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Abstract:

Since the seminal paper of Atkinson and Bourguignon (1982), little decisive progress

has been achieved in developing empirically effi cient stochastic dominance criteria for

multidimensional social welfare analysis. By proposing new axioms of ‘Social Shock

Sharing’, this paper provides new intuitive justifications to imposing sign restrictions

on partial derivatives of individual von Neumann-Morgenstern utility functions. These

new breakthrough findings are exploited to derive necessary and suffi cient stochastic

dominance criteria for multidimensional social welfare comparisons, up to the sixth

order, at least. Equivalent results are derived in terms of multidimensional poverty

conditions. Empirically powerful discriminatory criteria are obtained by combining all

social shock sharing axioms up to some high order and by deriving a dimension reduction

property. An application to Egypt at the beginning of the XXIst century demonstrates

the practical substantial gain in discriminating power of the approach by revealing a

unambiguous continual improvement in bivariate income-education social welfare over

the studied period.
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1 Introduction

This investigation will deal with comparisons of inequality, poverty and social wel-

fare across society situations that are characterised by several individual well-being

attributes. For example, income and education are typically invoked as distinct relevant

dimensions of individual well-being. The aim of this research is to tackle the poor per-

formance of the currently available comparison criteria, from theoretical and empirical

points of view, which has so far limited their practical use in economics.

In this context, robust ‘dominance’judgments are used in order to attain a consensus

among people who may accept different norms. For this, stochastic dominance theorems

have been available for a long time (Hardy, Littlewood and Polya, 1929), although their

usefulness for economic and social comparisons of one-dimensional income distributions

only emerged much later (Atkinson, 1970; Kolm, 1969). In this approach, a utilitarian

social welfare function is generally specified and used as an evaluation benchmark, and

consensual normative hypotheses can be introduced through variational properties of the
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individual utility functions (e.g., aversion to income inequality). The theorems that have

been derived in this literature provide a complete toolbox of effi cient criteria to conduct

empirically normative comparisons of one-dimensional income distributions, and they

have been used extensively. Yet, even for one-dimensional problems, it is fair to say

that only first and second order stochastic dominance theorems have been accepted as

normatively justified, and perhaps third order theorems by some authors (e.g., Zheng,

1999) on the grounds of diverse transfer sensitivity axioms.

However, the current state of affairs is much less satisfactory for comparisons based

on multidimensional attributes of individual well-being. Despite considerable efforts in

the literature, it has proven to be much harder to design empirically powerful comparison

criteria. This is related to some kind of ‘multidimensionality curse’as each such used

normative condition, for example income inequality aversion, fails to account for the

variety of interactions (in the generation of the individual wellbeing index) between

the different dimensions of wellbeing, and this variety extends fast with the number of

dimensions. One primary objective of this research is to break this wall of discriminatory

power that prevents a general use of robust dominance criteria in multidimensional

settings.

In typical multidimensional welfare analyses, the marginal utility functions, with

respect to each attribute, are assumed to be identical across agents; for example owing

to some ‘anonymity’axioms1. In that case, these functions are, therefore, convenient

instruments that can be used to impose normative theoretical restrictions liable to be

generally accepted. These marginal utility functions are generally supposed to be non-

negative and non-increasing, which, respectively, reflect, on the one hand, the well-being

benefits brought by the attributes, and, on the other hand, some plausible hypotheses

of inequality aversion associated with each attribute. However, these assumptions alone

1In some cases, this can be justified by controlling explicitly for some differences in needs or in

‘types’, such as in Atkinson and Bourguignon (1987), Jenkins and Lambert (1993), Chambaz and

Maurin (1998), Moyes (2013).
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have not allowed researchers to achieve stochastic dominance criteria that are discrimi-

nating enough to make them effi cient guides for empirical economic policy. This is why

some researchers have attempted to reinforce these decision rules through additional

hypotheses on signs of higher derivatives of utility functions.

Multidimensional stochastic dominance criteria for social welfare and inequality

analyses were put forward by Kolm (1977) and Atkinson and Bourguignon (1982). Their

criteria2 were based on utility functions that were constrained by the signs of some of

their partial derivatives up to the fourth order. However, as rightly stated in Atkinson

(2003), the conditions involving fourth-order derivatives have been recognised as not be-

ing easy to interpret, and therefore to justify. On the other hand, criteria based on lower

order derivatives have been found to have insuffi cient discriminating power in empirical

work (e.g., in Muller and Trannoy, 2011, with some third-order derivatives).

Another relevant, and somewhat isomorphic, literature is that of decisions under

uncertainty modelled with the expected utility criterion. In that case, multidimensional

risks for an individual decision maker are considered instead of wellbeing attributes in

a population. Important generalisations of risk aversion notions and technical advances

have been produced in this literature that allows for a variety of stochastic dominance

results depending on assumed properties of the von Neuman-Morgenstern utility func-

tion3. However, it seems even harder to justify broadly accepted high order conditions

on the shape of the utility function in the risk context, as found empirically in Deck and

Schlesinger (2014).

Besides, returning to the social welfare context, only criteria based on partial deriv-

atives up to the third order, at most, are typically used empirically4. As mentioned

previously, this happens because normative justifications have been found lacking to

2Their main criterion is stated below in Theorem 3 of subsection 4.3.
3Fishburn and Vickson (1978), Gollier and Pratt (1996), Eeckhoudt and Schlesinger (2006), Eeck-

houdt, Rey and Schlesinger (2007).
4For example, in Bazen and Moyes (2003), Muller and Trannoy (2011, 2012), Gravel and Moyes

(2012).
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justify pushing the analysis to higher orders. Despite this, Duclos and Echevin (2008),

Duclos, Sahn and Younger (2006, 2011) conduct robust social welfare empirical compar-

isons, including with Atkinson and Bourguignon conditions based on up to fourth-order

derivatives, even though without precise normative justifications5. This suggests that

improved discriminatory power obtained this way can be attractive for empirical re-

searchers. However, although enhancing the performance of the available empirical

decision rules is important, only limited progress in this direction has been achieved

over the last thirty six years.

The solution here proposed to escape this predicament is to make the expression of

social solidarities explicit through a new definition of ‘social welfare shocks’, or social

harm caused by individual shocks, and how they can be considered normatively. For

this, a theoretical setting is needed that specifies how social solidarities may operate

normatively face to shocks that may affect diverse dimensions of individual well-being.

Individual shocks may affect health, education, income, physical safety, employment,

family issues, environment, prices, and so on.

Considering adverse shocks of distinct nature may be particularly relevant for the

poor or the vulnerable who may not be able to cope on their own with all these shocks.

In that case, institutions implementing social solidarity, whether they are traditional

or modern ones, are needed that can deal with mixtures of shocks. Examples of such

institutions include public systems of social security, social networks, clans and families.

These institutions can assist households by sharing shocks among citizens, whether these

shocks are random or not, either through ex-post compensation devices, such as cash

5Some authors (e.g., Kolm, 1976a,b, Fishburn and Willig, 1984) have long ago proposed empirical

stochastic dominance applications based on even higher derivatives orders; for example, by multiplying

poverty headcounts or poverty gap indices at the individual level and aggregating them. This is also

typically the case in the specific literature dealing with one-dimensional problems, which even uses up

to an infinite sequence of derivative conditions (e.g., Gayant and Le Pape, 2017). Again, normative

justifications are needed in order to better settle these practices.

5



transfers and emergency assistance, or through ex-ante insurance or protection policies.

Modern social security systems have become increasingly complex and sophisticated over

the history. In particular, they can now simultaneously address many different kinds of

risks, handicaps, inequalities and other shocks. Besides, such extensive capacity may also

have been the case for traditional solidarity mechanisms that are typically not specialized

into dealing with one specific kind of shocks exclusively. Therefore, investigating the

extent to which multidimensional shocks should be socially shared, and how to account

for them normatively in welfare analysis, is likely to respond to practical policy issues,

as well.

More generally, for social welfare analysis, a new method is put forward here to

specify normative restrictions that allow for social solidarity. One could consider that

some limited intuitions about social solidarity in welfare analysis are already somewhat

depicted by diverse axioms of transfer and compensation-substitution that have been

proposed in the literature (e.g., in Silber, 1999). In this work, the analysis is carried one

step further by introducing intuitions about social solidarity that are stated in terms of

the social sharing of some individual shocks. To do this, some new normative axioms of

‘welfare shock sharing’are proposed. These axioms are then used to justify separately

many normative conditions expressed in terms of variational properties of the utilities of

individuals faced by random or non-random shocks. In a generalised utilitarian setting,

proofs are provided for the equivalence of these conditions with restrictions on signs of

partial derivatives of the utility functions, including high-order derivatives. In particular,

this allows for the characterisation of normative conditions on utilities that have never

been considered before.

In a second stage, several natural sets of utility functions are considered that are de-

fined in terms of signs of partial derivatives up to the fourth order, and later to the sixth

order. For each of these sets, necessary and suffi cient stochastic dominance conditions

are derived that will allow the decision maker to compare the levels of multidimensional

social welfare between two arbitrary empirical situations. Equivalent results are also
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reported in the form of generalised poverty gap conditions.

In addition to all these general results, I also propose a specific solution to the

limited empirical power of multidimensional stochastic dominance tests. This is based

on combining all social shock sharing axioms at the fourth order, and even at the fifth

and sixth order if needed. In this case, I can prove a property of dimension reduction.

Therefore, not only the multidimensionality curse, but also high order conditions can

be addressed, which is what delivers the empirical power of the obtained stochastic

dominance tests.

The next section presents the setting. Section 3 discusses the new normative axioms

of welfare shock sharing. Section 4 reports the new stochastic dominance theorems.

Section 5 proposes an empirical application to changes in bivariate income-education

social welfare in Egypt at the beginning of the twenty-first century. Finally, Section

6 will conclude this paper. The proofs not discussed in the text are relegated in the

appendix.

2 The Setting

An analytical setting is now presented that describes the distribution of the effects of

welfare shocks in the population. In the literature, shocks are generally assumed to

be additive to the attributes, and this approach is followed. Shocks are often seen as

being random, although this is not necessary. Assuming randomness of shocks may

be justified for accounting for current ignorance, individuals’ anticipations of future

uncertain events, or some similar ignorance or anticipations by a social planner, or even

by analysts.

The specification of the analytical setting is presented in several stages. First, the

attributes and the corresponding shocks are defined along with their distributions. Sec-

ond, for any given individual, a utility level is specified that represents its wellbeing,
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possibly up to a positive affi ne transformation6. This utility level is a function of the

attribute levels and of the shocks, thus accounting for the impact of the shocks on the

individual well-being. Third, a social welfare evaluation function is chosen to aggregate

the individual utility levels over the whole population.

To simplify the presentation, the discussion focuses on the bivariate case, while

most of it is also clearly valid for higher dimensions. A simple example is when the first

argument, x, of the individual utility function is the income, while the second argument,

y, is the education level. Assume that these vectors take values on the rectangle [0, a1]

× [0, a2], where a1 and a2 are in R̄∗+. Let F (x, y) denote the joint cumulative distribution

function of x and y. The cdf F (x, y), which is assumed to be continuous, describes the

distribution of the realised wellbeing attributes over a population of interest, rather than

a distribution of risks. Fx(x) and Fy(y) denote the respective marginal cdfs of x and y.7

As mentioned above, some information about shocks will be included in the individ-

ual utility. In that case, for example, the ex-ante individual well-being can be described

by an expected von Neuman-Morgenstern (VNM) utility index, EU(x, y). The use of

the notation EU(x, y) here means that the random shocks on x and y are incorporated

in the individual well-being index, through the usual expected utility model. However,

other approaches are also possible that do not require the expected utility hypothesis.

To simplify the discussion, let us also assume that all individuals have the same indi-

vidual utility function, for example by accounting for individual heterogeneity in this

function through equivalence scales.

6Most notions or results in this paper, including the welfare premium function, are therefore subject

to this cardinality property.
7Instead of assuming continuous cdfs, it would be possible to work with general Lebesgue integrals.

However, this would imply tedious discussions of the derivability in diverse Lebesgue integrals occurring

in the proof. Moreover, using Lebesgue integrals implies to allow for the possible presence of exceptional

discrete terms when using integration by parts, without bringing anything substantial to the argument.

Therefore, I choose to stick to the continuous specification that avoids being distracted by unsubstantial

technical details.
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Let us now examine how welfare shocks may affect the social evaluation of the

situation of the society through their impact on the distribution of the individual utility

levels that depend on these shocks. Let WF be an additively separable social welfare

function, associated with a joint cdf F of well-being attributes and with some welfare

shocks, among which some may be random. In this case, the risks associated with the

random shocks have to be incorporated within the social evaluation criterion. A natural

way to do this is through an ex ante individual utilitarian criterion.

Several interesting cases can be examined specifically. In the case of the expected

individual utility, EU(x, y), being the individual well-being index, these indices may still

be integrated over the population joint cdf F , which in that case is a cdf over a population

domain of random vectors, (x, y), of bivariate random wellbeing characteristics that may

incorporate some welfare shocks.

WF =
N∑
i=1

EU(xi, yi) =

∫
EU(x, y) dF (x, y),

where U is the considered (cardinal) VNM utility function, and N is the number of

individuals in the displayed discrete representation. When there is no randomness, or

when one chooses an ex-post perspective instead, one obtains the usual utilitarian social

welfare function over the population joint cdf F of fixed wellbeing characteristics:

WF =

∫
[0,a1]×[0,a2]

U(x, y) dF (x, y).

Although the main application will be the case of the individual well-being index

defined as an ex-ante expected utility, some of the axioms proposed below will also be

useful in other cases. Using the expected utility EU as a normative basis for mea-

suring individual well-being is far from mandatory. In some close variants, some other

increasing transformations of EU can be used instead to separate the normative individ-

ual components of the social evaluation function from the norms of the social planner.

However, directly including expected utility indices in the utilitarian social evaluation
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function is still the normalisation that is used in most empirical and theoretical work

when dealing simultaneously with risk and social welfare issues. Then, I shall follow this

common practice to avoid mixing the main argument of this investigation with other

issues of the social welfare analysis under uncertainty. However, similar arguments and

results than those developed in this paper can easily be developed with more general

specifications, such as sums of increasing function of expected utilities, if wished.

The starting point in the discussion is the case of no randomness. From this bench-

mark, the incorporation of social welfare shocks, including some random shocks, will be

examined. For this, all of the partial derivability properties of U are assumed that will

be needed to express the results, in each case. Moreover, throughout this paper, it is

assumed that all of the considered integrals are bounded to avoid absurdities.8

Let 4WU := WF − WF ∗ be the change in social welfare between any two joint

distributions F and F ∗. Then, 4WU =
∫ ∫

U(x, y)d4F (x, y), where 4F denotes F −

F ∗. Social welfare dominance corresponds to unanimity over a given set U of utility

functions U . Stochastic dominance of distribution F over distribution F ∗ is now defined

in this context.

Definition 1 F dominates F ∗ for a family U of utility functions if and only if 4WU ≥

0, for all utility functions U in U . This is denoted F DU F ∗.

To be more specific about dominance relationships, a few relevant sets U of utility

functions must be specified. This is done in the next sub-section.

8If a1 = +∞ or a2 = +∞, then some integrals may not be well-defined for certain theoretical

distributions, even with non-random variables x1 and x2, such as if F (x1, x2) has heavy tails. This

may also be the case for some integrals of some partial derivatives of utility arising in the expansions

in our proofs. However, these cases are of no or little empirical relevance.
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2.1 A few utility sets of interest

From now, in order to alleviate notations, the partial derivatives will be denoted by using

as subscripts the indices of the attributes (1 and 2), repeated as many times as there

are derivations with respect to the considered attribute. For example, U1122 denotes

∂4

∂x2∂y2
U .

Conditions on signs of partial derivatives were introduced progressively in the lit-

erature. Levy and Paroush (1974) were the first, to the best of my knowledge, to

propose to use the condition U12 ≤ 0. Atkinson and Bourguignon (1982) proposed sev-

eral classes of utility functions. Their largest class is defined by functions satisfying

U1, U2 ≥ 0, U12 ≤ 0, while their smallest class is defined by the same restrictions to

which are added: U11 ≤ 0, U22 ≤ 0, U112 ≥ 0, U221 ≥ 0 and U1122 ≤ 0. Several authors

have proposed classes with intermediate sets of restrictions.9

To increase the power of the stochastic dominance tests, one may want to assume as

many restrictions as possible. Let U be the class of the increasing utility functions that

satisfy the following restrictions of signs for the partial derivatives.

U = {U1, U2 ≥ 0, U11 ≤ 0, U22 ≤ 0, U12 ≤ 0,

U111 ≥ 0, U222 ≥ 0, U112 ≥ 0, U221 ≥ 0, (1)

U1111 ≤ 0, U2222 ≤ 0, U1122 ≤ 0, U1112 ≤ 0, U1222 ≤ 0}. (2)

This class involves a complete set of sign restrictions on partial derivatives up to the

fourth order. Other conditions with opposite signs could also be considered, although

they would yield rather counter-intuitive meanings (e.g., individuals loving income in-

equality with U11 ≥ 0). Therefore, only these most relevant signs are considered for the

analysis.

9Moyes (1999a), Bazen and Moyes (2003), Gravel and Moyes (2012), Muller and Trannoy (2011,

2012).
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A short comment on what these restrictions are typically believed to mean may be

useful. The non-negativity of the first-order derivatives of U implies that each attribute

positively contributes to utility, or at least is not noxious to it. The non-positivity

of each direct second-order derivatives may be seen as expressing inequality aversion,

with respect to each attribute, in utilitarian social welfare settings, or expressing one-

dimensional risk aversion when there are risky shocks assessed by using expected utility.

These second-order conditions correspond to the concavity of the utility function in the

direction of each attribute separately.

The hypotheses U12 ≤ 0, U112 ≥ 0 and U122 ≥ 0 can be justified, as in Muller and

Trannoy (2011, 2012), by invoking normative compensation arguments. In this case,

one attribute can be assumed to serve as a compensating variable to redress inequality

with respect to the needs in the other attribute. For example, assuming that the first

argument is income, with U12 ≤ 0, then the more destitute in education an individual is,

the higher the claim for compensating income transfers. Moreover, with U112 ≥ 0, this

claim is all the more vindicated that potential transfer beneficiaries are poorer. There

are other possible normative justifications of these hypotheses. For example, U12 ≤ 0 can

be seen as embodying aversion for correlations between attributes, as in Tsui (1999). So

far, normative justifications of signs of the fourth-order or higher derivatives are missing

in the literature. This paper will fill this gap.

Class U can be seen as corresponding to some ‘maximum requirement’in terms of

the signs of the partials because its definition gathers a complete set of restrictions on

signs up to the fourth order. However, other utility classes can be considered that involve

fourth-order partial derivatives, without including all the conditions that appear in the

above definition of Class U . For example, the hypotheses in Atkinson and Bourguignon

(1982) correspond to the class: U−− = {U1, U2 ≥ 0, U11, U22, U12 ≤ 0, U121, U212 ≥

0, U1122 ≤ 0}. The next section normatively justifies all these restrictions by introducing

new axioms that are based on the innovative notion of welfare shock sharing.
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3 Normative Justifications

3.1 Welfare shock sharing

First, some damages will be specified, which are called ‘shocks’, that affect individuals

and that the social planner should consider while assessing social situations. Then, it will

be stated when sharing these shocks across individuals should be judged as normatively

good. In that sense, these shocks can be seen as ‘social shocks’because they have social

welfare consequences, notably in terms of protection or redistribution policies. The

shocks may occur randomly or not.

To fix these ideas, let us consider a social situation that is described by some en-

dowments (x, y) to individuals in a population. For example, x may be the income

and y the education level, which are both non-negative variables. Of course, any other

well-being attributes could be considered if wished10. Let us further assume that society

is only composed of two individuals, and let us examine the social planner’s prefer-

ences for equity across individuals. For example, a planner who is reluctant to see the

same individual bearing all the shocks would prefer the social situation, or ‘society’,

{(x− c, y); (x, y − d)}, where the first individual has the endowments x− c in the first

attribute and y in the second attribute, and the second individual has the, respective,

endowments equal to x and y−d, with c, d > 0 being fixed losses, to the social situation,

in which the same individuals have the respective endowments {(x, y); (x − c, y − d)},

such as one of the two individuals would suffer all the losses. That is: in that case,

one would naturally like to state normatively that the social planner prefers a situation

where the allocation of the shocks is ‘shared’among individuals. This specific normative

inclination is denoted below by ‘welfare correlation aversion’. However, other types of

shocks can be considered, which correspond to other ways of sharing shocks among the

10This may also include the variables describing individual needs instead, although in the latter case

the signs of derivatives we use in this paper would have to be changed accordingly, as in Bourguignon

(1989) for example.
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individuals.

For understanding this, a few axiom definitions are now stated that describe how the

social planner preferences should prefer shock sharing in several specific cases. Let us

start again with two individuals with the same bivariate endowments, (x, y). The effects

of diverse individual shocks are considered from the point of view of the preferences of

the social planner. Each of the following definitions may be seen as a plausible normative

axiom about social shock sharing. The last axiom involves four individuals.

Definition 2 Welfare Shock Sharing Axioms: Let (x, y) ∈ R2+ be any non-random

buvariate well-being endowments. Let c and d > 0. Let ε be a centred numerical random

variable and δ be a centred numerical random variable independent of ε.

(i) A social planner is said to be welfare correlation averse if x− c > 0 and y−d > 0

implies that the social planner prefers the society {(x − c, y); (x, y − d)} to the society

{(x, y); (x−c, y−d)}. That is: ‘sharing fixed losses affecting different attributes improves

social welfare’.

(ii) A social planner is said to be welfare prudent in x if x + ε > 0 and x − c >

0 implies that the planner prefers the society {(x − c, y); (x + ε, y)} to the society

{(x − c + ε, y); (x, y)}. That is: ‘sharing a fixed loss and a centred risk affecting the

same first attribute improves social welfare’.

(iii) A social planner is said to be welfare cross-prudent in x if y + δ > 0 and

x− c > 0 implies that the planner prefers the society {(x, y+δ); (x− c, y)} to the society

{(x, y); (x− c, y + δ)}. That is: ‘sharing a fixed loss in the first attribute and a centred

risk in the second attribute improves social welfare’.

(iv) A social planner is said to be welfare temperate in x if x + ε > 0 , x + δ > 0

and x + δ + ε > 0 implies that the planner prefers the society {(x + δ, y); (x + ε, y)} to

the society {(x, y); (x+ δ+ ε, y)}. That is: ‘sharing centred risks affecting the same first

attribute improves social welfare’.

(v) A social planner is said to be welfare cross-temperate if x+ ε > 0 and y + δ > 0

14



implies that the planner prefers the society {(x+ε, y); (x, y+δ)} to the society {(x, y); (x+

ε, y + δ)}. That is: ‘sharing centred risks affecting different attributes improves social

welfare’.

(vi) A social planner is said to be welfare-premium correlation averse in x, if x+ε >

0, x−c+ε > 0 and y−d > 0 implies that the planner prefers the society {(x−c, y); (x, y−

d); (x+ε, y); (x+ε−c, y−d)} to the society {(x, y); (x−c, y−d); (x+ε−c, y); (x+ε, y−d)}.

That is: ‘sharing fixed losses affecting different attributes improves social welfare, while

less so under background risk in the first attribute’.

In addition, the usual definitions for monotonicity and inequality aversions, with

respect to each attribute, could be explicitly stated and included in the list of axioms.

However, they are omitted here since they are trivial. Symmetric definitions of those

above can, of course, also be obtained by substituting the roles of x and y, and they are

also omitted. Furthermore, weaker conditions than the independence could be stated

for the random shocks ε and δ, as in Brown (2017) for example, but doing so would

rather obscure the intuitive argument in the discussion, and I prefer to refrain from this.

Finally, the list of axioms could be extended by considering more complex shocks, such

as composite lotteries, and/or a higher number of individuals in society.

In Axiom (vi), society can be split into two subgroups of two individuals each. The

welfare of the first two individuals may be compared across the two considered societies

according to the criterion of welfare correlation aversion, which induces a preference for

sharing fixes losses. In that case, the situation of this first couple of individuals is clearly

preferable in the first society than in the second. However, in this case, the last two

individuals are given the opposite ranking for the same reason, because in the second

society they share the same fixed losses (as those for the first two individuals), while

they do not do it in the first society. Even though the last two individuals suffer from the

same respective levels of losses as the first couple, and they have the same initial well-

being attributes, they also both suffer from an identical centered random shock on the
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first attribute. The result of the comparisons of the two 4-individual societies is deemed

to be in favour of the first society, as a definition of the axiom. The intuition behind

this is that the presence of the random shocks makes feeling the losses less severely. For

example, in the case of the expected utility criterion, integrating U with respect to the

random shock makes the resulting ‘indirect utility’less concave in x than the initial U ,

and therefore less sensitive to income inequality.

As will be shown in Subsection 3.2, under the expected utility hypothesis, stating

Axiom (vi) corresponds to stating Axiom (i) with the utility function replaced by the

welfare premium function in x, that is: px(x, y, ε) ≡ U(x, y)− EU(x+ ε, y).

Some of the stated definitions are formally akin to notions that have been used in risk

analysis (prudence, temperance). That is why a similar vocabulary is proposed, even

though there are notable differences between welfare and risk contexts. First, social

welfare comparisons are examined instead of individual decisions under risk. Second,

the notions are here initially defined in terms of preferences over society situations char-

acterised by the joint distribution of well-being attributes, without invoking, at that

stage, any representative function of individual preferences (such as utility functions).

Although the particular application that will be later examined is in terms of expected

utility, there is no reason why welfare shock sharing axioms should be considered and

used only under this hypothesis. Third, the kind of risk apportionment that has been

used in the literature on risk, is in many cases, formally different from the shock sharing

formulae, even by combining ‘good’and ‘bad’states11. Fourth, for some proposed no-

tions (welfare cross-temperance, welfare premium correlation aversion), it has not been

possible to find any analogue in the risk literature, even with broadened interpretation12.

11e.g., in Eeckhoudt and Schlesinger (2006), Tsetlin and Winkler (2009), Denuit and Eeckhoudt

(2010), Li, Liu and Wang (2016).
12However, a working paper by Crainich, Eeckhoudt and Le Courtois (2013) was signalled to me by

Pr. Eeckhoudt. In this paper, which deals with risky choices, for example portfolio choices, the authors

propose and analyse an index of absolute correlation aversion (analog of −u12/u1) and an index of

cross downside risk aversion (respectively, u122/u1), and they assume that these indices are decreasing
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Fifth, I am not aware of any risk notion based on the fifth or the sixth orders, as are

developed below in sub-section 2.4 for social welfare analyses. Sixth, the anonymity ax-

ioms that are typically used in the social welfare literature imply that the notions must

be robust to some specific changes in the positions of the individuals. This is expressed

by describing social alternatives about sets of individual situations instead of n-uplets

in some risk problems in which present and future states may not be substitutable.

Seventh, the above definitions of the welfare premium and of the social cost of shocks

involve comparing individuals (e.g., under a veil of ignorance) rather than comparing

random states. Eighth, all of the attributes are supposed to be non-negative, as is typi-

cal for welfare attributes, but is not the case for financial returns, for example. Finally,

by invoking feelings of social justice, the proposed axioms seem to be much more likely

to gather agreement among researchers and practitioners than similar axioms that are

defined for risk apportionment, which look more arbitrary (e.g., temperance). This is the

relevance of these ‘social’feelings that makes possible to climb up the orders of utility

derivative conditions.

Note that some axioms (i.e., (ii) and (iv)) can be defined independently of the

presence of the other attribute, provided that the latter is fixed at a given level. Fur-

ther, the axioms of welfare shock sharing do not depend on assuming specific levels of

the endowments (x, y) since they are defined for any such endowments above minimal

thresholds. Note that for each of the defined axioms, some specific initial endowment

levels must be excluded in order to have the ex-post endowments reaching a minimal

threshold. Indeed, almost all of the well-being attributes that one can think of have

a natural non-negative lower bound. For example, education levels cannot be negative

and consumption expenditure cannot be below some subsistence minimum. Then, the

distributions of the corresponding shocks in the axioms must be truncated accordingly.

in wealth. Therefore, it seems clear that it should be possible to develop indices of risk attitudes even

with higher order. Whether the indices can be broadly accepted and used by risk analysts is another

matter.
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The axioms are defined for all c, d, ε, δ that satisfy these domain constraints. How-

ever, only one given version of these parameters and shocks is necessary in these defin-

itions, which correspond therefore to broader preferences sets, than if they were stated

for all c, d, ε, δ. Yet, no substantial consequences follow from this in differentiable cases:

what matters is the ‘marginality’of the variations, not the way it is expressed in terms

of parameters, unless there is a special interest in some given specific shocks.

As mentioned previously, a few of the new welfare shock sharing axioms can be

somewhat connected to risk-apportionment notions in the literature. Eeckhoudt and

Schlesinger (2006) introduce risk-apportionment techniques to characterise one-dimensional

prudence and temperance notions. Eeckhoudt, Rey and Schlesinger (2007) and Jokung

(2011) extend these notions to bivariate settings. Eeckhoudt and Schlesinger (2006),

and Eeckhoudt, Rey and Schlesinger (2007) characterise von Neuman-Morgenstern util-

ity functions for expected utility criteria by using prudence, temperance, correlation

aversion, cross-prudence and cross-temperance notions. However, in Eeckhoudt and

Schlesinger (2006) and in Jokung (2011), ‘high-order’risk preferences are constructed

through a binary recurrence process over lotteries. While this is clearly distinct from

the approach in this paper, some formulae coincide for low order notions such as risk

aversion. Indeed, Eeckhoudt and Schlesinger (2006), and Jokung (2011) define their

risk-apportionment notions from a sequence of risks, each of which is defined recur-

sively. In contrast, the welfare shock sharing axioms here are directly defined without

using a recurrent sequence of risks, which leads to different formulae.

Note that there is no compelling reason why expected utility criteria of individual

welfare, or monotonous transformations of them, should be chosen as necessary building

blocks of the social welfare setting, even when some shocks are random. However, this

special case should of course be included in many plausible settings and it is pursued

from now on. Besides, there may be additional specific reasons for considering simple

criteria that are linear in some kind of utility functions. For example, a von Neumann-

Morgenstern ranking of socially risky situations that is consistent, in the Pareto sense,
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with individual VNM utilities, may be seen as resulting from comparing the sum of the

individual’s VNM expected utility functions across alternatives (Harsanyi, 1955). Other

aggregation theorems (Weymark, 1991 and 1993, Danan, Gajdos and Tallon, 2015)

yield similar linear constructions, including for incomplete preferences. Therefore, from

now on, an aggregate social decision criterion will be used that is based on sums of the

expected utilities of the individuals (or sums of given monotone transformations of these

expected utilities).

The first result of social welfare analysis is as follows. In social welfare contexts

with the social evaluation function additive in the individual expected utility functions

(or a given monotone transformation of them), the axioms of welfare shocks sharing

can be characterised in terms of restrictions of the signs of the partial derivatives of

the utility function, up to the fourth order, as shown in the next theorem. Of course,

such a setting, as in Atkinson and Bourguignon (1982), relies on an inevitable subjacent

cardinality hypothesis of the utility.

Theorem 1 If some expected utility represents the individual welfare with a VNM utility

function U(x, y), and with a social welfare function additive in utilities, one has:

(a) Inequality aversion in x is equivalent to U11 ≤ 0. An alternative interpretation

that is now proposed as a consequence of the welfare shock sharing perspective is that of

preference for sharing fixed losses in the first attribute.

(b) Welfare correlation aversion is equivalent to U12 ≤ 0.

(c) Welfare cross-prudence in x is equivalent to U122 ≥ 0.

(d) Welfare prudence in x is equivalent to U111 ≥ 0.

(e) Welfare cross-temperance is equivalent to U1122 ≤ 0.

(f) Welfare temperance in x is equivalent to U1111 ≤ 0.

(g) Welfare-premium correlation aversion in x is equivalent to U1112 ≤ 0.

(h) The expected utility hypothesis is not necessary for obtaining results (a) and (b);

and in the other cases this hypothesis needs only apply to the attributes for which there
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is at least two derivations of the VNM utility function in the stated sign condition.

Obviously, similar properties can be obtained by substituting x and y, and their

statements are omitted. The proofs are given in the appendix. They rely on the fact that,

on an interval, the corresponding finite variations and derivatives have the same sign

when the sign of the derivatives is constant. Similar equivalence can be proven for higher

order notions. While they are omitted here for the sake of shortness, some of them will

be briefly analysed in subsection 4.4. Note that the properties of differentiability that

have been assumed are less restrictive that it appears once these generalised concavity

assumptions are made. Indeed, a numerical convex function of a real variable has only

a counting number of non-differentiability points (Rockafeller, 1970, p. 244). This

property extends to the above assumptions.

In all these axioms, the feelings about social shock sharing that they state imply

features of the shapes of the utility functions that have consequences for the comparison

of society situations even when there are no observed shocks. The interpretation in

terms of shock sharing in (a) does not seem to have appeared so far in the social welfare

literature as an explicit axiom. Indeed, this literature rather invokes inequality aversion

motives or transfer axioms. Note also that it is quite possible that U11 ≤ 0 holds and

not U22 ≤ 0 (or the opposite) when the two attributes have distinct normative roles.

For example, one could imagine a society prone to redistribute income while ignoring

education differences for designing social policies.

Results (b) and (c), in the specific example with income and education, imply that

cross-prudence in income, U122 ≥ 0, along with correlation aversion, U12 ≤ 0, can be

seen as depicting a motive for compensation to alleviate inequity in education through

income transfers in favour of little educated persons, as argued in Muller and Trannoy

(2012).

Justifying normative restrictions in social welfare analysis by invoking Pigou-Dalton

transfer-type arguments may be controversial when some attributes cannot be practi-

cally transferred, such as education status. Using instead normative assumptions based
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on welfare shock sharing axioms diminishes this diffi culty. What the concrete mecha-

nisms or institutions through which the shocks could be shared are is another matter,

which is not examined in this article.

Although they were not pursued in the literature, a few other possible justifications of

the above signs of partial derivatives of utility in Theorem 1 are now briefly reviewed, for

the fourth order. First, the signs of some utility derivatives may be related to variations

in aversion to inequality. For example, U1122 ≤ 0 is equivalent to U22 concave in x1. In

that case and in the example, decreasing income transfers increase aversion to education

inequality (in terms of the concavity of U in x2). Second, the condition U1111 ≤ 0

can be related to one-dimensional temperance and other analogue notions that have

already been developed in the risk literature. For example, increasing ‘outer inequality’

could naturally be defined as corresponding to such a negative fourth derivative, as a

generalisation and translation of Menezes and Wang (2005) for increasing outer risk.

Other analogue notions that can be invoked to justify this sign restriction are: proper

risk aversion (Pratt and Zeckauser, 1987), decreasing absolute prudence (Kimball, 1993),

and risk vulnerability (Gollier and Pratt, 1996).

The next subsection returns to a new normative condition that was introduced above,

and which is based on a fourth-order partial derivative that was not used before in social

welfare analysis.

3.2 Welfare-premium correlation aversion

The welfare premium function that will be used corresponds to comparing two indi-

viduals whose individual well-being is assessed by using their expected utility (or any

increasing affi ne linear transformation of it). The welfare premium is the amount of

cardinal (‘welfare’) utility that an individual would accept to give up for avoiding being

someone that suffers the random shock ε as compared to being someone not bearing

this shock. For example, this comparison can be seen as performed by the individual
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herself or himself under a veil of ignorance, so as to guarantee that individual idiosyn-

cratic characteristics do not affect the result. Under expected utility with a concave

VNM utility function, the welfare premium, in that sense ‘socially’, compensates for a

possible well-being loss from the random shock ε affecting the first attribute.

The conditions U1222 ≤ 0 and U1112 ≤ 0 have been left out in the social welfare

literature. I now pursue their analysis that began with Theorem 1. Without loss of

generality, let us consider U1112 ≤ 0. The proof of result (g) in Theorem 1 is now spelt

out.

Let c be any fixed positive loss amount in the first attribute, and ε be any given

centred random shock in the same attribute, such that x− c+ ε > 0 and x− c > 0, for

all x. Let the welfare loss function be w(x, y; c) ≡ U(x, y)−U(x− c, y), which describes

the utility loss due to a fall in the first attribute. Let the Jensen’s gap corresponding to

function w be: v(x, y) ≡ w(x, y; c)− Ew(x+ ε, y; c).

Consider the condition v2(x, y) ≤ 0, which is equivalent to saying that the welfare

premium function px(x, y, ε) ≡ U(x, y)−EU(x+ ε, y) is subject to correlation aversion.

Indeed, v2 = U2(x, y)− U2(x− c, y)− EU2(x+ ε, y) + EU2(x+ ε− c, y) = px2(x, y, ε)−

px2(x − c, y, ε) ≤ 0, which is equivalent to px12 ≤ 0. This condition is now described

in two equivalent ways: first, by stating the sign of a fourth-order partial derivative of

utility; and second, by comparing the total welfare outcomes for two specific societies

that differ according to their patterns of shock sharing.

Indeed, v2(x, y) = w2(x, y; c) − Ew2(x + ε, y; c) ≤ 0 if and only if w2 is concave in

x. Assuming derivability when needed, this condition is equivalent to w112 ≤ 0, for any

levels of the attributes, that is: U1112 ≤ 0, since finite variations and derivatives have the

same constant sign on an interval and w can be seen as expressing discrete variations

of U in x. Then, the condition U1112 ≤ 0, which is to be characterised, is equivalent to

v2(x, y) ≤ 0, for all x, y.

The next step consists in noting that one has v2(x, y) ≤ 0 for all x, y, c, ε such that

y > 0, x− c+ ε > 0 and x− c > 0 if and only if
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w(x, y; c) − Ew(x + ε, y; c) − w(x, y − d; c) + Ew(x + ε, y − d; c) ≤ 0, for all such

x, y, c, ε and d, through replacing v and finite variation approximation in y. This yields,

by replacing w: U(x, y)− U(x− c, y)− EU(x+ ε, y) + EU(x+ ε− c, y)

−U(x, y− d) +U(x− c, y− d) +EU(x+ ε, y− d)−EU(x+ ε− c, y− d) ≤ 0, for all

such x, y, c, ε and d. By reordering terms, this condition can be rewritten as

U(x− c, y) + U(x, y − d) + EU(x+ ε, y) + EU(x+ ε− c, y − d)

≥ U(x, y) + U(x− c, y − d) + EU(x+ ε− c, y) + EU(x+ ε, y − d).

That is, providing that one uses the expected utility, or any increasing affi ne linear

transformation of it, as the individual welfare measure, the four-individuals society

{(x − c, y); (x, y − d); (x + ε, y); (x + ε − c, y − d)} is preferred to the four-individuals

society {(x, y); (x− c, y− d); (x+ ε− c, y); (x+ ε, y− d)}. This ends the proof of (g) in

Theorem 1.

The transformation of function U through the inclusion of the background risk ε

and the expectation operation make the concavity in x of the expected utility function

EU(. + ε, y) less pronounced than the concavity of the original utility function U(., y).

This makes inequality issues look less severe for the individuals that are subjected to the

background risk. This is the distinction of the considerations pertaining to risk (through

the expectation of utility and the corresponding utility premium) and to inequality

(through welfare shock sharing and the normative representation of welfare by cardinal

utility in a utilitarian setting) that allows the elicitation of this feature.

Therefore, a rigorous characterisation of the condition U1112 ≤ 0 has been provided.

Of course, a similar normative justification can be obtained for the symmetrical condi-

tion: U1222 ≤ 0. However, some readers may think that four-individual societies may

be harder to grasp intuitively than two-individual societies. So, an equivalent two-

individual society characterisation is now provided.

The result (g) in Theorem 1 implies that the condition U1112 ≤ 0 could be interpreted

as “sharing fixed losses affecting different attributes improves social welfare, while less

so under background risk on the first attribute”. As pointed out previously, under the
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hypotheses, the planner considers that the degradation in the situation of the second

couple of individuals is more than compensated by the improvement in the situation

of the first couple. Returning to the welfare premium, one has equivalently: px(x −

c, y, ε) + px(x, y−d, ε) is preferred to px(x, y, ε) + px(x− c, y−d, ε). In that sense, the

welfare premium function summarises the potential social compensations of the random

shocks within each of the two subgroups and allows the social planner to focus on

correlation aversion relative to non-random losses. Let us now turn to a few stochastic

dominance theorems that can be derived by assuming these new normative justifications

of signs of high-order derivatives of utility.

4 Stochastic Dominance

4.1 A few definitions

First, a few stochastic integrals need be defined that will be used to state the results.

Definition 3 Let

F k1+1
x (x) =

x∫
0

...

(k1 times)

s1∫
0

Fx(s1)ds1...dsk1 and

F k1+1,k2+1(x, y) =

y∫
0

...

(k2 times)

t1∫
0

x∫
0

...

(k1 times)

s1∫
0

F (s1, t1)ds1...dsk1dt1...dtk2.

In particular, one has F 1,1(x, y) = F (x, y) and Fx(x) = F 1x (x) = F 1,1(x, a2) =

F (x, a2). The gaps of any of these stochastic integrals for any two distributions F and

F ∗ is also denoted by using the operator 4, as in Section 2.

Some generalised concave functions of (x, y) are now defined that will be used later.

These classes will be useful to facilitate the derivation of stochastic dominance results,

particularly since their generators can often been found in the literature. Denuit, Lefèvre

and Mesfioui (1999), Denuit and Mesfioui (2010) and Denuit, Eeckhoudt, Tsetling and
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Walker (2013) provide generator functions for these classes, which are used to derive

new stochastic dominance conditions in Sub-Section 4.2.

Definition 4 Consider the functions of (x, y) from [0, a1]×[0, a2] to R. The (s1, s2)−increasing

concave ((s1, s2)− icv) functions are the appropriately derivable functions g such that

(−1)k1+k2+1 ∂k1+k2

∂xk1∂yk2
g = (−1)k1+k2+1gx...xy...y ≥ 0,

with index x ( y) appearing k1 ( k2) times,

and where ki = 0, .., si; i = 1, 2; s1 and s2 are two non-negative integers and 1 ≤

k1 + k2. The corresponding class of functions is denoted by U(s1,s2)−icv.

The 4−increasing directionally concave functions ( 4-idircv) are the appropriately

derivable functions g such that

(−1)k1+k2+1
∂k1+k2

∂xk1∂yk2
g = (−1)k1+k2+1gx...xy...y ≥ 0,

with index x ( y) appearing k1 ( k2) times, and where k1 and k2 are two non-negative

integers and 1 ≤ k1 + k2 ≤ 4. The corresponding class of functions is denoted by

U 4−idircv.

In this paper, attractive normative interpretations will be discussed for this class.

The next theorem links these different classes.

Theorem 2 Let R = {(r1, r2) ∈ N2| r1 + r2 = 4}. Then,

U 4−idircv =
⋂

(r1,r2)∈R

U (r1,r2)−icv

The 4-idircv classes are based on symmetrical restrictions that make them particu-

larly liable to be characterised by asymptotic expansions through symmetric derivations

across all variables. In turn, these expansions can be used to identify generator func-

tions, which can then be mobilised to obtain the necessary and suffi cient conditions of

stochastic dominance results.
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Let us now discuss the link of these classes of functions with the utility sets of

interest. Class U−− in Atkinson and Bourguignon (1982) can also be described as

Class (2, 2) − icv. The following classes that involve fourth-order derivatives are also

considered:

Class (3, 1)−icv corresponds to the conditions: U1, U2 ≥ 0; U11, U12 ≤ 0; U112, U111 ≥

0; U1112 ≤ 0, which have never been considered jointly in the literature.

Class (4, 0)− icv corresponds to the conditions: U1 ≥ 0; U11 ≤ 0; U111 ≥ 0; U1111 ≤ 0

and no condition on the second attribute. Classes (1, 3) − icv and (0, 4) − icv can be

easily obtained by symmetry.

Finally, the above class U of main interest coincides with Class 4-idircv. As its

name may suggests, it requires symmetric restrictions on the marginal variations in all

directions.

4.2 Stochastic dominance results

To derive some of the stochastic dominance theorems, recent results on multidimensional

stochastic orderings will be used, notably Theorem 7(i) in Denuit, Eeckhoudt, Tsetlin

and Walker (2010). The first result brought to the fore is that the class U−− in Atkinson

and Bourguignon (1982) may now become legitimately available to empirical researchers

because its fourth order condition (U1122 ≤ 0) can now be associated with a clear

normative interpretation, namely with imposing welfare cross-temperance. The result

obtained in Atkinson and Bourguignon (1982) is recalled in the following theorem. It

corresponds to classes of utility functions that are (2, 2)-increasing concave.13 The new

13We provide the first explicit complete proof for this theorem since in Atkinson and Bourguignon

(1982) only the proof of the suffi cient condition is given. In this seminal article, the necessary condition

is omitted on the grounds that it is an obvious generalisation of the one-dimensional case. As a matter

of fact, it should not be seen as a mere generalisation. Instead, obtaining the necessary condition is

often the main diffi culty in proofs of necessary and suffi cient conditions for multidimensional stochastic

dominance results. More discussions of proofs of necessary conditions can be found in Atkinson and
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complete proof is provided in the Appendix.

Theorem 3 (Atkinson and Bourguignon): For the (2, 2)−icv Class, that is: U1, U2 ≥ 0;

U11, U12, U22 ≤ 0; U112, U221 ≥ 0; U1122 ≤ 0, the following conditions are necessary and

suffi cient for the corresponding stochastic dominance between the two continuous joint

distributions.

(a) 4F 2,2(x, y) ≤ 0, for all x, y.

(b) 4F 2x (x) = 4F 2,1(x, a2) ≤ 0, for all x.

(c) 4F 2y (y) = 4F 1,2(a1, y) ≤ 0, for all y.

The first equality in (b) and (c) merely points out two equivalent notations for the

used stochastic integrals, respectively with one and two dimensions. It is worth re-

minding how the new axioms of social welfare shock sharing illuminate the normative

conditions assumed for this class. The conditions on the first-order derivatives of the

utility function indicate monotonicity with respect to the two attributes. In this ex-

ample, the condition U11 ≤ 0 (respectively, U22 ≤ 0) can be interpreted as assuming

some aversion for income (respectively, for education) inequality, or alternatively, in the

new interpretation in this paper, preference for social sharing of income (respectively,

education) fixed losses. U12 ≤ 0 assumes welfare correlation aversion, that is: prefer-

ence for social sharing of fixed losses for different attributes. U111 ≥ 0 (respectively,

U222 ≥ 0) is associated with welfare prudence in income (respectively, in education),

while U112 ≥ 0 (respectively, U122 ≥ 0) means welfare cross-prudence in education (re-

spectively in income). In all cases, these conditions correspond to preference for social

sharing of a fixed loss and of a centered risk. Finally, U1122 ≤ 0 is equivalent to welfare

cross temperance, which is associated with preference for social sharing of centered risks

on distinct attributes.

Bourguignon (1987), for an analog problems involving specification of needs, although only for lower

order problems. In contrast, in our case, the proof directly follows from eliciting the generators of the

class of the (2, 2)− icv functions.
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In contrast with the previous class of utility functions, which had already been

investigated by Atkinson and Bourguignon (1982), the following class has never (to

the best of my knowledge) previously been studied. This class satisfies in particular the

property of welfare-premium correlation aversion in income. However, it does not include

restrictions involving deriving more than once with respect to the second argument. This

setting may be appropriate for welfare problems involving an ordinal second attribute,

as in Bazen and Moyes (2003), and Gravel and Moyes (2012). One obtains.

Theorem 4 For the (3, 1)− icv Class, that is: U1, U2 ≥ 0; U11, U12 ≤ 0; U112, U111 ≥ 0;

U1112 ≤ 0, the following conditions are necessary and suffi cient for the corresponding

stochastic dominance between the two continuous joint distributions.

(a) 4F 3,1(x, y) ≤ 0, for all x, y.

(b) 4F 2,1(a1; y) ≤ 0, for all y.

(c) 4Fy(y) = 4F (a1, y) ≤ 0, for all y.

Condition (c) corresponds to first-order stochastic dominance on the second at-

tribute, often a demanding condition with typical data. This reflects the fact that

only first-order derivations with respect to the second attribute have been used in the

definition of the utility function class. The second condition (b) characterises the sign

of a mixed stochastic dominance term, in which the joint cdf is aggregated according to

the first attribute, up to its upper bound x = a1. In particular, at the bound y = a2,

it implies 4F 2x (a1) = 4F 2,1(a1, a2) ≤ 0, which can be seen as a negative difference in a

specific inequality measure that is defined in terms of the first attribute, and allows the

two situations to be compared using this inequality measure. In particular, when the

marginal distributions of the second attribute are fixed, Condition (b) corresponds to

the sequential generalised Lorenz criterion. In the general case, it can also be expressed

using projected generalised Lorenz tests, as shown in Muller and Trannoy (2012).

Finally, Condition (a) again involves a mixed stochastic dominance term, in which,

this time, the joint cdf is aggregated twice according to the first attribute, and this
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for any levels of the two attributes. At the bound y = a2, this implies 4F 3x (x) =

4F 3,1x (x, a2) ≤ 0, which corresponds to the well-known one-dimensional third-order

stochastic dominance term. The case of (1, 3)−icv is obviously symmetric. The next the-

orem corresponds to the well-known results of one-dimensional fourth-order stochastic

dominance that are just recalled, while linking them with the two-dimensional notations.

Theorem 5 For the 4 − icv Class, that is: U1 ≥ 0, U11 ≤ 0, U111 ≥ 0;U1111 ≤ 0,

the following conditions are necessary and suffi cient for the corresponding stochastic

dominance between the two continuous joint distributions.

(a) 4F 4x (x) = 4F 4,1(x, a2) ≤ 0, for all x.

(b) 4F 3x (a1) = 4F 3,1(a1, a2) ≤ 0.

(c) 4F 2x (a1) = 4F 2,1(a1, a2) ≤ 0.

Beyond being a reminder, this theorem points out that the second attribute can be

neglected in the analysis, as long as the imposed normative conditions do not involve

utility derivatives with respect to this attribute. Importantly, with the new normative

approach (assuming notably here that sharing centered risks improves social welfare), it

is now possible to provide a good reason to use fourth-order one-dimensional stochastic

dominance tests, which have been neglected so far in the empirical literature because of

the lack of normative interpretation. The reason why there is no first-order condition of

the type 4Fx(a1) ≤ 0 in this sequence is that this difference cancels out since Fx(a1) =

1 = F ∗x (a1) for any two distributions Fx and F ∗x . A similar proposition can of course

be stated with the other attribute y. Finally, the class of the fourth-order increasing

directionally concave functions is dealt with in the next theorem.

Theorem 6 Consider the 4 − idircv Class, that is: U1, U2 ≥ 0; U11, U12, U22 ≤ 0;

U112, U221, U111, U222 ≥ 0;U1122, U1112, U1222, U1111, U2222 ≤ 0.

Let be the change in variable from the algebraic form to the trigonometric form of

complex numbers: z = x + iy = ρeiθ with ρ =
√
x2 + y2 and θ = Arg(z), where

29



x, y ∈ R+, ρ ∈ R+ and θ ∈ [0, π/2] in the case a1 = a2 = +∞, so as to impose the

restrictions x ≥ 0 and y ≥ 0. Let Fρ be the cdf of ρ. Then,

(α) 4-idircv in (x,y) is equivalent to 4-icv in ρ.

(β) The necessary and suffi cient conditions of stochastic dominance for the 4-idircv

class are, in the case a1 = a2 = +∞:

(a) 4F 4ρ (ρ) ≤ 0, for all ρ.

(b) 4F 3ρ (+∞) ≤ 0.

(c) 4F 2ρ (+∞) ≤ 0.

For finite levels of a1 or a2, the conditions in the expressions (b) and (c) may be

expressed at a finite bound aρ =
√
a21 + a22 instead of +∞.

(γ) The generators of the 4 − idircv class are the functions of x and y defined by:(
max{c−

√
x2 + y2, 0}

)k−1
, for all c ∈ [0, aρ], if k = 4, and c = aρ if k = 1, 2, 3.

The proof is given in the appendix. In (α), a remarkable property of dimension

reduction is exhibited. It stems from the symmetry of the class of utility functions, no-

tably expressed in Theorem 2, and from the non-negativity of the attributes. This result

may be the elusive simplification researched by LeBreton (1999) in a multidimensional

welfare context, and it allows for straightforward use of the well-known corpus of equiv-

alence representation results in one-dimensional setting. Note that there is no problem

of incompatibility of domain definitions when changing in variables between (x, y) and

(ρ, θ), even if some of these variables are bounded. Indeed, the dominance conditions

can be trivially adjusted, if wished, by defining the corresponding appropriate bounds

of the joint domain in both representations.

Could there be other convenient ways of aggregating the multi-dimensional infor-

mation than using quadratic norms like ρ? Even though this may be possible, there is

little hope of a fruitful research direction here. To understand this, we need to return

to the principle of the proof of Theorem 6. What makes this proof work is the trans-

formation of the classes of multi-dimensional-attributes utility functions into a unique
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one-dimensional-attribute class whose generators are known. Indeed, the classical se-

ries of one-dimensional stochastic dominance orderings seems to be recognized as the

most appropriate way to order one-dimensional distributions in social welfare analysis.

Therefore, it does not seem promising to turn instead to other kind of one-dimensional

aggregates that may correspond to little attractive multi-dimensional orderings. More-

over, fierce technical diffi culties may arise when trying to transform multi-dimensional

utility classes into another kind of one-dimensional utility class. Indeed, what makes

the proof work is the polar symmetry of the s-idircv classes and of their link with

(s1, s2) − icv classes. Before being able to propose another kind of aggregation, other

subjacent principles should be discovered first that would play the same role as these

symmetries.

As for the one-dimensional fourth-order stochastic dominance, there is a fourth-order

term in Condition (a) of (β) in Theorem 6, although it is now in terms of the modulus

variable ρ. One can therefore hope for substantial gain in the discriminatory power of

empirical tests, as compared with the typical applications limited to the use of second-

order stochastic dominance. In the next subsection, the stochastic dominance results

are translated into poverty ordering results.

4.3 Poverty orderings

Foster and Shorrocks (1988) showed that one-dimensional stochastic dominance order-

ings are equivalent to some one-dimensional poverty orderings. The same elementary

translation into multi-dimensional poverty measures is now performed.

Definition 5 (i) A distribution F is said to ‘poverty dominate’a distribution G for a

poverty measure P, and a range of poverty lines Z, ‘F P(Z) G’, if and only if:

P (F, z) ≤ P (G, z), for all z ∈ Z, and P (F, z) < P (G, z) for at least a z ∈ Z.

This definition applies for multiple attributes and multidimensional poverty lines.
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(ii) The FGT Poverty measure of order α > 0 is:

Pα(F, z) = 1
zα

∫ F (z)
0

(z − F−1(p))α−1 dp,

where F is the cdf of incomes and z is the poverty line, while the integration is

displayed here over the quantile index of the incomes. The positive parameter α is

typically chosen equal to 1 (‘head-count index’), 2 (‘poverty gap’) or 3 (‘poverty severity

index’).

The ‘poverty ordering Pα(Z)’is defined as follows for two distributions F and G:

F Pα(Z) G if and only if

Pα(F, z) ≤ Pα(G, z) for all z ∈ Z, and Pα(F, z) < Pα(G, z) for at least a z ∈ Z.

Cumulative integrals of a one-dimensional cdf F are defined recursively as follows:

F 1 ≡ F and Fα(s) ≡
∫ s
0
Fα−1(t)dt, for any integer α ≥ 2.

Similarly, F k1,k2 is the joint density function F (x, y) integrated k1 times with respect

to the first attribute and k2 times with respect to the second attribute.

(iii) Let zi be an absolute poverty line for the ith attribute, i = 1, 2.

The ‘joint FGT poverty measure of order (k1, k2)’, for a population deprived in x

below a level z1 and deprived in y below a level z2, is:

P k1,k2(z1, z2) =
1

zk11 z
k2
2

∫
[0,z2]

∫
[0,z1]

(z1 − x)k1−1 (z2 − y)k2−1 dF (x, y).

Note that the results derived in this paper involve multidimensional poverty indices,

for example, with k1 = 3 or k2 = 3, which have not been used before with a clear norma-

tive basis and become now available. With these notations, Foster and Shorrocks (1988)

have shown that: zα−1Pα(F, z) =
∫ s
0

(z − y)α−1dF (y) = (α − 1)!Fα(z). Thus, there is

equivalence between the poverty ordering Pα(Z) and the αth-order one-dimensional sto-

chastic dominance ordering. In particular, for all α ≤ β, F Pα(Z) G implies F P β(Z) G.

Foster and Shorrocks also note that F P 2(Z) G is equivalent to F ‘generalised Lorenz

dominates’G. In the next theorem, Foster and Shorrocks’s (1988) results are straight-

forwardly extended to the multi-dimensional setting. The proof is given in the appendix.
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Theorem 7:

The F k1,k2 stochastic ordering is equivalent to the P k1,k2 stochastic ordering.

Obviously, this result can be extended to any number of attributes. Equipped with

these results, let us now consider successively a few classes of utility functions of interest.

4.3.1 4-icv

The 4-icv class is the class generating the classical results of the one-dimensional fourth-

order stochastic dominance. Therefore, based on Foster and Shorrocks’s (1988) results,

it is known that this dominance ordering is equivalent to the poverty ordering P 4(Zx) =

P 4,1(Zx, {a2}), where Zx is the set of poverty lines for the first attribute; with two

additionally conditions at the bounds corresponding to the third and second order sto-

chastic dominance orderings, here respectively translated into P 3({a1}) = P 3,0({a1, a2})

and P 2({a1}) = P 2,1({a1, a2}) poverty orderings. Although this ordering has not been

typically used in the empirical one-dimensional stochastic dominance literature, there is

now a welfare shock sharing motivation for using it. This is important because, provid-

ing the social planner accepts that socially sharing centred income risks is good, which

justifies the use of P 4, this criterion should give much more importance to extreme

poverty than even what is typically done by using the popular poverty severity index

P 3.

4.3.2 4-idircv

For the 4-idircv case, one can still draw on Foster and Shorrocks’s (1988) classical

results to state that the corresponding stochastic dominance ordering is equivalent to

the poverty dominance ordering P 4(Zρ), here calculated for the modulus variable ρ, and

for poverty lines zρ ∈ Zρ defined in terms of this variable, where Zρ is the corresponding

range of these poverty lines; and in addition the second- and third-order stochastic

dominance conditions in ρ at the bounds, which are equivalent to the poverty orderings
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P 2(aρ) (i.e., poverty gap index for ρ) and P 3(aρ) (i.e., poverty severity index for ρ),

where aρ is the upper bound of poverty lines zρ for ρ. This is a direct consequence

of Theorem 6. Note that in the case in which the bounds a1 and a2 for x and y, are

not infinite, the bound aρ for ρ may be inferior, while not necessarily strictly equal, to√
(a1)2 + (a2)2, depending on the shape of the support of F (x, y).

4.3.3 (3,1)-icv and (2,2)-icv

From Theorem 7, it is known that the F k1,k2 stochastic dominance is equivalent to

P k1,k2 stochastic dominance. Thus, the following necessary and suffi cient conditions are

obtained for the (3,1)-icv class of utility functions:

For all x and y,4P 3,1(x, y) ≤ 0; 4P 2,1(a1, y) ≤ 0; and 4P 1,1(a1, y) = 4P 1(y) ≤ 0.

Respectively, the following necessary and suffi cient conditions for the (2,2)-icv class

utility functions are: For all x and y,4P 2,2(x, y) ≤ 0, 4P 2x (x) = 4P 2,1(x, a2) ≤ 0, and

4P 2y (y) = 4P 1,2(a1, y) ≤ 0.

4.4 Higher orderings

I now briefly discuss orderings beyond the fourth-order. In order to limit the size of the

discussion and to avoid notation clutter, the axioms, their equivalent characterizations

and the proofs will be given only for the conditions U11111 ≥ 0 and U111111 ≤ 0. It

should now be clear how to deal with the case with derivations with respect to several

attributes, after all the practice performed with smaller orders.14

However, I now sketch how stochastic dominance results can be derived for the fifth

and sixth orders. The same principles as above can be applied to extend stochastic

14Another reason to postpone a more detailed study is that examining higher orders opens the

possibility of more varied and subtle normative justifications that need to be fully explored. For

example, complex mixtures of shocks, large numbers of individuals and of attributes could be considered

while analysing these cases, which may not be straightforward to interpret normatively. Moreover, it

may be opportune to develop new operators to deal with this increasing complexity.
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dominance results to multi-dimensional partial derivative conditions at higher orders.

This will yield higher-order one-dimensional stochastic dominance results in ρ. As little

fundamental intuition is lost by looking only at them, once the previously exposed

principles have been understood, we limit the discussion to Axioms (vii) and (viii)

below.

Definition 6

Axiom (vii): (‘Bivariate-Risk Priority of the Poorest’). Let (x, y) ∈ R2 be any two

fixed non-random bivariate wellbeing endowments. Let e > 0, and let ε, η, δ be three

independent centred random shocks, such that all the considered atttibute levels remain

non-negative.

The 4-individual society {x, , x+ ε+η, x+ ε− e, x+η− e} is preferred to the society

{x+ ε, x+ η, x− e, x+ ε+ η − e} by the social planner.

Axiom (viii): (‘Bivariate-Risk-Sharing Priority of the Most Vulnerable’). The society

{x, x+ε+η, x+ε+ δ, x+η+ δ} is preferred to society {x+ε, x+η, x+ δ, x+ε+η+ δ}

by the social planner.

In each of the two societies compared in Axiom (vii), the first couple of terms cor-

respond to no background fixed loss, while the second couple to a background fixed

loss. This axiom can be interpreted as the social planner giving more weight to sharing

socially the two independent centred risks ε and η when there is already a background

fixed loss. Alternatively, one can interpret it as a higher tendency to protect the poor

against the two independent risks ε and η. In that sense, this extends naturally the

intuition of the Pigou-Dalton transfer axiom. We denote this axiom: Bivariate-Risk

Priority of the Poorest.

In the first society in Axiom (viii), the bivariate shock (ε, η) is shared by the couple of

individuals under background risk δ, while in the second society this shock is shared by

the couple of individuals that do not face this background risk. Then, the social planner
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would choose to protect from the two additional independent risks more those who are

already bearing some risks. We denote this axiom: Bivariate-Risk-Sharing Priority of

the Most Vulnerable. I now prove the respective equivalence of Axioms (vii) and (viii)

with sign conditions for U11111 and U111111.

Theorem 7

(a) Axiom (vii) is equivalent to U11111 ≥ 0.

(b) Axiom (viii) is equivalent to U111111 ≤ 0.

Proof of (a):

Let e > 0, and let ε, η, δ be three independent centred random shocks, such that all

the considered attribute levels remain non-negative.

Let t(x) ≡ U111(x). Then, U11111(x) ≥ 0 is equivalent to t11(x) ≥ 0, that is: t is a

convex function of x. Applying Jensen’s inequality to t, implies U111(x)−EU111(x+ε) ≤

0, for any x and ε.

Let v(x) ≡ U(x) − EU(x + ε). Then, v111(x) ≤ 0, for any x. On the considered

domain, which is an interval, this is equivalent to v11(x)− v11(x− e) ≤ 0, for any fixed

loss e > 0.

Let m(x, e) ≡ v(x)−v(x−e). Then, m11(x) ≤ 0, that is: m is concave in x. Jensen’s

inequality applied to m gives: m(x, e)− Em(x+ η, e) ≥ 0, for all η.

Then, v(x)− v(x− e)− Ev(x+ η) + Ev(x− e+ η) ≥ 0.

This gives

U(x)− EU(x+ ε)− U(x− e) + EU(x+ ε− e)− EU(x+ η)

+EU(x+ ε+ η) + EU(x+ η − e)− EU(x+ ε+ η − e) ≥ 0.

Rearranging delivers the result

{U(x) + EU(x+ ε+ η)}+ {EU(x+ ε− e) + EU(x+ η − e)}

≥ {EU(x+ ε) + EU(x+ η)}+ {U(x− e) + EU(x+ ε+ η − e)}.
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That is, the 4-individual society {x, , x + ε + η, , x + ε− e, x + η − e} is prefered to

the society {x+ ε, x+ η, x− e, x+ ε+ η − e}. QED.

Proof of (b):

Let t(x) ≡ U1111(x). Then, U111111(x) ≤ 0 is equivalent to t11(x) ≤ 0, that is: t is a

concave function of x. Applying Jensen’s inequality to t, implies U1111(x)−EU1111(x+

ε) ≥ 0, for any x and ε.

Let v(x) ≡ U(x) − EU(x + ε). Then, v1111(x) ≥ 0, for any x. Let w(x) ≡ v11(x).

Then, the previous inequality is equivalent to w11(x) ≥ 0, for all x, i.e. w convex in x.

Then, from Jensens’s inequality: w(x) ≤ Ew(x + η) from any centred random shock η

independent of ε. Replacing yields v11(x)− Ev11(x+ η) ≤ 0, which can be written

U11(x)− EU11(x+ ε)− EU11(x+ η) + EU11(x+ ε+ η) ≤ 0.

Let m(x) ≡ U(x)− EU(x+ ε)− EU(x+ η) + EU(x+ ε+ η).

Then, m11 ≤ 0, which is equivalent tom concave in x. Therefore, Jensen’s inequality

implies m(x) ≥ Em(x + δ), where δ is any centred random shock independent from ε

and η. By replacing terms, one obtains

U(x)− EU(x+ ε)− EU(x+ η) + EU(x+ ε+ η)

−EU(x+ δ) +EU(x+ ε+ δ) +EU(x+ η+ δ)−EU(x+ ε+ η+ δ) ≥ 0. Finally, by

rearranging:

U(x) + EU(x+ ε+ η) + EU(x+ ε+ δ) + EU(x+ η + δ)

≥ EU(x+ ε) + EU(x+ η) + EU(x+ δ) + EU(x+ ε+ η + δ).

The society {x, x+ ε+ η, x+ ε+ δ, x+ η+ δ} is preferred to society {x+ ε, x+ η, x+

δ, x+ ε+ η + δ}. QED.

Clearly, normative justification of the other fifth and sixth order cross partial derived

conditions can be similarly obtained by combining the principles of the interpretation

and of the proofs that have been developed previously. We omit them to keep the

presentation short.
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Regrouping all these kinds of multidimensional partials’ sign conditions in a util-

ity class up to the fifth or to the sixth order, will correspond to the 5-idircv and 6-

idircv classes. The derivation of the associated SD theorems generates the classical

one-dimensional SD orderings for the composite variable ρ, respectively at the fifth and

the sixth order. Let us now turn to a brief empirical application.

5 Empirical Application

As an application of the new method, let us now investigate changes in the bivariate

‘income-education’social welfare and inequality in Egypt at the beginning of the twenty-

first century. Two well-being attributes are considered for each household: the deflated

income per capita and the education level of the head. The question that is investigated

is what the main features of the changes in the corresponding bi-dimensional social

welfare are in Egypt over 1999—2012. In particular, can we see some general improvement

in these social aspects, along with economic development and growth, or can we detect

instead the occurrence of some social welfare crisis which could have contributed to the

2011 Egyptian revolution?

The information on household income and education are taken from the Egyptian

Household Income, Expenditure and Consumption Survey. The used survey rounds are

for the years 1999, 2004, 2008, 2010 and 2012. The respective samples of surveyed

households are reasonably large, ranging from about 8,000 to 40,000 households. As

mentioned before, the social shock sharing axioms imply characterizations of the shapes

of the utility functions that have consequences for the comparison of society situations

even without observed shocks, which fits well the available data.

One practical issue is that the measurement units of the two attributes may have

different orders of magnitude. In that case, all the above theoretical results are still valid

since the domains over which the stochastic integrals must be calculated are fully covered

by the complete set of conditions. However, with an empirically finite sample, any gross
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unbalance in measurement units may imply the occurrence of most observations within

an elongated small domain that gives more justice to the variations in the attribute that

has the smaller measurement unit. For example, if the measured levels of yit are much

smaller than the measured levels of xit, because of gross disparity of measurement units,

one would have ρit ' xit, somewhat falling back to an approximate one-dimensional

analysis. Therefore, a balanced and fair representation of the multidimensional features

of the data requires a wise choice of comparable measurement units. Moreover, this

avoids that the results of empirical tests should depend on clumsy and arbitrary choices

of the measurement units. Indeed, there is no reason why the choice of the units should

affect normative conclusions of the analysis.

As a matter of fact, these reflexions on the choice of measurement units apply to

any empirical multidimensional stochastic dominance test, although they do not seem to

have been stated before. Therefore, to make the process rigorous, one may consider that

an additional axiom of scale invariance of the marginal distribution for each attribute,

or alternatively an axiom justifying the use of specific units, could be imposed as soon

as there is an empirical confrontation of the theory with some data. This may be akin to

the use of the (relative) Lorenz curve instead of the (non-normalized) generalised Lorenz

curve in inequality analysis (e.g., in Le Breton, 1999). Of course, imposing an axiom

of scale invariance may have also normative theoretical consequences, which could for

example be exploited for deriving some practical formulae of aggregate social welfare

indices, or inequality indices. However, I find it better for the analysis here to keep

apart the axioms regarding theoretical concerns about social shock sharing from axioms

adopted for merely practical empirical purposes.

Back to the empirical analysis, pragmatically, each attribute is rescaled to obtain

comparable magnitudes. A normalization of xit and yit by their respective global means

over all observed households and years, x̄ and ȳ, is implemented. Then, consistent

estimators of the diverse stochastic integrals that appear in the above theorems are

chosen to be their corresponding empirical analogueues, provided the sample size in
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each year is large enough, which seems to be the case. More sophisticated smoothed

and trimmed kernel estimators could be used to better deal with effi ciency, robustness

and even cosmetic concerns. However, since the focus is on theoretical issues, I prefer

to stick to the transparent formulae of the empirical analogues that directly reflect the

empirical distributions.

Figure 1 and Figure 2 show the estimated dominance curves, according to Theorem

6, across the compared years. They are based on the modulus ρ constructed from the

two normalised attributes, xit/x̄ and yit/ȳ, and the preferred class of 4-idircv utility

functions. The curves are displayed only for limited ranges of ρ in order to better

exhibit the locations of the distributions of ρ where some crossing of curves may occur.

That is, there is an obvious unambiguous dominance ranking of all the curves, at any

order, for the ranges that are not shown. There are six shown panels. The first and

second panels display, respectively, the estimated stochastic dominance curves for the

second and third order stochastic dominance comparisons. The third panel shows the

estimated curves for the fourth order. The fourth, fifth and sixth panels again show the

estimated curves for the fourth order, while zooming on possibly contentious areas with

respect to curve crossing. Figures 2 and 3 display the estimated stochastic dominance

curves for the fifth and sixth orders, respectively, only for the contentious ranges of ρ.

I only discuss the ranges of variation of the modulus for which crossings seem to

occur. Obviously, some crossings of the estimated curves occur for the second and

third orders. Therefore, no unambiguous bivariate dominance result can be obtained at

these orders. In contrast, for the same ranges of the modulus variable ρ, the estimated

dominance curve does not seem to cross at the fourth order, except perhaps marginally,

and certainly not at the fifth or sixth orders.

Given these precautions, the results imply that no worsening or no crisis of the

income-education social welfare in Egypt between 1999 and 2012 can be revealed by the

dominance analysis, at least when using the two measured attributes and the years for

which there are data. On the opposite, if one accepts the normative restrictions of our
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main class, there appears to have been a continual improvement of the bivariate social

welfare from 1999 to 2012. In contrast, usual analyses only based on second degree

dominance, or even third degree, would not allow the analyst to conclude.

In the interest of focussing on the theoretical argument of this paper, we do not deal

with many approximation and measurement issues that are important in full empirical

work. In particular, confidence bands may make the comparisons of the curves less dis-

tinct, although the measurement errors and specification errors in well-being attributes

are probably more worrying than sampling errors in such large samples. Even without

these errors, one may contest the normative relevant of rejecting dominance due to a

few special individuals. In that sense, Zheng (2018) provides a method to analyse curves

that are hardly distinguishable graphically. On the whole, these issues seem to matter

less in practice than the specification choices for the variables representing the welfare

attributes. Since the objective in this paper is to elicit new theoretical results in sto-

chastic dominance and not to do a fully-fledged empirical application, these issues are

not further discussed.

However, even with these caveats, the empirical results clearly show that social

unrest in Egypt, notably around the period of the Arab Spring and of the 2011 Egyptian

Revolution, cannot be the consequence of some worsening of the income-education social

welfare. Indeed, any axiomatically-valid aggregate indicator of social welfare in the

full fourth order sense, accounting simultaneously for both income and education, has

continuously improved over the studied period. It may be that changes in aspirations

or frustrations with corruption and bad governance may matter more for people than

objective changes in household situations.

6 Conclusion

Since the seminal paper by Atkinson and Bourguignon (1982), developing powerful em-

pirical multi-dimensional dominance criteria has been pursued by researchers, usually
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with little success so far, much because it has been found hard to justify normatively

criteria based on high-degree partial derivatives of individual utility functions. In this

paper, a new method is proposed to impose normative requirements in multidimensional

social welfare analyses by specifying welfare shock sharing axioms. It is shown that the

conditions in these new axioms are equivalent to imposing specific restrictions on the

signs of partial derivatives of Von Neuman-Morgenstern individual utility functions in

an expected utility setting. These findings are exploited to derive new multidimensional

stochastic dominance theorems with complete proofs of necessary and suffi cient condi-

tions, and to justify normatively the empirical use of some already known theorems.

Empirically powerful discriminatory criteria are obtained by combining all social shock

sharing axioms up to high orders, and by proving a dimension reduction property. Fi-

nally, an application to Egypt illustrates the empirical power of these new dominance

rules.

The new approach should aid policy design and evaluation. Availing of powerful

robust multi-dimensional decision criteria is likely to assist the evaluation of economic

and social development policies that often rely on multi-dimensional wellbeing indica-

tors. For example, the indicators of the Millennium Development Goals and the Human

Development Index (HDI) are routinely invoked by organisations and policy makers,

even though these indicators are subject to fierce criticisms owing to their arbitrariness.

There are, nonetheless, remaining obstacles to the fully fledged use of multidimen-

sional dominance criteria in welfare economics. Notably, measurement issues are perva-

sive and even defining reasonable mixes of attributes covering most well-being effects is

a challenge. However, using powerful multi-dimensional criteria should help researchers

to sort out what matters empirically, and what does not, when defining these variables

and measuring them.

Some extensions of this work look natural and are being investigated. First, some

attributes of the utility function can be seen as describing components of needs and

discrete variations rather than direct and continuous contributions to well-being, such
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as by introducing equivalence scales within the analytical setting. Second, conditions

characterizing still higher-order derivatives of utility and large numbers of wellbeing

attributes can be further studied, notably to explore the empirical limits of the new

approach and the mathematical regularities obtained in large dimensions. Risk studies,

without social welfare background, may also benefit from similar intuitions to the ones

developed in this research, although this seems to be a less promising field of applications

for them since one cannot take advantage of solidarity feelings to justify normative

assumptions in that case.

Finally, an open problem remains how to extend the benefits of the intuition brought

by social shock sharing axioms to social decision criteria that are not linear in utilities or

that involve anticipations of some characteristics of the shocks and of their correlations

with individual characteristics.
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Appendix

Proof of Theorem 1:

(b) For the condition U12 ≤ 0, let us denote v(x, y) ≡ U12(x, y) as an ancillary

function. Then, consider finite variations as approximations of the partial derivatives

of U embodied in v. This is relevant here because on the whole considered domain, the

fixed sign of these finite variations will also be the sign of the corresponding derivatives.

Let c > 0 and d > 0 be any fixed constants such that x − c > 0 and y − d > 0. First,

U(x, y) − U(x − c, y) approximates U1. Then, U(x, y) − U(x − c, y) − U(x, y − d) +

U(x − c, y − d) approximates U12(x, y). As a result, U12 ≤ 0 over the whole domain

is equivalent to U(x, y) + U(x − c, y − d) ≤ U(x, y − d) + U(x − c, y) over the whole

48



domain. Then, provided the social welfare criterion is additive in utility functions, such

as for utilitarianism, one has: society {(x−c, y); (x, y−d)} is weakly preferred to society

{(x, y); (x− c, y− d)}. Sharing shocks that are fixed losses among individuals is a social

improvement even if the shocks affect different attributes.

(a) Starting instead from the condition U11 ≤ 0, and using the same approximation

method with x− c−d > 0, and only the first attributes, one obtains U(x, y)+U(x− c−

d, y) ≤ U(x−c, y)+U(x−d, y). With social welfare criteria that are additive in utilities,

society {(x − c, y); (x − d, y)} is weakly preferred to society {(x, y); (x − c − d, y)}. Of

course, U22 ≤ 0 is liable to the same kind of interpretation for the second attribute.

Sharing shocks that are fixed losses affecting the same attribute among individuals is a

social improvement.

(c) Let us now turn to the condition U112 ≥ 0. Let ε be any centred shock and d

any positive constant such that x + ε > 0 and y − d > 0. Define the welfare premium

function by v(x, y) ≡ px(x, y, ε) = U(x, y)−EU(x+ε, y). By deriving once with respect

to the second attribute, one obtains v2(x, y) = U2(x, y) − EU2(x + ε, y). Let us now

consider the following fixed sign over the whole domain: v2 ≤ 0. On the one hand,

using Jensen’s inequality with respect to the first attribute, this condition is equivalent

to U2 convex in x1, which is equivalent to U112 ≥ 0, the condition that is studied. On

the other hand, v2 ≤ 0 over the whole domain is equivalent to U(x, y)−EU(x+ ε, y)−

U(x, y−d) +EU(x+ ε, y−d) ≤ 0, through finite variation approximation. Rearranging

yields U(x, y) + EU(x + ε, y − d) ≤ U(x, y − d) + EU(x + ε, y), which implies that

{(x, y − d); (x+ ε, y)} is weakly preferred to {(x, y); (x+ ε, y − d)}. Of course, the case

U122 ≥ 0 can be dealt with similarly. If one shock is a fixed loss and the other is a random

centered shock on the other attribute, sharing them among individuals improves social

welfare.

(d) I now consider the condition U111 ≥ 0. Using the same reasoning as before, while

allocating the fixed loss to the first attribute instead, one obtains

U(x, y) +EU(x+ ε− c, y) ≤ U(x− c, y) +EU(x+ ε, y), with c any positive constant
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and ε any centred shock such that x + ε − c > 0, x − c > 0 and x + ε > 0. Society

{(x− c, y); (x+ ε, y)} is weakly preferred to {(x, y); (x+ ε− c, y)}.

Again, one obtains an interpretation in terms of welfare shock sharing between two

individuals of a fixed loss shock and a random shock on the same attribute, which is

considered as a social welfare improvement. Note that even in the risk context, such

interpretation does not seem to have emerged so far from the literature. The case

U222 ≥ 0 is similar.

(e) The condition U1122 ≤ 0 is examined by starting again with the welfare premium

function v(x, y) ≡ px(x, y, ε) = U(x, y) − EU(x + ε, y), with ε any centred shock such

that x + ε > 0. However, let us now derive twice with respect to the second argument

to obtain v22(x, y) = U22(x, y) − EU22(x + ε, y). In these conditions, v22(x, y) ≥ 0 is

equivalent to U22 concave in x, that is: U1122 ≤ 0. On the other hand, v22(x, y) ≥ 0

can be characterised by the Jensen’s inequality with respect to the second argument,

as applied to the welfare premium function: v(x, y) − Ev(x, y + δ) ≤ 0, where δ is

a random centred shock independent of ε. By replacing the formula for v, one gets

U(x, y) − EU(x + ε, y) − EU(x, y + δ) + EU(x + ε, y + δ) ≤ 0. Rearranging leads to

U(x, y) + EU(x + ε, y + δ) ≤ EU(x + ε, y) + EU(x, y + δ). This yields: the society

{(x, y + δ); (x+ ε, y)} is weakly preferred to the society {(x, y); (x+ ε, y + δ)}. In that

case, this is the sharing of two random shocks between individuals, each on a different

attribute, that is seen as enhancing social welfare.

(f) For the condition U1111 ≤ 0, the proof of the previous case can be replicated by

allocating the random centred shock δ to the first attribute instead, still with δ and ε any

centred random shocks mutually independent, while now such that x+ε > 0, x+ε+δ > 0

and x+ δ > 0. This leads to U(x, y) +EU(x+ ε+ δ, y) ≤ EU(x+ ε, y) +EU(x+ δ, y),

which can be interpreted in terms of preferences for shock sharing as before, with here

the random shocks affecting the same attribute. The case U2222 ≤ 0 is similar.

(g) The proof of this case is in the text in Sub-section 3.2. (h) is obvious from the

proofs. QED.
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Proof of Theorem 2: Recall R = {(r1, r2) ∈ N2| r1 + r2 = 4}. Any function g ∈⋂
(r1,r2)∈R

U(r1,r2)−icv is such that (−1)k1+k2+1 ∂k1+k2

∂xk1∂yk2
g ≥ 0, which is denoted by property

P (k1, k2), and is satisfied for k1 = 0, ..., r1; k2 = 0, ..., r2; k1 + k2 ≥ 1; for any r1 + r2 = 4.

In particular, it is now shown that for any g ∈
⋂

(r1,r2)∈R

U(r1,r2)−icv, one has also

P (k1, k2) true for any (k1, k2) such that 1 ≤ k1 + k2 ≤ 4. Indeed, there exist some

(r1, r2) ∈ R such that the k1 in the range 0, .., r1, and the k2 is in the range 0, .., r2,

with k1 + k2 ≥ 1. By construction the sum k1 + k2 ≤ r1 + r2 = 4. An example of such

(r1, r2) is r1 = k1 and r2 = 4− r1. Therefore, g ∈ U4−idircv. It has then been shown that

U4−idircv ⊃
⋂

(r1,r2)∈R

U(r1,r2)−icv.

Reciprocally, let g ∈ U4−idircv and any given (r1, r2) ∈ R. It must be shown that

g ∈ U(r1,r2)−icv. It is known that P (k1, k2), for any k1 and k2 non-negative integers

such that 1 ≤ k1 + k2 ≤ 4. In particular, this is satisfied for all (k1, k2) such that

k1 ≤ r1, k2 ≤ r2 since in that case k1+k2 ≤ r1+r2 = 4. Therefore, g ∈ U(r1,r2)−icv. Since

this reasoning can apply for any (r1, r2) ∈ R, this implies U4−idircv ⊂
⋂

(r1,r2)∈R

U(r1,r2)−icv.

QED.

Proof of Theorems 3 and 4:

The results can be obtained by using the following result in terms of expectations

from Denuit, Eeckhoudt, Tsetlin and Walker (2013), which we expose with their nota-

tions. Let x̃, ỹ ∈ [x
¯
, x̄] be two real random vectors of dimension s. Then, x̃ �s−icv ỹ if

and only if

E

[
N∏
i=1

(ci − x̃i)ki−1+

]
≤ E

[
N∏
i=1

(ci − ỹi)ki−1+

]
,

for all ci ∈ [x
¯ i
, x̄i] if ki = si; and ci = x̄i if ki = 1, ..., si − 1; i = 1, ..., n.

The transformation of these conditions by using successive integrations by parts

yields the results of the Theorems 3 and 4. Note that the stated result for Theorem 4

simplifies because 4F (x̄1, x̄2) = 0, since the common value of any cdf at the joint upper

bound is 1.
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Proof of Theorem 5:

This is a classic result of one-dimensional stochastic dominance, although I could

not find the exact reference for its explicit statement, as authors (e.g., Fishburn and

Vickson, 1978, Moyes, 1999b) typically stop at the third order. Here, it is derived from

the Denuit-Eeckhoudt-Tsetlin-Walker’s (2013) formula and by integrations by parts as

in the proof of Theorems 3 and 4.

Proof of Theorem 6:

(α) Consider the representation of a couple of real numbers, (x, y), in the complex

plan: z ≡ x + iy ≡ ρeiθ, with the modulus of the complex number z defined as ρ =√
x2 + y2 and its complex argument defined as θ = Arg(z), here restricted to [0, π/2]

so as to impose x ≥ 0 and y ≥ 0. The inverse transformation yields x = ρ cos θ and

y = ρ sin θ.

Then, the derivatives of a utility function u(x, y), when transformed as a function

of (ρ, θ), can be obtained by using the chain rule. Let u(ρ, θ) ≡ u(x, y), allowing for a

slight abuse of notation to alleviate clutter15. Excluding the uninteresting case ρ = 0,

where there are no two-side derivatives, we have ∂u
∂ρ

= ∂u
∂x

∂x
∂ρ

+ ∂u
∂y

∂y
∂ρ

= ∂u
∂x

cos θ+ ∂u
∂y

sin θ =

1
ρ

(
x∂u
∂x

+ y ∂u
∂y

)
.

At the second order, by keeping the θ constant, since partial derivatives are being

calculated and θ is independent from ρ in the formula of u(ρ, θ), one obtains ∂2u
∂ρ2

=

∂[ ∂u∂x cos θ+
∂u
∂y
sin θ]

∂ρ
= cos θ

∂[ ∂u∂x ]
∂ρ

+ sin θ
∂[ ∂u∂y ]
∂ρ

= cos2 θ ∂
2u
∂x2

+ 2 sin θ cos θ ∂2u
∂x∂y

+ sin2 θ ∂
2u
∂y2

by

replacing, respectively, u with ∂u
∂x
and ∂u

∂y
in the previous calculus and rearranging.

Iterating yields ∂
3u
∂ρ3

= cos3 θ ∂
3u
∂x3

+3 sin θ cos2 θ ∂3u
∂x2∂y

+3 sin2 θ cos θ ∂3u
∂x∂y2

+sin3 θ ∂
3u
∂y3
. Finally,

∂4u
∂ρ4

= cos4 θ ∂
4u
∂x4

+ 4 sin θ cos3 θ ∂4u
∂x3∂y

+ 6 sin2 θ cos2 θ ∂4u
∂x2∂y2

+ 4 sin3 θ cos θ ∂4u
∂x∂y3

+ sin4 θ ∂
4u
∂y4
.

Then, it is clear in these formulae that a 4 − idircv utility function u in (x, y),

which has all its considered partial derivatives, with respect to x and y, alternatively

non-positive and non-negative as the order of derivation is raised with respect x and y,

has also alternating non-positive and non-negative derivatives as the derivation order

15That is: denoting the function u in the same way in the two systems.
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is raised with respect to ρ (i.e., positive for first-order derivatives, negative for second-

order derivatives, etc). Indeed, all the coeffi cients of these partials in these formulae are

non-negative due to θ ∈ [0, π/2]. Therefore, if function u is 4-idircv in (x, y), then it is

4-icv in ρ.

Let us now prove the reciprocal statement by recurrence, starting with the first-order

derivatives. Let be a function g(ρ, θ) of (ρ, θ) and consider its variations after change

in variables into (x, y). Assume that ∂g
∂ρ
≥ 0 for all ρ > 0, θ ∈]0, π/2[, so as to avoid

boundaries where the derivatives of interest are not defined. Let us show that ∂g
∂x
≥ 0

and ∂g
∂y
≥ 0. Fixing θ = 0 (respectively, θ = π/2) yields ρ = x (respectively, ρ = y) and

∂g
∂x

= ∂g
∂ρ |θ=0

≥ 0 (respectively, ∂g
∂y

= ∂g
∂ρ |θ=π/2

≥ 0), in this particular direction. Another

way to see this result is to notice that ∂g
∂x
is the orthogonal projection of ∂g

∂ρ
along the

y-axis. The identity of the signs of ∂g
∂y
and ∂g

∂ρ
can be obtained in the same fashion.

Incrementing the derivation order with respect to ρ (i.e., imposing successively ∂2g
∂ρ2
≤

0, ∂
3g
∂ρ3
≥ 0, ∂

4g
∂ρ4
≤ 0) allows us to obtain the successive and respective non-positive and

non-negative partials of order 2, 3 and 4 with respect to (x, y), as the consequence of

iterating the previous reasoning by fixing θ = 0 and θ = π/2. Therefore, ∂k1+k2g

∂x
k1 ∂yk2

is of the

sign of (−1)k1+k2+1, as it is the sign of ∂
k1+k2g

∂ρ
k1+k2

. Therefore, [u is 4− idircv in (x, y)]⇐⇒

[u is 4− icv in ρ].

Finally, it is easy to obtain the stochastic dominance results of the proposition by

applying already known results of one-dimensional stochastic dominance for the 4− icv

utility functions and recalled in Theorem 6.

(β) comes from Theorem 5, using the change of variable and class of functions

shown in (α). (γ) is a consequence of (α) and the knowledge of the generators for

one-dimensional fourth-order stochastic dominance. QED.

Proof of Theorem 7:

Let P k1,k2(x, y; z1, z2) = 1

z
k1
1 z

k2
2

∫
[0,z2]

∫
[0,z1]

(z1 − x)k1−1 (z2 − y)k2−1 dF (x, y). If one inte-
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grates by parts k1−1 times with respect to x, then one obtains: 1
(k1−1)!

∫
[0,z2]

F k1(z1; y) (z2 − y)k2−1 dy.

Then, k2 − 1 additional successive integration by parts with respect to y gives:

1
(k1−1)!(k2−1)!

1

z
k1
1 z

k2
2

F k1,k2(z1, z2), where F k1,k2 is the joint density function f(x, y) in-

tegrated k1 times with respect to x and k2 times with respect to y. This implies the

equivalence of the two considered orderings. QED.

Insert Figures 1 and 2
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