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Abstract

This article considers the long-run equilibrium distribution of an economy populated by
heterogenous and present biased quasi-hyperbolic discounting agents. In a first configu-
ration with logarithmic utility fun­ions and Cobb-Douglas produ­ion technologies, this
article establishes the existence and the uniqueness of the equilibrium: only one agent,
determined by the highest value of a coe�cient building from both the degree of present
bias and the rate of discount, will have a positive long-run consumption and a positive
long-run wealth. A second configuration with constant elasticities of substitution utilities
and linear produ­ion technologies is then considered. This article similarly establishes
the existence and the uniqueness of the equilibrium. There is generically a unique agent
with the highest growth rate for his consumption and his wealth. This agent is determined
by both preferences and technology parameters and may change following a technological
shock.
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JEL Classification: E32, C62.
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1. Introduction

The model with heterogenous agents that di�er from their valuation of the future and their
discount rate has motivated a large literature focused on the features of the associated inter
temporal equilibrium. The Ramsey’s Conje­ure states that only the most patient amongst the
agents would end up exhibiting positive consumption levels in the long run, all of the other
agents being associated with nil consumption levels. It was rigorously proved by Bewley [4]
who establishes that the long-run equilibrium assumes the following properties: the most
patient amongst the agents holds the whole capital stock of the economy and assumes
positive consumption levels. By contrast, all of the remaining agents have asymptotically
nil consumption levels. It is also worth mentioning that the level of capital in this model
corresponds to a modified golden rule defined from the discount fa­or of the most patient
agent.

The assumption according to which agents would di�er in their valuation of the future
and their discounting rates has led to numerous further developments. Becker [1] was
the first to reconsider this Ramsey’s Conje­ure under the assumption of imperfe­ financial
markets—a non-negativity constraint is imposed on household capital holdings—. The
long-run equilibrium is then associated with two classes of agents, namely the most patient
capitalist agent who owns the whole capital stock of the economy, and the other more
impatient workers agents who consume their current wages. Becker & Foias [2] and Sorger
[12] have later enriched this framework with strategic dimensions.

This article is interested in the status of the aforementioned Ramsey’s Conje­ure when agents
have quasi-hyperbolic discounting and simultaneously di�er by their discount rates and
their degrees of present bias. Dating from the seminal contributions of Phelps & Pollack
[9], Laibson [8] and Frederick, Loewenstein & O’Donoghue [6], the benchmark model for
analyzing temporal inconsistencies got anchored on the quasi-hyperbolic discounting hypothesis
and gained popularity through the so-called β−δ model, where δ ∈ ]0, 1[ features the discount
rate and β < 1 features the present bias. Numerous experiments1 have indeed consistently
illustrated how the quasi-hyperbolic discounting β − δ model could provide a more accurate
description of a­ual choices and arbitrages over time than the canonical model as settled
by Samuelson [11] and Ramsey [10]. A large number of studies (see Frederick, Loewenstein
& O’Donoghue [6]) have also ruled field or laboratory experiments in order to evaluate the
β and δ parameters. They all document a strong heterogeneity between the individuals
regarding these parameters.

This article considers a simple competitive economy with heterogenous quasi-hyperbolic
infinitely-lived agents. Agents preferences being temporally inconsistent, it is assumed that
these agents build from a sequence of successive selves, their decisions resulting from a
Nash equilibrium between such selves. This assumption is commonly referred as depi­ing
a sophisticated behaviour. This is completed by a produ­ion side with a standard neoclassical
produ­ion technology. While no explicit solution would be available in the general case,
the argument of this article is specialized to specific parametric formulations that will allow
closed forms for the strategies of the agents.

In a first configuration with logarithmic utility fun­ions and Cobb-Douglas produ­ion

1See Thaler [13], Benzion, Rapoport & Yagil [3], Chapman & Elstein [5] or Frederick, Loewenstein
O’Donoghue [6] for a general presentation.
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technologies, this article establishes the existence and the uniqueness of an equilibrium
with heterogenous quasi-hyperbolic discounting agents. The properties of the long-run
steady state remain close from the ones of the classical Ramsey model: only one agent
will have a positive long-run consumption and a positive long-run wealth. That agent is
however determined by the value of a coe�cient where the two parameters β and δ come
into play and intera­. The impatience of a given agent—a relatively weak value for δ—can
be compensated by a relative low present bias—a relatively high value for β.

In a second configuration with constant elasticities of substitution utilities and linear pro-
du­ion technologies, this article similarly establishes the existence and the uniqueness of
an equilibrium with heterogenous quasi-hyperbolic discounting agents. This competitive
equilibrium converges towards a steady growth rate for the capital stock. Interestingly, the
consumptions of the agents are going to assume constant but distin­ equilibrium growth
rates. These individuals rates of growth are not only determined by the two parameters β
and δ but also by the constant elasticity of substitution of the utility and the constant pro-
du­ivity of the capital stock. There is generically a unique agent with the highest growth
rate for his consumption and his wealth. This agent determines the long-run growth rate
for the capital stock of this economy. The consumptions of the other agents become negli-
gible in the long run when compared with the one of this agent. It is further proved that a
given perturbation in the value of the constant produ­ivity of the capital stock parameter
may end up in modifying the ranking associated with the individual consumption growth
rates between two distin­ individuals. The case of naïve agents is finally analysed: this
is shown to favour (detriment) capital accumulation when the elasticity of substitution is
greater (lower) than one

Se­ion 2 introduces a general environment with present biased quasi-hyperbolic discount-
ing agents. An environment with logarithmic utilities and Cobb-Douglas produ­ion tech-
nologies is considered in Se­ion 3. Another environment with CES utilities and linear
produ­ion technologies is analyzed in Se­ion 4. All proofs and technicalities are gath-
ered in an final appendix.

2. The Model

Time is discrete. Consider a competitive economy with n infinitely-lived agents indexed
by i ∈ {1, 2, . . . ,n}. Let

�
c it

�
t ∈N denote the consumption sequence of individual i , while�

wt
�
t ∈N and

�
Rt

�
t ∈N respe­ively stand for the wage and gross interest rates sequences he

faces with, for Rt = 1 + rt and rt the interest rate.

Letting ait denote the capital stock held at date t ∈ N by agent i , his budget constraint for
date t is expressed as follows:

ait+1 = Rta
i
t +wt − c

i
t .

Agents are further subje­ to an inter-temporal budget constraint defined over their lifespan.
Assuming that

∑+∞
t=0

�
wt/

∏t
τ=0Rτ

�
< +∞, the a­ualised wealth of agent i , denoted asW i

t ,
is defined by:

W i
t = Rta

i
t +wt +

+∞∑
τ=t+1

wτ∏τ
j=t+1R j

,
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while the inter-temporal budget constraint can be expressed, for every t ∈ N, as:

W i
t+1 = Rt+1

�
W i
t − c

i
t

�
, (1)

with W i
t > 0 for every t > 0.

The preferences of the agents are associated with quasi-geometric discounting. For a given
agent i ∈ {1, 2, . . . ,n}, his self at time t ∈ N ranks consumption sequences according to:

u
�
c it

�
+ βi

[+∞∑
τ=1

�
δi

�τu
�
c it+τ

�]
, βi > 0, δi ∈ ]0, 1[. (2)

The decisions of agent i ∈ {1, 2, . . . ,n} stem from the Nash equilibrium of a strategic
game between the successive selves—a Markov equilibrium, also commonly referred as
a sophisticated behaviour . Within an infinite horizon setup, it was established by Krusell
& Smith [7] that it is possible to build a multiplicity of equilibrium solutions between
the di�erent selves. In opposition to this, for a finite horizon environment, the solution
obtained by backward indu­ion is unique. This article will retain the infinite horizon
solution that is obtained as the limit of the finite horizon one. This enables to sele­ a
specific solution amongst the multiple admissible infinite horizon ones.

This article willl consider two separate configurations, i.e., a first one with a logarithmic
utility fun­ion and a Cobb-Douglas produ­ion technology and a second one with an iso-
elastic utility fun­ion and a linear produ­ion technology. As this will be established in the
remaining exposition, both of these configurations will be associated with linear decision
rules for the consumers i ∈ {1, . . . ,n}:

c it = λiW
i
t (3)

with λi ∈ [0, 1]. Without loss of generality, agents will henceforward be ranked according
to λ1 6 λ2 6 . . . 6 λn , where it is assumed that λ1 < λ2. The solution that is obtained as
the limit of the finite horizon game assumes well-behaved regularity properties —- they are
indeed linear. In opposition to this, the strategies raised by Krusell & Smith [7] were not
smooth.

The economy under consideration also integates a competitive representative firm with a
produ­ion technology F (K,L) that satisfies:
Assumption T.1. F (K,L) is a fun­ion of class C2, homogeneous of degree one, increases
with K as DKF (K, 1) > 0, and is concave.

Kt being the capital stock of period t and Lt the quantity of labour of that same period t ,
the capital stock being assumed to fully depreciate on use within period t . All individuals
inelastically o�er 1/n units of labour, so that the global labour supply amounts to 1. The
competitive wage rate and the competitive interest fa­or are thus available at date t ∈ N

as:

wt =
1
n
DLF (Kt, 1), (4a)

Rt = DKF (Kt, 1). (4b)

An equilibrium is then chara­erised as follows:
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Definition 2.1. A competitive equilibrium of the economy is chara­erised by a sequence
�
W i
t ,Kt

�
t ∈N

such that, for every t ∈ N and every i ∈ {1, 2, . . . ,n}:
W i
t+1 = Rt+1

�
1 − λi

�
W i
t , (5a)

Kt+1 = F (Kt, 1) −
n∑
i=1

λiW i
t , (5b)

starting from initial conditionsW i
0 = R0ai0 + w0 +

∑+∞
t=1

�
wt/

∏t
τ=1Rτ

�
with ai0 given such that∑n

i=1 a
i
0 = K0 and

�
wt,Rt

�
given by (4a) and (4b ).

Equation (5a) is obtained from the inter-temporal budget constraint (1), respe­ively re-
placing Rt by Equation (4b) and c it by Equation (3). Similarly, equation (5b) derives from
the integration of the consumption decision rules (3) into the resource constraint of the
economy.

3. An Economy with Logarithmic Preferences and a
Cobb-Douglas Production Technology

This se­ion will consider a configuration where u(c ) = ln(c ) and F (Kt,Lt ) = (Kt )α(Lt )1−α,
α ∈ [0, 1], that in turn implies equilibrium returns of wt = (1/n)(1 − α)(Kt )α and Rt =
α(Kt )α−1.
Lemma 3.1. For u(c ) = ln(c ) and F (Kt,Lt ) = (Kt )α(Lt )1−α, α ∈ [0, 1], the decision rules of the
consumers resulting from a Nash equilibrium between the successive selves list as:

c it = λiW
i
t ,

λi =
1 − δi

1 − δi + βi δi

Lemma 3.2. Up to its existence, a competitive equilibrium of the economy is chara­erised, for every
i ∈ {1, 2, . . . ,n}, by:

W i
t =

W i
0

�
α

�
1 − λi

��t∑n
j=1 λ jW

j
0

�
α

�
1 − λ j

��t
/

�
1 − α

�
1 − λ j

��, (6a)

Kt+1 =
�
Kt

�α�
1 − γt

�
, (6b)

with γt :=
∑n
i=1 λiW

i
0

�
α

�
1 − λi

��t∑n
i=1 λiW

i
0

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��,

starting from initial conditionsW i
0 = R0ai0 + w0 +

∑+∞
t=1

�
wt/

∏t
τ=1Rτ

�
with ai0 given such that∑n

i=1 a
i
0 = K0 and

�
wt,Rt

�
given by (4a) and (4b ).

Proposition 3.1. — Consider the above economy:

(i) if ai0 > 0 for every i ∈ {1, . . . ,n}, there exists a unique competitive equilibrium;
(ii) the competitive equilibrium converges to a steady state chara­erised by the following features:

a/ the capital stock converges to a modi�ed golden rule like steady state with a value K̄ that
corresponds to the only preferences parameters of agent 1 through the parameter λ1:

α
�
K̄

�α−1
=

1
1 − λ1

; (7)
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b/ agent 1 is the only agent with a long-run positive inter-temporal wealthW 1 =
�
K̄

�α�
1 −

α
�
1 − λ1

��
/λ1. By contrast with this, the wealth of all the other agents is to converge

to 0;

c/ agent 1 is the only agent with a long-run positive consumption c̄1 =
�
K̄

�α�
1− α

�
1− λ1

��
.

By contrast with this, the consumption of all other agents is to converge to 0.

This proposition hence yields a range of conclusions which are close to the ones of the
classical Ramsey model: only one agent will have a positive long-run consumption and a
positive long-run wealth. That agent is however determined by the value of the coe�cient
λi where the two parameters βi and δi come into play and intera­. The impatience of a
given agent—a relatively weak value for δi—can be compensated by a relative low present
bias—a relatively high value for βi .

4. An Economy with C.E.S. Utility and a Linear
Production Technology

4.1 The Sophisticated Agent

Preferences are modified to a representation u(c ) = c1−1/σ/(1 − 1/σ), σ , 1, while the
produ­ion technology is changed to F (Kt,Lt ) = AKt , A > 0. It immediately follows that,
for every t ∈ N, Rt = A, wt = 0. It is similarly derived thatW i

0 = Aa
i
0. An extra assumption

is needed in order to maintain a bounded utility for the agents:

Assumption PT.1. ∀ i ∈ {1, 2, . . . ,n}, δiA1−1/σ < 1.

Lemma 4.1. For u(c ) = c1−σ/(1 − σ), σ , 1 and F (Kt,Lt ) = AKt , A > 0, the decision rules of
the consumers resulting from a Nash equilibrium between the successive selves list as:

c it = λiW
i
t

where the coe�cient λi is de�ned as the solution of the following equation:
�
A(1 − λi )�1/σ = δiA[1 − λi (1 − βi )]· (8)

Interestingly, in equation (8), the coe�cient λi not only depends on the preferences pa-
rameters σ, δi and βi but also on the technological parameter A.

Proposition 4.1. — Consider the above economy:

(i) if ai0 > 0 for every i ∈ {1, . . . ,n}, there exists a unique competitive equilibrium chara­erised,
for every t ∈ N and for every i ∈ {1, . . . ,n}, by:

W i
t = A

t+1�
1 − λi

�tai0, (9a)

c it = λiA
t+1�

1 − λi
�tai0, (9b)

and by

Kt+1 = AKt
�
1 − γt

�
,

for γt =
∑n
i=1 λi

�
1 − λi

�tai0∑n
i=1

�
1 − λi

�tai0
;

5



(ii) the competitive equilibrium converges towards a stationary equilibrium chara­erised by a
growth fa­or of the capital stock Kt+1/Kt that converges towards a limit A(1 − λ1).

Within this environment and as made clear by Proposition 4.1, the consumptions of the
individual agents are going to assume constant but distin­ equilibrium growth rates. All
of the consumptions of the agents i > 2 would hence become negligible in the long run
when compared with the one of agent i = 1 who is associated with the lowest value for
λi , the long-run growth rate of the capital stock being further exa­ly the same as the
consumption growth rate of that later agent. From Equation (8), the values of λi are to
be jointly determined by A, σ, δi and βi for any of the individuals i ∈ {1, . . . ,n}. The
following proposition then establishes how a given perturbation in the value of A may end
up in modifying the ranking associated with the coe�cients λi for two distin­ individuals.

Proposition 4.2. — Let σ > 1 and assume that two individuals i ∈ {1, 2} are chara­erised by
parameters δi and βi such that:

δ1 < δ2, β1 > β2 and β1δ1 > β2δ2.

There then exists some critical value for A, labelled Â, such that:




for A < Â, λ1 < λ2;

for A > Â, λ1 > λ2.

This proposition shows how a technological shock—a change in the parameter A—may
result in a change in the identity of the agent who is determining the long-run growth rate
of the economy.

4.2 The Naïve Agent

It has up to now been assumed that agents have sophisticated behaviours. An alternative
assumption however states as the hypothesis of naïve agents. A naïve t -self undertakes its
decision at period t as if it could also sele­ all of its future decisions. For the logarithmic
case of Se­ion 3, naïve and sophisticated behaviours lead to the same decision rules. Op-
positely and under the current assumption of CES utility fun­ions, naïve and sophisticated
behaviours result in distin­ optimal strategies. This se­ion is aimed at comparing these
two strategies.

Assume instead that any self determines his behaviour for his decision period as if he
could equally undertake the whole range of future decisions. This also corresponds to the
solution for a self with a perfe­ commitment capacity. Henceforth labelling as naïve such
a range of behaviours, it is established :

Proposition 4.3. For u(c ) = c1−σ/(1−σ), σ , 1 and F (Kt,Lt ) = AKt , A > 0, consider a naïve
agent:

(i) His decision rule is given by:

ct = λniW
i
t ,

λni =
1 − (δi )σAσ−1

1 − (δi )σAσ−1(1 − (βi )σ) ·

6



(ii) For βi < 1, λi < λni ⇐⇒ σ < 1 and λi > λni ⇐⇒ σ > 1.

(iii) Consider an economy populated by two agents with the same (β, δ) parameters and assume
that one is sophisticated while the other one is naïve. The naïve agent accumulates more (less)
capital that the sophisticated one when σ > 1 (σ < 1).

Consider an economy populated with two agents with the same (β, δ) parameters, the first
being sophisticated while the second is naïve. For σ > 1 (σ < 1), the naïve (sophisticated)
agent determines the long-run rate of growth.
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A. Proof of Lemma 3.1

Consider an agent with the preference parameters (β, δ). The game between selves is simplified by
introducing the following variables:

Xt =
Wt

Πt

xt =
ct
Πt

with Πt defined as:

Π0 = 1

for t ≥ 1, Πt =
t∏
τ=1

Rτ

The intertemporal budget constraint (1) becomes: Xt+1 = Xt − xt with xt ≤ Xt . The obje­ive
fun­ions of self t (2) can be written as:

ln xt + β
+∞∑
τ=1

δτ ln xt+τ +Ht

with Ht some term that is exogenous for the agent.

Consider the game defined on a T period horizon. The variables Xt and xt are now denoted by
X T
t and xTt . For t ≤ T , the t -self obje­ive fun­ion is:

ln xTt + β
T −t∑
τ=1

δτ ln xTt+τ +H
T
t

The game is solved by backward indu­ion. As the obje­ive fun­ion of all selves are homothetic,
it is straightforward that the solution will take the following form:

xTt = λ
T
t X

T
t

It is first noticed that, for t = T , the solution is obvious with λTT = 1.

Then assume that the game has been solved till period t + 1. One gets: ∀τ with 2 ≤ τ ≤ T ,

xTt+τ = λ
T
t+τ

(
1 − λTt+τ−1

)
· · ·

(
1 − λTt+1

)
X T
t+1

and xTt+1 = λ
T
t+1X

T
t+1. Replacing in the t -self obje­ive fun­ion, we get:

ln xTt + β *
,

T∑
τ=1

δτ+
-
lnX T

t+1 +G
T
t

with GTt some term that is exogenous for the self. Finally, the program of self t can be written as:

max(xTt ,X Tt+1)
[
ln xTt + β *

,

T∑
τ=1

δτ+
-
lnX T

t+1

]

s.t. xTt + X
T
t+1 = X

T
t

The solution is: xTt = λ
T
t X

T
t , X

T
t+1 =

�
1 − λTt

�
X T
t with

λTt =
1

1 + β
∑T
τ=1 δ

τ

For T → +∞, the limit strategy is derives as:

lim
T→+∞

λTt = λ =
1

1 + βδ/(1 − δ),
that completes the statement. QED

8



B. Proof of Lemma 3.2

The argument of the proof revolves around a careful study of the dynamics of the system as de-
scribed by Equations (5a) and (5b). Letting firstly the auxiliary variable χt be introduced as:

χt :=

�
Kt

�α

W 1
t
. (A.1)

From Equation (5a) considered for i = 1, it is obtained that:

W 1
t+1

�
Kt+1

�1−α
= α

�
1 − λ1

�
W 1
t . (A.2)

Considering Equation (5b) and dividing each member by the corresponding one in Equation (A.2),
it is derived that:

�
Kt+1

�α

W 1
t+1

=

�
Kt

�α

α
�
1 − λ1

�
W 1
t

−

n∑
i=1

λi

α
�
1 − λ1

�
W i
t

W 1
t
,

⇐⇒ χt+1 =
χt

α
�
1 − λ1

� −
n∑
i=1

λi

α
�
1 − λ1

�
W i
t

W 1
t
,

where the second equation takes advantage of the definition (A.1). Completing then a further
change of variables:

ζt := χt
�
α

�
1 − λ1

��t
, (A.3)

it is finally obtained that:

ζt+1 = ζt −

n∑
i=1

λi
W i
t

W 1
t

�
α

�
1 − λ1

��t
. (A.4)

Making use of Equation (5a) considered for i = 1 and i ∈ {2, 3, . . . ,n}, it derives that the relative
wealth with respe­ to the most patient agent states as:

W i
t+1

W 1
t+1
=

�
1 − λi

�
W i
t�

1 − λ1
�
W 1
t+1

=⇒
W i
t

W 1
t
=

( 1 − λi
1 − λ1

)tW i
0

W 1
0
. (A.5)

Replacing then Equation (A.5) in Equation (A.4), it finally derives that:

ζt+1 = ζt −

n∑
i=1

λi
�
α

�
1 − λi

��tW i
0

W 1
0
.

Developing backward the R.H.S. of the preceding equation:

ζt = ζ0 −

n∑
i=1

λi
W i

0

W 1
0

t−1∑
τ=0

�
α

�
1 − λi

��τ
. (A.6)

By definition, ζt must be non negative for every t ∈ N as χt > 0 prevails for every t ∈ N. As
α

�
1 − λi

�
< 1 for every i ∈ {1, 2, . . . ,n}, �

ζt
�
t ∈N converges to a limit ζ that is determined by

Equation (A.6):

ζ = ζ0 −

n∑
i=1

λi
W i

0

W 1
0

1
1 − α

�
1 − λi

� .
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Further, as ζt > 0 for t ∈ N, it derives that ζ > 0.

Finally establishing that ζ = 0, assume, ad absurdum, that ζ > 0 does prevail. From the respe­ive
definitions of χt and ζt , it derives that:

ζt =

�
Kt

�α

W 1
t

�
α

�
1 − λ1

��t
−→ ζ > 0 as t → +∞,

⇐⇒
W 1
t�

Kt
�α ∼

1
ζ

�
α

�
1 − λ1

��t as t → +∞.

It is therefore obtained that:

W 1
t�

Kt
�α → 0 as t → +∞,

and
W i
t�

Kt
�α =

W i
t

W 1
t

W 1
t�

Kt
�α

=

( 1 − λi
1 − λ1

)tW i
0

W 1
0

W 1
t�

Kt
�α → 0 as t → +∞.

From Equation (5b), it is possible to write:

Kt+1 =
�
Kt

�α [
1 −

n∑
i=1

λi
W i
t�

Kt
�α

]
.

But it has been established thatW i
t /

�
Kt

�α
→ 0 as t → +∞, so that the preceding equation in turn

implies that Kt → K̃ = 1 as t → +∞, for K̃ that is such that K̃ =
�
K̃

�α, which is impossible as this
corresponds to an overaccumulation configuration. The wealth of the agents would become infinite
in conjun­ion with

∑+∞
t=0

�
wt/

∏t
τ=0Rτ

�
= +∞, whence the proof that ζ = 0.

As ζ = 0, it is obtained that:

ζ0 =

n∑
i=1

λi
W i

0

W 1
0

1
1 − α

�
1 − λi

�

=

n∑
i=1

λi
W i

0

W 1
0

+∞∑
τ=0

�
α

�
1 − λi

��τ
.

Replacing the ensued expression for ζ0 in Equation (A.6), it is obtained that:

ζt =

n∑
i=1

λi
W i

0

W 1
0

+∞∑
τ=t

�
α

�
1 − λi

��τ

=

n∑
i=1

λi
W i

0

W 1
0

�
α

�
1 − λi

��t

1 − α
�
1 − λi

� ·

Making use of the respe­ive definitions of χt and ζt :

W 1
t =

�
Kt

�α

ζt

�
α

�
1 − λ1

��t
. (A.7)

Taking advantage of Equation (A.5) of the relative wealths of the agents, it is further inferred that:

W i
t =

W i
0

W 1
0

�
Kt

�α

ζt

�
α

�
1 − λi

��t
. (A.8)

Eventually replacing Equations (A.7) and (A.8) in Equation (5b), it is derived that:

Kt+1 =
�
Kt

�α�
1 − γt

�
,

γt :=
∑n
i=1 λiW

i
0

�
α

�
1 − λi

��t∑n
i=1 λiW

i
0

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��

and the details of the statement follow. QED
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C. Proof of Proposition 3.1

(i) Existence and uniqueness of the competitive equilibrium. Lemma 3.1 enables to determine the
equilibrium dynamics up to the knowledge of the initial wealths

W i
0 = Ra

i
0 +w0 +

+∞∑
t=1

wt∏t
τ=1Rτ

(B.1)

with ai0 given such that
∑n
i=1 a

i
0 = K0. The expression of human wealth µ = w0+

∑+∞
t=1

�
wt/

∏t
τ=1Rτ

�

remains unknown. Making use of (4a) and (4b), it is obtained that:

µ =
1 − α
n

[�
K0

�α
+
K1

α
+
1
α

+∞∑
t=2

Kt
t−1∏
τ=1

( �
Kτ

�1−α

α

)]
, (B.2)

µ being thus an increasing fun­ion of K0,K1, . . . ,Kt, . . ..

Making use of (B.1), the equilibrium law of capital accumulation (6b) becomes:

γt =

∑n
i=1 λiR0ai0

�
α

�
1 − λi

��t
+ µ

∑n
i=1 λi

�
α

�
1 − λi

��t∑n
i=1 λiR0ai0

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��
+ µ

∑n
i=1 λi

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��,

(B.3)

Kt+1 =
�
Kt

�α�
1 − γt

�
.

Let µ be given. Taking advantage of (B.3), a sequence
�
Kt (µ)�t ∈N is determined starting from

the initial condition K0. That sequence converges towards a value K that is independent of
µ and such that K = α

�
K

�α�
1 − λ1

�
, whence α

�
K

�α−1
= 1/

�
1 − λ1

�
. Defining then a fun­ion

Z (µ) according to:

Z (µ) := 1 − α
n

[�
K0

�α
+
K1(µ)
α
+
1
α

+∞∑
t=2

Kt (µ)
t−1∏
τ=1

( �
Kτ(µ)�1−α

α

)]
.

The sequence
�
Kt (µ)�t ∈N being convergent—the level K does indeed correspond to an under-

accumulation steady state—, this fun­ion is well defined.

The existence of a competitive equilibrium is then available upon the existence of a value µ∗

such that Z
�
µ∗

�
= µ∗, uniqueness being reached if and only if the fun­ion Z (·) assumes a

unique fixed point.

Dealing first with the first argument, consider the two following sequences:

γht := max
{ ∑n

i=1 λiR0ai0
�
α

�
1 − λi

��t∑n
i=1 λiR0ai0

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��, ∑n
i=1 λi

�
α

�
1 − λi

��t∑n
i=1 λi

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��
}
;

γℓt := min
{ ∑n

i=1 λiR0ai0
�
α

�
1 − λi

��t∑n
i=1 λiR0ai0

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��, ∑n
i=1 λi

�
α

�
1 − λi

��t∑n
i=1 λi

�
α

�
1 − λi

��t
/

�
1 − α

�
1 − λi

��
}
.

The coe�cient γt as given by (B.3) emerges as a monotone fun­ion of µ, is enclosed between
the values associated to µ = 0 and µ = +∞, whence, and for any t ∈ N, the satisfa­ion of:

γℓt 6 γt 6 γ
h
t .
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Let then the sequences
�
K t (µ)�t ∈N and

�
K t (µ)

�
t ∈N respe­ively defined by:

K 0 = K0;∀t ∈ N,K t+1 =
�
K t

�α�
1 − γℓt

�
;

K 0 = K0;∀t ∈ N,K t+1 =
�
K t

�α�
1 − γht

�
.

It is then inferred that,

∀t ∈ N,K t 6 Kt (µ) 6 K t,

lim
t→+∞

K t = lim
t→+∞

K t = lim
t→+∞

Kt (µ) = K ,

as limt→+∞ γ
ℓ
t = limt→+∞ γ

h
t = limt→+∞ = 1− α

�
1− λ1

�
. Let then in turn the coe�cients µ and

µ be defined as:

µ =
1 − α
n

[�
K0

�α
+
K 1

α
+
1
α

+∞∑
t=2

K t

t−1∏
τ=1

( �
K τ

�1−α

α

)]
,

µ =
1 − α
n

[�
K0

�α
+
K 1

α
+
1
α

+∞∑
t=2

K t

t−1∏
τ=1

( �
K τ

�1−α

α

)]
.

For every µ > 0, µ 6 Z (µ) 6 µ is hence satisfied. When considered on the interval
�
µ, µ

�
, the

fun­ion Z (µ) corresponds to a continuous fun­ion defined over a compa­ set. Indeed, the
convergence of the sum defining Z (µ) is uniform:

sup(µ)
[1 − α
n

1
α

+∞∑
t=T

Kt (µ)
t−1∏
τ=1

( �
Kτ(µ)�1−α

α

)]
6

1 − α
n

1
α

+∞∑
t=T

K t

t−1∏
τ=1

( �
K τ

�1−α

α

)
with lim

T→+∞

1 − α
n

1
α

+∞∑
t=T

K t

t−1∏
τ=1

( �
K τ

�1−α

α

)
= 0.

The fun­ion Z (µ) being continuous over the compa­ set
�
µ, µ

�
, it assumes a fixed point.

Focusing then on the uniqueness argument, assume, ad absurdum, that there exists two so-
lutions µ1 and µ2 to the equation Z (µ) = µ, with µ1 < µ2. The argument will proceed by
showing that the solution sequences would then be such that Kt

�
µ1

�
> Kt

�
µ2

�
for any t ∈ N,

that cannot be reconciled with the monotony of Kt (µ) and will establish uniqueness.

By recurrence, it is first established that:

W i
0 = R0ai0 + µ1 and W i ′

0 = R0ai0 + µ2,

whence and for every i ∈ {1, . . . ,n}, the obtention ofW i
0 <W

i ′
0 .

Letting then χi0 = W
i
0 /

�
K0

�α and χi
′

0 = W
i ′
0 /

�
K0

�α, it derives that, for every i ∈ {1, . . . ,n},
χi0 < χi

′

0 or, further,

γ0 ≡

∑n
i=1 λiW

i
0�

K0
�α <

∑n
i=1 λiW

i ′
0�

K0
�α ≡ γ′0.

It remains to establish that, for every i ∈ {1, . . . ,n}, χi1 < χi
′

1 and γ1 < γ′1. For that purpose,
first consider the ratio of equations (5a) and (5b) when considered at date t = 0:

χi1 ≡
W i

1�
K1(µ)�α

=
α

�
1 − λi

�
W i

0�
K0

�α�
1 − γ0

� = α
�
1 − λi

� χi0
1 − γ0

,

χi
′

1 ≡
W i ′

1�
K1(µ)�α

=
α

�
1 − λi

�
W i ′

0�
K0

�α�
1 − γ′0

� = α
�
1 − λi

� χi
′

0

1 − γ′0
.
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But, and as for every i ∈ {1, . . . ,n}, χi0 < χi
′

0 and γ0 < γ′0, it naturally follows that χi1 < χi
′

1

for every i ∈ {1, . . . ,n}, whence, eventually, the satisfa­ion of

γ1 =

n∑
i=1

λi χ
i
1 <

n∑
i=1

λi χ
i ′
1 = γ

′
1.

By recurrence, assume that, for every i ∈ {1, . . . ,n}, χit < χi
′

t and γt < γ′t : it remains
to establish that for every i ∈ {1, . . . ,n}, χit+1 < χi

′

t+1 and γt+1 < γ′t+1. For that intend,
considering again the ratio of equations (5a) and (5b), it is obtained that:

χit+1 =
α

�
1 − λi

�
χit

1 − γt
,

χi
′

t+1 =
α

�
1 − λi

�
χi
′

t

1 − γ′t
·

Whence the holding of χit+1 < χi
′

t+1 and

γt+1 =

n∑
i=1

λi χ
i
t+1 <

n∑
i=1

λi χ
i ′
t+1 = γ

′
t+1.

It is thus established that γt < γ′t for all t ∈ N. From equation (6b), it is inferred that, for
every t ∈ N, Kt

�
µ1

�
> Kt

�
µ2

�
. The expression of Z (µ) being however increasing as a fun­ion

of any of the Kt (µ), it is eventually obtained that:

Z
�
µ1

�
> Z

�
µ2

�
,

a contradi­ion.

(ii) a/ From Equation (6b), the sequence
�
Kt

�
t ∈N converges to a steady state K̄ such that K̄ =�

K
�α
α

�
1 − λ1

�
.

b/ From Equation (6a), it derives that:

lim
t→+∞

W 1
t =

�
1 − α

�
1 − λ1

��

λ1

�
K̄

�α
,

lim
t→+∞

W i
t = 0 for every i , 1.

c/ Making use of Equations (6a) and of the consumption decision rule (3), it is derived that:

lim
t→+∞

c1t =
�
1 − α

�
1 − λ1

���
K̄

�α
,

lim
t→+∞

c it = 0 for every i , 1.

The details of the statement follow. QED

D. Proof of Lemma 4.1

Consider an agent with the preference parameters (β, δ). As for Lemma 3.1, the following variables
are used:

Xt =
Wt

Πt

xt =
ct
Πt

13



with Πt defined as:

Π0 = 1

for t ≥ 1, Πt =
t∏
τ=1

Rτ

For a linear technology, Rτ = A and Πt = At . The intertemporal budget constraint (1) is Xt+1 =
Xt − xt with xt ≤ Xt .

With a CES utility fun­ion, the obje­ive fun­ion of self t (2) can be written as :

�
δA(σ−1)/σ�t

(σ − 1)/σ


(xt )(σ−1)/σ + β

+∞∑
τ=1

(
δA(σ−1)/σ)τ (xt+τ)(σ−1)/σ



Consider the game defined on a T period horizon. The variables Xt and xt are now denoted by
X T
t and xTt . For t ≤ T , the t -self obje­ive fun­ion is proportional to:

1
(σ − 1)/σ




(
xTt

) (σ−1)/σ
+ β

T −t∑
τ=1

(
δA(σ−1)/σ)τ (

xTt+τ
) (σ−1)/σ



For notational simplicity: ∆ =
�
δA(σ−1)/σ�

. The game is solved by backward indu­ion. As the
obje­ive fun­ions of all selves are homothetic, it is straightforward that the solution will take the
form:

xTt = λ
T
t X

T
t

For t = T , the solution is obvious: λTT = 1. Assuming that the game has been solved till period t +1,
one obtains, ∀τ with 2 ≤ τ ≤ T ,

xTt+τ = λ
T
t+τ

(
1 − λTt+τ−1

)
...

(
1 − λTt+1

)
X T
t+1

and xTt+1 = λ
T
t+1X

T
t+1. Replacing in the t -self obje­ive fun­ion, we get:

1
(σ − 1)/σ

{(
xTt

) (σ−1)/σ
+ β∆

�
X T
t+1

�(σ−1)/σZTt
}
,

with ZTt =
(
λTt+1

) (σ−1)/σ
+ ∆

(
λTt+2

) (σ−1)/σ (
1 − λTt+1

) (σ−1)/σ
+ · · · + ∆T −t−1

(
λTT

) (σ−1)/σ (
1 − λTT −1

) (σ−1)/σ
...

(
1 − λTt+1

) (σ−1)/σ
.

The program of self t can be written:

max(xTt ,X Tt+1)
1

(σ − 1)/σ
{(
xTt

) (σ−1)/σ
+ β∆

�
X T
t+1

�(σ−1)/σZTt
}

s.t. xTt + X
T
t+1 = X

T
t .

The solution is xTt = λ
T
t X

T
t , X

T
t+1 =

�
1 − λTt

�
X T
t , with

λTt =
1

1 + (β∆)σ �
ZTt

�σ (6)

From the definition of ZTt , one gets:

ZTt =
(
λTt+1

) (σ−1)/σ
+ ∆

(
1 − λTt+1

) (σ−1)/σ
ZTt+1 (7)
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Using (6) in t and t + 1 to eliminate ZTt and ZTt+1 in (7), it is obtained that:

1
β∆

(
1 − λTt
λTt

)1/σ
=

(
λTt+1

) (σ−1)/σ
+ ∆

(
1 − λTt+1

) (σ−1)/σ 1
β∆

(
1 − λTt+1
λTt+1

)1/σ
After some simplifications,

λTt =
1

1 + ∆σ
�
1 − (1 − β)λTt+1

�σ
/λTt+1

Define

f (λ) = 1
1 + ∆σ [1 − (1 − β)λ]σ /λ

From backward indu­ion with λTT = 1, all the sequence λTt is defined as: λTt = f
T −t (1).

The fun­ion f has the following properties: f (0) = 0, f increasing on [0, 1] , f ′(0) = 1+(1− β)σ > 1.
f has two fixed points, 0 and λ∗, which is solution of:

∆
σ [1 − (1 − β)λ∗]σ = 1 − λ∗

From these properties, if T → +∞, we get for the limit strategy:

lim
T→+∞

λTt = lim
T→+∞

f T −t (1) = λ∗,

which establishes the statement. QED

E. Proof of Proposition 4.1

(i) The obtention of equations (9a) and (9b) is immediate.

The obtention of the coe�cient γt proceeds as follows. First, take advantage of (9a):

W i
t

W 1
t
=

( 1 − λi
1 − λ1

)t ai0
a10
.

Parallely make use of (5a) and (5b). It derives that:

Kt+1
W 1
t+1
=

AKt
A(1 − λ1)W 1

t
−

n∑
i=1

λiW i
t

A(1 − λ1)W 1
t

⇐⇒
Kt+1
W 1
t+1
=

Kt
(1 − λ1)W 1

t
−

1
A(1 − λ1)

n∑
i=1

λi

( 1 − λi
1 − λ1

)t ai0
a10
. (E.1)

Letting ζt := (1 − λ1)tKt/W 1
t , Equation (E.1) reformulates to:

ζt+1 = ζt −
(1 − λ1)t

A

n∑
i=1

λi

( 1 − λi
1 − λ1

)t ai0
a10
. (E.2)

Forward develop Equation (E.2):

ζt = A−1
n∑
i=1

λi
ai0
a10

+∞∑
τ=t

�
1 − λi

�τ

= A−1
n∑
i=1

λi
ai0
a10

(1 − λi )t
λi

= A−1
n∑
i=1

ai0
a10

(1 − λi )t .

15



It is eventually obtained that:

W 1
t

Kt
=

�
1 − λ1

�t

ζt

=
A

�
1 − λ1

�t∑n
i=1

�
1 − λi

�tai0/a10
,

W i
t

Kt
=

�
1 − λi

�t
�
1 − λ1

�t
ai0
a10

W 1
t

Kt

=
A

�
1 − λi

�tai0∑n
j=1

�
1 − λ j

�ta j0
.

Whence:

γt =

∑n
i=1 λiW

i
t

AKt

=

∑n
i=1 λi

�
1 − λi

�tai0∑n
i=1

�
1 − λi

�tai0
·

(ii) This is immediate from the expression of γt . QED

F. Proof of Proposition 4.2

Let χi := 1 − λi . From Equation (8), it is defined from the following equation:

A1−1/σ(χi )1/σ = δi �βi + χi (1 − βi )�.
Consider then the two ensued straight lines equations ξi (χ) = δi [βi + χ(1− βi )], i = 1, 2. These two
lines assume an interse­ion at ( χ̂, ξ̂), for ξ̂ ∈ ]0, 1[. Its first coordinate is indeed readily computed
to:

χ̂ =
δ1 β1 − δ2 β2

δ2(1 − β2) − δ1(1 − β1),

where χ̂ > 0 is ensured under the assumptions of the proposition. Further noticing that:

χ̂ < 1⇐⇒ δ1 β1 − δ2 β2 < δ2(1 − β2) − δ1(1 − β1)
⇐⇒ δ1 < δ2.

while the second coordinate is readily computed to:

ξ̂ =
δ1δ2(β1 − β2)

δ2(1 − β2) − δ1(1 − β1) ·

Consider now the fun­ion Υ(χ) := A1/σ−1 χ1/σ . It is then noticed that Υ(0) is lower that both of the
straight-lines ξi (0) = δi βi , i ∈ {1, 2}. In opposition to this, Υ(1) is greater than ξi (1) = δi , i ∈ {1, 2}.
Indeed and under Assumption 1, any of the straight-lines is to assume a unique interse­ion point
with Υ(χ) within the interval ]0, 1[.
Finally define Â from the holding of (Â)1/σ−1( χ̂)1/σ = ξ̂.

– For A < Â, one obtains

A1/σ−1�
χ̂

�1/σ
> (Â)1/σ−1�

χ̂
�1/σ

,

whence the holding of χ1, χ2 ∈ ]0, χ̂[ and the satisfa­ion of χ1 > χ2, that implies λ1 < λ2.
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– For A > Â, one oppositely obtains

A1/σ−1�
χ̂

�1/σ
< (Â)1/σ−1�

χ̂
�1/σ

,

whence the holding of χ1, χ2 ∈ ] χ̂, 1[ and the satisfa­ion of χ1 < χ2, that implies λ1 > λ2.

The statement follows. QED

G. Proof of Proposition 4.3

Consider a naïve agent with parameters (β, δ). For a naïve self deciding at period 0, all of the
decisions starting from date 0 do correspond to the ones taken by an agent with a discount fa­or
of δ, i.e., without any biais and for β = 1. The corresponding value for the coe�cient λ is hence
available as:

λ = 1 − δσAσ−1.

For every t > 1, the law of evolution of his wealth and the level of his consumption would be
available as:

Wt+1 = A(1 − λ)Wt,

ct = λWt .

The associated value of the obje­ive by date t = 0 hence derives as:

(c0)1−1/σ
1 − 1/σ

+
β

1 − 1/σ
(λA)1−1/σ (W0 − c0)1−1/σ

{+∞∑
τ=1

δτ [A(1 − λ)](τ−1)(1−1/σ)
}
.

The first-order condition of the optimisation problem is available as:

(c0)−1/σ = β (λA)1−1/σ (W0 − c0)−1/σ δ
1 − δ [A(1 − λ)]1−1/σ .

From this equation, the c0 solution assumes a form c0 = λ and

(λn)−1/σ = βδ [(1 − (δ)σAσ−1)A] (1 − λn)−1/σ
1 − δ [δσAσ]1−1/σ

λn =
1 − δσAσ−1

1 − δσAσ−1(1 − βσ) ·

In order to compare λ and λn , let χ := 1 − λ and χn := 1 − λn . The coe�cient χ is defined as the
solution of:

χ = δσAσ−1[β + (1 − β)χ]σ,

that is to be compared with:

χn =
δσAσ−1 βσ

1 − δσAσ−1(1 − βσ) ·

This leads to:

χn > χ ⇐⇒ χn > δσAσ−1[β + (1 − β)χn]σ .
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Having completed a range of simplifications, it is eventually obtained that the satisfa­ion of this
inequation reformulates as the one of:

�
1 − δσAσ−1 (1 − βσ)�σ−1 > �

1 − δσAσ−1
�
1 − βσ−1

��σ
.

Consider the fun­ion G (· ) defined by:

G
�
β

�
= (σ − 1) ln �

1 − δσAσ−1 (1 − βσ)� − σ ln
�
1 − δσAσ−1

�
1 − βσ−1

��
.

From the previous results, χ > χn ⇔ G (β) > 0. Further noticing that G (1) = 0, the derivative of
G (·) is available as:

DG
�
β

�
= σ(σ − 1)

[
δσAσ−1 βσ−1

1 − δσAσ−1 (1 − βσ) −
δσAσ−1 βσ−2

1 − δσAσ−1 (1 − βσ−1)
]

= σ(σ − 1)δσAσ−1 βσ−2
[

β

1 − δσAσ−1 (1 − βσ) −
1

1 − δσAσ−1 (1 − βσ−1)
]

= σ(σ − 1)δσAσ−1 βσ−2
[ (β − 1)�1 − δσAσ−1�

�
1 − δσAσ−1 (1 − βσ)��

1 − δσAσ−1 (1 − βσ−1)�
]

Then, and for β < 1, DG
�
β

�
< 0 if σ > 1 while DG

�
β

�
> 0 if σ < 1. As G (1) = 0, it is obtained

that, for β < 1:




χn > χ if σ > 1

χn < χ if σ < 1.

As a consequence:




λn < λ if σ > 1

λn > λ if σ < 1.

The statement follows. QED
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