A. 'hearn, B. Baten, J. , C. , and D. , Quantifying quantitative literacy: Age heaping and the history of human capital, The Journal of Economic History, vol.69, issue.3, pp.783-808, 2009.

C. Abouzahr, D. De-savigny, L. Mikkelsen, P. W. Setel, R. Lozano et al., Civil registration and vital statistics: Progress in the data revolution for counting and accountability, Lancet, vol.386, pp.60173-60181, 2015.

A. M. Albert, K. Ricanek, and E. Patterson, A review of the literature on the aging adult skull and face: Implications for forensic science research and applications, Forensic Science International, vol.172, issue.1, pp.1-9, 2007.

M. Bell, E. Charles-edwards, P. Ueffing, J. Stillwell, M. Kupiszewski et al., Internal migration and development: Comparing migration intensities around the world, Population and Development Review, vol.41, issue.1, pp.33-58, 2015.

E. Bendavid, B. Seligman, and J. Kubo, Comparative analysis of old-age mortality estimations in Africa, PLoS One, vol.6, issue.10, p.26607, 2011.

P. Bocquier, O. Sankoh, and P. Byass, Are health and demographic surveillance system estimates sufficiently generalizable?, Global Health Action, vol.10, issue.1, p.1356621, 2017.

T. Boerma, Foreword: The INDEPTH WHO-SAGE collaboration: Coming of age, Global Health Action, vol.3, 2010.

P. Bühlmann, P. Drineas, M. Kane, and M. Van-der-laan, Handbook of big data, 2016.

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.

J. C. Caldwell, Study of age misstatement among young children in Ghana, Demography, vol.3, issue.2, pp.477-490, 1966.

J. C. Caldwell and A. A. Igun, An experiment with census-type age enumeration in Nigeria, Population Studies, vol.25, issue.2, pp.287-302, 1971.

R. Cameriere, A. Pacifici, L. Pacifici, A. Polimeni, F. Federici et al., Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach, Forensic Science International, vol.258, pp.50-54, 2016.

C. Chang and C. Lin, LIBSVM: A library for support vector machines, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, p.27, 2011.

S. Chatterji, World Health Organisation's (WHO) Study on Global Ageing and Adult Health (SAGE), BMC Proceedings, vol.7, issue.S4, p.1, 2013.

C. Chen, A. Dantcheva, R. , and A. , Impact of facial cosmetics on automatic gender and age estimation algorithms, 9 th International Conference on Computer Vision Theory and Applications (VISAPP), 2014.

S. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, K. et al., Age estimation using a hierarchical classifier based on global and local facial features, Pattern Recognition, vol.44, issue.6, pp.1262-1281, 2011.

D. J. Corsi, M. Neuman, J. E. Finlay, and S. V. Subramanian, Demographic and health surveys: A profile, International Journal of Epidemiology, vol.41, issue.6, pp.1602-1613, 2012.

V. Delaunay, L. Douillot, A. Diallo, D. Dione, J. F. Trape et al., Profile: The Niakhar Health and Demographic Surveillance System, International Journal of Epidemiology, vol.42, issue.4, pp.1002-1011, 2013.

H. Dibeklio?lu, F. Alnajar, A. A. Salah, G. , and T. , Combining facial dynamics with appearance for age estimation, IEEE Transactions on Image Processing, vol.24, issue.6, pp.1928-1943, 2015.

E. Eidinger, R. Enbar, and T. Hassner, Age and gender estimation of unfiltered faces, IEEE Transactions on Information Forensics and Security, vol.9, issue.12, pp.2170-2179, 2014.

A. M. Ekstrom, J. Clark, P. Byass, A. Lopez, D. De-savigny et al., INDEPTH network: Contributing to the data revolution, Lancet Diabetes and Endocrinology, vol.4, issue.2, p.97, 2016.

E. Elhamifar and R. Vidal, Robust classification using structured sparse representation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

I. T. Elo and S. H. Preston, Estimating African-American mortality from inaccurate data, Demography, vol.31, issue.3, pp.427-458, 1994.

I. T. Elo, L. Mykyta, P. Sebastiani, K. Christensen, N. W. Glynn et al., Age validation in the long life family study through a linkage to early-life census records, Journals of Gerontology Series B: Psychological Sciences and Social Sciences, vol.68, issue.4, pp.580-585, 2013.

I. T. Elo, C. M. Turra, B. Kestenbaum, F. , and B. R. , Mortality among elderly Hispanics in the United States: Past evidence and new results, Demography, vol.41, issue.1, pp.109-128, 2004.

P. Eloundou-enyegue and J. Davanzo, Economic downturns and schooling inequality, Population Studies, vol.57, issue.2, pp.183-197, 2003.

D. C. Ewbank, Age misreporting and age-selective underenumeration: Sources, patterns and consequences for demographic analysis, 1981.

Y. Fu and T. S. Huang, Human age estimation with regression on discriminative aging manifold, IEEE Transactions on Multimedia, vol.10, issue.4, pp.578-584, 2008.

Y. Fu, G. Guo, and T. S. Huang, Age synthesis and estimation via faces: A survey, IEEE transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.11, pp.1955-1976, 2010.

G. Sdg-collaborators, Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: An analysis from the Global Burden of Disease Study, Lancet, vol.390, issue.17, p.32336, 2016.

X. Geng, C. Yin, and Z. Zhou, Facial age estimation by learning from label distributions, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.10, pp.2401-2412, 2013.

X. Geng, Z. Zhou, and K. Smith-miles, Automatic age estimation based on facial aging patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.12, pp.2234-2240, 2007.

X. Geng, Z. Zhou, Y. Zhang, G. Li, and H. Dai, Learning from facial aging patterns for automatic age estimation, Annual ACM International Conference on Multimedia, 2006.

P. A. George and G. J. Hole, The role of spatial and surface cues in the ageprocessing of unfamiliar faces, Visual Cognition, vol.7, issue.4, pp.485-509, 2000.

C. E. Gessert, B. A. Elliott, and I. V. Haller, Dying of old age: An examination of death certificates of Minnesota centenarians, Journal of the American Geriatric Society, vol.50, issue.9, pp.1561-1565, 2002.

G. Guo and C. Zhang, A study on cross-population age estimation, Paper presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang, Image-based human age estimation by manifold learning and locally adjusted robust regression, IEEE Transactions on Image Processing, vol.17, issue.7, pp.1178-1188, 2008.

G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang, A study on automatic age estimation using a large database, IEEE 12 th International Conference on Computer Vision (CVPR), 2009.

H. Han, C. Otto, and A. K. Jain, Age estimation from face images: Human vs. machine performance, Presented at the 2013 International Conference on Biometrics (ICB), 2013.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining, inference, and prediction, pp.9-41, 2009.

K. Herbst, S. Juvekar, T. Bhattacharjee, M. Bangha, N. Patharia et al., The INDEPTH data repository: An international resource for longitudinal population and health data from health and demographic surveillance systems, Journal of Empirical Research on Human Research Ethics, vol.10, issue.3, pp.324-333, 2015.

C. Hsu, C. Chang, L. , and C. , A practical guide to support vector classification, 2003.

E. Kocabey, M. Camurcu, F. Ofli, Y. Aytar, J. Marin et al., Face-to-BMI: Using computer vision to infer body mass index on social media, 2017.

S. I. Kvaal, K. M. Kolltveit, I. O. Thomsen, and T. Solheim, Age estimation of adults from dental radiographs, Forensic Science International, vol.74, issue.3, pp.175-185, 1995.

A. Lanitis, C. Draganova, C. , and C. , Comparing different classifiers for automatic age estimation, IEEE Transactions on Systems, Man, and Cybernetics, vol.34, issue.1, pp.621-628, 2004.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

C. Li, Q. Liu, J. Liu, L. , and H. , Learning ordinal discriminative features for age estimation, Presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

W. Luo, T. Nguyen, M. Nichols, T. Tran, S. Rana et al., Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset, PLoS One, vol.10, issue.5, p.125602, 2015.

D. Meekers and R. Van-rossem, Explaining inconsistencies between data on condom use and condom sales, BMC Health Services Research, vol.5, issue.1, p.5, 2005.

R. S. Michalski, J. G. Carbonell, M. , and T. M. , Machine learning: An artificial intelligence approach, 2013.

L. Mikkelsen, D. E. Phillips, C. Abouzahr, P. W. Setel, D. De-savigny et al., A global assessment of civil registration and vital statistics systems: monitoring data quality and progress, Lancet, vol.386, pp.1395-1406, 2015.

T. Mitchell, B. Buchanan, G. De-jong, T. Dietterich, P. Rosenbloom et al., Machine learning, Annual Review of Computer Science, vol.4, pp.417-433, 1990.

S. Mullainathan and J. Spiess, Machine learning: An applied econometric approach, Journal of Economic Perspectives, vol.31, issue.2, pp.87-106, 2017.

M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz et al., Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study, Lancet, vol.384, issue.9945, pp.60460-60468, 2013.

V. Notkola, I. M. Timaeus, and H. Siiskonen, Mortality transition in the Ovamboland region of Namibia, Population Studies, vol.54, issue.2, pp.153-167, 2000.

V. Notkola, I. M. Timaeus, and H. Siiskonen, Impact on mortality of the AIDS epidemic in northern Namibia assessed using parish registers, AIDS, vol.18, issue.7, pp.1061-1065, 2004.

A. Palloni, G. Pinto, and H. Beltrán-sánchez, Latin American Mortality Database (LAMBdA) [electronic resource, 2014.

G. Panis and A. Lanitis, An overview of research activities in facial age estimation using the FG-NET aging database, European Conference on Computer Vision, 2014.

A. Parate, M. Chiu, C. Chadowitz, D. Ganesan, and E. Kalogerakis, Risq: Recognizing smoking gestures with inertial sensors on a wristband, Annual International Conference on Mobile systems, applications, and services, 2014.

O. M. Parkhi, A. Vedaldi, and A. Zisserman, Deep face recognition. Paper presented at the British Machine Vision Conference, 2015.

D. Paudel, M. Ahmed, A. Pradhan, and R. L. Dangol, Successful use of tablet personal computers and wireless technologies for the 2011 Nepal Demographic and Health Survey, Global Health: Science and Practice, vol.1, issue.2, pp.277-284, 2013.

G. Pison, Calculer l'âge sans le demander: Méthode d'estimation de l'âge et structure par âge des Peul Bandé [Calculating age without asking for it: Method of estimating the age and age-structure of the Peul-Bande, Population, vol.35, pp.861-892, 1980.

S. H. Preston and I. T. Elo, Effects of age misreporting on mortality estimates at older ages, Population Studies, vol.53, issue.2, pp.165-177, 1999.

S. H. Preston, I. T. Elo, I. Rosenwaike, and M. Hill, African-American mortality at older ages: Results of a matching study, Demography, vol.33, issue.2, pp.193-209, 1996.

T. W. Pullum, An assessment of age and date reporting in the DHS Surveys, Macro International, 1985.

T. W. Pullum and S. Becker, Evidence of omission and displacement in DHS birth histories, Rockville: ICF (DHS Methodological Report, issue.11, 2014.

T. W. Pullum and S. Staveteig, An assessment of the quality and consistency of age and date reporting in DHS Surveys, Rockville: ICF, 2000.

Z. Qawaqneh, A. A. Mallouh, and B. D. Barkana, Deep convolutional neural network for age estimation based on VGG-face model, 2017.

S. Randall and E. Coast, The quality of demographic data on older Africans, Demographic Research, vol.34, issue.5, pp.143-174, 2016.

R. Ranjan, S. Sankaranarayanan, C. D. Castillo, C. , and R. , An all-inone convolutional neural network for face analysis, IEEE International Conference on Automatic Face and Gesture Recognition, 2017.

C. E. Rasmussen, Gaussian processes in machine learning, pp.63-71, 2004.

F. Ren, C. Li, H. Xi, Y. Wen, and K. Huang, Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan, American Journal of Forensic Medicine and Pathology, vol.30, issue.3, pp.252-255, 2009.

K. Ricanek and T. Tesafaye, Morph: A longitudinal image database of normal adult age-progression, 7 th International Conference on Automatic Face and Gesture Recognition, 2006.

S. Ritz-timme, C. Cattaneo, M. Collins, E. Waite, H. Schütz et al., Age estimation: the state of the art in relation to the specific demands of forensic practice, International Journal of Legal Medicine, vol.113, issue.3, pp.129-136, 2000.

I. Rosenwaike and L. F. Stone, Verification of the ages of supercentenarians in the United States: Results of a matching study, Demography, vol.40, issue.4, pp.727-739, 2003.

O. Sankoh and . Network, CHESS: An innovative concept for a new generation of population surveillance, Lancet Global Health, vol.3, issue.12, p.742, 2015.

R. Senthilkumar and R. Gnanamurthy, Performance improvement in classification rate of appearance based statistical face recognition methods using SVM classifier, th International Conference on Advanced Computing and Communication Systems (ICACCS), 2017.

S. Serinelli, V. Panebianco, M. Martino, S. Battisti, K. Rodacki et al., Accuracy of MRI skeletal age estimation for subjects 12-19: Potential use for subjects of unknown age, International Journal of Legal Medicine, vol.129, issue.3, pp.609-617, 2015.

Y. Sun, X. Wang, and X. Tang, Deep convolutional network cascade for facial point detection, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

J. Suo, T. Wu, S. Zhu, S. Shan, X. Chen et al., Design sparse features for age estimation using hierarchical face model, IEEE International Conference on Automatic Face and Gesture Recognition, 2008.

J. A. Suykens and J. Vandewalle, Least squares support vector machine classifiers, Neural Processing Letters, vol.9, issue.3, pp.293-300, 1999.

R. Szeliki, Computer vision: Algorithms and applications, 2011.

P. Thukral, K. Mitra, C. , and R. , A hierarchical approach for human age estimation, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012.

A. Tolba, A. El-baz, and A. El-harby, Face recognition: A literature review, International Journal of Signal Processing, vol.2, issue.2, pp.88-103, 2006.

A. Tsuji, A. Ishiko, and N. Ikeda, Telomere shortening and age estimation in forensic medicine, Gerontology, vol.51, issue.6, p.416, 2005.

A. Tsuji, A. Ishiko, T. Takasaki, and N. Ikeda, Estimating age of humans based on telomere shortening, Forensic Science International, vol.126, issue.3, pp.197-199, 2002.

C. M. Turra and I. T. Elo, The impact of salmon bias on the Hispanic mortality advantage: New evidence from social security data, Population Research and Policy Review, vol.27, issue.5, pp.515-530, 2008.

S. Walters, Counting souls: Towards an historical demography of Africa, Demographic Research, vol.34, issue.3, pp.63-108, 2016.

M. Weber, M. Welling, and P. Perona, Unsupervised learning of models for recognition, Paper presented at the 6 th European Conference on Computer Vision, 2000.

D. Yildiz, J. Munson, A. Vitali, R. Tinati, and J. A. Holland, Using Twitter data for demographic research, Demographic Research, vol.37, issue.46, pp.1477-1514, 2017.

X. Zheng, J. Wang, L. Shangguan, Z. Zhou, and Y. Liu, Smokey: Ubiquitous smoking detection with commercial WiFi infrastructures, Annual IEEE International Conference on Computer Communications, INFOCOM 2016, 2015.

K. Zhu, D. Gong, Z. Li, and X. Tang, Orthogonal Gaussian process for automatic age estimation, the ACM International Conference on Multimedia, 2014.

D. Zubakov, F. Liu, I. Kokmeijer, Y. Choi, J. B. Van-meurs et al., Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length, Forensic Science International Genetics, vol.24, pp.33-43, 2016.