Suspensive and Disfluent Self Interruptions in French Language Interactions
Berthille Pallaud, R. Bertrand, P. Blache, L. Prévot, S. Rauzy

To cite this version:

HAL Id: halshs-01998294
https://halshs.archives-ouvertes.fr/halshs-01998294
Submitted on 29 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Suspensive and Disfluent Self Interruptions in French Language Interactions

B. Pallaud*, R. Bertrand*, P. Blache*, L. Prevot* & S. Rauzy*
*UMR 7309 Laboratoire Parole et Langage, Université-Aix-Marseille, 5 avenue Pasteur, BP 80975 13604 Aix en Provence Cedex 1

Abstract
The numerous variations in verbal fluency are characteristic of oral utterances in conversation and can involve morpho-syntactic disruptions. This study focuses on self-breaks in verbal flow, whether or not they give rise to a disfluent sequence. Following Shriberg (1995) the structure description of oral interruptions (Reparandum, Interregnum, Reparans), we noted all the self-breaks along with their morpho-syntactic effects, in the eight dialogues of the CID (Corpus of Interactional Data). Our method, focusing on the self-breaks points, describes the identification and annotation procedures. It enabled us to introduce a classification of different oral phenomena relating to self-interruption and disfluency. In many cases they are followed by acoustic markers, verbal phenomena and morpho-syntactic consequences. This study made it possible to study the relationships between the interruptions themselves and their consequences. The syntagmatic process, when interrupted, was not always disrupted from a syntactic point of view: half of these ruptures are merely suspensive, the others are disfluent. The suspensive self-breaks happen with a certain regularity and their frequency has a low variation between the speakers. Considering the disfluent interruptions, it is quite different: they have a high variation. Our hypothesis is that the frequency of the suspensive breaks remaining homogeneous seems to be an essential component of speech flow. Disfluent breaks are much less frequent but the considerable variation between speakers suggests that they are representative of utterance characteristics specific to each speaker. This hypothesis is supported by the high tendency we observed: the quicker the speech, the more the speaker produces disfluent breaks. This parameter does not influence the production of suspensive self-interruptions. All types of insertion (in the Interregnum) are present in one or other of the cases of interruption although in varying degrees. The phenomenon of resuming an utterance (rather than letting it unfinished) after a disfluent self-break seemed to be a dominant characteristic of oral utterances. Moreover, if we compare the Interregnum content, these disfluencies are two kinds of separate phenomena. On another side, the percentage of disfluencies (length of self-break ratings and disfluency phenomena) compared to the length of informative content in the oral utterances varies from one speaker to the next. This ratio is relevant since the length of time spent on non-informative utterance represents at least a third of the total speaking time.

Mots-clefs : langage oral, variation, auto-interruption, disfluence, morphosyntaxe
Key words: spoken language, variation, auto-breaks, disfluency, morphosyntax

Introduction
Numerous variations of verbal fluency are characteristic of utterances in conversation. For example, the fluctuation in the rhythm of the verbal fluency can be observed in the speed with which the words themselves are pronounced (Pasdeloup, 1992; Duez, 2001b, Shriberg, 1999). Sometimes, these fluctuations can be real self-interruptions which are, systematically or not, followed by morpho-syntactic disruptions; that is, sometimes the utterance is simply resumed just as if it had not been interrupted and sometimes the utterance is disrupted (repaired or unfinished). If these interruption phenomena are not systematically linked with morpho-syntactic disruption, it seems important to examine the relationship between the interruption itself within an utterance and what is following it. This raises the question of the definition of what we refer to as disfluency. According to studies on oral utterances in spontaneous speech, several phenomena mainly qualified as disfluent can be observed. These phenomena concern phonetic, acoustic and prosodic levels (Cole et al. 2005; 1

1 Some particles, such as mais (but) and donc (so), for example, are both connectors and particles and can have several uses or discursive functions (Chanet, 2004): therefore, there are some specific issues to establish the list of discourse markers.
Shriberg, 1995 et 1999; Yoonsook et al., 2005; Shu Chuan Tseng, 1999, 2005; Schuller et al. 2008) as well as morpho-syntactic levels (Pallaud, 2006, Dister, 2008b). If the conversation is not prepared, no standard speaker would talk without producing these phenomena. They are specific to spontaneous speech and should not be considered as pathological (Starkweather & Givens-Ackerman, 1997; Candea, 2000). They may vary in quantity from one speaker to another, but they are always found in oral spontaneous speech (Blanche-Benveniste, 1997; Cutler, 1981; Den, 2001; Fox Tree, 1995; Henry & Pallaud, 2003d; Jeanjean, 1984; Levelt, 1989; Pallaud, 2006b). They can occur almost anywhere in the utterance. The essential element in these disfluencies is the interruption point which is followed by a varying number of particular elements the speaker himself includes before achieving his utterance. These elements consist in silent or filled pauses and digressive insertions (speech markers, interjections and phatic utterances) which suspend the syntagmatic process. These ‘intrusive’ elements (Richard and Le Bot, 2008) interrupt the flow of the utterance text and define a between times just after the point of interruption and before the utterance is resumed. The digressive insertions are discourse markers inserted into the utterance and which have in common between them, that they are not linked syntactically with the elements of the utterance which precede and succeed them. Most studies on disfluency do not distinguish between the interruption markers (filled or silent pauses, discourse markers, parenthetic incidents) and the effects of these interruptions (for example Constant & Dister, 2010; Christodoulides, 2015; Meteer, 1995; Zelner, 1992).

Both Clark & Wasow (1998), as well as Shriberg (1999) described the subjacent structure of these interruption phenomena: as in Shriberg (1999, p7), the Reparandum refers to the entire stretch of speech to be deleted (that is, which will be reformulated). Thus, the stretch of the Reparandum is known by the stretch of the Reparans. The essential element in the disfluencies appear to be the Interruption point and that is why, in the case of an unachieved utterance (which is not followed by a Reparans; see below), we decided that the term preceding the point of rupture could be called Reparandum.

In this structure, the point of rupture is followed by the Interregnum, potentially used by the speaker to elaborate upon his utterance, and/or breathe: thus, a sort of verbal pause. Finally, there is the Reparans (that is at least a restart) which is the item that resume the syntagmatic process. The advantage of this description is that it makes it possible to discriminate first what precedes the break, then from what potentially follows it (that is the intrusive elements) without resuming the course of the speech, and last from what restarts, repairs or leaves the interrupted syntactic construction unfinished (Clark & Wasow, 1998; Dister, 2007; Pallaud, 2006b; Henry & Pallaud, 2003; Guénot, 2005; Pallaud & Henry, 2006 et 2007, Peshkov et al, 2013).

When the Interregnum is filled, it does not announce systematically a disruption: the utterance may be simply resumed without being repaired (suspensive interruption table 1). The disruption takes place after an adverb (a little, un peu) so that the syntactic linearity is affected in the disfluent break by the adverb‘repetition. The Interregnum contains discourse markers and a filled pause. In the Suspensive breaks we see the same elements in the Interregnum but they are not followed by a repetition of elements from the Reparandum. The terms of Reparandum and Reparans are nevertheless used because there is a rupture provoked by elements in the Interregnum. Their stretch is the term preceding the interruption (Reparandum) or following the interruption Reparans.

<table>
<thead>
<tr>
<th>Interruption</th>
<th>Reparandum</th>
<th>Interregnum</th>
<th>Reparans</th>
</tr>
</thead>
<tbody>
<tr>
<td>disfluent</td>
<td>tu perds</td>
<td>un peu</td>
<td>un peu</td>
</tr>
<tr>
<td>suspensive</td>
<td>tu perds</td>
<td>des repères</td>
<td>des repères</td>
</tr>
</tbody>
</table>

Table 1 Structure of the disfluent and suspensive self-break:

I. Objectives

Rather than trying to quantify and analyze a few predefined types of disfluency such as words that have been restarted, repaired or repeated, for example (Adda-Decker et al. 2003; Bear et al., 1992; Boula de Mareüì et al., 2005), we opted to identify all the points where the utterance flow is broken.
(self-break) and to describe the morpho-syntactic consequences of these ruptures on the verbal flow. Each time an Interregnum can be found (locatable by its specific elements mentioned above) it is possible to locate the self-break point. Moreover, as Shriberg (1999) and Beltz (2018) mentioned it, we discovered that the filling of the Interregnum is not mandatory in the repair structure. Some disfluent self-breaks are marked and followed only by the morpho-syntactic disruptions. In that case, the Interregnum contains no elements; it is empty. Nevertheless, the absence of interruptive spaces does not exclude the presence of acoustic-phonetic signs at the point of break (Shriberg 1999) or even at the Reparans. These are not analyzed in our study.

We propose to clearly distinguish between the Interregnum content and the morpho-syntactic consequences on the following utterance (the Reparans). Hence, it will be possible to analyze and compare the relationships between the self-breaks that are followed by a morphosyntactic disruption and those which are not. In that case, the description of the Interregnum content will be used to do this comparison.

II. Identification Methods: the annotation system of self-breaks and morpho-syntactic disfluencies

The identification methods and the annotation system for the breaks and morpho-syntactic disfluencies (Pallaud, 2015) were developed and applied to the eight dialogues from the CID (the French Corpus of Interactional Data; Bertrand et al., 2008; Bertrand & Espesser, 2017). The Corpus of Interactional Data is an audio-video recording of French spontaneous face-to-face conversations (8 pairs of speakers, 10 women and 6 men; about 8 hours). The corpus was recorded in an anechoic room. Each speaker was equipped with a microphone headset enabling the recording of both speakers' voices on two different sound tracks to allow for a fine-grained analysis at the phonetic and prosodic levels as well as the study of overlapping speech and disfluencies. The CID involved familiar speakers, all French native speakers, who were asked to talk about either unusual situations (3 dyads) or conflictual professional situations (5 dyads) in which they were involved. Using Praat (Boersma and Weenink, 2009) the speech signal was pre-segmented into Inter-Pausal Unit (henceforth IPU), defined as speech blocks surrounded by at least 200 ms silent pauses; this duration is well-suited to French speech. This indexation makes localization in the corpus easier and facilitates the manual orthographic transcription. It also limits the propagation of errors during the automatic phoneme alignment. More generally, the annotation process (elaborated within the framework of the OTIM project, Blache et al., 2009) used the set of IPUs as input. By using the same formal annotation scheme, multiple annotations were then performed at the different linguistic levels (Blache et al., 2010). Precise synchronization between these levels enabled to study the relationship between them.

Concerning the disfluencies, the eight corpus are totally annotated. The amount of words in the utterances in the whole corpus is: 58536 words. The 16 different speakers differ in the number of words spoken (mean: 3658; SD:2437).

Our study presents the method of identification for the breaks which is largely based on the detection of signs of interruption on the one hand, and on the other, a system of annotation which was developed to reflect the variety of morpho-syntactic break phenomena (Blache et al., 2014; Pallaud & Bertrand, 2018).

II.1. Method of Identification for self-breaks and morpho-syntactic disfluencies

So as to describe the totality of the breaks (8327 breaks) in the utterances, we successively used two methods of detection, one semi-automatic and the other manual. Both methods rely on Praat software (Boersma P. & Weenik D, 2015) as an instrument of identification, annotation and description. The transcript’s tier is segmented at the token level and include all the transcribed elements (including noises). The other tiers are used for coding the breaks which are also aligned with the tokens. The coding requires sometimes several tiers as often the breaks happen one after the other and their coding overlap. The contents of those annotations correspond to the description of the annotation method (cf. annotation). We did not distinguish the disfluencies which could be provoked by the partner talking at the same time of the speaker. We did not follow Candea (2000) on the structuring and the non structuring pauses (pauses succeeding to a filling pause or inserted in a repetition). These cases are not distinguished in our study.
II.1.1. Semi-Automatic Method: this method consists of locating the Interregnum in the verbal flow. Their contents are either isolated events (for example, a silent pause) or a sequence of several so-called ‘associated’ elements (for example, a filled pause, followed by a discourse marker or an interjection). None of the break signs have a syntactic link with what precedes or follows them. The method therefore consists of systematically noting all the pauses (silent and filled) which by definition interrupt the fluency. Many of the discourse markers and interjections in the conversations are known (in French tu sais, tu vois, bon, ben; English equivalents, you know, you see, well, okay (1,2) and can also be systematically searched for. Searching for this category of marker can be complete after a full reading of the transcript (which is a necessary step, cf. results).

1. AB_571 and err # and I err right for my part I wasn’t really in such a great state
 Et euh et je euh bon pour ma part j’était pas dans une si belle forme
2. AB_620 It was err you know a completely crazy kind of si- yeah err kind of situation
 C’était euh tu sais une sorte complètement folle de si- ouais euh sorte de situation

Depending on the content of the Interregnum, these break signs can be categorized as follows:
- those which contain only silent pauses (sp) or filled pauses (fp): 39% of the interruptions
- interjections and discursive elements solely following the interruptions: only 15%. An established list would allow for automatic searching
- ‘multiple’ Interregnum contain at least two types of these elements: 26% of the interruptions

Therefore, this semi-automatic method allows us to identify some 80% of the total breaks in verbal flow (6627 breaks).

II.1.2. Manual method: There remain some 20% of breaks in verbal flow (1700 breaks) which are not picked up as none of the previously described elements contained in the Interregnum space are present: the potential space (Interregnum space) is empty. Nevertheless, this type of breaks is disfluent as self-breaks are marked and followed only by the morpho-syntactic disruptions. In that case, our manual method consisted of a semantic hearing/reading of the transcripts which, with the help of prosodic, semantic and/or syntactic parameters reveals these ruptures.

3. BX 360 there’s also the case of the // of the two way wirings.
 Il y a aussi le cas du // du va et vient
4. BX 253 I get up prepare myself and all that and // and
 Je me lève me prepare et tout ça et // et

That one fifth of the interruptions is not marked by syntactic discord is a difficulty for our method. It means that 1700 had to be manually found. One solution would have been to search for syntactic discord which could constitute an automatic method of detection for disruptions in utterances (Blache et al., 2014). This would need to be evaluated by comparison with the results of the aforementioned manual method. The method used in automatic search for hetero-repetitions by Bigi et al. (2010) in the CID dialogues would have been another solution. It was not chosen as self-repeats are numerous in conversational utterances; hence it would have consumed a lot of time anyway to distinguish the standard repeats from the disfluent one.

II.2. The Annotation system

The coding of the phenomenon caused by the rupture takes place around the point where the verbal fluency is interrupted. Moreover, the system of annotation takes into account previous studies (Pallaud & Henry, 2004; Dister 2007, 2008) which observed the disfluent utterance effects of self-breaks in spontaneous utterances; amongst these disfluencies the authors distinguish between those disfluencies which leave the utterance unfinished, those which include changes when they are repeated

2 Some particles, such as mais (but) and donc (so), for example, are both connectors and particles and can have several uses or discursive functions (Chanet, 2004): therefore, there are some specific issues to establish the list of discourse markers.
and those which had none at all. The morpho-syntactic aspect of the item affected by the break is also taken into account. It can be in the middle of a word (word-truncation) or in the middle of a phrase (phrase truncation) and demarcates three formal segments with the following chronology: the *Reparandum*, the *Interregnum* (Break point) and the *Reparans*.

Three consequences of these breaks have been observed and studied:
1* those when the utterance is simply continued:
We called this category of breaks *suspensive breaks* since they cause a suspension (which is temporary itself) and do not reorganize the utterance (contrary to a *disfluent break*).

5. BX 224 so *err* at first sight *err* everything was *err* fine.
Ainsi euh à première vue euh tout allait euh bien

2* those in which the speaker *restarts* a part of the interrupted utterance, and sometimes makes changes when the utterance is resumed.

6. CM 996 you may get some // some fireworks like that
Tu peux avoir des // des feux d’artifice comme ça
7. BX 278 finally # all that could be connected so- // somewhere
Finalement # tout ça pouvait être connecté quel- // quelque part

3* those in which the utterance is left *unfinished* and is followed by a new construction or a new phrase.

8. CM 1139 ah yes but *I have // it was something that really made me laugh*
Ah oui mais j’ai // c’est quelque chose qui m’a bien fait rire
9. CM 1198 and *I// my ski bindings are not adjusted properly*
Et j’ai // mes fixations de ski ne sont pas ajustées correctement

Morpho-syntactic analysis of these lexicalized disfluencies (Pallaud 2002; Pallaud & Henry 2004) showed that the *Reparandum* can only be identified by the elements which will follow it and in particular which elements located before the break point are restarted in the *Reparans*. Then, the number of elements in the *Reparandum* is determined by what is in the *Reparans*. When the utterance is incomplete there is no *Reparans*; hence the *Reparandum* is the truncated item or the last item of the phrase left unfinished.

Except for the *Interregnum* (which has only one class and 6 categories), the *Reparans* and the *Reparandum* can be subdivided into classes, which in turn can themselves be subdivided into subclasses: they are hierarchically coded. The annotation can either be focused on identifying the three elements of the structure (*Reparandum, Interregnum and Reparans*) or may describe each of the elements which they are made up of, as summarized in the following table (Blache *et al.* 2014). We annotated all the elements concerned in the structure:
- In the *Reparandum*: the type of element after which there is an interruption and its grammatical status
- The different types of the *Interregnum*
- In the *Reparans*: its position (the second place in the code) and its functioning (the last one)

<table>
<thead>
<tr>
<th>Reparandum</th>
<th>Reparandum Type</th>
<th>Reparandum Category</th>
<th>Lexical Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Temporary interruption</td>
<td>W Word reparandum</td>
<td>lw Tool word</td>
</tr>
<tr>
<td>I</td>
<td>Definitive Interruption</td>
<td>P Phrase reparandum</td>
<td>lw Lexical word</td>
</tr>
</tbody>
</table>

Interregnum B
no no interval
sp silent pause (> 200ms)
fp filled pause
dc discursive marker
ps parenthetical utterance
rt truncation repetition

<table>
<thead>
<tr>
<th>Reparans RA</th>
<th>nr no restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reparans_position_type</td>
<td>wr word restart</td>
</tr>
<tr>
<td></td>
<td>dr determinant restart</td>
</tr>
<tr>
<td></td>
<td>pr phrase restart</td>
</tr>
<tr>
<td></td>
<td>or other restart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reparans_type</th>
<th>co continuing the item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wc repairing word without change</td>
</tr>
<tr>
<td></td>
<td>rp repairing through repeating</td>
</tr>
<tr>
<td></td>
<td>rc repairing with change in the truncated word</td>
</tr>
<tr>
<td></td>
<td>rm repairing with multiple change</td>
</tr>
</tbody>
</table>

Table 1 System of Annotation for Breaks in Verbal Fluency

II.2.1. The Reparandum (R or I)
Within the Reparandum (R or I) two sorts of data are coded (the item is in itallic and its code is underlined):
*the element affected by the break (second position: R,W, tw)
*the type of word (last position: R,W, tw,)

The element affected by the break (in italic):
Word fragment (W)
10. AP 246 a **collea**- (R,W,lw) well (B,dc) a guy (RA,dr,rc)
Un **collè**- bon un **type**

Phrase fragment (phrase truncation P)
11. CM 67 we were **completely** (R,P,lw) err + (B,fp,sp) **completely** (RA,wr,wc)
Nous étions **complètement** euh + complètement
12. CM 24 this is (I,P,tw B,no) that evokes nothing
C’est ça n’évoque rien

The type of concerned lexicon: (in italic):
- tool word tw
13. CM 32 where (R,P,tw) err yes (B,fp,sp,dc) where (RA,wr,rp) you lose a little
Où euh oui où tu perds un peu

- lexical word lw
14. CM 67 wewere **completely** (R,P,lw) err (B,fp,sp) **completely** (RA,wr,wc)
Nous étions **complètement** euh **complètement**

II.2.2. Potential Interregnum or Break (B) (table 1)
The Interregnum, which potentially can be filled, is located and coded to the right of the break point except when it is empty, in which case it is coded in the Reparandum. The breaks are in italic and their code is underline.
Examples of Breaks:
II.2.3. The Reparans or Repairs (RA)

When the Reparandum is coded (I), it means that the utterance is left unfinished. In that case, there is no Reparans:

18. AB_2864 I had gone to a show to the theatre to The Rochelle with (I,P,tw) err (B,fp) I do not remember any more
J’étais allée à une pièce de théâtre à La Rochelle avec euh je m’en rappelle plus

When the interruption is repaired, two types of data are coded in the Reparans RA: their position (the second place of the code) and their functioning (the last one).

II.2.3.1. The position of the Reparans which also shows the extent of the Reparandum (2nd position in the code)

- No restart (nr): the sentence is simply suspended and continued after the Interregnum
19. CM 33 you lose a little (R,P,tw) how would you say err + (B,dc,fp,sp) your references marks (RA,nr,co)
Tu perds un peu comment on dit euh tes points de repères

- Minimal restart at the beginning of the word, Word restart (wr)
20. CM 67 we were (R,P,lw) completely err + (B,fp,sp) completely (RA,wr,wc)
Nous étions complètement euh + complètement

- Determiner restart (dr)
21. AP_246 a collè- (R,W,lw) well (B,dc) a guy (RA,dr,rc)
Un collè- bon un type

- The beginning of the phrase is restarted, Phrase restart (pr)
22. YM_1640 but anyway you have to (R,P,lw) err (B,fp) you have to (RA,pr,rp)
Mais de toutes façons tu dois euh tu dois

- Other types of restart (or)
23. MG_569 he makes a sort of (R,P,tw B,no) // he is in a sort of village (RA,or,rm)
Il fait une sorte de // il est dans une sorte de village
24. EDF_38 now the water is twenty me- (R,W,lw B,no) // the water coming in is twenty cubic meters (RA,or,rm)
Maintenant l’eau est de vingt mè- // l’eau qui arrive est de vingt mètres cubes

II.2.3.2. The Reparans functioning

The coding of the way the Reparans functions shows whether in the restart, one or more elements of the utterance have been changed or whether the utterance simply continues:

- Simply continues without restart (co)
25. AP_242 the (R,P,tw) err (B,fp) husband (RA,nr,co)
Le euh mari

- Repairs the truncated word without change (we)
26. AP_249 the f- (R,W,lw B,no) // family (RA,wr,wc)
- repairs through repetition (rp)

27. CM_33 yes where you lose a little (R,P,lw) err + (B,fp,sp) you lose a little (RA,pr,rp)
of
Oui là où tu perds un peu euh + tu perds un peu de

- repairs with change in the truncated word (rc)

28. AP_246 a colleag- (R,W,lw) well (B,dc) a guy (RA,d,rc)
Un collè- bon un type

- with multiple changes (rm)

29. CM_56 and we have go- (R,W,lw B,no) // we had rented (RA,pr,rm) a car
Et nous sommes par- // nous avons loué une voiture

30. YM_176 and then I did (R,P,tw B,no) // sometimes I dreamed I did it (RA,or,rm)
Et alors j’ai fait // parfois j’ai rêvé que je le faisais

III. Some results

In addition to providing a scheme of annotation and resources for spoken French, this study
aimed to describe and compare the characteristics of the two types of self-break (suspensive and
disfluent) which are evidenced. Several criteria were considered such as frequency, number of words
between breaks, the elements which follow the break, its position in the phrase/proposition and tool
words/lexical words).

III.1. The percentage of Suspensive and Disfluent Breaks

<table>
<thead>
<tr>
<th>Method of calculation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The total number of breaks is obtained by finding all the cases of Reparandum (R,P and R,W) and all</td>
</tr>
<tr>
<td>cases of abandon (I,P and I,W).</td>
</tr>
<tr>
<td>The suspensive breaks are the Reparans RA,nr,co.</td>
</tr>
<tr>
<td>The disfluent breaks are the remaining Reparans (RA,) and the I,P and the I,W</td>
</tr>
</tbody>
</table>

On average, more than half of the observed breaks (58%) were suspensive, the remainder
being disfluent. The disfluent breaks can be subdivided into two categories: restarted utterances and
abandoned utterances. Regardless of the speaker, the breaks followed by a disfluent restart (not all
restarts and repetitions are disfluent, Bigi et al. 2010) are much more common than those left
unfinished (an average of 29% and 13% respectively). These results showing a greater number of
restarted disfluent breaks than abandoned ones, had been also observed in recordings of semi-directed
conversation (Pallaud & Henry 2007; Dister 2007). Then, we can consider these results in 8 CID
dilogs as solid and representative of dialogue situations in spontaneous conversation.

As we show previously (Pallaud and Bertrand 2018) interruptions which are merely
susceptive occur on average every 12.3 words (SD:1,9). That means, for the CID corpus, an average
of 8.2 suspensive breaks occur per every 100 words. They could be further categorized into breath and
non-breath pauses (Trouvain et al. 2016), a distinction we did not try.

The disfluent breaks are on average considerably less numerous than the suspensive ones (one
every 18.8 words; SD:7,7) and vary a lot more from speaker to speaker. Using Beltz et al. (2018)
parameter, we found a similar result: 5,3 disfluent breaks every 100 words. Their study reviewed some
recent studies on disfluencies in general and reported that, in spontaneous speech, these types of break
occur in about 6 per every 100 words. In fact, the comparison is not easy as it is not mentioned what is
considered as disfluencies in general.

Our hypothesis is that the frequency of the suspensive breaks is an essential component of
speech flow. On the contrary, the considerable variation in the frequencies of disfluencies produced by
the speakers suggest that disfluent breaks are representative of utterance characteristics which are
specific to each speaker. Could they be a mark of some individual dimension to speech while
susceptive breaks mark the functioning of the speaker’s oral and cognitive production (e.g. memory
III.2. Similarities and differences in Suspensive and Disfluent Breaks

A speaker who often interrupts his/her utterance has short interval (in number of words) and long interval when he/she interrupts less. A speaker who produces short sequences of words between two suspensive breaks has regularly and often some time to pause (the duration time of the Interregnum) and to pronounce his/her utterance. Does he/she therefore produce less disfluencies? If this was true, it would suggest a negative correlation in the number of words between two suspensive breaks and in the number of words between two disfluent breaks.

III.2.1 Average interval between two breaks. a comparison between suspensive and disfluent interruptions.

The speakers have varying number of suspensive and disfluent breaks (Fig. 1) in their utterances but do these two types of breaks differ and may be considered as independent. Considering the average number of breaks for each speaker, we observed a much higher variability in the average number of words between two disfluent breaks (18.7; SD: 7.7) than in the suspensive ones (12.3; SD: 1.9). We found a tendency for the suspensive breaks to be negatively linked with the disfluent ones (-0.36). Some speakers have higher interval between two disfluent interruptions even if their suspensive breaks are frequent (speakers 2, 11 and 12 for example) which is not in conformity with our assumption. These speakers do many suspensive and disfluent self-interruptions. The speakers (4, 7, 9 and 13 for example) have a high disfluent interval and a low suspensive interval which is in conformity with our assumption: to stop frequently in a suspensive way helps to avoid disfluent interruptions.

![Average number of words between two breaks](chart.png)

Fig.1 The average number of words between two breaks (suspensive and disfluent breaks) for each speaker.

The same comparison (Fig.2) between the disfluent breaks followed by restart (on average: every 27.5 words; SD: 11.3) and disfluent breaks left unfinished (every 67.5 words; SD: 39.8) showed a positive correlation (+0.56; p<.02). Comparing the standard deviation SD in these two types of disfluencies, shows that the disfluencies with restart happen more regularly than the unfinished ones.

3 Specialists in simultaneous translation for example (Lederer, 1981) have been able to measure the average number of words held in memory in these operations. They estimate that speakers hold between seven and ten words in reserve and have seven to ten words on hold (Blanche-Benveniste 1997: 22).
Speakers who often interrupt, restart and change their utterances, are the ones who also often leave their utterances unfinished but more irregularly. Therefore, we could consider that there are speakers who falter whatever the means and those who falter less (Pallaud & Bertrand 2018).

![Fig.2 The average number of words between two disfluent breaks (with restart or unachieved) for each speaker](image)

III.2.2. Word speed influences

In this study, we can identify and distinguish, for each speaker, the total time taken to utter the words spoken and the duration of the Interregnum within the utterances. Then, we can measure two speeds in verbal fluency: the speech speed which takes into account the whole utterance (including Interregnum) and the word speed (the utterance without Interregnum).

If the speaker disfluencies differ from one another when we consider the break frequencies could it be possible to establish a relation with the speed of the speakers talk. The word speed (that is the duration of words alone) seems to be a more precise parameter to investigate the way a speaker produces more or less disfluencies. The average rate is then 312 words per minute (SD: 23.7). This value varies depending in the speaker (from 245 to 345 words per minute). In particular, what is the relationship between the word speed for each speaker and other speech criteria, such as the number of words between disfluent or suspensive breaks and the Interregnum duration?

III.2.2.1. Relationship in suspensive breaks with the word speed

The average number of words between two suspensive breaks is 12,3 (SD1,9). When the speaker interrupts less his/her utterance, the number of the words between two suspensive breaks is greater. Could this parameter be influenced by the word rate? If the word rate increases, the number of words between two suspensive breaks could enhance. In fact, it does not significantly increase (r=+0.27). It was not possible to affirm that quicker speech makes it possible for the speaker to pronounce more words between two suspensive breaks. It is not a parameter which influences the production of suspensive self-interruptions.

III.2.2.2. Relationship in disfluent breaks with the word speed

Concerning disfluent breaks, the hypothesis is different: rapid speech flow would encourage linguistic errors which will be more numerous. As a consequence, this generates shorter sequences between two disfluent breaks (an average of 18,8 words; SD 7,7). Indeed, we observed a tendency (a negative correlation -0.36) between the rate of the words and the number of words in disfluent breaks:

4 In our corpus, the values of the speech speed vary depending on the speaker from 173 to 259 words per minute: the average speech speed is 220 words per minute (SD: 21.53).
hence, the tendency is that the quicker the speech, the more the speaker produces disfluent breaks (which is shown by the number of words between two disfluent breaks that decreases).

What are the existing relationships between suspensive and disfluent breaks and the presence of an interruptive marker (the Interregnum)? We have seen that the inventory of breaks in the utterances was established by two methods: automatic detection of the Interregnum spaces (*1), and, when there were none, the effects of the break itself (*2):

*1 The Interregnum are different in nature and consist in various elements in the verbal flow: silent or filled pauses (err) and discursive markers. These elements may or may not be associated. Four categories were distinguished: silent or filled pauses alone, discursive markers alone and multiple spaces.

*2 Syntactic and/or semantic discord reveals an interruption which has no observable break space (or at least cannot be observed using our criteria). This Interregnum is said to be empty.

III.3.1. Distribution of Markers in Disfluent and Suspensive Self-Breaks.

Filled pauses are thought to co-occur with syntactic complexity (Watanabe et al. 2005). Do the elements in the filled Interregnum spaces have different links with disfluent utterances than those with simple suspensions of the utterance? In other words, would it be possible to predict the type of break by knowing the Interregnum content. The method used in order to answer this question was based on the number of words in the Interregnum (Fig 3). Suspensive breaks can only be detected by the elements contained in the Interregnum since, by definition, the content of the Interregnum having no effect (morpho-syntactic at least) on which follow them, the Interregnum is the only way to detect a suspended utterance. This is not the case with disfluent breaks: as was mentioned above (part II, method), for some of these breaks, the Interregnum space may be empty.

In our annotated corpus (CID), we detected and analyzed all the 8327 breaks. The major difference between the suspensive breaks and the disfluent ones is that this last category has nearly half of its Interregnum empty (46%; Fig. 3) which is not the case with the suspensive ones that have no empty Interregnum (by definition).

![Disfluent Breaks](image)

Fig. 3 Contents of Interregnum spaces in Disfluent Breaks

These cases of morpho-syntactic disruption without a filled Interregnum were manually detected: they represent a fifth of total breaks (1700 breaks; 20%). Nevertheless, (Fig 4), all types of Interregnum are present in the suspensive breaks and in the rest of the disfluent breaks: silent or filled pauses alone, discursive markers alone and multiple content.
Fig. 4 Filled Interregnum in suspensive and disfluent breaks. Percentage of silent or filled pauses alone, discursive markers alone and multiple content in the Interregnum (suspending and disfluent breaks)

We note that, if all the different types of Interregnum content are presented in both disfluent and suspensive breaks, they are not present to the same extent. Whether suspensive or disfluent, the breaks are more frequently followed by silent pauses and multiple contents in the Interregnum (around a third). But, if considering the silent pauses alone, the suspensive breaks are more frequent (38% against 29%), the inverse is found when we consider the Interregnum with multiple content (31% against 37%). Thus, as we observed the silent pause is not only present in suspensive breaks. It is associated with a disfluent break in a significant number of cases (Duez 2001a et b). Filled pauses alone and discourse markers alone were less observed (around a fifth). In the suspensive breaks, the filled pauses were less frequent than in the disfluent breaks (12% against 19%). The contrary was observed with the discourse markers alone (20% against 15%)

III.3.2. Distribution of Markers in the two types of Disfluent Break (with restart or unfinished)

Whoever the speaker may be and whatever the interrupted item (Fig 4) (Pallaud & Bertrand, 2018), disfluent breaks with restarts are much more common and regular (see above fig.2) than those when the utterance is left unfinished (29% versus 13% of total breaks).

Fig. 5 Percentage of the three types of self-interruptions: suspensive breaks, disfluent breaks with restart and unachieved breaks
Amongst them, there are also differences in position concerning the Interregnum (Fig 6). More than half of the disfluent breaks with restart (50% of the disfluent breaks) are followed by an empty Interregnum space. The remainder are followed by simple silent pauses and multiple element Interregnum (16%, 14%) and to a lesser degree, by discursive markers and filled pauses (7% and 8%)

Concerning those disfluent breaks which are unfinished, the figures are quite different. The proportion of empty Interregnum is only a quarter (28%). These interruptions are followed, in a third of the cases by multiple element Interregnum (33%), by simple silent pauses (18%), by filled pauses (14%) and by discursive connectors (10%). As is shown in the Fig. 6, our semi-automatic detection (based on the presence of an Interregnum) enables us to detect three quarters of the left unfinished utterances, but only half of the breaks with restart. This result suggest that these two types of disfluent breaks ought to be considered separately and that it would be useful to develop separate methods to detect them. For example, it is interesting to note that the breaks with restart always contain repeats whereas the unfinished breaks have none. Using a detection of self-repeats, in the case of empty Interregnum (1704 disfluencies in the corpus CID), it would be possible to find the 1367 disfluencies with restart. The remain, 337 cases of unfinished utterances, requires a manual detection (4% of the total self-breaks but 27% of the unfinished self-breaks).\(^5\)

![Disfluent Breaks](image)

Fig. 6 Proportions of types of insertions in disfluent breaks with restart (RA) and when the utterance is abandoned (I) (number of items)

III.4 The importance of the informative utterance in a spontaneous conversation

If we try to give priority to the informative communication it may be worthwhile taking out of the oral utterance those elements which are not directly concerned with the passing on of information. Disfluencies can be said as phenomena that do not add propositional content to an utterance (Fox Tree 1995: 709). The deletion of certain elements in the oral utterance would enable us to concentrate on a ‘cleaned up’ version of the utterance, a sort of a ‘maximal phrase’ (Blanche-Benveniste, 1997). This is the case for some of the elements in the breaks which we have described here. The disfluent Reparandum is what the speaker himself decided to reject, by proceeding with a rephrasing. Hence, the size of the disfluent Reparandum is determined by the form of the Reparans (i.e. the readjustment). All the Interregnum intervals (editing phases) could also be eliminated since these instances do not contain any information (nevertheless, they are valid for a discourse analysis). Since it is impossible (with our current means) to distinguish between respiratory breaks and hesitation (cognitive activity)

\(^5\) The total of breaks : 8327. The total of unfinished utterances : 1222
these Interregnum intervals are all considered in our calculations. The average proportion of the Interregnum space with regard to the size of the utterance is 29.3% (SD: 4.8).\(^{6}\)

The average proportion of the Reparandum with regard to the duration of the utterance is 4.6% (SD: 2.0).\(^{7}\) If we are considering the pure informative value of the utterance, we can say that a third of those produced by the CID speakers brings no information to their interlocutor.

Conclusion

We proposed to study of frequent phenomena in oral utterances prioritizing self-breaks as an essential part of these utterances. Our method, focusing on the self breaks points, describes the identification and annotation procedures. It enabled us to introduce a classification of different oral phenomena relating to self-interruption and disfluency. In the corpus CID, the speakers could interact freely and their speech was not prepared.

Our method allows us to identify two different types of self-breaks. Contrary to disfluent breaks which generate syntactic disruption, a little over half of these breaks are not followed by a reformulation of the phrase, or an unfinished phrase or word, but by a simple continuation of the utterance. We named them: suspensive self-breaks. Their frequency (around 12 words between two suspensive breaks) remains homogenous. Our hypothesis is that the frequency of the suspensive breaks remaining homogeneous seems to be an essential component of speech flow. Disfluent breaks are much less frequent but the considerable variation between speakers suggests that disfluent breaks are representative of utterance characteristics specific to each speaker, the functioning of the speaker’s oral and the cognitive production. Thus, a comparative approach with suspensive breaks is justifiable.

Considering the average number of breaks for each speaker, we observed that suspensive breaks and disfluent breaks have a high tendency to be negatively linked. The speakers who interrupt more frequently their suspensive utterances seems to have the opportunity to have more time (more Interregnum) and hence to make less errors. This hypothesis is supported by the high tendency we observed: the quicker the speech, the more the speaker produces disfluent breaks (which is shown by the number of words between two disfluent breaks that decreases). This parameter does not influence the production of suspensive self-interruptions.

We note that, if all the different types of Interregnum content are presented in both disfluent and suspensive breaks, they are not present to the same extent. The major difference between the suspensive breaks and the disfluent ones is that this last category has nearly half of its Interregnum empty which is not the case with the suspensive ones that have no empty Interregnum. The silent pause is not only present in suspensive breaks, it is associated with a disfluent break in a significant number of cases (Duez, 2001 a). In the suspensive breaks, the filled pauses were less frequent than in the disfluent breaks, the contrary was observed with the discourse markers alone.

If we compare the two types of disfluent breaks (with restart or unfinished) we found a positive correlation of breaks with restart with the unachieved ones, the last being more irregular. We could consider that there are speakers who falter whatever the means and those who falter less. Our semi-automatic detection (based on the presence of an Interregnum) enables us to detect three quarters of the left unfinished utterances, but only half of the breaks with restart. This result suggest that these two types of disfluent breaks ought to be considered separately and that it would be useful to develop separate methods to detect them.

The breaks and reorganizations do not seem on the whole to counter the running of the verbal sequence, but rather to impose a rhythm which is inherent to oral utterance (Pallaud, 2008). It even seems that this rhythm which is particular to the creation of oral expression is, on the contrary, one of the conditions of optimal interaction in so far as by generating the reorganization of the utterance (a recurrence) and by alternating moments of silence and various interjections, makes the informational load of the utterance easier to bear (Boula de Mareüil *et al.*, 2005; Fraundorf, & Watson 2011 ; McAllister, *et al*. 2001; Pallaud & Henry 2004; Shriberg, 1995).

Hence, it would seem preferable to remove any pejorative connotations from the term disfluency, linked to the term *dysfluency*, which is itself reserved for phenomena which have been

\(^{6}\) Duration of the statement = duration of the Interregnum + duration of the words

\(^{7}\) The size of the Reparandum followed by disfluency is estimated by the size of the disfluent Reparans.
observed in certain pathologies such as stammering (Pallaud & Xuereb 2008) or Parkinson’s disease, for example. Furthermore, the data obtained with ‘standard’ speakers enables a strategy of comparison with the utterances made by people affected by these different pathologies and to better describe their dysfluent characteristics. Other researches are focused on the comparison of the differences and similarities of disfluencies in spontaneous speech in a context of second language acquisition with native (L1) and non-native speakers (Belz 2018). In both cases (pathology as well language acquisition), it seems worthwhile that the fluent disfluencies (standard speaker) can be described.

References

Blache, Ph., Bertrand, R., Ferré, G., Pallaud, B., Prévat, L. (2014). The Corpus of Interactional Data: a Large Multimodal Annotated Resource. Handbook of Linguistic Annotation. <hal-01231901>

Dister A. (2007). *De la transcription à l’étiquetage morphosyntaxique. Le cas de la banque de données textuelles orales VALIBEL. Université de Louvain, Thèse non publiée.*

Pallaud, B. & Bertrand, R. (2018). Auto-interruptions et disfluences à l’oral C'était euh tu vois complètement loufoque comme si- ouais euh comme situation. Dixit Grammatica (acceptée) : fiche 6064) HAL Id : hal-01468761, version 1

