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ABSTRACT

This article considers the long-run equilibrium distribution of an economy populated by
heterogenous and present biased quasi-hyperbolic discounting agents. In a first configu-
ration with logarithmic utility funétions and Cobb-Douglas production technologies, this
article establishes the existence and the uniqueness of the equilibrium: only one agent,
determined by the highest value of a coefficient building from both the degree of present
bias and the rate of discount, will have a positive long-run consumption and a positive
long-run wealth. A second configuration with constant elasticities of substitution utilities
and linear production technologies is then considered. This article similarly establishes
the existence and the uniqueness of the equilibrium. There is generically a unique agent
with the highest growth rate for his consumption and his wealth. This agent is determined
by both preferences and technology parameters and may change following a technological
shock.

KeywoRrDs: Heterogeneities, quasi-hyperbolic discounting, linear decision rules.
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1. INTRODUCTION

The model with heterogenous agents that differ from their valuation of the future and their
discount rate has motivated a large literature focused on the features of the associated inter
temporal equilibrium. The Ramsey’s Conjeclure states that only the most patient amongst the
agents would end up exhibiting positive consumption levels in the long run, all of the other
agents being associated with nil consumption levels. It was rigorously proved by Bewley [4]
who establishes that the long-run equilibrium assumes the following properties: the most
patient amongst the agents holds the whole capital stock of the economy and assumes
positive consumption levels. By contrast, all of the remaining agents have asymptotically
nil consumption levels. It is also worth mentioning that the level of capital in this model
corresponds to a modified golden rule defined from the discount fadtor of the most patient
agent.

The assumption according to which agents would differ in their valuation of the future
and their discounting rates has led to numerous further developments. Becker [1] was
the first to reconsider this Ramsey’s Conjecture under the assumption of imperfeét financial
markets—a non-negativity constraint is imposed on household capital holdings—. The
long-run equilibrium is then associated with two classes of agents, namely the most patient
capitalist agent who owns the whole capital stock of the economy, and the other more
impatient workers agents who consume their current wages. Becker & Foias [2] and Sorger
[12] have later enriched this framework with strategic dimensions.

This article is interested in the status of the aforementioned Ramsey’s Conjecture when agents
have quasi-hyperbolic discounting and simultaneously differ by their discount rates and
their degrees of present bias. Dating from the seminal contributions of Phelps & Pollack
[g], Laibson [8] and Frederick, Loewenstein & O’Donoghue [6], the benchmark model for
analyzing temporal inconsistencies got anchored on the quasi-hyperbolic discounting hypothesis
and gained popularity through the so-called f—J model, where ¢ € ]o, 1[ features the discount
rate and 8 < 1 features the present bias. Numerous experiments' have indeed consistently
illustrated how the quasi-hyperbolic discounting B — 6 model could provide a more accurate
description of adtual choices and arbitrages over time than the canonical model as settled
by Samuelson [11] and Ramsey [10]. A large number of studies (see Frederick, Loewenstein
& O’Donoghue [6]) have also ruled field or laboratory experiments in order to evaluate the
B and ¢ parameters. They all document a strong heterogeneity between the individuals
regarding these parameters.

This article considers a simple competitive economy with heterogenous quasi-hyperbolic
infinitely-lived agents. Agents preferences being temporally inconsistent, it is assumed that
these agents build from a sequence of successive selves, their decisions resulting from a
Nash equilibrium between such selves. This assumption is commonly referred as depicting
a sophisticated behaviour. This is completed by a production side with a standard neoclassical
produdtion technology. While no explicit solution would be available in the general case,
the argument of this article is specialized to specific parametric formulations that will allow
closed forms for the strategies of the agents.

In a first configuration with logarithmic utility funétions and Cobb-Douglas production

1See Thaler [13], Benzion, Rapoport & Yagil [3], Chapman & Elstein [5] or Frederick, Loewenstein
O’Donoghue [6] for a general presentation.



technologies, this article establishes the existence and the uniqueness of an equilibrium
with heterogenous quasi-hyperbolic discounting agents. The properties of the long-run
steady state remain close from the ones of the classical Ramsey model: only one agent
will have a positive long-run consumption and a positive long-run wealth. That agent is
however determined by the value of a coefficient where the two parameters 8 and 6 come
into play and interact. The impatience of a given agent—a relatively weak value for 5—can
be compensated by a relative low present bias—a relatively high value for g.

In a second configuration with constant elasticities of substitution utilities and linear pro-
duction technologies, this article similarly establishes the existence and the uniqueness of
an equilibrium with heterogenous quasi-hyperbolic discounting agents. This competitive
equilibrium converges towards a steady growth rate for the capital stock. Interestingly, the
consumptions of the agents are going to assume constant but distinét equilibrium growth
rates. These individuals rates of growth are not only determined by the two parameters g
and ¢ but also by the constant elasticity of substitution of the utility and the constant pro-
ductivity of the capital stock. There is generically a unique agent with the highest growth
rate for his consumption and his wealth. This agent determines the long-run growth rate
for the capital stock of this economy. The consumptions of the other agents become negli-
gible in the long run when compared with the one of this agent. It is further proved that a
given perturbation in the value of the constant productivity of the capital stock parameter
may end up in modifying the ranking associated with the individual consumption growth
rates between two distin¢t individuals. The case of naive agents is finally analysed: this
is shown to favour (detriment) capital accumulation when the elasticity of substitution is
greater (lower) than one

Section 2 introduces a general environment with present biased quasi-hyperbolic discount-
ing agents. An environment with logarithmic utilities and Cobb-Douglas production tech-
nologies is considered in Section 3. Another environment with CES utilities and linear
production technologies is analyzed in Section 4. All proofs and technicalities are gath-
ered in an final appendix.

2. THE MODEL

Time is discrete. Consider a competitive economy with 7 infinitely-lived agents indexed
by i € {1,2,...,n}. Let (¢}),_ denote the consumption sequence of individual i, while
(w1),cn and (R;),.y respectively stand for the wage and gross interest rates sequences he
faces with, for R, = 1 + r; and r, the interest rate.

Letting a! denote the capital stock held at date ¢ € N by agent i, his budget constraint for
date ¢ is expressed as follows:

al,, = Rial + w; — cl.
Agents are further subject to an inter-temporal budget constraint defined over their lifespan.

Assuming that ;% (w;/ [12, Rr) < +o0, the actualised wealth of agent i, denoted as W/,
is defined by:

+00
W, =R+ Y —

Wr
T b
T=t+1 Hf:t“ R/



while the inter-temporal budget constraint can be expressed, for every ¢ € N, as:

Wiy =R (W = ¢f), (1)

with W/ >0 forevery ¢>o.

The preferences of the agents are associated with quasi-geometric discounting. For a given
agent i € {1,2,...,n}, his self at time ¢ € N ranks consumption sequences according to:

+00

u(c!) + B, [Z(&i)Tu(cf+T)], Bi > 0,6 €lo1l. (2)
T=1

The decisions of agent i € {1,2,...,n} stem from the Nash equilibrium of a strategic
game between the successive selves—a Markov equilibrium, also commonly referred as
a sophisticated behaviour. Within an infinite horizon setup, it was established by Krusell
& Smith [7] that it is possible to build a multiplicity of equilibrium solutions between
the different selves. In opposition to this, for a finite horizon environment, the solution
obtained by backward induction is unique. This article will retain the infinite horizon
solution that is obtained as the limit of the finite horizon one. This enables to select a
specific solution amongst the multiple admissible infinite horizon ones.

This article willl consider two separate configurations, i.e., a first one with a logarithmic
utility function and a Cobb-Douglas produdtion technology and a second one with an iso-
elastic utility function and a linear production technology. As this will be established in the
remaining exposition, both of these configurations will be associated with linear decision
rules for the consumers i € {1,...,n}:

C:f = /liI/Vti (3)

with 4; € [0,1]. Without loss of generality, agents will henceforward be ranked according
to A; € Ay < ... < A,, where it is assumed that A; < A,. The solution that is obtained as
the limit of the finite horizon game assumes well-behaved regularity properties — they are
indeed linear. In opposition to this, the strategies raised by Krusell & Smith [7] were not
smooth.

The economy under consideration also integates a competitive representative firm with a
production technology F(K, L) that satisfies:

AssumpTION T.1. F(K, L) is a function of class €%, homogeneous of degree one, increases
with K as DgF(K,1) > o, and is concave.

K, being the capital stock of period ¢ and L, the quantity of labour of that same period ¢,
the capital stock being assumed to fully depreciate on use within period ¢. All individuals
inelastically offer 1/z units of labour, so that the global labour supply amounts to 1. The
competitive wage rate and the competitive interest factor are thus available at date ¢ € N
as:

1
Wy ;DLF(K;, 1), (4.61)

DgF(K;,1). (4b)

R,

An equilibrium is then characterised as follows:



DEFINITION 2.1. A competitive equilibrium of the economy is characlerised by a sequence(W/, K,),
such that, for every t € N and everyi € {1,2,...,n}:

Wi, = Ria(1 = 2,)W/, (54)

Ki = F(K,1) = ) LW/, (50)

i=1

starting from initial conditions W} = Roal + wo + Y,;55|w,/[142, R:| with a! given such that
»al =K, and (w;, R;) given by (4a) and (4b).

Equation (5a) is obtained from the intertemporal budget constraint (1), respectively re-
placing R, by Equation (44) and ¢! by Equation (3). Similarly, equation (56) derives from
the integration of the consumption decision rules (3) into the resource constraint of the
economy.

3. AN ECcONOMY WITH LOGARITHMIC PREFERENCES AND A
Coss-DoucLAs PRODUCTION TECHNOLOGY

This section will consider a configuration where u(¢) = In(¢) and F(K;, L;) = (K;)*(L,)*™%,
@ € [o,1], that in turn implies equilibrium returns of w; = (1/n)(1 — @)(X;)* and R, =
a(K) .

LEMMA 3.1. For u(c) = In(c) and F(K,;, L;) = (K;)*(L,)*™%, a € [o,1], the decision rules of the
consumers resulting from a Nash equilibrium between the successive selves list as:

o = LW,
_ 1-90;
" 1-6;+ Bid;

LEMMA g.2. Up to its existence, a competitive equilibrium of the economy is characlerised, for every
i€ {1,2...,n}, by

4 Wila(1 - 2,)]

yo Wit | o
fon W [a(1 = 2)] /[1 - a1 - 4;)]

K = (Kt)a(l - %), (6b)
;l=1 /ll'mfoi[a(l B ﬂ'i)]t

L aWile(i - 29)]' /[ - a1 - )]

starting from initial conditions W} = Roal + wo + 3155w /142, Re| with al given such that

» . al =K, and (w;, R;) given by (4a) and (4b).

with vy, =

PROPOSITION 3.1. — Consider the above economy:
(i) if al > o for everyi € {1,...,n}, there exists a unique competitive equilibrium,
(ii) the competitive equilibrium converges to a steady state characlerised by the following features:

a/ the capital stock converges to a modified golden rule like steady state with a value K that
corresponds to the only preferences parameters of agent 1 through the parameter A,:

oK) = = ?)




b/ agent 1 is the only agent with a long-run positive inter-temporal wealth W* = (K)*[1 -
a(1 = 1,)|/A.. By contrast with this, the wealth of all the other agents is to converge
to 0;

c/ agent 1 is the only agent with a long-run positive consumption ¢* = (K)*[1 - a(1- 1,)].
By contrast with this, the consumption of all other agents is to converge to o.

This proposition hence yields a range of conclusions which are close to the ones of the
classical Ramsey model: only one agent will have a positive long-run consumption and a
positive long-run wealth. That agent is however determined by the value of the coefficient
A; where the two parameters 3; and J; come into play and interact. The impatience of a
given agent—a relatively weak value for ,—can be compensated by a relative low present
bias—a relatively high value for g;.

4. AN Economy wiTH C.E.S. UTILITY AND A LINEAR
PRODUCTION TECHNOLOGY

4.1 THE SOPHISTICATED AGENT

Preferences are modified to a representation u(¢) = Y7 )(1 - 1/0), o # 1, while the
production technology is changed to F(K;, L;) = AK;, A > o. It immediately follows that,
for every ¢t € N, R, = A, w; = o. It is similarly derived that W, = Aa!. An extra assumption
is needed in order to maintain a bounded utility for the agents:

AssUMPTION PT.1. Vi e {1,2,...,n}, 6;4"7/7 < 1.

LEMMA 4.1. Foru(c) = ¢'"7/(01—0), 0 # 1 and F(K;,L,;) = AK;, A > o, the decision rules of
the consumers resulting from a Nash equilibrium between the successive selves list as:

o = LW/
where the coefficient A; is defined as the solution of the following equation:

[4( - )] = 6,411 - 2,1 - Bo)]- 8)

Interestingly, in equation (8), the coefficient 1; not only depends on the preferences pa-
rameters o, §; and S; but also on the technological parameter 4.

PROPOSITION 4.1. — Consider the above economy:

(i) if @’ > o for everyi € {1,...,n}, there exisis a unique competitive equilibrium charalerised,
for every t € N and for everyi € {1,...,n}, by:

W)= A" 1 - 1,) (9a)
¢l = 1,471 - 2,) (9b)
and by

Ky = AKt(l - 7t>,
LA - ) el

i=1

n (1 — /li)taf, ’

i=1

for y; =



(ii) the competitive equilibrium converges towards a stationary equilibrium characlerised by a
growth faclor of the capital stock K+, /K, that converges towards a limit A(1 — A,).

Within this environment and as made clear by Proposition 4.1, the consumptions of the
individual agents are going to assume constant but distin¢t equilibrium growth rates. All
of the consumptions of the agents i > 2 would hence become negligible in the long run
when compared with the one of agent i = 1 who is associated with the lowest value for
Ai, the long-run growth rate of the capital stock being further exadtly the same as the
consumption growth rate of that later agent. From Equation (8), the values of A; are to
be jointly determined by 4, o, 6; and S; for any of the individuals i € {1,...,n}. The
following proposition then establishes how a given perturbation in the value of 4 may end
up in modifying the ranking associated with the coefficients A; for two distin¢t individuals.

PROPOSITION 4.2. — Let 0 > 1 and assume that two individuals i € {1,2} are characlerised by
parameters 6; and B; such that:

01 <0, PB1>pPs and B0, > Bods.

There then exists some critical value for A, labelled A, such that:

ford< A4, a,< Ag;
forA> A, A, > A,.

This proposition shows how a technological shock—a change in the parameter 4—may
result in a change in the identity of the agent who is determining the long-run growth rate
of the economy.

4.2 THE NAIVE AGENT

It has up to now been assumed that agents have sophisticated behaviours. An alternative
assumption however states as the hypothesis of naive agents. A naive t-self undertakes its
decision at period ¢ as if it could also select all of its future decisions. For the logarithmic
case of Section 3, naive and sophisticated behaviours lead to the same decision rules. Op-
positely and under the current assumption of CES utility functions, naive and sophisticated
behaviours result in distinct optimal strategies. This section is aimed at comparing these
two strategies.

Assume instead that any self determines his behaviour for his decision period as if he
could equally undertake the whole range of future decisions. This also corresponds to the

solution for a self with a perfeét commitment capacity. Henceforth labelling as naive such
a range of behaviours, it is established :

PROPOSITION 4.3. Foru(c) =¢'"7/(1—0),0 # 1 and F(K,;, L,;) = AK;, A > o, consider a naive
agent:

(i) His decision rule is given by:

C; = /ll"I/th,
25 _ 1— (6i)o'A0'—1 '
f1-(6)7477 1 = (B)7)




(i) ForB;i <1, 4; <A} &= o <1andd; > A} & o > 1.

(iii) Consider an economy populated by two agents with the same (B, ) parameters and assume
that one is sophisticated while the other one is naive. The naive agent accumulates more (less)
capital that the sophisticated one when o > 1 (o < 1).

Consider an economy populated with two agents with the same (3, §) parameters, the first
being sophisticated while the second is naive. For o > 1 (o < 1), the naive (sophisticated)
agent determines the long-run rate of growth.
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A. PROOF OF LEMMA 3.1

Consider an agent with the preference parameters (8, 6). The game between selves is simplified by
introducing the following variables:

W,
Xt:—t
I,

Ct

X = —
t Ht

with IT; defined as:
II,=1
t
fort>1, I, = l_[RT
T=1

The intertemporal budget constraint (1) becomes: X;., = X; — x, with x, < X;. The objective
fundtions of self ¢ (2) can be written as:

+00
lnxt + ’BZ(ST lan.T + Ht

T=1

with H; some term that is exogenous for the agent.

Consider the game defined on a T' period horizon. The variables X; and x; are now denoted by
X[ and xI'. For ¢ < T, the t-self objective function is:

T-t
Inxl + B 6" Inxf,, +H

T=1

The game is solved by backward indudtion. As the objective function of all selves are homothetic,
it is straightforward that the solution will take the following form:

«T = AT XT
It is first noticed that, for ¢ = 7, the solution is obvious with /15 =1.
Then assume that the game has been solved till period ¢ + 1. One gets: V7 with 2 <7 < T,
T T T T T
Xprr = Apar (1 - At+r—1) T (1 - /lt+1) Xin

T _ )T T
and Xiy1 = /lt+1Xt+1'

T
Inx! + ,B(Z(ST)lnXt_{1 +Gl
T=1

Replacing in the #-self objective function, we get:

with G!' some term that is exogenous for the self. Finally, the program of self # can be written as:

T
T T T
(xrtTr};%(l)[lnxt + ﬁ(Zé )lnXHl]

T=1

T T _ yT
s.it.x, + X, =X,

The solution is: x/ = AT X!, X%, = (1 - A) X} with

t+1

A= . r
1+BYI, 67
For ' — +oo, the limit strategy is derives as:
1
lim A7 =1= ———
Tt 1+ B5/(1-0)
that completes the statement. QED



B. PROOF OF LEMMA 3.2

The argument of the proof revolves around a careful study of the dynamics of the system as de-
scribed by Equations (5a4) and (55). Letting firstly the auxiliary variable y; be introduced as:

(K)"
= . A1
Xt W} ( )
From Equation (5a) considered for i = 1, it is obtained that:
Wi (Kia) ™ = aa - )W, (A.2)

Considering Equation (56) and dividing each member by the corresponding one in Equation (A.2),
it is derived that:

(Kt+1)cr _ (Kt)a _ i Ai ﬁ
W al- )W Sa(i-1,) WY

t+1

n

Xt A I/Vti
— = — —_—
X = - ) 2. a(1—1,) W}

i=1

where the second equation takes advantage of the definition (A.1). Completing then a further
change of variables:

&=yl = 4], (A.3)

it is finally obtained that:

St =41 — Z /lthl[a/(l - Al)]t' (A.4)
i=1 t
Making use of Equation (5a) considered for i =1 and i € {2,3,...,n}, it derives that the relative

wealth with respect to the most patient agent states as:

Wi _ (-

Wi (=)W,
w; (1_4i>tm
_ — = _
W} Wi

1-4
Replacing then Equation (A.5) in Equation (A.4), it finally derives that:

WA
{1 =4 — Z/l[a th‘

Developing backward the R.H.S. of the preceding equation:
{i=do- Z pppids Z[a : (A.6)
i=1 0 =0

By definition, {; must be non negative for every ¢ € N as y; > o prevails for every £ € N. As
a(1 - ;) < 1for every i € {1,2,...,n}, (1), converges to a limit £ that is determined by
Equation (A.6):

Z/l Wii—a 1—/1)'



Further, as {; > o for ¢ € N, it derives that >

Finally establishing that { = o, assume, ad absurdum, that { > o does prevail. From the respective
definitions of y; and ¢, it derives that:

K [0
4 = (M;)l [e1-2,)] —¢>0 as & -+,
t
Wl
= (Kt)“ ~ %[cx(l -] as ¢ oo
t =
It is therefore obtained that:
I/th t +
— 0 as — +09,
(K:)"
and I’Vti B I,th I’th

(&) Wi (k)"
B (1 -4 )tmol‘ w}
- I,Vol (Kt)a

From Equation (58), it is possible to write:

K= () 1= Y 0]

But it has been established that W[ /(K;)" — 0 as t > +co, so that the preceding equation in turn
implies that K, — K = 1 as ¢ — +oo, for K that is such that K = (K)", which is impossible as this
corresponds to an overaccumulation conﬁguration. The wealth of the agents would become infinite

— 0 as t— +oo.

1-A4

in conjunction with ¥/%(w;/ [1:-, Rr) = +c0, whence the proof that ¢ = o.
As ¢ = o, it is obtained that:

40_2/1 Wii-a 1—/1)

Y /l.%f[ (1- )"

i=1 0 1=0
Replacing the ensued expression for {, in Equation (A.6), it is obtained that:

n +00

_ Wol Z[a

0 7=t
_ Z J o= )]
W1 1-a(1-4,)
Making use of the respective definitions of y; and ;:

(x"

Wi = =la(a- )] (A7)
t
Taking advantage of Equation (A.5) of the relative wealths of the agents, it is further inferred that:
i Wl (Kt) t
I/Vl Wl {z [ (1 - Al)] ‘ (AS)

Eventually replacing Equations (A.7) and (A.8) in Equation (56), it is derived that:
K= (Kt)a(l - )’t),
L AW [a(a - )]
i AiWla(i= )] /1 - a1 - )]
and the details of the statement follow. QED

Yt =

10



C. PROOF OF PROPOSITION 3.1

(i) Existence and uniqueness of the competitive equilibrium. Lemma 3.1 enables to determine the
equilibrium dynamics up to the knowledge of the initial wealths

W Ra + w, + (B.1)
T

with a! given such that 3", a! = K,. The expression of human wealth u = w,+3,;55[w,/ [T:2, R:]
remains unknown. Making use of (4a) and (44), it is obtained that:

_1-a « K 1= - (KT)I_Q
H= n (Ko) +; +E;th(—a )], (B.2)

4 being thus an increasing function of Ko, Ky, ..., Ky, . . ..

Making use of (B.1), the equilibrium law of capital accumulation (64) becomes:

Y = Ly AiRoabla(1 - )] + u L, Ale( - 2]
Sy AiRoab[a(n - )] /[1 - a1 = )] + u Xy dile(r - )] /[1 - a1 - )]

(B.3)

Ky = (Kt>a<1 - 7’1)-

Let u be given. Taking advantage of (B.3), a sequence (K;(u)), ., is determined starting from

teN
the initial condition K,. That sequence converges towards a value K that is independent of
u and such that K = o(K)"(1 - A,), whence o(K)""" = 1/(1 — ;). Defining then a function

Z(u) according to:
20 = 1)+ F2 ZKt( )ﬂ( 1)

The sequence (K;(1)),_,, being convergent—the level K does indeed correspond to an under-

teN
accumulation steady state—, this function is well defined.

The existence of a competitive equilibrium is then available upon the existence of a value y*
such that Z(y*) = u*, uniqueness being reached if and only if the funtion Z(-) assumes a
unique fixed point.

Dealing first with the first argument, consider the two following sequences:

Y, AiRoai[o(1 - 4,)]
yi= max{ ‘ - ,
i AiRoala(1 = ;)] /[1 - a(1 - 4,)]

Y Al - )] }
LAl =) - e - )

S min{ » L AiReal|e(1 - /li)]t ’
>r L AiRoal|a(1 - /l,-)]t/[l —a(1- ;)]
Y Al = )] }
Y Aila( = 4)] /1 - a1 - 4,)]

The coefficient v, as given by (B.3) emerges as a monotone fundtion of y, is enclosed between

the values associated to p = 0 and u = +oo, whence, and for any ¢ € N, the satisfaction of:

11



Let then the sequences (K,(1)),., and (K (1)), respectively defined by:

Ko = KoVt €N K4y = (K;
K, =K;VteNK, =(K,
It is then inferred that,
Vi e N K, < K,(p) < K,
lim K, = lim X, = hm Ki(u) =

t—>+00 T t—+00

as lim, 10 ¥¢ = limy, 400 y# = lim; 400 = 1— (1 - 4,). Let then in turn the coefficients pand

u be defined as:
e B2 5 ()]
S CAETHNES|

For every u > o, u < Z(u) < u is hence satisfied. When considered on the interval [,u, 4, the

S

I=
I

ol

=I
Il

function Z(u) corresponds to a continuous function defined over a compact set. Indeed, the

-)

convergence of the sum defining Z(y) is uniform:
+00 t— 1 a +00 -1 7
-1 (K. (#) a1 (K:)
S“P(m[__ZKt | |( )] < gzKl (
t=T T=1
. . 1-a1 —
an i 205 R ) <o

The funétion Z(u) being continuous over the compact set [,u, ﬁ], it assumes a fixed point.

Focusing then on the uniqueness argument, assume, ad absurdum, that there exists two so-
lutions u, and p, to the equation Z(u) = u, with p; < p,. The argument will proceed by
showing that the solution sequences would then be such that K;(u;) > K;(p) for any ¢ € N,
that cannot be reconciled with the monotony of K;(u) and will establish uniqueness.

By recurrence, it is first established that:
= Roal + u, and W = Roal + o,

whence and for every i € {1,...,n}, the obtention of W} < Wi
Letting then y! = W//(K,)" and x! = WZ' /(K,)", it derives that, for every i € {1,...,n},
xh < )(g or, further,
Yo = zn=1 /11.1/1/0i < ?:1 /ll'I/Voil =y
0 = =vy,.
(Ko)" (Ko)" ’

It remains to establish that, for every i € {1,...,n}, ! < x% and y, < y/. For that purpose,
first consider the ratio of equations (54) and (56) when considered at date ¢ = o:

i W a(1 - ;)W Xo

1= @ = « = — 4 ’
& (KI(H)> (K()) (1 - 70) a(l )1 — %Yo

o W a(-a)wy Xo

11 = a = a = — 4 &
T T Py B e

12



But, and as for every i € {1,...,n}, x! < x¥ and vy, < ¥/, it naturally follows that y! < y*

for every i € {1,...,n}, whence, eventually, the satisfaction of
n n
Y1 = Z/li/\/; < Z/li)(ll =71
i=1 i=1
By recurrence, assume that, for every i € {1,...,n}, x! < )(;J and vy, < 7y;: it remains

to establish that for every i € {1,...,n}, x',, < x',, and y,1; < y/,,. For that intend,
considering again the ratio of equations (5a) and (56), it is obtained that:

_ a(1—-2;)x!
X1 = 1_—%’

i _ a(l - /ll))(;/ )
Xir1 = 1-y,

Whence the holding of y!,, < x’,, and
n n
Yit1 = Z AiXin < Z X = Vi
i=1 i=1

It is thus established that y; < y; for all £ € N. From equation (6), it is inferred that, for
every ¢t € N, K;(u1) > K;(uo). The expression of Z(u) being however increasing as a funétion
of any of the K,(u), it is eventually obtained that:

Z(u1) > Z(po),
a contradiétion.

(i) a/ From Equation (6b), the sequence (K;), 5 converges to a steady state K such that K =
(K)*a(1 - 2,).

b/ From Equation (6a), it derives that:
- -1 _
lim th — M(K)“’
t—+00 /11

lim W/ =0 forevery i# 1.

t—+00

¢/ Making use of Equations (6a) and of the consumption decision rule (3), it is derived that:

lim ¢ =[1-e(1-2,)|(K)",

t—+o00

lim ¢, =0 forevery i# 1.

t—+00

The details of the statement follow. QED

D. PROOF OF LEMMA 4.1

Consider an agent with the preference parameters (3, 6). As for Lemma 3.1, the following variables

are used:
w;
X, = —
t H[
Ct
X = —
t 0,

13



with I, defined as:
I, =1

t
for ¢t >1, I, = HRT

T=1

For a linear technology, R, = 4 and II, = A*. The intertemporal budget constraint (1) is X;, =
Xt — X with Xt < Xt~

With a CES utility function, the objective function of self ¢ (2) can be written as :

(-1)fo)! R
(51‘1 o1 o—) {(xt)(o-l)/o— + :BZ (6A((r1)/<r)T(xt+T)(o'1)/o'}

(c-1)/o ~

Consider the game defined on a I" period horizon. The variables X; and x; are now denoted by
XtT and xtT . For ¢t < T, the ¢-self objective function is proportional to:

T-t
m {(xtT)(a-_l)/o- + ﬂz (5A(0'—1)/a-)T (xtz;r)((r—l)/a-}

T=1

For notational simplicity: A = (64 /7). The game is solved by backward induction. As the
objedtive functions of all selves are homotbhetic, it is straightforward that the solution will take the
form:

T _ 3 TvyvT
x; = A4; X,

For ¢ = T, the solution is obvious: A7 = 1. Assuming that the game has been solved till period ¢ +1,
one obtains, Vr with2 < 7 < T,

T _ 3T T T T
Xipr = /lt+r (1 - /lt+r—1) (1 - /lt+1) Xt+1

T _ T xT
and x, , = 1,,, X,

++1X/+,- Replacing in the ¢-self objective function, we get:

1 r\(e-Vle T \o-v/o T
-1/ {(xt ) + BA(X) Z; }
with z/ = (af,,)

(o0-1)/o (o-1)/o ( )(U—l)/ﬂ

+A(Af,)

b g AT-122 (/15)(0'—1)/0' (1 _ /1;71)(0——1)/0— (1 _ /ltTH)(J_l)/O. .

T
1= Ay

The program of self ¢ can be written:

- {(xf )" 4 Ba(x]

max ——————
CRAIC o

T T
s.t.x; + X,

)(0’—1)/0’ZtT}
=x7.

The solution is x7 = A7XT, X =(1-a7) X[, with

t+1

T _ 1
Al = TN (T A ) (6)

From the definition of ZtT , one gets:

zh, (7)

i+1

Z5 = (A5) T A (i-al,)

14



Using (6) in ¢ and ¢ + 1 to eliminate ZT and Zﬁl in (7), it is obtained that:

1 (1-AT\"7 N N AL\
ax () = (R T s -l T ()

BA\ AT BA\ A%,
After some simplifications,
Al = !
1+A7 [1 -(- ﬁ)/lt+1] t+1
Define
1
J) =

1+A%[1-(1-p)a]”
From backward induction with A7 = 1, all the sequence A7 is defined as: A7 = f7~/(1).

The function f has the following properties: f(0) = o, f increasing on [0,1], f’(0) = 1+(1-8)0 > 1.
f has two fixed points, o and A", which is solution of:

A1-a-pA* " =1-2*
From these properties, if 7 — +oco, we get for the limit strategy:
. T _ 1 T—t(1) —
Jim 4 = fim /70 =4

which establishes the statement. OED

E. PROOF OF PROPOSITION 4.1

(i) The obtention of equations (ga) and (gb) is immediate.

The obtention of the coefficient y, proceeds as follows. First, take advantage of (ga):

Wi (1—&-)‘:«’;

wr \1-24,

1
' a

(0]

Parallely make use of (5a) and (56). It derives that:

K AK, zn: LW}
Wi 4G - )W} AQ - )W}
K4y K, 1 C (1_/li)taci)
— = - A; —. Ea
T T ey IR Ce b —
Letting ¢, := (1 — 1,)'K;/W}*, Equation (E.1) reformulates to:
(1- 1)‘ A\ al
St =4 — Z/l (1_/11) _o. (E.2)

Forward develop Equation (E.2):

,+oo

L=A Zﬂ, 2y a-a)
4 7=
— g Z/ld(l_/l)

B al
=41 E a—i(l - /l,‘)t.
i=1 O

15



It is eventually obtained that:

w (1- ﬁl)t
K 4
Al -2,

(1) ab/a
wi_(-4) & w
K (q-a) a K

Al - 2,) dl

;:1(1 - /l]')tag .

Whence:
y, = ?:1 /ll'I/Vti
’ AK,
I (- ) e
= T
;l:l(l - Ai) a,
(ii) This is immediate from the expression of y,. OED

F. PROOF OF PROPOSITION 4.2

Let y; :=1 — A;. From Equation (8), it is defined from the following equation:
AT = 6 Bi + xi(a = Bi)]-

Consider then the two ensued straight lines equations &;(x) = 6;[8; + x(1 — B8:)], i = 1,2. These two
lines assume an intersection at (¢, €), for & € Jo,1[. Its first coordinate is indeed readily computed
to:

0181 — 028,
82(1 = Bo) = 6:(1 = Bu)’

where ¥ > o is ensured under the assumptions of the proposition. Further noticing that:

X =

X <16 0101 — 020 < 02(1 = B2) —6:1(1 = B1)

— 6, < 0.

while the second coordinate is readily computed to:

- 6105(B1 = Bs)
é= .
02(1 = Bo) — 0:(1 = B1)
Consider now the funéion Y(y) := AY* yV/7 It is then noticed that Y'(0) is lower that both of the

straight-lines &;(0) = 6;8;, i € {1,2}. In opposition to this, Y(1) is greater than &;(1) = 6;, i € {1,2}.

Indeed and under Assumption 1, any of the straight-lines is to assume a unique intersection point
with T(y) within the interval Jo, 1[.

Finally define 4 from the holding of (4)Y/7*()V/ = £.

— For A < A, one obtains
Al/o'—l()?)l/” S (AA)l/o-—l(/?)l/rT’

whence the holding of x, x. €]o, ¥[ and the satisfaction of y; > yx., that implies 1, < A,.
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— For A > A, one oppositely obtains
Al/a-—l(/\;)l/ﬂ' . (A“)l/cr—1</\?)1/0"
whence the holding of x., . €14, 1[ and the satisfaétion of y, < y., that implies 1, > A,.

The statement follows. QED

G. PROOF OF PROPOSITION 4.3

Consider a naive agent with parameters (8,6). For a naive self deciding at period o, all of the
decisions starting from date o do correspond to the ones taken by an agent with a discount factor
of 6, i.e., without any biais and for 8 = 1. The corresponding value for the coefficient A is hence

available as:
A=1-674""1.

For every ¢t > 1, the law of evolution of his wealth and the level of his consumption would be
available as:

Wi = AQ - )W,
C; = /lI/V[

The associated value of the objeétive by date ¢ = 0 hence derives as:

1-1/0 >
(¢o) + B O-(/lA)1—1/zr (W, — 60)1—1/0 {Z 57 [A(l _ /1)](771)(1—1/0—)}‘

1-1/c 1-1/ “

The first-order condition of the optimisation problem is available as:

(m) - C())_l/(r 0

-1/ — 1-1/0
(o) = B S aG - o

From this equation, the ¢, solution assumes a form ¢, = A and

BS[(1 - (85747 Al (1 - A7
1-6[6747 Y7
. 1 _ é‘O'AO'—l
T 1 67 A°-1(1 — ﬁo‘)

(/ln)—l/(r —

In order to compare A and A", let y :=1— A and y” := 1 — A*. The coefficient y is defined as the
solution of:

x =674 B+ - B,

that is to be compared with:

5(rA(r—1ﬁ(r
= 1 - 60’A0'71(1 — ﬁo‘)

n

X

This leads to:

X' > x = x">7477 B+ - px"]".
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Having completed a range of simplifications, it is eventually obtained that the satisfaction of this

inequation reformulates as the one of:
[1-674"1(1 -8 " > [1-674"(1- g7 Y] .

Consider the function G(-) defined by:
G(B)=(c-1)In[1-674""(1-p%)]-ocln[1-6747" (1 - B77Y)].

From the previous results, y > x" & G(fB) > o. Further noticing that G(1) = o, the derivative of
G(.) is available as:

- oo — 67ATIBIT  87ATRTE

DG(ﬁ) =o(o 1)[1 —6TAT 1 (1-B7) 1-6A°1(1— ﬁo‘—l)]
_ T AO—1 po—2 B - =
=0(0c—1)0"A4°""'B [1 —07AT 1 (1 - 7)) 1-67A71(1— ﬁa—l)]
— o go—1 po—2 (B - 1)(1 _ 60-A0-_1)
G U (e T

Then, and for B < 1, DG(B) < o if o > 1 while DG(B) > o0 if o < 1. As G(1) = o, it is obtained
that, for 8 < 1:

x">xy if o>1
x"<yxy if o<1

As a consequence:

A" <A1 fo>1
A" > ifo<1.

The statement follows. QED
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