric and antisymmetric ma-
trices. Szabó et al. (2017), in order to study evolutionary dynamic games, refine this
dyadic decomposition by further decomposing the antisymmetric component. In a
different direction, Jessie and Saari (2013) present a strategic-behavioral decompo-
sition of games with two strategies per player and highlight that certain solution
concepts are determined by a game’s strategic part or influenced by the behavioral
portion. More recently, Hwang and Rey-Bellet (2016) study the space of games
as a Hilbert space and prove several decomposition theorems for arbitrary games
identifying components such as potential games and games that are strategically
equivalent—in the sense of sharing the same Nash equilibria—to zero-sum games.
They further extend their results to games with uncountable strategy sets. Us-
ing this decomposition, they also provide an alternative proof for the well-known
characterization of potential games presented by Monderer and Shapley (1996).

The paper of Candogan et al. (2011) on the decomposition of finite games into
potential, harmonic, and non-strategic components is a milestone in the field. To
achieve their decomposition, they represent an arbitrary game with an undirected
graph where nodes stand for strategy profiles and edges connect nodes that dif-
fer in the strategy of only one player. In our paper, we follow the same graph
representation for a given game. Liu (2018) uses a different graph representation
for a finite game where nodes stand for players and edges connect players whose
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DECOMPOSITION OF GAMES: SOME STRATEGIC CONSIDERATIONS 5

change of strategies influences the other player’s payoff. Given a finite game, the
author investigates necessary and sufficient conditions for the existence of a pure
Nash equilibrium in terms of the structure of its associated directed graph. The
decomposition in Candogan et al. (2011) is based on the Helmholtz decomposition
theorem.1 The Helmholtz theorem—a fundamental tool in vector calculus—states
that any vector field can be decomposed into a divergence-free and a curl-free com-
ponents. Due to the ubiquitous nature of vector fields, this theorem has been
applied by various research communities to a wide range of issues. In the con-
text of discrete vector fields, Jiang et al. (2011) provide an implementation of the
Helmholtz decomposition in statistical ranking. Stern and Tettenhorst (2017) apply
the Helmholtz decomposition to cooperative games and obtain a novel characteri-
zation of the Shapley value in terms of the decomposition’s components. Various
papers related to Candogan et al. (2011) have appeared in the literature. For
instance, Liu et al. (2015), Li et al. (2016) focus on the detailed description of
the decomposition subspaces by providing some geometric and algebraic expres-
sions and present an explicit formula for the decomposition. More recently, Zhang
(2017) provides explicit polynomial expressions for the orthogonal projections onto
the subspaces of potential and harmonic games, respectively.

In the terminology of Govindan and Wilson (2005), two strategies of one player
are equivalents if they yield every player the same expected payoff for each profile
of other players’ strategies. A pure strategy of Player i is redundant if Player i has
another equivalent strategy. In our paper, we study the behavior of the proposed
decomposition with respect to redundant strategies and to suitable transformations
of payoff vectors that do not alter the strategic structure of the game. The issue
of redundant strategies has been dealt with by Govindan and Wilson (1997, 2005,
2008, 2009) in the framework of equilibrium refinement. In particular, the authors
show that the degree of a Nash component is invariant under addition or deletion of
redundant strategies. As shown, for instance, by Osborne and Rubinstein (1998),
some solution concepts are not invariant with respect to addition of redundant
strategies. In the framework of decomposition of games, Kalai and Kalai (2013)
show that their decomposition is invariant to redundant strategies. Cheng et al.
(2016) provide a generalization of the decomposition of Candogan et al. (2011) in
terms of weighted potential and weighted harmonic games. This work is close to ours
but still quite different. Precisely, Candogan et al. (2011) assume that the weight of
each player is equal to the number of her strategies while Cheng et al. (2016) relax
this hypothesis by considering any possible weight. Their approach is coherent with
simple dilations like multiplication of the payoffs of some player by a constant that
depends only on the other players, but not with more general dilations. Moreover,
weighted harmonic games still admit the uniformly strategy profile as equilibrium
and therefore their class is not robust to elimination of duplicate strategies.

1.2. Structure of the paper. In Section 2, we introduce our decomposition results
for games. In Section 3, we deal with the coherence of these decompositions. All
proofs can be found in Appendix A.

1A generalization of the Helmholtz theorem is known in the literature as the Hodge decompo-
sition theorem, which is defined for differentiable forms on Riemannian manifolds.
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6 J. ABDOU, N. PNEVMATIKOS, M. SCARSINI, AND X. VENEL

2. Decomposition of finite games

In this section, we generalize the decomposition of Candogan et al. (2011) as
follows. We first present new classes of games—µ-normalized, η-potential and (µ,η)-
harmonic—and study their properties. Then, we provide a first decomposition
of games into µ-normalized and non-strategic components. We finally establish a
decomposition of the space of finite games into non-strategic games, µ-normalized η-
potential and µ-normalized pµ, ηq-harmonic games. In order to obtain orthogonality
between the components, this decomposition requires the choice of a suitable inner
product.

Let n ě 2. A finite game consists of a finite set of players, denoted by N “
t1, . . . , nu, and, for each Player i P N , a finite set of strategies Si and a payoff
function gi : S Ñ R, where S “

Ś
iPN Si is the space of strategy profiles s. The

symbol S´i denotes the set of strategy profiles of all players except Player i. Since,
given N and S, every game is uniquely defined by the set of its payoff functions, we
call g “ pgiqiPN a game. Hence, if we denote |A| the cardinality of a set A, the space
G of games with set of players N and set of strategy profiles S can be identified with
R

n|S|. Consequently, we have that dimpGq “ n
ś

iPN |Si|. Given a positive finite
measure νi on Si for every i P N , let ν be the product measure defined for any
s P S, by νpsq “

ś
iPN νipsiq. We also use the notation ν´ips´iq “

ś
j‰i ν

jpsjq.

Given any positive finite measure νi on Si, we denote its normalization by:

νipsiq “
νipsiqř

tiPSi νiptiq
. (2.1)

For the rest of the paper, we associate to each Player i P N , two positive finite
measures on Si, denoted by µi and ηi respectively.

2.1. Special classes of games. In this section, we introduce the different classes of
games that will appear in our decomposition result and we further state their main
properties.

Definition 2.1. A game g P G is non-strategic if, for each i P N , there exists a
function ℓi : S´i Ñ R, such that, for all s P S,

gipsi, s´iq “ ℓips´iq.

The set of non-strategic games is denoted by NS.

Definition 2.2. A game g P G is µ-normalized, if for all i P N and for all s´i P S´i,
ÿ

siPSi

µipsiqgipsi, s´iq “ 0.

The set of µ-normalized games is denoted by NO.

We will show that any game can be decomposed into the sum of a non-strategic
game and a µ-normalized game. Notice that given g P G and ℓ P NS, the games g

and g1 “ g ` ℓ admit the same best-reply correspondence and hence the same set
of Nash equilibria. Hence, they are strategically equivalent and therefore in some
sense NO is just a choice of normalization of games.

We now introduce the classes of η-potential and pµ, ηq-harmonic games. The first
class of games is related to games where the interests of players are aligned with
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DECOMPOSITION OF GAMES: SOME STRATEGIC CONSIDERATIONS 7

a weighted potential function and, hence, always admit a pure Nash equilibrium.
They are a subclass of ordinal potential games. The second class of games reflects
more conflictual situations and we later prove that these games admit a completely
mixed equilibrium.

Definition 2.3. A game g P G is said to be an η-potential game if there exists
ϕ : S Ñ R such that for any i P N , for all si, ti P Si, and for all s´i P S´i, we have

η´ips´iqpgipti, s´iq ´ gipsi, s´iqq “ ϕpti, s´iq ´ ϕpsi, s´iq.

The function ϕ is referred to as a potential function of the game. We denote P the
set of η-potential games for some η.

In the terminology of Monderer and Shapley (1996), a weighted potential game
is an η-potential game, which, in turn, is an ordinal potential game. An immediate
consequence of this is the following proposition.

Proposition 2.4. A game g P P admits a pure equilibrium.

Definition 2.5. A game g is a pµ, ηq-harmonic game if for all s P S,
ÿ

iPN

ÿ

tiPSi

µiptiqη´ips´iq
`
gipsi, s´iq ´ gipti, s´iq

˘
“ 0

We denote H the set of pµ, ηq-harmonic games for some µ and η.

We can now prove that a pµ, ηq-harmonic game admits a completely mixed strat-
egy equilibrium, characterized by µ and η. For that purpose, we define for any
i P N ,

pµηqipsiq “ µipsiqηipsiq (2.2)

and denote µηi its normalized version, as in Eq. (2.1).

Theorem 2.6. Let g be a pµ, ηq-harmonic game. Then, the completely mixed strategy
profile pµηiqiPN is an equilibrium, i.e., for all i P N and for all ri, ti P Si, we have

ÿ

s´iPS´i

ź

j‰i

µηjpsjqgipri, s´iq “
ÿ

s´iPS´i

ź

j‰i

µηjpsjqgipti, s´iq.

2.2. A first decomposition result. Our first decomposition states that any game can
be written as the sum of a µ-normalized game and a non-strategic game. The proof
follows Candogan et al. (2011) apart from the fact that we choose µ-normalized
games instead of the particular case µipsiq “ 1 for each si P Si and i P N . In the
context of games with continuous strategy sets, a similar decomposition result is
proved by Hwang and Rey-Bellet (2016), who view the set of all games as a Hilbert
space.

To present our decomposition results, we first define the space C0 :“ tf : S Ñ Ru
endowed with the following inner product:

@f, g P C0, xg, fy
0

“
ÿ

sPS

µpsqgpsqfpsq. (2.3)

Notice that the payoff functions of each player can be viewed as elements of C0,
i.e., gi P C0 for any i P N and so a game g can be seen as an element of Cn

0 . Hence,
G – Cn

0
. Given a function f P C0 and a product measure η on the strategy profiles,

we denote η´if the function in C0 defined for any s P S by:

pη´ifqpsq “ η´ips´iqfpsq.
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8 J. ABDOU, N. PNEVMATIKOS, M. SCARSINI, AND X. VENEL

Our next step is to endow the space of games with a suitable inner product. For
any g1, g2 P G, using Eq. (2.3), we define:

xg1, g2yµ,η “
ÿ

iPN

µipSiq
@
η´igi1, η

´igi2
D
0

(2.4)

and we denote ‘µ,η the direct orthogonal sum with respect to the above inner
product.

Proposition 2.7. The space of games G is the direct orthogonal-sum of the µ-
normalized and non-strategic subspaces, i.e.,

G “ NO ‘µ,η NS.

2.3. pµ, ηq-decomposition result. In this section we show that any game can be
decomposed into the direct sum of three component games: an η-potential µ-
normalized game, a pµ, ηq-harmonic µ-normalized game, and a non-strategic game.
Moreover, this decomposition is orthogonal for the inner product in Eq. (2.4).

Theorem 2.8. The space of games is the direct orthogonal-sum of the µ-normalized
η-potential, µ-normalized pµ, ηq-harmonic and non-strategic subspaces, i,e.,

G “ pNO X Pq ‘µ,η pNO X Hq ‘µ,η NS. (2.5)

Theorem 2.8 guarantees that, given a game g and a pair of measures pµ, ηq, we
have

g “ gNSpµ,ηq ` gPpµ,ηq ` gHpµ,ηq, (2.6)

where gNSpµ,ηq is non-strategic, gPpµ,ηq is η-potential µ-normalized, and gHpµ,ηq is

pµ, ηq-harmonic µ-normalized. For the sake of simplicity, when there is no risk of
confusion, we omit the indication of pµ, ηq.

The key point in the proof of Theorem 2.8 is to associate a given game to a
flow on a suitable graph, as it is the case in Candogan et al. (2011). We then
characterize η-potential games, non-strategic games, and pµ, ηq-harmonic games in
terms of their induced flows. Any flow generated by a game can be decomposed
into two particular flows using linear algebra tools. From this decomposition result,
we can obtain a decomposition in terms of games. The definition of the flow and
the decomposition result are built on the gradient operator and the inner product,
respectively. Hence, the decomposition is implicitly related to some notion of metric
induced in the space of games. Candogan et al. (2011) use the same metric for both
the definition of the flow generated by a game and the corresponding decomposition.
We generalize their approach in the following ways: first, we deal with families of
metrics instead of a unique one and, second, we consider different metrics for the
definition of the flow generated by a game and the decomposition.

To prove our decomposition result, we use the Moore-Penrose pseudo-inverse of
the gradient operator (see, e.g., Ben-Israel and Greville, 2003). Precisely, since the
components of the decomposition are orthogonal, the pseudo-inverse operator allows
us to determine the closest η-potential game to an arbitrary game with respect to
the induced distance in the space of games. Candogan et al. (2011) provide in fact
two approaches to obtain their decomposition result. The first approach relies on
the Helmholtz decomposition tool, which becomes a degenerate case when applied
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DECOMPOSITION OF GAMES: SOME STRATEGIC CONSIDERATIONS 9

to flows induced by games.2 The second one relies on the Moore-Penrose pseudo-
inverse operator. We choose the second approach since it is better suited to study
the relation between duplicate strategies and decomposition.

Our result states that, given two product measures µ and η on the set of strat-
egy profiles, the decomposition into µ-normalized η-potential, µ-normalized pµ, ηq-
harmonic, and non-strategic games is unique. The map that associates to a given
game its components will be referred to as the pµ, ηq-decomposition map. The use of
two measures stems from the need to deal simultaneously with duplications and di-
lations, as highlighted in the introduction. Nevertheless, there is some redundancy
by having two product measures as parameters. This gives rise to the following
question: what is the set of product finite measures pµ, ηq that induce the same
pµ, ηq-decomposition map?

Proposition 2.9. Let µ, µ̊ and η, η̊ be four positive product measures. Then, the
pµ, ηq-decomposition map is identical to the pµ̊, η̊q-decomposition map if and only if
there exist α, β ą 0 such that, for all i P N

µ̊i “ αµi and η̊i “ βηi.

3. pµ, ηq-decomposition and operations on games

We now discuss consistency of pµ, ηq-decompositions in games with duplicate
strategies and games generated by dilations.

3.1. Games with duplicate strategies. In this section, we investigate how the pµ, ηq-
decomposition behaves when we deal with duplications. Concerning this type of
transformations, we will see that µ is the key parameter that needs to change when
eliminating a duplicate strategy. In contrast, in this whole section η is fixed, apart
from the change of its domain, inherent to the change of strategy space.

To study how our decomposition behaves in games with duplicate strategies, we
first provide an example of a pµ, ηq-harmonic game with some duplicate strategies
whose reduction is not pµ, ηq-harmonic. Then, we prove that duplicate strategies
remain duplicate in the components of the decomposition result. That is, given
a game with some duplicate strategy, the components of the pµ, ηq-decomposition
contain the same duplicate strategy. It follows that, when considering a game
with some duplicate strategies, one can either first decompose it and then reduce
it or vice versa. Each procedure yields a different decomposition. Nevertheless,
our notion of pµ, ηq-decomposition allows us to obtain a relation between the two
approaches, which is described by the commutativity diagram in Fig. 1.

Definition 3.1. A game g P G is said to be a game with duplicate strategies if there
exist i P N and some strategies si

0
,si

1
P Si, such that for every j P N and every

s´i P S´i, we have: gjpsi0, s
´iq “ gjpsi1, s

´iq.

2According to the graph representation of games, curl flows in games are generated only by
consecutive deviations of the same player and hence, they are mapped to 0. As a consequence,
the divergence-free component of the Helmholtz decomposition tool is reduced to harmonic flows.
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10 J. ABDOU, N. PNEVMATIKOS, M. SCARSINI, AND X. VENEL

g pgNS , gP , gHq

pg pppgqNS , ppgqP , ppgqHq “

p{pgNSq,zpgPq,zpgHqq

pµ, ηq-decomposition

reduction

ppµ, ηq-decomposition

reduction

Figure 1

Definition 3.2. Given a game g with duplicate strategies si0, s
i
1 for some Player

i P N , the reduced strategy set of Player i is denoted by pSi “ Siztsi1u and

pS “ pSi ˆ

˜ą

j‰i

Sj

¸

stands for the reduced strategy profile set. The reduced game is denoted by pg “

ppgjqjPN , where pgj : pS Ñ R is such that pgjpsq “ gjpsq. If µ is a product finite
measure on S, we also define the reduced product measure pµ as follows:

(i) for every Player j ‰ i, we have pµjpsjq “ µjpsjq,
(ii) for Player i, we have pµipsi

0
q “ µipsi

0
q ` µipsi

1
q, and pµipsiq “ µipsiq for any

si ‰ si0.

Example 3.3. Let µ1 “ µ2 “ η1 “ η2 “ p1, 1, 1q. Let g be the following game:

L R1 R2

T1 2 ´2 ´1 1 ´1 1

T2 2 ´2 ´1 1 ´1 1

B ´4 4 2 ´2 2 ´2

g

.

The game g is pµ, ηq-harmonic and admits a unique equilibrium that is the
uniform profile. By eliminating the duplicate strategy of the row-player, we obtain
the reduced game pg:

L R1 R2

T 2 ´2 ´1 1 ´1 1

B ´4 4 2 ´2 2 ´2

pg

.

The reduced game pg admits the profile pp2{3, 1{3q, p1{3, 1{3, 1{3qq as unique equi-
librium. Let pµ1 “ p2, 1q, pµ2 “ µ2 “ p1, 1, 1q, η1 “ p1, 1q and η2 “ p1, 1, 1q. Then,
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g is a ppµ, ηq-harmonic.3 It is possible to further eliminate the duplicate strategy of

the column-player. We then obtain the reduced game ppg:

L R

T 2 ´2 ´1 1

B ´4 4 2 ´2

ppg

.

Let ppµ1 “ p2, 1q, ppµ2 “ p1, 2q, η1 “ p1, 1q and η2 “ p1, 1q. It follows that ppg is a

pppµ, ηq-harmonic game.

We now focus on the elimination of one duplicate strategy. There are games, such
as the one in Example 3.3, where several players have duplicate strategies—possibly
more than one. In these cases, it is possible to eliminate duplicate strategies one by
one. At each iteration of the procedure, one duplicate strategy is eliminated and
the measure pµ is updated. The order of elimination does not influence the measure
and the game obtained at the end of the iterated procedure.

In the sequel, without loss of generality we always consider a game where Player
i has two duplicate strategies si

0
and si

1
.

Lemma 3.4. Let g P G be a game with duplicate strategies si
0
, si

1
for some i P N .

Then, gNS , gP and gH are games with duplicate strategies si0, s
i
1.

We then obtain the following relation between a game with duplicate strategies
g and the reduced game pg.

Lemma 3.5. Let g be a game with duplicate strategies si0, s
i
1 P Si. Then,

(i) if g is η-potential, then pg is η-potential,
(ii) if g is non-strategic, then pg is non-strategic,
(iii) if g is µ-normalized, then pg is pµ-normalized,
(iv) if g is pµ, ηq-harmonic, then pg is ppµ, ηq-harmonic.

The following theorem is an immediate consequence of the two previous lemmas.

Theorem 3.6. Let g be a game with duplicate strategies. Then

{pgNSpµ,ηqq “ ppgqNSppµ,ηq,

{pgPpµ,ηqq “ ppgqPppµ,ηq,

{pgHpµ,ηqq “ ppgqHppµ,ηq,

i.e., the reduced games of the components are the components of the ppµ, ηq-decomposition
of pg.

The following remarks complete the scope of Theorem 3.6. The first remark
presents the reverse operation, i.e., transforming a game into a game with duplicate
strategies, whereas the second one replaces the notion of duplication with the more
general notion of redundancy.

3It would be more proper to define pη1 as the restriction of η
1 to the reduced strategy set of

the row-player but for convenience we keep the same notation.
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Remark 3.7. An immediate consequence of Theorem 3.6 and of the uniqueness of
the decomposition result of Theorem 2.8 is the following. Let g be a pµ, ηq-harmonic
game and qg the game where the strategy si of Player i has been duplicated into siA
and siB. Then the game qg is pqµ, qηq-harmonic for

qηj “ ηj for j ‰ i, qηiptiq “ ηiptiq for ti ‰ si, qηipsiAq “ qηipsiBq “ ηipsiq,

qµj “ µj for j ‰ i, qµiptiq “ µiptiq for ti ‰ si, qµipsiAq ` qµipsiBq “ µipsiq.
(3.1)

Notice that qµ is not uniquely defined.

Remark 3.8. The notion of redundant strategy was introduced by Govindan and
Wilson (2009). A pure strategy ti of Player i P N is redundant if, for all players,
its payoffs are a mixture of the payoffs of her other strategies, i.e., the payoff vector
pgjpti, .qqjPN is a convex combination α of the payoff vectors of the other pure
strategies Sizttiu, i.e.,

@s´i P S´i, @j P N, gjpti, s´iq “
ÿ

siPSizttiu

αpsiqgjpsi, s´iq.

Concerning this transformation, one can eliminate the strategy ti and consider
the reduced game, as it was the case in duplications. Considering the pµ, ηq-
decomposition and then eliminating the redundant strategy is equivalent to first
eliminating and then considering the pµ˚, ηq decomposition, where

(i) for every player j ‰ i, we have µj
˚psjq “ µjpsjq,

(ii) for Player i and every strategy si P Sizttiu, we have

µi
˚psiq “ µipsiq ` αpsiqµiptiq.

3.2. Affine transformation and decomposition. We now investigate then behavior
of our decompositions when we deal with affine transformations. We first focus on
translations and then on dilations. When dealing with translations, measures µ
and η do not change. For dilations we will see that µ is fixed, whereas η changes.

3.2.1. Translations. First, we look at translations of the payoffs by a function that
depends on the strategies of the other players. We show that, as it is the case in
Candogan et al. (2011), there is a natural relation between the pµ, ηq-decomposition
of a game g and the pµ, ηq-decomposition of the translated game.

For any i P N , let ℓi : S´i Ñ R. Then, we can define the translation of a game
g by ℓ “ pℓiqiPN as follows:

@i P N, @s P S, giℓpsq “ gipsq ` ℓips´iq. (3.2)

It is clear that the non-strategic component of gℓ is the translation by ℓ of the
non-strategic component of g. It follows that the pµ, ηq-decomposition of g and
the pµ, ηq-decomposition of gℓ share the same pµ, ηq-harmonic µ-normalized, and
η-potential µ-normalized components.

Proposition 3.9. Let g be a game and let gℓ be its translation by ℓ “ pℓiqiPN . Then,
the pµ, ηq-decompositions of g and gℓ are related as follows:

‚ pgℓqP “ gP

‚ pgℓqH “ gH
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‚ pgℓqNS “ gNS ` ℓ

Proof. Given Eq. (3.2) and the fact that ℓi P NSi for any i P N , the result follows
from Theorem 2.8. �

3.2.2. Product dilations. We now consider a particular type of dilations, called
product dilations and study their effects on the decomposition of games.

Definition 3.10. For every i P N , let βi : S´i Ñ p0,`8q. The dilation β of a game
g is given by

@i P N, @s P S, pβ ¨ gqipsq “ βips´iqgipsq.

We call pβ ¨ gq the β-dilated game.

Definition 3.11. A dilation β is a product dilation if for every j P N , there exists
bj : Sj Ñ p0,8q such that

@i P N, @s´i P S´i, βips´iq “
ź

j‰i

bjpsjq, (3.3)

We say that β is generated by b.

Although these types of dilation may change the Nash equilibrium set, they do
it in a very structured way, as the following proposition shows.

Proposition 3.12. Let β be a product dilation generated by b. If Epgq is the set of
Nash equilibria of the game g, then the set of Nash equilibria of pβ ¨ gq is given by:

Epβ ¨ gq “

"
pyiqiPN : yipsiq “

xipsiq

bipsiq
and pxiqiPN P Epgq

*
.

In particular, when β is a product dilation, if x is a pure Nash equilibrium of g
then x is also a pure Nash equilibrium of pβ ¨ gq. If one knows the set of equilibria
of some game g, one can compute the set of equilibria of pβ ¨ gq without knowing
g. In the particular case when, for every i P N , bipsiq does not depend on si, the
Nash equilibrium sets of both games coincide.

Given positive product measures η and b on the strategy profiles, we define the
product measure η{b pointwise as follows:

@i P N,@si P Si,
´η
b

¯i

psiq “
ηipsiq

bipsiq
.

Theorem 3.13. Let µ, η and b be positive product measures on S. Let g be a finite
game. If β is the product dilation generated by b, then

pβ ¨ gNSpµ,ηqq “ pβ ¨ gqNSpµ,η{bq

pβ ¨ gPpµ,ηqq “ pβ ¨ gqPpµ,η{bq

pβ ¨ gHpµ,ηqq “ pβ ¨ gqHpµ,η{bq.

The result of Theorem 3.13 can be represented by the diagram in Fig. 2, where,
for the sake of simplicity, we have omitted the reference to the pairs of measures
used in the decomposition.
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g pgNS , gP , gHq

pβ ¨ gq ppβ ¨ gqNS , pβ ¨ gqP , pβ ¨ gqHq

pµ, ηq-decomposition

product dilation

pµ, η{bq-decomposition

product dilation

Figure 2

The following two facts are easy consequences of Theorem 3.13. First, in the
context of two-player games, any β-dilation is a product dilation since there is only
one adversary player. Therefore, in this case Theorem 3.13 covers in fact any type
of dilation. Second, consider β a dilation such that for every i P N , βi does not
depend on s´i but only on i. Then, there exists a vector pbiqiPN such that

@i P N, βi “
ź

j‰i

bj.

Hence, β is a product dilation. Therefore, Theorem 3.13 can be applied. Notice
that in this particular case, g and pβ ¨ gq share the same set of Nash equilibria.

Cheng et al. (2016) introduced a decomposition of games into two types of games
called weighted harmonic and weighted potential games. When restricting to these
two classes of games, it is possible to prove a weaker version of Theorem 3.13 with
dilations that depend only on the players.

We now provide two examples of product-dilations and a final example combining
dilation and duplication. In Example 3.14 the dilation depends only on the players,
whereas in Example 3.15 the dilation depends also on the strategy that the players
play.

Example 3.14. Let µ1 “ µ2 “ η1 “ η2 “ p1, 1q, β1 ” 2, β2 ” 4. Consider the
following µ-normalized game g (on the left) and its β-dilation pβ ¨gq (on the right):

L R

T 4 ´1 ´3 1

B ´4 0 3 0

g

L R

T 8 ´4 ´6 4

B ´8 0 6 0

pβ ¨ gq

.

The pµ-ηq-decomposition of g is given by

L R

T 2 1 ´1 ´1

B ´2 ´2 1 2

gP

L R

T 2 ´2 ´2 2

B ´2 2 2 ´2

gH

and the β-dilation of gP and gH are given respectively by:
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L R

T 4 4 ´2 ´4

B ´4 ´8 2 8

pβ ¨ gPq

L R

T 4 ´8 ´4 8

B ´4 8 4 ´8

pβ ¨ gHq

.

Let rη1 ” 1{4 and rη2 ” 1{2. It is easy to check that pβ ¨gPq is an rη-potential game
and that pβ ¨ gHq is a (µ,rη)-harmonic game. On one hand gP and pβ ¨ gPq share
the same pure Nash equilibria, i.e., pT, Lq and pB,Rq, and the same mixed Nash
equilibrium px1, x2q, where x1 “ p2{3, 1{3q and x2 “ p1{3, 2{3q; as a consequence,
EpgPq “ Epβ ¨ gPq. On the other hand, there is no pure Nash equilibrium either
in gH or in pβ ¨ gHq and the mixed strategy profile px1, x2q given by x1 “ x2 “
p1{2, 1{2q is a mixed Nash equilibrium in both gH and pβ ¨ gHq. It follows that
EpgHq “ Epβ ¨ gHq.

Next, we consider a dilation that depends on the strategy of the other player
and we show how mixed Nash equilibria vary in the transformed game.

Example 3.15. Let µ1 “ µ2 “ η1 “ η2 “ p1, 1q, β1 ” b2 “ p2, 1q and β2 ” b1 “
p1, 3q. Consider the µ-normalized game g (appeared also in Example 3.14) (on the
left) and its β-dilation pβ ¨ gq (on the right):

L R

T 4 ´1 ´3 1

B ´4 0 3 0

g

L R

T 8 ´1 ´3 1

B ´8 0 3 0

pβ ¨ gq

.

In view of the pµ-ηq-decomposition of g (see Example 3.14), the β-dilation of gP

and gH are

L R

T 4 1 ´1 ´1

B ´4 ´6 1 6

pβ ¨ gPq

L R

T 4 ´2 ´2 2

B ´4 6 2 ´6

pβ ¨ gHq

.

Let rη1 “
`
1, 1

3

˘
and rη2 “

`
1

2
, 1
˘
. It is easy to check that pβ ¨ gPq is an rη-potential

game and that pβ ¨gHq is a pµ, rηq-harmonic game. Notice that gP and pβ ¨gPq share
the same pure Nash equilibria, however the mixed Nash equilibrium of gP has been
transformed, according to Proposition 3.12, into the mixed strategy profile px1, x2q,
where x1 “ p6{7, 1{7q and x2 “ p1{5, 4{5q, which is a mixed Nash equilibrium in
pβ ¨gPq. Likewise, the mixed Nash equilibrium of gH has been transformed into the
mixed strategy profile px1, x2q, where x1 “ p3{4, 1{4q and x2 “ p2{3, 1{3q, which is
the unique mixed Nash equilibrium in pβ ¨ gHq.

Finally, we describe an example with both dilation and duplication.

Example 3.16. Let µ1 “ µ2 “ η1 “ η2 “ p1, 1q, β1 ” b2 “ p2, 1q and β2 ” b1 “
p1, 3q. Consider the following µ-normalized game g (on the left) and let pβ ¨ qgq (on
the right) be its β-dilation where, moreover, the strategy T is duplicated:
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L R

T 4 ´1 ´3 1

B ´4 0 3 0

g

L R

T1 8 ´1 ´3 1

T2 8 ´1 ´3 1

B ´8 0 3 0

pβ ¨ qgq

.

In view of the pµ-ηq-decomposition of g (see Example 3.14), if we apply the same
pair of transformations to gP and gH, we get

L R

T1 4 1 ´1 ´1

T2 4 1 ´1 ´1

B ´4 ´6 1 6

pβ ¨ pqgqPq

L R

T1 4 ´2 ´2 2

T2 4 ´2 ´2 2

B ´4 6 2 ´6

pβ ¨ pqgqHq

.

Let qη1β “
`
1, 1, 1

3

˘
, qη2β “

`
1

2
, 1
˘
, qµ1

β “ pα, 1 ´ α, 1q, α P p0, 1q and qµ2

β “ p1, 1q.

It is easy to check that pβ ¨ pqgqPq is an qηβ-potential game and pβ ¨ pqgqHq is a
pqµβ, qηβq-harmonic game. Notice that the mixed Nash equilibrium of gP has been
transformed, according to Proposition 3.12, into the mixed strategy profile px1, x2q,
where x1 “ p3{7, 3{7, 1{7q and x2 “ p1{5, 4{5q, which is a mixed Nash equilibrium
in pβ ¨pqgqPq. Likewise, the mixed Nash equilibrium of gH has been transformed into
the mixed strategy profile px1, x2q, where x1 “ p3{8, 3{8, 1{4q and x2 “ p2{3, 1{3q,
which is a mixed Nash equilibrium in pβ ¨ pqgqHq.

3.2.3. General dilations. We focused in the previous paragraph on product dila-
tions. When dealing with general dilations, it is impossible to obtain a commuta-
tive property such as the one that holds for duplications, translations, and product
dilations.

Informally, a dilation that is not a product dilation preserves the set of pure Nash-
equilibria but it operates on the set of mixed Nash-equilibria in a non structured
way, hence Proposition 3.12 cannot be applied. In Theorem 2.6, we proved that if
g is pµ, ηq-harmonic, then pµηiqiPN is a Nash equilibrium. The two facts yield an
incompatibility. We illustrate this incompatibility with a counter-example.

Example 3.17. We present two games g, g1, which are pµ, ηq-harmonic for µ1 “ µ2 “
µ3 “ η1 “ η2 “ η3 “ p1, 1q, and a dilation β such that there exists no pair prµ, rηq
that makes both games pβ ¨ gq and pβ ¨ g1q prµ, rηq-harmonic. Consider the following
3-player games. Player 1 chooses the row, Player 2 chooses the column, and Player
3 chooses the matrix. In the first game g, Player 3 is dummy and Players 1 and 2

play a matching pennies game, where Player 2 wants to match and Player 1 wants
to mismatch:

H2 T2

H1 ´1 1 0 1 ´1 0

T1 1 ´1 0 ´1 1 0

H3

H2 T2

H1 ´1 1 0 1 ´1 0

T1 1 ´1 0 ´1 1 0

T3

.
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In the second game g1, Player 1 is a dummy and Players 2 and 3 play a matching
pennies game, where Player 2 wants to match and Player 3 wants to mismatch:

H2 T2

H1 0 1 ´1 0 ´1 1

T1 0 1 ´1 0 ´1 1

H3

H2 T2

H1 0 ´1 1 0 1 ´1

T1 0 ´1 1 0 1 ´1

T3

.

It is easy to check that these two games are indeed pµ, ηq-harmonic. Consider
now the following dilation:

‚ β2p¨, ¨q “ 1.
‚ β1 only depends on player 2: β1pH2, H3q “ β1pH2, T3q “ 1 and β1pT2, H3q “
β1pT2, T3q “ 2,

‚ β3 only depends on player 2: β3pH1, H2q “ β3pT1, H2q “ 1 and β3pH1, T2q “
β3pT1, T2q “ 3

We obtain the new game pβ ¨ gq given by

H2 T2

H1 ´1 1 0 2 ´1 0

T1 1 ´1 0 ´2 1 0

H3

H2 T2

H1 ´1 1 0 2 ´1 0

T1 1 ´1 0 ´2 1 0

T3

and pβ ¨ g1q given by

H2 T2

H1 0 1 ´1 0 ´1 3

T1 0 1 ´1 0 ´1 3

H3

H2 T2

H1 0 ´1 1 0 1 ´3

T1 0 ´1 1 0 1 ´3

T3

.

On one hand, we see that Player 2 has to play p2{3, 1{3q at the equilibrium in
pβ ¨ gq and p3{4, 1{4q in pβ ¨ g1q. On the other hand, if there existed a unique
pair prµ, rηq such that both pβ ¨ gq and pβ ¨ g1q are prµ, rηq-harmonic, then both games

would admit
´
rµrηi

¯
iPN

as an equilibrium, i.e., there would exist one strategy of

Player 2 that is both an equilibrium in pβ ¨ gq and in pβ ¨ g1q. We saw that the
equilibrium strategies of Player 2 in pβ ¨gq and pβ ¨g1q are different, which produces
a contradiction.

Appendix A. Proofs

To prove the characterization of equilibrium in pµ, ηq-harmonic game (Theo-
rem 2.6), we need some notation which is naturally introduced in the proof of the
decomposition result. Hence, the proofs of Section 2.1 are postponed after the
proofs of Sections 2.2 and 2.3.
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A.1. Proofs of Section 2.2. We prove Proposition 2.7 by describing NO and NS

through orthogonal projection operators. The notation IX stands for the identity
operator over a set X . First, we define for any i P N , the linear operators Λi :

C0 Ñ C0 and Πi : C0 Ñ C0 as follows:

Λipgiqpsi, s´iq “
ÿ

tiPSi

µiptiqgipti, s´iq, (A.1)

Πi “ IC0
´ Λi. (A.2)

We call NSi Ă C0 the set of functions f for which there exists ℓ : S´i Ñ R such
that

@si P Si, @s´i P S´i, fpsi, s´iq “ ℓps´iq. (A.3)

We call NOi Ă C0 the set of functions f such that

@s´i P S´i,
ÿ

siPSi

µipsiqfpsi, s´iq “ 0. (A.4)

Lemma A.1. (a) Πi and Λi are projections onto C0.
(b) For every fK P KerpΛiq and for every fI P ImpΛiq,

@
η´ifK , η

´ifI
D
0

“ 0.

(c) We have NOi “ KerpΛiq and NSi “ ImpΛiq.

Proof. (a) In view of Eqs. (A.1) and (A.2), we have

KerpΠiq “ ImpΛiq and KerpΛiq “ ImpΠiq. (A.5)

Thus, we only need to prove that Λi ˝ Λi “ Λi. Indeed,

Λi ˝ Λipgiqpsi, s´iq “
ÿ

tiPSi

µiptiq
`
Λipgiqpti, s´iq

˘

“
ÿ

tiPSi

µiptiq
ÿ

riPSi

µipriqgipri, s´iq

“
ÿ

riPSi

µipriq

˜ ÿ

tiPSi

µiptiq

¸
gipri, s´iq

“
ÿ

riPSi

µipriqgipri, s´iq,

where the last equality stems from the fact that µi is probability distribution.
Hence, Λi is a projection operator.

(b) Let fK P KerpΛiq and fI P ImpΛiq. By definition of Λi, any function in ImpΛiq
does not depend on si, i.e., ImpΛiq Ă NSi. Hence, there exists ℓ : S´i Ñ R such
that ℓps´iq “ fIpsi, s´iq. Therefore,
@
η´ifK , η

´ifI
D
0

“
ÿ

sPS

µpsqpη´ips´iqq2fKpsqfIpsq

“ µipSiq
ÿ

s´iPS´i

µ´ips´iqpη´ips´iqq2ℓps´iq

˜ ÿ

siPSi

µipsiqfKpsi, s´iq

¸

“ 0,

since fK P KerpΛiq.
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(c) In view of Eqs. (A.1) and (A.4),

ÿ

siPSi

µipsiqfpsi, s´iq “ µipSiq

˜ ÿ

siPSi

µipsiqfpsi, s´iq

¸
“ µipSiqΛipsq.

Hence, we have KerpΛiq “ NOi. We saw in the previous paragraph that ImpΛiq Ă
NSi. Reciprocally, if f a function in C0 does not depend on si, an immediate
computation yields Λipfq “ f and the equality between the two sets. �

We now define Λ : Cn
0

Ñ Cn
0

and Π : Cn
0

Ñ Cn
0

as

Λpgq “
´
Λ1pg1q, . . . ,Λnpgnq

¯
, (A.6)

Πpgq “
`
Π1pg1q, . . . ,Πnpgnq

˘
, (A.7)

with g “ pgiqiPN .

Lemma A.2. (a) We have

NO “
 
g P G : @i P N, gi P NOi

(
“ KerpΛq, (A.8)

NS “
 
g P G : @i P N, gi P NSi

(
“ ImpΛq. (A.9)

(b) Π and Λ are orthogonal projections onto G for x¨, ¨yµ,η.

Proof. (a) This follows immediately from Lemma A.1(c).

(b) We have KerpΛq “ NO and ImpΛq “ NS, where Λ is defined as in Eq. (A.6).
Let gNO P NO and gNS P NS. Then, using the definition of the scalar product of
Eq. (2.4) and Lemma A.1(b), we obtain

xgNO, gNSyµ,η “
ÿ

iPN

µipSiq
@
η´igiNO, η

´igiNS

D
0

“ 0.

since giNO P KerpΛiq and giNS P ImpΛiq for every i P N . �

Proof of Proposition 2.7. This is an immediate corollary of Lemma A.2. We showed
that NO and NS are orthogonal subspaces and further that any game g can be
decomposed into Λpgq P NS and pIG ´ Λqpgq P NO. �

We first give the definition of the flow associated to a game and, in Proposi-
tion A.5, characterize the different classes of games. Then, from these character-
izations and from the properties of the Moore-Penrose pseudo-inverse, we deduce
the proof of Theorem 2.8.

Let C1 :“ tX : S ˆS Ñ R|Xps, tq “ ´Xpt, sq,@s, t P Su be the set of flows. We
endow C1 with the following inner product:

@X,Y P C1, xX,Y y
1

“
1

2

ÿ

s,tPS

µpsqµptqXps, tqY ps, tq. (A.10)

To any game g, we associate an undirected graph as follows. Given a pair of
strategy profiles ps, tq P SˆS, if there exists a unique i P N , such that si ‰ ti then
ps, tq will be referred to as an i-comparable profile pair. We denote Ei Ă S ˆ S

the set of i-comparable profile pairs. For any two different players i and j we
have: Ei X Ej “ H. We call E the set of comparable profile pairs, i.e., E “ YiEi.
Following Candogan et al. (2011), for any given game g, we associate to Player i

 
Documents de travail du Centre d'Economie de la Sorbonne - 2019.06



20 J. ABDOU, N. PNEVMATIKOS, M. SCARSINI, AND X. VENEL

an undirected graph defined as Γi :“ pS,Eiq and we further associate to the game
g the disjoint union of the graphs Γi defined as Γ :“ pS,Eq.

For any i P N , let W i : S ˆ S Ñ R be the non-negative symmetric function
defined as

W ips, tq “

$
&
%

1a
µ´ips´iq

if ps, tq P Ei,

0 otherwise.

(A.11)

Recalling that any pair of strategy profiles cannot be comparable for more than one
player, we have:

W ips, tqW jps, tq “ 0, for all j ‰ i and s, t P S. (A.12)

To any Player i, we associate the partial gradient operator δi0 : C0 Ñ C1, defined
for any f P C0 as follows:

δi0pfqps, tq “ W ips, tq pfptq ´ fpsqq . (A.13)

The gradient operator δ0 on Γ is defined as δ0 “
ř

iPN δi0.

We now introduce the adjoint operators. Recall that we have considered the
following inner product on C0:

@ g, f P C0, xg, fy
0

“
ÿ

sPS

µpsqgpsqfpsq.

The adjoint of δi
0
, denoted by δi˚

0
: C1 Ñ C0 is the unique linear operator satisfying:

@
δi
0
f,X

D
1

“
@
f, δi˚

0
X
D
0
, (A.14)

for any f P C0, X P C1. By linearity of the dual operations, we obtain that the dual
of δ0 satisfies δ˚

0
“

ř
iPN δi˚

0
. Moreover, we have the following explicit expression

for δi˚
0

.

Proposition A.3. The adjoint of the gradient operator, δi˚
0

: C1 Ñ C0 is given for
any X P C1 by

@s P S, δi˚0 Xpsq “ ´
ÿ

tPS

µptqW ips, tqXps, tq (A.15)

“ ´
ÿ

t:ps,tqPEi

µiptiq
a
µ´ips´iqXps, tq. (A.16)

Proof. We introduce the basis pεrqrPS of C0, defined as

εrpsq “

$
&
%

1a
µprq

if s “ r,

0 otherwise.

(A.17)

This basis is orthonormal with respect to the inner product in Eq. (2.3). For any
X P C1, we have

δi˚0 X “
ÿ

rPS

@
εr, δ

i˚
0 X

D
0
εr

and thus,

δi˚0 Xps0q “
1a
µps0q

@
εs0

, δi˚0 X
D
0
.
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By using the relation between δi˚
0

and δ0 in Eq. (A.14) and then the definition of
δ0 in Eq. (A.13), we get

δi˚0 Xps0q “
1a
µps0q

xδ0εs0
, Xy

1

“
1

2
a
µps0q

ÿ

s,tPS

µpsqµptq pδ0εs0
q ps, tqXps, tq

“
1

2
a
µps0q

˜ ÿ

s,tPS

µpsqµptqW ips, tqεs0
ptqXps, tq

´
ÿ

s,tPS

µpsqµptqW ips, tqεs0
psqXps, tq

¸
.

Using the definition of εs0
(Eq. (A.17)), we obtain

δi˚
0
Xps0q “

1

2
a
µps0q

˜ÿ

sPS

µpsqµps0q
1a
µps0q

W ips, s0qXps, s0q

´
ÿ

tPS

µptqµps0q
1a
µps0q

W ips0, tqXps0, tq

¸

“
1

2

˜ÿ

sPS

µpsqW ips, s0qXps, s0q ´
ÿ

tPS

µptqW ips0, tqXps0, tq

¸

“ ´
1

2

ÿ

sPS

µpsqW ips0, sqXps0, sq ´
1

2

ÿ

tPS

µptqW ips0, tqXps0, tq

“ ´
ÿ

tPS

µptqW ips0, tqXps0, tq,

where the third equality is due to the skew-symmetric structure of X and the last
equality is simply obtained by merging the two summations. �

To Γ we associate the joint embedding operator D : Cn
0 Ñ C1. The operator D

maps a game g into a flow Dpgq. It is defined for any g P Cn
0

as

Dpgq “
ÿ

iPN

δi0pη´igiq. (A.18)

Lemma A.4. The following hold:

δi˚0 δ
j
0

“ 0, for all i ‰ j, (A.19)

δ˚
0Dpgq “

ÿ

iPN

δi˚0 δ
i
0pη´igiq, for all g P Cn

0 , (A.20)

δi˚0 δ
i
0pη´ifq “ η´iδi˚0 δ

i
0pfq, for all f P C0. (A.21)
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Proof. To prove Eq. (A.19), let f P C0. By the explicit formula of Eq. (A.15), for
all s P S, we have

δi˚
0

pδj
0
fqpsq “ ´

ÿ

tPS

µptqW ips, tqpδj
0
fqps, tq

“ ´
ÿ

tPS

µptqW ips, tqW jps, tq pfptq ´ fpsqq

“ 0,

since for i ‰ j, we have W ips, tqW jps, tq “ 0.

To prove Eq. (A.20), let g P G. We then get

δ˚
0
Dpgq “

ÿ

iPN

δi˚
0

˜ÿ

jPN

δ
j
0
pη´jgjq

¸
“

ÿ

iPN

δi˚
0
δi
0
pη´igiq,

since, by Eq. (A.19), all cross-products are equal to 0.

To prove Eq. (A.21), let f P C0. We have, for all s P S,

δi˚0 pδi0η
´ifqpsq “ ´

ÿ

tPS

µptqW ips, tqpδi0η
´ifqps, tq

“ ´
ÿ

tiPSi

µipti, s´iqW ips, tqW ips, tqη´ips´iq
`
fpsi, s´iq ´ fpti, s´iq

˘

“ η´ips´iq

˜
´

ÿ

tiPSi

µipti, s´iqW ips, tqW ips, tq
`
fpsi, s´iq ´ fpti, s´iq

˘
¸

“ η´ips´iqδi˚0 pδi0fqpsq. �

At this point, we can relate the classes of games presented in Section 2.1 to the
previously defined operators.

Proposition A.5. We have:

(a) NS “ tg P G, Dpgq “ 0u.
(b) P “ tg P G, Dpgq P Im δ0u “ pDq´1pImpδ0qq.
(c) H “ tg P G, Dpgq P Ker δ˚

0
u.

Proof. (a) Let g P G. Eq. (A.18) implies that Dpgq P 0 if and only if, for all i P N
and for all s, t P S, we have

W ips, tq
`
η´ips´iqgipsq ´ η´ips´iqgiptq

˘
“ 0. (A.22)

Since W ips, tq is strictly positive on Ei and η´i is strictly positive, Eq. (A.22) holds
if and only if, for all i P N , for all s´i P S´i, and for all si, ti P Si, we have

gipsi, s´iq ´ gipti, s´iq “ 0.

Hence gi does not depend on Player i’s strategy, which, by Definition 2.1, means
that the game is non-strategic.

(b) Let g P G. Then, by Eq. (A.18), Dpgq P Impδ0q if and only if there exists ϕ
such that for every i P N , and s, t P S,

W ips, tq
`
η´ips´iqgipsq ´ η´ips´iqgiptq

˘
“ W ips, tq pϕpsq ´ ϕptqq .
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We equivalently have, for any si, ti P Si and any s´i P S´i,

ϕpsi, s´iq ´ ϕpti, s´iq “ η´ips´iq
`
gipsi, s´iq ´ gipti, s´iq

˘
.

Hence, the result follows from Definition 2.3 of an η-potential game.

(c) Let g P H be a pµ, ηq-harmonic game. In view of Eq. (A.20) we can write the
condition in terms of gradient and adjoint operator. By replacing them with their
explicit expression, we obtain that, for any s P S,

δ˚
0

pDpgqqpsq “
ÿ

iPN

δi˚
0
δi
0
pη´igiqpsq

“
ÿ

iPN

˜
´
ÿ

tPS

µptqW ips, tqW ips, tq
`
pη´igiqpsq ´ pη´igiqptq

˘
¸

“ ´
ÿ

iPN

ÿ

tiPSi

µipti, s´iq
1

µ´ips´iq
η´ips´iq

`
gipsi, s´iq ´ gipti, s´iq

˘

“ ´
ÿ

iPN

ÿ

tiPSi

µiptiqη´ips´iq
`
gipsi, s´iq ´ gipti, s´iq

˘

and the result follows from Definition 2.5 of a pµ, ηq-harmonic game. �

The aim of the next results is to prove that the space of games is the orthogonal
sum of potential µ-normalized games, pµ, ηq-harmonic µ-normalized games, and
non-strategic games. We first introduce the Moore-Penrose pseudo-inverse. Then,
we prove several results leading to the above-mentioned orthogonality. Finally, we
prove that any game can be decomposed in such a triple by providing an explicit
formula that uses the pseudo-inverse. These results yield Theorem 2.8.

Let δi:
0
: C1 Ñ C0 be defined as follows:

‚ On Impδi0q, δi:
0

is the inverse of the restriction of δi on NOi, i.e.,

δ
i:
0

æImpδi
0

q “
“
δiæNOi

‰´1

.

‚ on Impδi0qK, δi:
0

“ 0.

‚ on C1, δ
i:
0

is defined linearly, i.e.,

δ
i:
0

pXq “ δ
i:
0

pXI `XK
I q “ δ

i:
0

pXIq,

where XI P Impδi0q.

The operator δi:
0

is in fact the Moore-Penrose pseudo-inverse of δi0. In particular,

δ
i:
0
δi
0

is the orthogonal projection onto NOi and thus,

δ
i:
0
δi0 “ Πi. (A.23)

Moreover, δi0δ
i:
0
δi0 “ δi0. Furthermore, pIC0

´δi:
0
δi0q is the orthogonal projection onto

NSi and thus, pIC0
´δ

i:
0
δi0q “ Λi. Moreover, δi0δ

i:
0

is the orthogonal projection onto

Impδi
0
q and pIC1

´ δi
0
δ
i:
0

q is the orthogonal projection onto Kerpδi˚
0

q.

We further define δ:
0
: C1 Ñ C0 as δ:

0
“
ř

iPN δ
i:
0

.

Lemma A.6. Let ϕ P NOi and rϕ P C0 and assume that δi
0
ϕ “ δi

0
rϕ. Then, for all

ψ P NOi we have: xϕ, ψy
0

“ xrϕ, ψy
0
.
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Proof. Since ϕ P NOi and δi:
0
δi
0

is the identity operator on NOi, we have:

xϕ, ψy
0

“
A
δ
i:
0
δi0ϕ, ψ

E
0

“
A
δ
i:
0
δi0 rϕ, ψ

E
0

,

where the last equality follows from the initial assumption. Using the fact that δi:
0
δi0

is self-adjoint, that the operator δi:
0
δi0 is the identity on NOi, and that ψ P NOi,

we get

xϕ, ψy
0

“
A
rϕ, δi:

0
δi0ψ

E
0

“ xrϕ, ψy
0
. �

Lemma A.7. For any i P N , we have

δi˚
0

˝ δi
0

“ µipSiqΠi. (A.24)

Proof. Using the explicit formula for δi˚
0

of Eq. (A.15) and replacing W i with its
value, for all f P C0 and all s P S, we have

`
δi˚0

`
δi0f

˘˘
psq “

ÿ

tPS

µptqW ips, tqW ips, tq pfpsq ´ fptqq

“
ÿ

tiPSi

µiptiq
`
fpsi, s´iq ´ fpti, s´iq

˘
.

By introducing the probability distribution µ associated to µ, we obtain
`
δi˚
0

`
δi
0
f
˘˘

psq “ µipSiq
ÿ

tiPSi

µiptiq
`
fpsi, s´iq ´ fpti, s´iq

˘

“ µipSiq
`
Πipfq

˘
psq,

which concludes the proof. �

Proposition A.8. A game g is a µ-normalized pµ, ηq-harmonic game if and only if
ÿ

iPN

µipSiqη´igi “ 0 and Πpgq “ g

Proof. Let g P NO. By Lemma A.1(c), this holds if and only if Λpgq “ 0, which is
equivalent to Πpgq “ g. Therefore, for all s P S, we get

ÿ

iPN

µipSiqη´ips´iqgipsq “
ÿ

iPN

µipSiqη´ips´iqΠipgiqpsq

“
ÿ

iPN

η´ips´iqδi˚0 δ
i
0g

ipsq

“
ÿ

iPN

δi˚0 δ
i
0pη´igiqpsq

“ δ˚
0

pDpgqq psq,

where the second equality follows from Lemma A.7, the third from Eq. (A.21), and
the last from Eq. (A.20). This, together with Proposition A.5(c), completes the
proof. �

Proposition A.9. The sets of games NO X H, NO X P, and NS are orthogonal
with respect to the inner product in Eq. (2.4).
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Proof. We know by Proposition 2.7 that NO and NS are orthogonal spaces. It is
sufficient to prove that NO X H and NO X P are also orthogonal spaces.

To prove orthogonality between µ-normalized potential games and µ-normalized
pµ, ηq-harmonic games, let gP P NO X P and gH P NO X H. In view of Eq. (2.4),
we get

xgP , gHyµ,η “
ÿ

iPN

µipSiq
@
η´igiP , η

´igiH
D
0

“
ÿ

iPN

@
η´igiP , µ

ipSiqη´igiH
D
0
.

Since gP P NO X P , there exists ϕ such that for any i P N , δi
0
pη´igiPq “ δi

0
ϕ.

Hence using first Lemma A.6 and then Proposition A.8, we obtain

xgP , gHyµ,η “
ÿ

iPN

@
ϕ, µipSiqη´igiH

D
0

“

C
ϕ,

ÿ

iPN

µipSiqη´igiH

G

0

“ xϕ, 0y
0

“ 0. �

The following lemma states that the flow induced by a game g and the flow
induced by its projection Πpgq on normalized games are equal.

Lemma A.10. Let g P G, then DpΠpgqq “ Dpgq.

Proof. The proof relies on two properties of the pseudo-inverse. Let g P G. By

Eq. (A.23), we have δi:
0
δi0 “ Πi. Hence,

DpΠpgqq “
ÿ

iPN

δi0pη´iΠipgiqq

“
ÿ

iPN

δi0η
´i

´
δ
i:
0
δi0g

i
¯

“
ÿ

iPN

η´iδi
0

´
δ
i:
0
δi
0
gi
¯
.

By definition of the pseudo-inverse, δi
0
δ
i:
0
δi
0

“ δi
0
, hence we can simplify the right-

hand side to obtain

DpΠpgqq “
ÿ

iPN

η´iδi0g
i “

ÿ

iPN

δi0pη´igiq “ Dpgq. �

Lemma A.11. Given a game g, let gP , gH, gNS be the games defined as follows:

gP “ Πpf q, gH “ Π pg ´ fq , gNS “ Λpgq, (A.25)

where

f “
´

p1{η´1qδ:
0
Dpgq, . . . , p1{η´nqδ:

0
Dpgq

¯
. (A.26)

Then, gP is η-potential µ-normalized, gH is pµ, ηq-harmonic µ-normalized, and
gNS is non-strategic. Hence, gP ,gH, and gNS are the components of the pµ, ηq-
decomposition of g.
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Proof. It is clear that gP ` gH ` gNS “ g. By Lemma A.2, we know that gNS is
non-strategic whereas gP and gH are µ-normalized. Then, we need to verify that
gP and gH are potential and harmonic, respectively.

Let ϕ : S Ñ R be such that ϕ “ δ
:
0
Dpgq. We start with the η-potential compo-

nent. By using Lemma A.10, we obtain

DpgPq “ DpΠpf qq “ Dpfq.

It follows from Eq. (A.18) that

DpgPq “
ÿ

iPN

δi0

ˆ
η´i 1

η´i
ϕ

˙

“
ÿ

iPN

δi0pϕq

“ δ0pϕq.

We get for the pµ, ηq-harmonic component the same simplification of Π:

δ˚
0 pDpgHqq “ δ˚

0 pDpΠ pg ´ f qqq

“ δ˚
0

pDpgq ´Dpf qq

“ δ˚
0

˜
Dpgq ´

ÿ

iPN

δi0
η´i

η´i
δ
i:
0
Dpgq

¸

“ δ˚
0

pIC1
´ δ0δ

:
0
qDpgq

“ 0,

where the third equality is obtained by replacing f with its definition, as in Eq. (A.26),

and the last one is due to the fact that pIC1
´ δ0δ

:
0
q is the orthogonal projection

onto Kerpδ˚
0

q. �

We now characterize the set of measures which yield the same pµ, ηq-decomposition.

Proof of Proposition 2.9. Let α, β ą 0. For every i P N , let µi
α “ αµi and ηiβ “ βηi.

Clearly, pµα, ηβq yields the same decomposition as pµ, ηq. We now check that there
is no other pair of measures which induces the same decomposition.

Let µ, µ̊ and η, η̊ be four product measures such that the pµ, ηq-decomposition
and the pµ̊, η̊q-decomposition coincide. Equivalently, the particular classes of games
that appear as components of each decomposition are the same: any η-potential
game is η̊-potential, any µ-normalized game is also µ̊-normalized, and any pµ, ηq-
harmonic game is also pµ̊, η̊q-harmonic.

We now consider suitable games to obtain the relation between µ, µ̊, η, and η̊.
We first focus on µ-normalized games. Fix i P N and ti, ri P Si and consider the
game g P G such that, for all s´i P S´i,

gipti, s´iq “
1

µiptiq
and gipri, s´iq “ ´

1

µipriq
.

Let the payoffs for every other player and the payoffs of Player i in any other profile
be equal to 0. The game g is µ-normalized and therefore, it is also µ̊-normalized:

µ̊iptiq

µiptiq
´
µ̊ipriq

µipriq
“ 0
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and thus,

µ̊iptiq

µiptiq
“
µ̊ipriq

µipriq
.

By changing the game, it follows that all the quotients are equal to some positive
real number and thus, for every i P N , there exists αi ą 0 such that µ̊i “ αiµ

i.

We now consider η-potential games. We construct a game where we focus only
on two players and two strategies for each player. Let i, j P N , ti P Si and tj P Sj.
Define the potential function ϕ on S as follows:

@s P S, ϕpsq “

#
η´pi,jqps´pi,jqq if si “ ti and sj “ tj ,

0 otherwise,

where η´pi,jqps´pi,jqq “
ś

l‰i,j η
lpslq. Fix s´pi,jq P S´pi,jq. Let ri ‰ ti and rj ‰ tj .

We focus on the profiles pri, rj , ¨q, pri, tj , ¨q, pti, tj , ¨q and pti, rj , ¨q where ¨ is a short
notation for s´pi,jq. The following matrices represent the potential function ϕ and
an η-potential game g associated to ϕ:

tj rj

ti η´pi,jqps´pi,jqq 0

ri 0 0

ϕ

tj rj

ti 0 0 0 ´1{ηiptiq

ri ´1{ηjptjq 0 0 0

g

.

Player i chooses the row and her payoff is the first coordinate whereas Player j
chooses the column and her payoff is the second coordinate. By assumption, g is
an η̊-potential game and so we have

η̊´iptj , ¨qpgipri, tj , ¨q ´ gipti, tj , ¨qq ` η̊´jpri, ¨qpgjpri, rj , ¨q ´ gjpri, tj , ¨qq

` η̊´iprj , ¨qpgipti, rj , ¨q ´ gipri, rj , ¨qq ` η̊´jpti, ¨qpgjpti, tj , ¨q ´ gjpti, rj , ¨qq “ 0.

Dividing by η̊´pi,jqpsq and replacing the corresponding payoff in g, we get:

η̊jptjq

ˆ
´

1

ηjptjq
´ 0

˙
` η̊ipriqp0 ´ 0q ` η̊jprjqp0 ´ 0q ` η̊iptiq

ˆ
0 `

1

ηiptiq

˙
“ 0

Hence, for every strategy ti P Si and every strategy tj P Sj , we obtain

η̊jptjq

ηjptjq
“
η̊iptiq

ηiptiq
.

By changing the game, we obtain that the equality is true for every pair of players
and for every pair of strategies. In particular, it is also true for two strategies of
a player since they have to be equal to the same quotient for another player. It
follows that there exists β ą 0, such that for every i P N , η̊i “ βηi.

Finally, we consider pµ, ηq-harmonic games. Let i, j P N , ti P Si and tj P Sj.
We construct a particular pµ, ηq-harmonic game g. The payoff of player i P N is
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defined as follows:

gipsq “

$
’’’’’&
’’’’’%

0 if si “ ti,

1 ´ µjptjq

η´ips´iq
if si ‰ ti and sj “ tj ,

´µjptjq

η´ips´iq
if si ‰ ti and sj ‰ tj .

Likewise, for player j P N , we have

gjpsq “

$
’’’’’&
’’’’’%

0 if sj “ tj ,

1 ´ µiptiq

η´jps´jq
if sj ‰ tj and si “ ti,

µiptiq

η´jps´jq
if sj ‰ tj and si ‰ ti.

The payoff of all the other players is assumed to be 0.

This game could be reduced to a game with two strategies for each player, where
a player chooses either her strategy labeled by t or any other strategy. This yields
the following representation:

tj sj ‰ tj

ti 0 0 0 ´p1 ´ µiptiqq

si ‰ ti p1 ´ µjptjqq 0 ´µjptjq µiptiq

η´igi (left) and η´jgj (right)

One can check that g is indeed pµ, ηq-harmonic. Therefore, g is also pµ̊, η̊q-harmonic.
We have seen previously that η̊ is a multiple of η, hence g is also pµ̊, ηq-harmonic.

Let ri ‰ ti, rj ‰ tj and s´pi,jq P S´pi,jq. Since all actions different from ti (resp.
tj) are duplicate, the pµ̊, ηq-harmonicity of g at pri, rj , ¨q yields, by Definition 2.5,

µ̊jptjqη´jpri, ¨q
`
gjpri, tj , ¨q ´ gjpri, rj , ¨q

˘
`

µ̊iptiqη´iprj , ¨q
`
gipti, rj , ¨q ´ gipri, rj , ¨q

˘
“ 0,

where ¨ is a short notation for s´pi,jq. Replacing η´igi and η´jgj with their defini-
tions, we obtain

µ̊jptjqp0 ´ µiptiqq ` µ̊iptiqp0 ´ p´µjptjqqq “ 0

and, hence,

µ̊jptjq

µjptjq
“
µ̊iptiq

µiptiq
.

By changing the game, we obtain that the equality is true for every pair of players
and for every pair of strategies. It follows that there exists a unique α ą 0, such
that for every i P N , µ̊i “ αµi. This concludes the proof. �
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A.2. Proofs of Section 2.1. The following lemma states that the global flow around
a set T only depends on the flow on T c :“ SzT since the flows inside T compensate
each others.

Lemma A.12. Let X P C1 and T be a subset of S. Then,
ÿ

sPT

ÿ

tPS

µpsqµptqXps, tq “
ÿ

sPT

ÿ

tPT c

µpsqµptqXps, tq.

Proof. We have:
ÿ

sPT

ÿ

tPS

µpsqµptqXps, tq “
ÿ

sPT

ÿ

tPT

µpsqµptqXps, tq `
ÿ

sPT

ÿ

tPT c

µpsqµptqXps, tq

and due to the skew-symmetric structure of X for any s, t P S, Xps, tq`Xpt, sq “ 0

and thus the first term of the right hand side is equal to 0. �

Proof of Theorem 2.6. Let g be a pµ, ηq-harmonic game. Then, δ˚
0
Dpgqpsq “ 0

for all s P S. Let i P N and ri P Si. Call T the subset of strategy profiles 
pri, s´iq|s´i P S´i

(
. Then, multiplying by µpri, s´iq and summing over s´i P S´i

we get

0 “
ÿ

s´iPS´i

µpri, s´iqδ˚
0
Dpgqpri, s´iq

“ ´
ÿ

rPT

µprq
ÿ

jPN

δ
j˚
0
δ
j
0
pη´jgjqprq

“
ÿ

rPT

ÿ

sPS

µprqµpsq
ÿ

jPN

W jpr, sqδj
0
pη´jgjqpr, sq.

Thus, in view of Lemma A.12, we can eliminate some terms of the summation and
then notice that s P T and t P T c are not j-comparable if j ‰ i, hence

0 “
ÿ

rPT

ÿ

sPT c

µprqµpsq
ÿ

jPN

W jpr, sqδj
0
pη´jgjqpr, sq

“
ÿ

rPT

ÿ

sPT c

µprqµpsq

˜
W ipr, sqδi

0
pη´igiqps, tq `

ÿ

j‰i

W jpr, sqδj
0
pη´jgjqps, tq

¸

“
ÿ

rPT

ÿ

sPT c

µprqµpsqW ipr, sqδi
0
pη´igiqpr, sq ` 0.

We can now replace δi0 and W i with their definitions to obtain

0 “
ÿ

rPT

ÿ

sPT c

µprqµpsqW ipr, sq2ppη´igiqpsq ´ pη´igiqprqq

“
ÿ

s´iPS´i

ÿ

siPSi

µpri, s´iqµpsi, s´iq
η´ips´iq

µ´ips´iq

`
gipri, s´iq ´ gipsi, s´iq

˘

“ µipriq
ÿ

s´iPS´i

η´ips´iqµ´ips´iq

˜ ÿ

siPSi

µipsiq
`
gipri, s´iq ´ gipsi, s´iq

˘
¸
.

Dividing by µipriq, which is strictly positive, we obtain

0 “
ÿ

s´iPS´i

η´ips´iqµ´ips´iq

˜ ÿ

siPSi

µipsiq
`
gipri, s´iq ´ gipsi, s´iq

˘
¸
.
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It follows that, for all ri P Si,
ÿ

s´iPS´i

η´ips´iqµ´ips´iq
ÿ

siPSi

µipsiqgipri, s´iq

“
ÿ

s´iPS´i

η´ips´iqµ´ips´iq
ÿ

siPSi

µipsiqgipsi, s´iq,

and thus, equivalently,
˜ ÿ

siPSi

µipsiq

¸ ÿ

s´iPS´i

η´ips´iqµ´ips´iqgipri, s´iq

“
ÿ

s´iPS´i

η´ips´iqµ´ips´iq
ÿ

siPSi

µipsiqgipsi, s´iq.

Define

pµηq´ipS´iq “
ź

j‰i

ÿ

sjPSj

µjpsjqηjpsjq.

Then, dividing by µipSiqpµηq´ipS´iq, we have
ÿ

s´iPS´i

µη´ips´iqgipri, s´iq “
ÿ

s´iPS´i

µη´ips´iq
ÿ

siPSi

µipsiqgipsi, s´iq.

Notice that the right-hand side is independent of ri. This concludes the proof since
ri is arbitrary. �

A.3. Proofs of Section 3.1. To prove Theorem 3.6, it is sufficient to establish both
Lemmas 3.4 and 3.5. Uniqueness of the decomposition then implies the theorem.

Proof of Lemma 3.4. Let g P G be a game with duplicate strategies si0, s
i
1 P Si. It

is easy to see that si
0

and si
1

remain duplicate in Πpgq and in Λpgq. For the rest
of the proof, we will use the explicit formulas for the decomposition introduced in
Eq. (A.25). Recall that

gP “ Πpf q, gH “ Π pg ´ fq , gNS “ Λpgq,

where f “
´

p1{η´1qδ:
0
Dpgq, . . . , p1{η´nqδ:

0
Dpgq

¯
.

Using Eq. (A.18), for any i P N , we have

Πipfq “ Πi

˜ÿ

iPN

δ
i:
0
δi0pη´igiq

¸
“ Πi

˜ÿ

iPN

η´iδ
i:
0
δi0g

i

¸
“ Πi

˜ÿ

iPN

η´iΠipgiq

¸
,

where the last equality holds true since δ:
0,W δ0 is the orthogonal projection onto

NO. Moreover, for any s´i P S´i,

η´ips´iqΠipgiqpsi
0
, s´iq “ η´ips´iqΠipgiqpsi

1
, s´iq,

and, thus, s0 and s1 are duplicate in the η-potential component. Since gH “
Πpgq ´ Πpf q, it follows that s0 and s1 are also duplicate in the pµ, ηq-harmonic
component. �

Proof of Lemma 3.5. (i) Assume that g is η-potential. By Proposition A.5, there
exists ϕ : S Ñ R such that Dpgq “ δ0pϕq.
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The restriction of ϕ to pS is still a potential function for pg and hence pg is η-
potential.

(ii) Assume now that g is non-strategic. We know that Dpgq “ 0. The flow

of pg is equal to the restriction of the flow of g to pS hence Dppgq “ 0 and pg is
non-strategic.

(iii) For the rest, assume that g is µ-normalized. By definition, we know that
for all j P N and for all s´j P S´j ,

ÿ

sjPSj

µjpsjqgjpsj , s´jq “ 0.

We need to distinguish two cases. If j ‰ i, then, for all s´j P pS´j Ă S´j , we have

ÿ

sjPSj

pµjpsjqgjpsj , s´jq “
ÿ

sjPSj

µjpsjqgjpsj , s´jq “ 0.

If j “ i, then, for all s´i P S´i, we have

ÿ

siP pSi

pµipsiqgipsi, s´iq “ pµipsi0qgipsi0, s
´iq `

ÿ

siP pSiztsi
0

u

pµipsiqgipsi, s´iq

“ µipsi0qgipsi0, s
´iq ` µipsi1qgipsi1, s

´iq

`
ÿ

siPSiztsi
0
,s1

1
u

µipsiqgipsi, s´iq

“
ÿ

siPSi

µipsiqgjpsi, s´iq

“ 0.

Therefore, pg is ppµ, ηq-normalized.

(iv) Finally, assume that g is pµ, ηq-harmonic. Let s “ psjqjPN and for all j P N

and tj P Sj , put gj
tj

psq “ gjpsj , s´jq ´ gjptj , s´jq. Then, since g is assumed to be
pµ, ηq-harmonic, for any s P S, we have

δ˚
0Dpgqpsq “

ÿ

jPN

ÿ

tjPSj

µjptjqη´jps´jqgj
tj

psq

“
ÿ

tiPSi

µiptiqη´ips´iqgitipsq `
ÿ

j‰i

ÿ

tjPSj

µjptjqη´jps´jqgj
tj

psq

“ 0.

Since gi
si
0

psq “ gi
si
1

psq, it follows that

`
µipsi0q ` µipsi1q

˘
η´ips´iqgisi

0

psq `
ÿ

ti‰si
0
,si

1

η´ips´iqµiptiqgitipsq

`
ÿ

j‰i

ÿ

tjPSj

η´jps´jqµjptjqgj
tj

psq “ 0.
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Likewise, in the reduced game pg “ pgjqjPN we get:

δ˚
0
Dppgqpsq “ pµipsi

0
qηps´iqgi

si
0

psq `
ÿ

ti‰si
0

pµiptiqη´ips´iqgitipsq

`
ÿ

j‰i

ÿ

tjPSj

pµjptjqηps´jqgj
tj

psq. (A.27)

We obtain that δ˚
0
Dppgqpsq “ 0 and it thus follows that pg is ppµ, ηq-harmonic. �

A.4. Proofs of Section 3.2.2.

Proof of Proposition 3.12. Let g P G and let x “ pxiqiPN be a Nash equilibrium
of g. Let supppxiq “ tsi P Si : xipsiq ą 0u. By definition of yi, we have that
supppxiq “ supppyiq. Then, for any i P N and any si, ti P supppxiq, we have
x´ips´iqgipsi, s´iq “ x´ips´iqgipti, s´iq. By Definition 3.10 and Eq. (3.3), we get

y´ips´iqpβ ¨ gqipsi, s´iq “
x´ips´iq

Πj‰ibjpsjq
pβ ¨ gqipsi, s´iq

“ x´ips´iqgipsi, s´iq

“ x´ips´iqgipti, s´iq

“
x´ips´iq

Πj‰ibjpsjq
pβ ¨ gqipti, s´iq

“ y´ips´iqpβ ¨ gqipti, s´iq.

Let si P supppxiq and ti R supppxiq. Then,

y´ips´iqpβ ¨ gqipsi, s´iq “
x´ips´iq

Πj‰ibjpsjq
pβ ¨ gqipsi, s´iq

“ x´ips´iqgipsi, s´iq

ě x´ips´iqgipti, s´iq

“
x´ips´iq

Πj‰ibjpsjq
pβ ¨ gqipti, s´iq

“ y´ips´iqpβ ¨ gqipti, s´iq.

The same equality holds for the normalized strategy ȳi and it thus follows that
ȳ “

`
ȳi
˘
iPN

is a Nash equilibrium. �

Proof of Theorem 3.13. Let µ, η and b be three product measures on S and g a finite
game. By Theorem 2.8, there exist gP , gH and gNS such that g “ gP `gH `gNS ,
where gP is η-potential µ-normalized, gH is pµ, ηq-harmonic µ-normalized and gNS

is non-strategic. For any i P N , si, ti P Si and s´i P S´i, we have:

ϕpti, s´iq ´ ϕpsi, s´iq “ η´ips´iqgiPpti, s´iq ´ η´ips´iqgiPpsi, s´iq,
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therefore,

ϕpti, s´iq ´ ϕpsi, s´iq “
η´ips´iq

βips´iq

`
βips´iqgiPpti, s´iq ´ βips´iqgiPpsi, s´iq

˘

“

˜ź

j‰i

ηjpsjq

bjpsjq

¸
`
pβ ¨ gPqipti, s´iq ´ pβ ¨ gPqipsi, s´iq

˘

“
´η
b

¯´i

ps´iq
`
pβ ¨ gPqipti, s´iq ´ pβ ¨ gPqipsi, s´iq

˘
.

Hence pβ ¨ gPq is η{b-potential. Moreover one can check easily that pβ ¨ gPq is still
µ-normalized.

Moreover, we also have

0 “
ÿ

iPN

ÿ

tiPSi

µiptiqη´ips´iq
`
giHpsi, s´iq ´ giHpti, s´iq

˘

“
ÿ

iPN

ÿ

tiPSi

µiptiqη´ips´iq

βips´iq

`
βips´iqgiHpsi, s´iq ´ βips´iqgiHpti, s´iq

˘

“
ÿ

iPN

ÿ

tiPSi

µiptiq
´η
b

¯´i

ps´iq
`
pβ ¨ gHqipsi, s´iq ´ pβ ¨ gHqipti, s´iq

˘
.

Hence, pβ ¨gHq is pµ, η{bq-harmonic. Moreover one can check easily that pβ ¨gHq is
still µ-normalized. Since pβ ¨ gq “ pβ ¨ gPq ` pβ ¨ gHq ` pβ ¨ gNSq, the result follows
from uniqueness of the pµ, η{bq-decomposition. �
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