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Regional Alignment and Productivity Growth

Ludovic Dibiaggio ∗, Benjamin Montmartin†, Lionel Nesta‡

Abstract

We propose the concept of regional alignment to suggest that synergistic relations among the scientific

expertise, technological specialization and industry composition of regions affect regional productivity

growth. In this paper, we test an extended conditional β-convergence model using data on 94 French

departments (NUTS3) for the period 2001-2011. Our results indicate that a conditional β-convergence is

associated with a σ-divergence process in the total factor productivity (TFP) growth of French regions.

This process is strongly affected by the level of regional alignment. Indeed, we find evidence that regional

alignment both directly and indirectly influences regional productivity growth. The indirect effect of regional

alignment materializes through its leverage on R&D investment, which is one of the most important drivers of

productivity growth. Moreover, using a heterogeneous coefficients model, we show that the positive effect of

regional alignment on TFP growth increases with the industrial and technological diversity of regions, which

suggests that regional alignment increases the value of Jacobs externalities more than Marshall-Arrow-Romer

(MAR) externalities.
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1 Introduction

In recent years, there has been increasing interest in persistent regional differences in the economic performance

of regions in almost all studied countries. While the dispersion of GDP per capita among countries has narrowed

over the last thirty years, within-country differences have widened almost everywhere (OECD, 2009, 2016).

Unlike predictions popularized by Friedman’s book "The World is Flat" (2005), the digital revolution and the

decline in transportation and communication costs have not led the world toward a general convergence. The

world has, in fact, never been so spiky (Florida, 2005, Moretti, 2013), which raises serious policy issues since

national economic integration is an essential part of governments’ agendas.

The view described above goes against the traditional view assuming an absolute (unconditional) β-

convergence across countries and regions with growth rates declining with the level of GDP per capita (Solow,

1956, Barro and Salai-i-Martin, 1991, 1995; Sala-i-Martin, 1996). Empirical results confirm absolute β-

convergence across OECD countries but do not find convergence across US states (e.g., see Evans and Karras,

1996; Sala-i-Martin, 1996; and Evans, 1997), US counties (Higgins et al. 2006; Young et al. 2008) or across

European NUTS 3 regions (Paas et al. 2006; Simeonescu, 2014). However, absolute β-convergence only tells

us whether and at what pace economies converge toward a steady state in time but not whether and to

what extent there are disparities among regional economies. The steady state of a region may depend on

characteristics that are specific within that region and therefore may vary and even diverge over time. Regions

may converge, conditional on other region-specific variables being held constant, but to different steady states.

To better account for the evolution of regional heterogeneity in countries, σ-convergence is more interesting and

is generally measured as the temporal dynamic of the standard deviation of regional GDP per capita (Quah,

1993). Persistent within-country σ-divergence is striking because analysts generally assume that institutional

conditions are homogeneous and that there is higher capital, labor and knowledge mobility within countries

than between countries.

One convincing explanation of this phenomenon is that a positive relationship exists between agglomeration

processes and growth, which are essentially spurred by spatially-mediated knowledge externalities (Baldwin and

Martin, 2004)1. Knowledge spillovers induce complementarities in firms’ R&D investment by facilitating access

to external knowledge but often require social ties based on frequent face-to-face interactions. The literature

suggests that there are two opposing views of localized knowledge spillovers (Glaeser et al., 1992). The Marshall-

Arrow-Romer (MAR) framework and Porter’s framework emphasize that industrial specialization in a single

industry facilitates knowledge flows across firms sharing similar or related technological knowledge. In contrast,

the opposite prescription promotes Jacob (1969)’s externalities resulting from the agglomeration of firms from

different industries and where knowledge diversity increases the likelihood of cross-fertilization. This process

may explain why industrial diversity contributes to the long-term growth of regions only when they rely on

similar or related technologies (Frenken et al. 2007: Boshma, 2015).
1see Ciccone, 2002 for empirical evidence of the link between the job density and growth of European NUTS 3 regions. A series

of studies have tested the sensitivity of knowledge spillovers to distance to determine whether they can explain agglomeration (e.g.,
see Jaffe et al., 1993; Ciccone and Hall, 1996; Audretsch and Feldman, 1996; Combes, 2000; Rosenthal and al., 2003; Carlino et al.
2012; Buzard and Carlino, 2013; Bloom et al. 2013; Lychagin et al., 2016; and Buzard et al. 2017).
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However, divergence also arises among similar types of regions exhibiting significant growth-rate

heterogeneity despite their similar initial conditions (Garcilazo and Martins, 2013). This divergence suggests

that regional productivity differences may be due to heterogeneous access to specific resources and infrastructures

or, more importantly, how regions organize, allocate, and develop their resources (Rosenthal and Strange, 2004;

Aghion et al. 2009). This argument echoes Saxenian (1996)’s explanation of the different growth paths of the

Silicon Valley and Boston Route 128, which is based on the ability of local industrial and innovation systems

to promote interdependence and exchanges among individuals and institutions. Thus, the relations among

localized knowledge spillovers, agglomeration and growth may rely on the underlying mechanisms in traditional

growth models that have not yet been explored (Breschi and Lissoni, 2001).

We argue that regional alignment is a critical determinant of the differences in regional growth paths.

Regional alignment reflects the level of synergies among the scientific domains, technological fields, and industrial

sectors in which a region has expertise. In this article, we focus on science and technology synergies as an

indicator of the effectiveness of interactions among universities, firms, and local political institutions or agencies.

Universities have been shown to have a significant role in both producing basic research stimulating technological

innovation through collaborations with firms, licensees or spinoffs and generating spillovers through the creation

of high skilled workers who are trained by experts. However, spillovers should be more significant and impactful

in aligned regions if local firms and startups can, either directly or indirectly, exploit the knowledge and human

capital produced by universities.

This paper makes several contributions. First, it proposes a definition and measurement of regional alignment

as an indicator of the effectiveness of synergies among complementary agents in a region, thus enabling

systematic comparisons of regional characteristics. Second, we extend the conditional β-convergence model

of total factor productivity (TFP) growth (Ha and Howitt, 2007) to take into account the existence of both

localized knowledge spillovers between regions and the theoretical influence of regional alignment on productivity

growth. Third, using French firm-level data aggregated at the NUTS 3-level for the period 2001-2011, we

estimate an extended conditional β-convergence model of productivity growth. We use different econometric

models (Simultaneous Equations Model and Heterogenous Coefficients Model) and consistent estimators (IV)

to address the complexity of the interrelations among our explanatory variables and provide a better estimation

of the influence of regional alignment on the dynamics of regional productivity growth.

Our results highlight the conditional β-convergence that is associated with a σ-divergence of the regional

productivity/growth processes in France. In other words, we obtain evidence that the heterogeneity of French

regions in terms of TFP increased during the last decade. We also find that regional alignment matters for

explaining this heterogeneity. Regardless of the estimation method used, regional alignment positively influences

regional TFP growth. Furthermore, our simultaneous equation model reveals that regional alignment has a

significant indirect effect on R&D investment, which is a driver of TFP growth. Our last main empirical finding

highlights that the nonlinear and heterogeneous effects of regional alignment are conditional on the industrial

diversity of the region. Indeed, we show that the effect of regional alignment on productivity growth is negatively
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related to industrial specialization, which seems to indicate that the positive effect of regional alignment plays

a greater role in Jacobs’ externalities than in MAR externalities.

The remainder of this paper is organized as follows. In Section 2, we present the concept of regional

alignment and its statistical measure. Section 3 develops an extended conditional β-convergence model of

regional productivity growth. In Section 4, we describe the data and the main descriptive statistics. Section

5 introduces the first estimations of the model, which highlight the process of regional productivity growth

in France and the role of regional alignment. Then, using more advanced econometric techniques, we further

investigate the influence of regional alignment in Section 6 and conclude in Section 7.

2 The regional alignment concept and its empirical measure

2.1 Literature background: R&D investment and knowledge spillovers as the main

drivers of productivity growth

Investing in R&D is central for economic growth (Romer, 1986, 1990; Grossman and Helpman, 1991, Aghion

and Howitt, 1992). The underlying assumption is that the level of R&D investment determines the likelihood of

successfully exploiting technological opportunities, increasing the stock of knowledge, and generating productive

innovation. As a quasi-public good, newly generated knowledge should spillover at a negligible marginal cost,

reduce the overall cost of R&D, and contribute to both local and national economic growth. However, as noted

by Lucas (1988) and evidenced by several empirical studies (e.g., von Hippel, 1994; Maskell and Malmberg,

1999; Breschi and Lissoni, 2001; Storper and Venables, 2004; and Laursen et al. 2014), spillovers rely on

social or contractual interactions that are spatially bounded. Consequently, regional growth divergence appears

when the size of regions differs due to localized knowledge spillovers; therefore, there are variations in the costs

of R&D and growth paths (Baldwin, Martin & Ottaviano, 2001). Recent works analyzing the link between

agglomeration and spillovers confirm the economic significance of knowledge spillovers and their sensitivity to

the distance among innovative firms (Audrestch and Feldman, 1996; Rosenthal and al., 2003; Carlino et al.

2012, Buzard and Carlino, 2013; Murata et al. 2014; Kerr and Kominers, 2015; Lychagin et al., 2016; Buzard

et al. 2017; Bloom et al. 2013; Lucking et al. 2018).

The economic literature identifies the types of knowledge spillovers that vary according to the economic

structure of a territory. On one hand, according to the MAR view on spillovers, by co-locating in the same

area, firms in a specific industry reduce their information and transaction costs as well as their R&D effort to

build absorptive capacities and benefit from local knowledge spillovers. The spatial, economic and cognitive

proximities of these firms facilitate the exchange of goods and services, human capital flows, and the pooling

of specific resources, thus boosting spillovers and returns on R&D (e.g., see Glaeser et al., 1992 and Cohen

and Levinthal,1990). MAR externalities provide a theoretical justification for the innovative benefits of the

agglomeration of firms that are either in the same industry or in related industries (Porter, 1998, Frenken et

al., 2007; Boschma and, Iammarino, 2009; Neffke et al. 2011). A series of empirical works shows that regions
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exhibiting a high level of interdependence and relatedness among the knowledge bases of local firms tend to

follow a common innovation path and therefore benefit more from knowledge externalities (North, 1990; Asheim

and Coenen, 2005; Frenken et al., 2007; Martin and Sunley, 2012; Colombelli et al., 2014). However, regions with

industries relying on similar or related knowledge bases may become trapped in a spiral of negative "lock-in",

leading to technological obsolescence and economic decline (Marin and Sunley, 2012; Neffke et al. 2017).

On the other hand, according to the Jacobs (1969) view on spillovers, size matters because larger cities

contain more variety and therefore provide more knowledge combination opportunities, thus yielding greater

economic returns on local firms’ innovative efforts. Indeed, cognitive diversity matters to avoid "lock-in" as

firms develop new capabilities that generally result from interactions with heterogeneous and unrelated sources

of knowledge (Miguelez, and Moreno, 2015; Neffke et al. 2017). Thus, the benefits of agglomeration not only

depend on scale but also rely on the composition and organization of local economic and innovative activities2.

Agglomeration studies consistently show that knowledge externalities arise from interdependencies or synergies

across complementary actors (such as suppliers, customers, universities and public institutions) that either

exchange resources, human capital, products or services or learn from each other (Marshal, 1920; Glaeser et al.,

1992; Henderson et al. 1998; Cooke, 2001; Breschi et Lissoni, 2001). An important source of knowledge variety

is interaction with universities (Gibbons and Johnston, 1974, Rosenberg, 1990; Nelson and Rosenberg, 1994;

Bishop et al. 2011). Although academic knowledge can be accessed through scientific publications, patents

or licenses, the proximity between scientists and engineers affects the intensity and quality of collaborations

(Gibbons and Johnston, 1974; Mansfield and Lee, 1996; Arundel and Geuna, 2004; Bishop et al. 2011).

2.2 Regional alignment as a new input for productivity growth

In this paper, we argue that in addition to R&D investment and localized spillovers, regional innovative and

growth performances are related to the alignment of the scientific expertise, technological capabilities and

industrial specialization of regions. The concept "regional alignment" refers to the accumulation of assets and

capabilities in various actors that can be mutually synergistic if effectively combined. This simple definition

has three implications. First, regional alignment emphasizes the idea that in order to be productive, scientific

knowledge must translate into concrete applications. This is similar to the idea of Arora and Gambardella (1994),

who distinguish between general and abstract knowledge, which is found in the realm of science, and local and

concrete knowledge, which belongs to the domain of technologies and industrial applications3. From these

preliminary definitions, one can already infer that the region’s endowment in both basic and applied knowledge

is an essential characteristic of regional alignment. Second, a greater integration between scientific, technological

and industrial expertise implies a greater accumulation of assets and their corresponding infrastructure. In other
2For example, the innovative and economic performances of regions vary with the diversity of industry composition (Vernon,

1960; Jacob; 1969; Porter, 1998; Duranton and Puga, 2001, Helsley and Strange, 2014), the intensity of competition among local
firms (Porter, 1998, Bloom et al. 2013; Grebel and Nesta, 2017), the level of the maturity of industries (Neffke et al. 2011), the
average or diversity of firm size (Rosenthal and al., 2003; Delgado et al. 2010; Agarwal et al., 2014), the intensity of entrepreneurship
(Glaeser et al., 2015), and the overlap of resources across industries (Porter, 2003; Neffke et al. 2012; Delgado et al., 2010, 2014).

3Abstract knowledge means the ability to represent a range of phenomena by means of a limited number of variables. General
knowledge is the ability to relate distant elements of knowledge. Conversely, local and concrete knowledge is applied to concrete
experiments, a process which relies primarily upon tacit abilities and trial-and-error.
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words, regional alignment emphasises the role of a minimum critical mass which translates into greater facilities,

enhanced access to heavy experimental protocols, etc...For instance, universities play a significant role in creating

more productive human capital and attracting talented students from other regions (Salter and Martin, 2001,

Moretti, 2012). The literature has clearly established that university spillovers are geographically bounded and

directly constribute to local firms’ innovation (Jaffe, 1989; Acs et al., 1994 ; Anselin et al., 1997 Laursen et

al. 2011, 2014). Indeed, academic researchers gain from collaborations with local firms providing potential

research directions and access to additional resources (e.g., see Lee, 2000 and D’Este and Perkman, 2011),

thus reinforcing the alignment process. Third, we believe that the concept of regional alignment may reveal

potentially useful interactions among complementary agents such as public and private scientists, engineers,

business communities, and policy makers, which may contribute to the innovation, the productivity and the

growth of the local economy. Overall, we argue that regional alignment as defined here plays a critical role in

the growth potential of regions.

2.3 The regional alignment measure

The objective of our regional aligment measure is to capture the potential synergistic relations among the

scientific, technological and industrial resources in a region. The empirical estimation of regional alignment is

a three-step process.

Step 1: Measuring the level of synergies among all the science domains and the technological

fields at the national level

We use patent statistics and scientific publications to unravel regional alignment. We use scientific

publications to unravel the scientific expertise of regions. Patent statistics span over a greater range of actors,

namely public and private scientists and engineers. Therefore, we believe that patent can be used to qualify the

technological and industrial expertise of the regions. We measure the level of synergies by the intensity of the

combined use of technological fields and scientific domains in all French patents4. More precisely, the level of

synergy between the technological field j ∈ J and the scientific domain k ∈ K is denoted as τjk, which results

from the number of citations of scientific papers in domain k by patents associated with technological field j. We

propose a parametric measure of τjk by using a random combination of j and k that follows a hypergeometric

distribution5 and define τjk as:

τjk = Cjk − µjk
σjk

(1)

where Cjk is the empirical number of co-occurrences observed between technology j and scientific domain k,

µjk is the expected (mean) value of a random technological co-occurrence and σjk is its standard deviation.

Thus, if Cjk > µjk, then technology j and scientific domain k are highly related. Conversely, if Cjk < µjk, then

j and k are poorly related. More details on the computation of τjk are provided in Appendix B.
4The scientific domains and technological fields are presented in Appendix A
5The hypergeometric distribution, which stems from a binomial distribution, describes the probability of successfully drawing x

out of N draws without replacement (while the binomial distribution assumes replacement).
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Step 2: Measuring the regional technological expertise (RTE) and regional scientific expertise

(RSE) in each technological field and scientific domain

We use the commonly-used indicators of technological and scientific specializations, i.e, the revealed

technological advantage (RTA) indicator developed by Balassa (1961, 1969) and the revealed scientific advantage

(RSA). The RTA of a specific technological field j is defined as the ratio of the share of regional applicants’

patents associated with technological field j to the share of the country’s patents associated with technological

field j.

RTAij =
Pij/

∑
j Pij∑

i Pij/
∑
ij Pij

where Pij is the number of patents in technological field j granted in region i. We then define the RTE in

technological field j for a region as a binary transformation of the RTA:

RTEij =1 if RTAij ≥ 1

RTEij =0 if RTAij < 1
(2)

The same ratio is used to define RSA in domain k and measures the share of regional patents citing scientific

publications associated with scientific domain k to the share of the country’s patents citing articles in journals

associated with scientific domain k.

RSAik =
Pik/

∑
k Pik∑

i Pik/
∑
ik Pik

where Pik is the number of patents citing scientific domain k that were granted in region i.

RSEik =1 if RSAik ≥ 1

RSEik =0 if RSAik < 1
(3)

Step 3: Measuring regional alignment

We define the level of regional alignment (RA) as the mean of the level of regional alignment for each

combination j and k. In other words, for each pair of technology field j and scientific domain k, the level of

regional alignment is defined as the interactions among the RTE in j, the RTE in k and the level of synergy

between j and k.

RAijk = τjk ∗RTEij ∗RSEik (4)

Where RAijk is the regional alignment of region i in technology j and scientific domain k. Next, we compute

the index of regional alignment for region i as:

RAi =
∑
jk RAijk

(Ji ∗Ki)
(5)
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where Ji represents the number of technological fields for which region i is active, and Ki represents the number

of scientific domains for which region i is active. Regional alignment increases with the effective number of

related co-expertises jk (high τjk) but decreases with the potential number of co-expertises jk within the region

(high Ji and Ki).

3 A regional productivity model

3.1 The TFP dynamic equation

Our theoretical framework is based on a variety R&D-based growth models proposed by Grossman and Helpman

(1991, chap.3) and Jones (1995). In these models, TFP is measured as a stock of knowledge, and its accumulation

over time drives economic growth. The main difference in different R&D-based growth models concerns an

assumption made regarding the returns of this stock of knowledge, that is, the returns to the TFP stock. If

we assume constant returns to scale, then we obtain endogenous growth with an immediate adjustment to

the steady state. If we assume decreasing returns to scale, then we obtain semi-endogenous growth with an

adjustment path to the steady state; i.e, the short-run growth rate differs from the long-run steady state growth

rate.

We assume decreasing returns to the TFP stock and thus use the approach proposed by Jones (1995).

Consequently, we can write the equation governing the dynamics of TFP for region i (noted ˙TFP ) as:

˙TFP i = ηiRD
λ
i TFP

φ
i (6)

where RD refers to the level of R&D investment level of the region, and ηi > 0 is an exogenous productivity

paremeter specific to the region. Following Jones, we assume that λ < 1, given the existence of potential

duplications in R&D activities, and φ < 1 refers to the decreasing returns of the TFP stock.

3.2 Regional alignment and the exogenous productivity parameter

In the previous section, we developed the concept of regional alignment and illustrated how it could be a

central explanation for the productivity dynamics of regions. We argue that regional alignment could be the

theoretical source of the exogenous productivity parameter. In other words, we believe that regional alignment

is an interesting candidate that could endogenously explain the value of the productivity parameter of regions.

We thus assume:

ηi ≡ RAµi (7)

where RA is the level of regional alignment, and µ < 1 is the returns of regional alignment. In (7), we assume

that regional alignment is Hicks neutral for the dynamics of productivity. Obviously, we can also imagine

that regional alignment more directly influences either the returns of R&D investment (Harrod neutral) or the
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returns of the productivity stock (Solow neutral). In any case, this consideration is not the first importance for

the purpose of this paper.

3.3 From a mono-regional to a multi-regional model of productivity

Previously, our theoretical framework considered regions such as Robinson Island. In reality, it is difficult to

imagine that what happens in a particular region is totally independent of what happens in other regions,

especially when they are in the same country where input mobility is strong. Indeed, due to the existence of

(localized) knowledge spillovers, local trade and input mobility, it is obvious that the productivity dynamics

of a particular region are driven not only by its productivity stock but also by the productivity stock of its

neighboring regions. For a two-region (denoted as i and j) trade and growth model (Martin and Ottaviano,

1999), the existence of localized knowledge spillovers is modeled in the following way:

˙TFP i = ηiRD
λ
i [TFPi + δTFPj ]φ (8)

where δ ∈ [0, 1[ measures the importance of interregional spillovers and thus their spatial boundary. We extend

the concept proposed by Martin and Ottaviano (1999) to an N-regions model and rewrite (8) in the following

way:

˙TFP i = ηiRD
λ
i [WiTFP ]φ (9)

where Wi = [δii, δij , ..., δin] is a 1 × n vector describing the strengh of the link between region i and the other

regions. TFP is an N × 1 vector of the productivity level such that TFP ′ = [TFPi, TFPj , ..., TFPn]. We

follow new economic geography and growth (NEGG) theory by asumming that region i can fully benefit from its

productivity stock, whereas it benefits to a lesser extent from the productivity stock of its neighboring regions.

Consequently, in equation (8), we obtain δii = 1 and δin ≤ δii, ∀m 6= i. As a short example, assume that region

i has a significant link with three regions denoted respectively as j,k and l; then, the total stock of productivity

that benefits region i is given by WiTFP = TFPi + δijTFPj + δikTFPk + δilTFPl. Thus, in our model, the

productivity growth of the region is influenced by its "usuable" productivity stock (WiTFP ), which is composed

of its own productivity level (TFPi) plus a share of other regions’ productivity stock.

By inserting proposition (7) into expression (9) and dividing through by TFPi, we obtain the following

equation for the productivity dynamics of a particular region i:

gi = RAµi RD
λ
i TFP

−1
i (WiTFP )φ (10)

where gi = ˙TFP i/TFPi is the growth rate of the productivity of region i. Next, it is necessary to rewrite (10)

as TFPi is included in WiTFP . After some manipulations, which are provided in appendix C, we are able to
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determine the growth rate of the productivity of a multi-region framework as:

gi = ζiRA
µ
i RD

λ
i (WiTFP )φ−1

ζi ≡ [(Wi − W̃i)(W
′

iWi)−1W
′

i ]−1
(11)

where W̃i = [0, δij , ..., δin] is a 1 × n vector describing the strength of the link between region i and the other

regions. The only difference in vector Wi is that in W̃i, we have δii = 0. Consequently, (Wi − W̃i) is a non-

negative (1× n) vector of the form [1, 0, 0..., 0]. The interesting result of this simple equation is that the TFP

growth rate of a region depends not only on its distance to the frontier (TFPi) but also its distance to the

frontier of its neighboring (or influencing) regions. As we assume decreasing returns of the productivity stock

(φ < 1), for a region, all else being equal, the higher the neighboring levels of productivity stock are, the lower

its growth rate.

3.4 From theory to empirical specification

We now assume that there is a shock εit to the growth rate in each period. This shock is generated by a

stationary process with a mean of zero. Then, following Ha and Howitt (2007), the log-linear approximation of

a discrete-time version of the generalized productivity-growth function (11) for region i yields:

4 lnTFPit = ln ζi + µ lnRAit + λ lnRDit + (φ− 1) ln[WiTFPt] + ηt + εit (12)

In what follows, we discuss the expected value of the main parameters from a theoretical point of view. As we

assume decreasing returns of the TFP stock, i.e, φ < 1, we also assume that there is a conditional β-convergence

of the regional TFP growth where β ≡ (1−φ) < 0. Based on the discussion in the previous section, we can expect

a positive value for µ as a better regional alignment should increase the effects of both R&D and productivity

stock. We also assume that 0 < λ < 1, implying that non-cooperative R&D investment decisions generate some

duplications at the regional level.

4 Data and descriptive statistics

4.1 Data sources

The data collection required to evaluate the influence of regional alignment on regional productivity growth was

very important and time consuming. Indeed, we needed to use various microeconomic data sources. In what

follows, we describe the main databases we used to construct the empirical measures for the key variables of

Model (12).

Data sources for the regional alignment measure: Patstat and the Web of Science (WOS)
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As described in Section 2, the regional alignment measure aims to estimate the potential synergies between

scientific domains and technological fields as well as the scientific and technological expertise of regions.

Therefore, we relied on information obtained from patents and scientific publications.

We retrieved patent data from the Patstat database compiled by the European Patent Office (EPO). We

collected information from all patents granted in France for which the priority year was between 1995 and 2011

(n= 574,515). To avoid problems due to irregular patenting activity in regions, every year reports the aggregation

of a backward five-year window of patenting. Using the IPC codes that each patent is associated with, we used

the correspondence table provided by the EPO to allocate each patent to one of the 35 technological fields in the

database (see Appendix A). To measure RTE, the usefulness of patents is measured as the number of forward

citations of patents associated with each technological class.

To estimate the scientific expertise of regions, we retrieved 753,046 journal articles that were indexed by the

Institute of Scientific Information’s (ISI’s) WOS and published between 1995 and 2011 by researchers located

in France. We collected the year of publication, the name of the journal and the address of the researchers

using the zip code to determine the French region they were associated with. Using the WOS’s classification of

journals that separates journals into scientific categories, we identified 22 scientific domains (see Appendix A).

Then, the researchers’ addresses enabled us to allocate each publication to a region and measure the expertise

of each region on a yearly basis.

We measured the level of interdependence between each pair of scientific domain-technological field by using

the so-called "non-patent literature references" (NPLR) and selected references to scientific journal literature

(Narin et al. 1997, Perko and Narin, 1997; Cockburn et al., 1998; Fleming and Sorenson, 2004). In other

words, we retrieved all scientific publications that have been used in French patents. Scientific publications

can be identified in NPLR by extracting titles between quotation marks in patents. However, titles are often

incomplete, preventing us to find the right reference systematically. We used Google Scholars to find the full

title of the article, as well as the name of the journal publishing the article, which allowed us to allocate each

article to a WOS scientific category. We obtained 13,838 articles published between 2000 and 2011.

Data sources for the TFP measure: FICUS and FARE

The FICUS and FARE databases contain the financial statements of all enterprises (with the exception

of microenterprises and agricultural holdings) with turnover that exceeded 75000 euros and that were active

between 1997 and 2011. All nominal variables are deflated using various deflators made available online by

INSEE, the National statistical office in France, including deflators for production, value added, intermediate

consumption, investment, and hours worked. It is from these deflated data, and therefore by volume, that the

levels of TFP are calculated. Although they contribute to GDP, companies with no employees are excluded

from the analysis because it is not possible to compute their productivity index. Of the 32 million observations

for the study period, the database includes approximately 16 million observations after the exclusions. This

significant reduction in the number of observations is equivalent to excluding a mass of companies representing

7% of the total value added.
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One important potential bias that occurs when using firm-level data is related to location. Indeed, the

location of firms is not necessarily equivalent to the location of production activities; the latter pertains to the

establishments themselves. Although the vast majority of companies have only one establishment (93.5% of

the companies in our sample), in our base, multi-establishment firms represent 53% of total value added and

56% of total employment. Hence, these multi-establishment companies represent a sizeable bias toward heavily

agglomerated territories. Larger companies tend to settle their headquarters close to major administrative,

political and economic centers. By way of consequence, we would tend to overestimate the economic activities

of agglomerated areas and underestimate the economic activities of more rural areas. To correct for this

geographical bias, we use establishment-level data (the annual Declarations of Social Data, i.e., DADS data).

Such data make it possible to know, for each company, the location of manpower by establishment. Since

these establishments are geographically identified by municipality and assuming that there is a proportional

relationship between the proportion of staff per establishment and all other production variables (turnover,

value added, investment, capital stock, and intermediate consumption), it is possible to correct the aggregation

bias mentioned above.

Overall, the regional TFP measure is based on data gathered on more than 3.5 million establishments from

1997 to 2011 and includes more than 18 million observations. Finally, the establishments are aggregated at the

departmental level. The methodology used in this paper to calculate the TFP at the firm level is described in

appendix D.

Data sources for the R&D measure: the R&D survey

Growth theory explains TFP growth by means of R&D investments. Although the translation of R&D

investments into observed TFP growth may be diffused over time, it is necessary to account for the intangible

investments that must eventually translate into product or process innovation, that is, into TFP growth.

Therefore, we use the French R&D survey that is collected each year by the French Ministry of Higher Education,

Research and Innovation. This database provides firm-level information on R&D activities and, particularly, on

domestic R&D expenditures (DERD) and the sources of R&D financing. This survey database is organized into

three files: the first provides firm-level information allowing us to characterize the firms, the second provides

R&D sector-level information on the financial sources used by the firms to develop their R&D activities and the

third provides NUTS 3-level information on the R&D executed in each department in each firm (expenditure

and staff). The sample used to calculate aggregate R&D expenditures at the regional level includes 11,000

firms.

4.2 Descriptive statistics and a spatial analysis

In this section, we conduct a descriptive analysis of the variables we use to estimate our extended conditional

β-convergence Model (14). Table 1 below shows that, on average, productivity growth in the French regions

during the last decade has been negative (−0, 4% per annum) with strong heterogeneity as the minimum value is

−15.8% (Savoie region in 2008) and the maximum value is 9.4% (Paris region in 2007). Moreover, the empirical
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distribution of productivity growth is skewed to the left with excess kurtosis, implying a high proportion of

negative productivity growth within the French regions. We also see important heterogeneity in the productivity

stock (TFP) of the French regions. The lowest productivity stock value is obtained for the Lozere region in 2009

(0.349), and the highest is obtained for the Paris region in 2007 (20.117). The distribution of productivity stock

is strongly skewed to the right with a high level of excess kurtosis, which means that most of the productivity

stock observed is well over the average productivity stock (2.752).

Variable Obs. Mean S.D Min Max Skewness Kurtosis

∆ lnTFP 1034 -0.004 0.036 -0.158 0.094 -1.235 5.656

TFP 1034 2.752 2.475 0.349 20.117 3.371 20.469

WTFP 1034 4.939 3.216 1.401 25.908 2.757 15.355

RD 1034 251 381 527 109 0 3 738 882 4.181 22.220

RA 1034 9.173 10.346 -0.049 152.6547 4.525 46.761

Table 1: Descriptive Statistics

To produce our "usuable" productivity stock variable (W TFP), we construct a spatial matrix describing

the links among the French regions. This spatial matrix uses two criteria to weight the link between the two

regions. First, we generate a matrix of economic similarity between regions. The economic similarity between

region i and region j is measured by the inverse of the euclidean distance of their share of valued added in

agriculture, industry and services. Second, we generate a contiguity matrix, and we multiply the two matrices.

Consequently, in our final spatial matrix, two regions are linked if they are geographically contiguous, and the

weight of this link depends on the economic similarity between these two regions. Consequently, if a region

has three contiguous regions, then we add the weighted average productivity stock of these three regions to the

region’s own productivity stock. This calculation explains why the descriptive statistics for the "usuable" stock

of productivity (W TFP) are higher than those for the stock of productivity (TFP). The main characteristics of

the distribution of "usuable" productivity stock (W TFP) are similar to those of productivity stock. Nevertheless

we note that by taking into account the spatial dependence between the regions and their capacity to benefit

from external knowledge, we slightly reduce the heterogeneity of the distribution.

Concerning R&D investment, the distribution is also highly heterogeneous, with a minimum of 0 for the

Lozere region in 2005 and 2008 and a maximum of 3.74 billion euros for the Hauts-de-Seine region in 2011.

We can see considerable heterogeneity in R&D investment as the standard deviation is more than two times

higher than the mean. Finally, and most importantly, we focus on our measure of regional alignment. Again,

our data on the French regions indicate there is considerable heterogeneity as the minimum value is -0.049 for

the Creuse region in 2001, and the maximum value is 152.655 for the Lot region in 2004. The distribution of

regional alignment is highly skewed to the right with considerable excess Kurtosis, implying that most levels

of regional alignment are above the mean of 9.173. Due to the small size of certain French regions, some did

not report any patents and thus have a value of 0 for regional alignment. Among our 1,034 observations, 10%

(103 observations) have a zero value. These 103 observations are split among 37 regions, but 40% of those with
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zero values concern only 7 French regions: Cantal, Aude, Lozere, Creuse, Meuse, Alpes-de-Haute-Provence and

Haute-Alpes. Nevertheless, no region has a zero value over the entire study period.

Figure 1 below provides two maps representing the means of TFP growth and TFP stock for the period

2001-2011. These two maps highlight a strong geographical concentration of both TFP growth and TFP stock

0.01

-0.02
Average 2001-2011

(a) TFP growth (%)

18.86

0.39
Average 2001-2011

(b) TFP stock

Figure 1: TFP levels and dynamics in the French regions

with leading TFP regions surrounded by low TFP regions. If the unconditional convergence theory applies, we

should observe high TFP growth dynamics in regions with low TFP stock, and vice-versa. If a small number of

French regions with low TFP stock have indeed experienced high TFP growth over the period, then we should

see that most of the high (low) TFP regions have also a high (low) TFP growth rate over the period. These two

maps clearly highlight the absence of an unconditional convergence of French regions and the strong probability

of an increase in TFP heterogeneity over time.

Figure 2 provides two maps representing the geographical disribution of average R&D investment and

regional alignment for the period 2001-2011.

3167683.25

900.66
Average 2001-2011

(a) R&D

25.20

1.41
Average 2001-2011

(b) Regional Alignment

Figure 2: TFP, R&D and RA in French regions

14



Maps (c) and (d) represent the geographical disribution of R&D investment and regional alignment,

respectively. Although the interpretation of such maps is a matter of taste, we do observe that the map of

regional alignment (Figure 2(b)) differs from the three other maps, which do exhibit some degree of overlap.

5 The link between productivity growth and regional alignment

5.1 The conditional β-convergence of TFP growth and regional Alignment

To estimate a conditional β-convergence model, estimators that can address endogeneity must be used as the

productivity stock is in the right-hand side of equation (12). In addition, the causal relationships existing

among productivity levels, R&D investment and regional alignment could be sources of additional endogeneity.

Indeed, as Myrdal (1957) notes, the dynamics of regions, and especially their inequalities, are driven by circular

cumulative causation between the variables. Consequently, the ordinary least squares (OLS) estimator is

inconsistent and inefficient for estimating a conditional β-convergence model.

To address these endogeneity problems, our econometric strategy includes two processes: 1) directly

estimating equation (12) using consistent IV estimators and 2) estimating equation (12) using a simultaneous

equation model (SEM) with a three-stage least squares (3SLS) estimator. Both methods are able to address

endogeneity problems related to temporal dependence and causality, but the advantage of the SEM approach is

that it provides results on the complex interrelationships existing among productivity stock, R&D investment

and regional alignment.

We start with the first part of our econometric strategy by presenting the estimation of equation (12) with

three different estimators: least squares dummy variables (LSDV) (OLS on panel), IV-2SLS and IV-GMM. The

LSDV estimation is inconsistent but provides a benchmark compared with the two IV consistent estimators.

LSDV IV-2SLS IV-GMM

Variable Coeff. s.e. P-Value Coeff. s.e. P-Value Coeff. s.e. P-Value

ln[WiTFP ] -0.089 0.027 0.001 -0.145 0.043 0.001 -0.174 0.042 0.000

ln[RD] 0.002 0.002 0.389 0.014 0.006 0.017 0.015 0.005 0.003

ln[RA] 0.002 0.001 0.001 0.014 0.004 0.000 0.017 0.003 0.000

Table 2: Conditional β-convergence model

The results presented in Table 2 provide evidence of a β-convergence process in the French regions’ productivity

growth. More precisely, the efficient estimators (IV-2SLS and IV-GMM) estimate the speed of convergence to

be between 14.5% and 17.4%. Table 2bis in Appendix E provides the estimation of the same equation using the

productivity stock of the region (TFP ) instead of its usable productivity stock (WiTFP ). For this estimation,

the speed of convergence is estimated to be between 10.3% and 12.1%, which is significantly lower than the

results presented in Table 2. Thus, the results imply that the β-convergence process is influenced by spatial
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dependence among regions. Consequently, geography matters for explaining local productivity dynamics and

implies that the empirical estimation using an a-spatial framework, i.e, using the productivity stock of a region

instead of its "usuable" stock, is likely to understimate the true speed of convergence. The same results occur if

we do not control for endogeneity as the LSDV estimator clearly underestimates the speed of convergence (less

than 9%; see Table 2).

Table 2 also confirms that the β-convergence process is conditional on the level of R&D investment and

regional alignment. Indeed, the consistent estimators presented in Table 2 show that both R&D investment

and regional alignment positively and significantly influence the productivity growth of a region. Consequently,

French regions naturally converge toward different steady states according to their behavior in terms of R&D

investment and regional alignment. The heterogeneity in French regions’ R&D profiles (see map (a) in Figure

2) can thus explain why regions with the highest productivity experienced a high productivity growth, and vice-

versa. Indeed, as R&D investment is highly concentrated in a few regions that are also the leading productivity

regions, naturally, these regions have high productivity growth potential. Nevertheless, the differences in R&D

investment cannot explain why some regions with relatively high productivity stock and low R&D profiles

experienced high productivity growth, such as the Aude, Lot-et-Garonne and Pyrénées-Orientales regions. It

seems that regional aligment is able to provide one explanation for the dynamics of these regions, and this is a

very important implication. Indeed, if the level of R&D investment is strongly correlated with industries (and

thus cannot be strongly influenced by political strategies), then the level of regional alignment can be more

easily influenced by public authorities especially because government and local authorities strongly support

scientific activities. Consequently, regional alignement could be very important in the political strategy of local

authorities (especially for low-intensive R&D regions) to boost TFP growth in both the short and long run.

5.2 The sigma divergence of productivity growth and regional alignment

Since the previous subsection highlights the existence of a conditional convergence process in the TFP growth

of French regions, a natural question is whether the β-convergence is associated with a σ-convergence, i.e,

if heterogeneity in TFP among the French regions has increased over time. To test the presence of the σ-

convergence, we use two different indicators measuring the cross variations in TFP stocks: the cross standard

deviation of TFP stock and the cross coefficient of variation (which corresponds to the standard deviation

divided by the mean).

These two graphs clearly highlight that the conditional β-convergence is associated with a strong σ-divergence

of productivity among the French regions. Indeed, the cross standard deviation increased by 5% over the study

period (basis year: 2001), and the coefficient of variation increased from 98% in 2001 to 111% in 2011. It is

also important to note that the 2008 financial crisis seems to have increased the σ-divergence process. These

results suggest that the variables conditioning the β-convergence process, i.e., R&D investment and regional

alignment, are at the heart of this process of increasing heterogeneity among the French regions. We thus decide

to study the time evolution of the cross standard deviation of R&D investment and regional alignment (Figure
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Figure 3: Evolution of the TFP heterogeneity of the French regions

4). Using year 2001 as the base level, Figure 4 shows that the cross standard deviation of regional alignment has
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(b) R&D expenditures

Figure 4: Cross standard deviation of regional alignment and R&D investment

increased by nearly 30% in 2011 compared to 2001, whereas the cross standard deviation of R&D investment has

increased by 2% between these two dates. Thus, if heterogeneity in R&D investment and in regional alignment

both affect an increase in the heterogeneity of TFP heterogeneity across French regions, it suggests that the

heterogeneous dynamics of regional alignment play a predominant role in the observed σ-divergence process.

6 A deeper discussion of the influence of regional alignment

6.1 The indirect effect of regional alignment on productivity growth

As explained in the previous section, the estimation of our conditional β-convergence Model (12) with complex

interrelationships among the explanatory variables suggests that it is necessary to develop a simultaneous

equation model. This model will allow us to better understand the direct and indirect effects of regional
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alignment on TFP growth by taking into account potential reverse causality and the cumulative causation

mechanisms of the variables.

As we do not want to impose any restrictions regarding the causality existing among productivity stock,

R&D investment and regional alignment, we start by defining a general simultaneous equation system for each

explanatory variable of the core equation (12). In what follows, F refers to a linear function, and all variables

are expressed in logarithm. A detail explanation of the variables used in the SEM approach is provided in

Appendix F.



4TFPit = F (RAit, RDit,WiTFPt, uit)

WiTFPt = F (WiTFPt−1, RDit, RAit, HIit, HTit, HSit, ENit, EXit, uit)

RDit = F (RDit−1, RAit,WiTFPt, SUBit, HIit, HSit, HTit, uit)

RAi = F (RAit−1, RDit,WiTFPt, SUBit, HIit, HSit, HTit, uit)

where uit = αi+ηt+εit includes both the idiosyncratic error term and the individual and time fixed effects. The

first equation of the system is the TFP growth equation we defined in (12). The second equation corresponds to

the usuable TFP stock for the region that we explain by a set of variables. The first (WiTFPt−1) is a temporal

lag that takes into account the strong time dependency of TFP stock. The second (RD) and third (RA) are the

R&D investment and regional alignment of the region, respectively, which are the main drivers of conditional

TFP growth convergence. We also include three different Herfindahl indices that measure the specialization of

the region in terms of industries (HI), technologies (HT) and sciences (HS). Finally, in this second equation, we

include the dynamics of the entry (EN) and exit (EX) of firms in the region. The third equation of our system

explains the level of R&D investment in regions. As R&D investment is strongly time dependent, we include

the temporal lag of R&D investment as the first explanatory variable (RDit−1). We add the level of regional

alignment (RA), usable productivity stock (WTFP ), the amount of R&D subsidies received (SUB) and our

three Herfindhal specialization indices. Finally, the last equation of the system explains RA. As explanatory

variables, we include the temporal lag of regional alignment, R&D investment and usuable productivity stock

(WTFP ). We also take into account R&D subsidies (SUB) to see if public support for R&D drives regional

alignment. Finally, our three Herfindhal specialization indices are used as controls.

In what follows, we present the 3SLS results obtained from the SEM that was previously developed. To check

for robustness, we also present, for each equation, the results we would obtain if nonsignificant causality among

productivity stock, R&D investment and regional alignment were not considered. In the following tables, the

estimations of the entire SEM is called the "full system", whereas the estimations of the SEM without significant

causality is called the "restricted system".

The results for the core equation (Table 3) are consistent with our previous findings using IV-2SLS and

IV-GMM estimators and are presented in Table 2. Indeed, we find evidence of a β-convergence process of TFP

growth that is conditional on a positive effect of both regional alignment and R&D investment. The speed of
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convergence is estimated at 12.6%, which is slightly lower than the results obtained with other IV estimators.

The quality of our model is relatively good with an R2 of 0.67.

Equation 1: ∆ TFP

Full System Restricted System

Variable Coeff. S.E. t-Stat P-Value Coeff. S.E. t-Stat P-Value

WTFP -0.126 0.038 -3.35 0.001 -0.123 0.030 -4.05 0.000

RD 0.010 0.003 3.03 0.000 0.010 0.003 3.70 0.000

RA 0.020 0.002 8.40 0.000 0.021 0.02 8.52 0.000

R2: 0.6710 R2: 0.6674

Table 3: Conditional β-convergence with the SEM approach

As the SEM approach provides similar results for our core equation of productivity growth, we focus our analysis

on the three other equations of the system. We start with the usuable TFP stock equation (WTFP ) for which

we obtain the following results (Table 4):

Equation 2: WTFP

Full System Restricted System

Variable Coeff. S.E. t-Stat P-Value Coeff. S.E. t-Stat P-Value

L.WTFP 0.803 0.015 52.88 0.000 0.804 0.015 52.96 0.000

RD 0.001 0.000 2.76 0.006 0.001 0.000 2.80 0.005

RA 0.000 0.000 1.35 0.178

HI 0.002 0.003 0.69 0.489 0.002 0.003 0.69 0.492

HT -0.000 0.000 -0.50 0.614 -0.000 0.000 -0.66 0.510

HS 0.001 0.000 1.55 0.121 0.001 0.000 1.69 0.091

EN 0.086 0.005 17.50 0.000 0.085 0.005 17.47 0.000

EX -0.025 0.005 -5.44 0.000 -0.025 0.005 -5.55 0.000

R2: 0.9998 R2: 0.9998

Table 4: Productivity model with the SEM approach

Our model for the usable TFP stock equation is very good with an R2 of 99.98%. Most of the results obtained

are comparable to those in the literature. Indeed, the usuable TFP stock is serially correlated in time with

a coefficient related to its lag value of 0.803. We find evidence that the level of TFP stock of a region is

positively related with its level of R&D investment. In contrast, the level of regional alignment does not seem

to significantly influence the usable TFP stock. This last result is due to the fact that the usuable stock of

productivity also takes into account the productivity stock of neighboring regions. Indeed, if we replicate the

SEM using the productivity stock instead of the "usable" stock, then we find that regional alignment has a

positive and significant effect on the productivity stock. Nevertheless, dropping this nonsignificant relation

between regional alignment and usable productivity stock does not change the other results (see the results for
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the restricted system). Concerning the control variables, the dynamics of the entry and exit of firms matter

and suggest that regional barriers to firms’ mobility hinders the development of regional productivity stock.

Concerning our Hefindahl indices, the usable TFP stock seems to be influenced by only the regional specialization

in science. Indeed, specialization in terms of technologies and industries is not satistically significant.

We now discuss the third equation of our system related to the R&D investment level of regions. We obtain

the following results for the R&D equation (Table 5):

Equation 3: RD

Full System Restricted System

Variable Coeff. S.E. t-Stat P-Value Coeff. S.E. t-Stat P-Value

L.RD 0.343 0.035 9.73 0.000 0.338 0.032 10.71 0.000

RA 0.810 0.141 5.74 0.000 0.841 0.122 6.91 0.000

WTFP -0.899 1.206 -0.75 0.456

SUB 0.035 0.017 2.09 0.037 0.038 0.017 2.29 0.022

HI -0.756 0.212 -3.56 0.000 -0.765 0.216 -3.35 0.000

HT -0.072 0.021 -3.42 0.001 -0.073 0.021 -3.42 0.001

HS 0.292 0.077 3.76 0.000 0.278 0.072 3.88 0.000

R2: 0.7993 R2: 0.7872

Table 5: R&D investment model with the SEM approach

Our model for R&D investment fits well with our data with an R2 of nearly 80%. Most of the results obtained

are comparable to those in the literature. Indeed, we find evidence that R&D investment is serially correlated

in time with a coefficient related to the lagged value of approximately 0.34. We also find that R&D subsidies

have a positive influence. A more important result concerns the influence of the usable productivity stock and

regional alignment. First, we do not find a significant relationship between the productivity stock and the level

of R&D investment, which implies that the causal relationship between R&D investment and productivity stock

is clear: investment in R&D drives productivity, but the inverse does not hold. Second, we find that RA has a

strong positive effect on the level of R&D investment. This result reveals that regional alignment has a more

complex influence on productivity growth. Indeed, all the previous estimates show that regional alignment can

be seen as a regional input that directly drives productivity growth. This last equation highlights that regional

aligment has an indirect effect on productivity growth through its leverage effect on R&D investment (which is

the other input of productivity growth). Consequently, this last result implies that regional alignment is at the

heart of the σ-divergence process of productivity that we observe among the French regions. Concerning the

controls, our results show that the specialization of regions in terms of industries and technologies limits R&D

investment, whereas specialization in science has a positive effect.

Finally, another reason for using the SEM approach is that it allows us to better understand what creates

regional alignment. We obtain the following results from the regional alignment equation (Table 6):

20



Equation 4: RA

Full System Restricted System

Variable Coeff. S.E. t-Stat P-Value Coeff. S.E. t-Stat P-Value

L.RA 0.027 0.021 1.24 0.214 0.028 0.020 1.38 0.166

RD 0.003 0.065 0.05 0.962

WTFP 0.758 1.738 0.44 0.663

SUB -0.024 0.026 -0.92 0.358 -0.021 0.024 -0.88 0.379

HI 0.510 0.281 1.82 0.070 0.507 0.281 1.80 0.071

HT 0.048 0.027 1.82 0.069 0.049 0.026 1.84 0.065

HS -0.115 0.082 -1.41 0.159 -0.110 0.020 -1.35 0.177

R2: 0.3719 R2: 0.3706

Table 6: Regional alignment model with the SEM approach

Our model for regional alignment, which takes into account both time and regional fixed effects, is clearly

not satisfactory because it has an R2 of approximately 37%. Indeed, only the industrial and technological

specialization of regions seem to positively drive the regional alignment, but the significance remains low (p-

value > 5%). This result clearly highlights the complexity of explaining the (res)sources that create the regional

alignment. Unfortunately, our dataset does not allow us to test a richer model, and it is clear that a better

understanding of the elements at the source of regional alignment is needed.

6.2 The heterogenous effect of regional alignment

In the previous subsection, we highlighted that regional alignment has an indirect effect (which is cumulative

with its direct effect) on regional productivity growth. Another important question that arises is whether

the impact of regional alignment is homogenous or heterogeneous among French regions. To investigate this

question, we need to estimate equation (12) by including a heterogenous coefficient; i.e, the impact of the

explanatory variables are region specific. To retain the logic of the conditional β-convergence model, we still

assume that there is a common β parameter for the usable productivity stock, but we allow for the heterogeneous

impacts of both regional alignment and R&D investment. Thus, we estimate the following model

4 lnTFPit = αi + µi lnRAit + λi lnRDit + (φ− 1) lnWiTFPt + ηt + εit (13)

Therefore, we use the common correlated effects estimator (CCE) proposed by Peasaran (2006) that takes

into account the unobserved common factors of the regions, i.e, a cross-section correlation. Due to the small

temporal dimension of our data, we apply two corrections for the mean group estimates: jacknife and recursive.

The results of the estimations are provided in the table 7.
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Jacknife Correction Recursive Correction

Variable Coeff. S.E. t-Stat P-Value Coeff. S.E. t-Stat P-Value

Pooled

WTFP -0.168 0.986 -0.17 0.865 -0.416 0.149 -2.78 0.005

Mean Group Estimates

RD 0.013 0.004 3.35 0.001 0.010 0.004 2.49 0.013

RA 0.013 0.003 4.79 0.000 0.007 0.002 3.88 0.000

Table 7: Conditional β-convergence with the CCE approach

As we can see, the estimated pooled and mean group values are similar to those obtained with the IV and

SEM methods when we apply the jacknife correction, whereas they are very different when we apply a recursive

correction. We thus decide to focus our analysis on (1) the results provided by the jacknife correction and (2)

the heterogenous effect of regional alignment.

In the previous section, we highlight that regional alignment has a positive indirect effect on R&D investment.

As discussed in Section 2, localized knowledge spillovers induced by R&D activities are important drivers of

productivity growth. Thus, a natural question arises as to whether the positive (direct and indirect) effect

of regional alignment on productivity growth plays a role in Jacob or MAR externalities. To provide some

answers to this question, we analyze whether the reaction of regions with respect to regional alignment (µi) is

influenced by their level of specialization at three different levels: industry, technology and science. This level

of specialization is computed using the Herfindahl index. If Marshallian externalities dominate, concentration

of either scientific (HS), technological (HT ) or industrial (HI) activities would increase the effectiveness of

regional alignment (µi) on productivity growth. If instead Jacobian externalities dominate, such concentration

measures (HS, HT , HI) would have a negative effect on µi.

To start this analysis, we compute and test the Pearson’s correlation coefficient between the heterogeneous

effects of regional alignment and our three measures of specialization. We find a systematic negative correlation

coefficient between the effect of regional alignment and the the value of the Herfindhal indices. Nevertheless, the

negative correlation is only (strongly) significant for the Herfindhal index related to technology (ρ = −0.2128

with a p-value of 0.039), whereas it is less significant for the Herfindhal indices related to industry (ρ = −0.0997

with a p-value of 0.339) and science (ρ = −0.121 with a p-value of 0.246). To delve deeper into the analysis

and because one limitation of the Pearson’s correlation coefficient is its linearity, we decide to run a simple OLS

regression. The Table 8 shows our main findings.
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Dependent Variable: µi (see equation (13))

Model 1 Model 2 Model 3

Variable Obs Coeff. S.E. P-Value Coeff. S.E. P-Value Coeff. S.E. P-Value

H 94 -0.112 0.316 0.723 -3.326 1.466 0.026 -3.388 1.445 0.021

HT 94 -0.048 0.028 0.092 -0.114 0.078 0.150 -0.031 0.027 0.261

HS 94 -0.012 0.019 0.528 -0.021 0.089 0.818

H2 94 28.363 12.391 0.025 29.053 12.305 0.020

HT 2 94 0.188 0.121 0.124

HS2 94 0.020 0.131 0.876

cons 94 0.027 0.013 0.036 0.114 0.037 0.003 0.105 0.036 0.004

R2: 0.049 R2: 0.1319 R2: 0.1080

Table 8: Effect of regional alignment and the specialization of regions

When we test for the linear effect of our Herfindhal measures (Model 1), we find that technology specialization

has a significant negative effect on the effect of regional alignment on productivity growth but only at the 10%

level of significance. Specialization in terms of industry and science do not seem to have a significant influence.

Nevertheless, we can easily imagine that a non-linear relation exists. Model 2 introduces non-linear effects, and

this change strongly affects our findings. Indeed, Model 2 indicates that there is a negative convex relation

between industrial specialization and the effect of regional alignment on productivity growth. The two others

measures of specialization (technology and science) have no significant impact. Model 3 confirms the results

of Model 2. Using results from Model 3, we compute ∂µi/∂HI = 0 in order to identify the value HI∗ which

provides us with the threshold below (above) which Jacobs (MAR) externalities dominate. We find a value

HI∗ = 0.058, and empirically observe that for 91% of regions, the Jacobs externality dominates (diversity

enhances the effect of regional alignment) whereas in the remaining 9% of regions, the MAR externalities

dominates (specialization enhances the effect of regional alignment). Consequently, we find evidence that in most

cases, industrial specialization reduces the positive effect of regional alignment on productivity growth. This

result suggests that regional alignment plays more of a role in Jacob’s spillovers rather than MAR externalities.

Thus, the diversified regions could strongly increase their potential growth by increasing their regional alignment

between science and technology. In the figure below, we represent the convex relationship between industrial

specialization and the effect of regional alignment. Figure 5 (except for the three most specialized regions)

clearly indicates that regional alignment has a greater impact on the productivity growth of regions that are

more industrially diversified. In a sense, this is not a surprising result because increased alignment between the

scientific and technological capabilities in diversified regions will have a more positive effect positive effect on

productivity growth due to Jacobs spillovers. In less diversified regions, potential Jacobian spillovers are lower,

implying that regional alignment has less of an effect on productivity growth, all else being equal.
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Figure 5: Link between the effect of regional alignment and industrial specialization

7 Conclusion

Since the pioneering works of Barro and Sala-i-Martin (1995), the economic literature has widely discussed the

concept of regional convergence. A large consensus on conditional convergence suggests that there are persistent

or increasing regional differences in terms of economic performance. Although the literature can clearly explain

why "weak" regions become weaker and strong regions become stronger, economists remain unable to explain

why regions with similar conditional factors (such as the level of R&D investment and human capital) experience

different growth paths. The aim of this paper is to provide a theoretical and empirical explanation.

This paper makes several contributions. First, we propose the concept of regional alignment as a measure of

the level of synergies among the scientific fields, technological domains, and industrial sectors in which a region

has expertise. We argue that regional alignment can theoretically reflect regions’ specific characteristics and

contributes to the development of a productivity parameter in growth theory. Therefore, regional alignment

is a critical determinant of differences in regional growth paths. Second, we develop a spatial extension of

the traditional convergence model of productivity growth (Ha and Howitt, 2007) by including both localized

knowledge spillovers and regional alignment as an input of productivity growth. Third, using French firm-

level data aggregated at the NUTS 3 level over the period 2001-2011, we estimate our extended conditional

convergence model and test our hypothesis about the influence of regional alignment. Using consistent

IV estimators, we develop a simultaneous equations model and a heterogeneous coefficient model to better

understand the influence and causality of regional alignment in the dynamics of regional productivity growth.
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Our results confirm most of our hypotheses about the importance of regional alignment as an essential driver

of the productivity growth of a region. First, we obtain evidence that regional productivity growth in France

follows a conditional convergence process (regions tend to converge toward different steady states), which is

associated with increasing heterogeneity across regions. All the results indicate that regional alignment matters

for explaining this productivity growth process. Indeed, regional alignment has a direct effect on productivity

growth and can be seen as a regional input. Moreover, our simultaneous equations model shows that regional

alignment has an indirect effect by leveraging the role of private R&D investment in local productivity growth.

The last empirical finding emphasizes the heterogeneous effect of regional alignment across the French regions.

We find evidence that a negative relationship exists between the effect of regional alignment on productivity

growth and the level of industrial specialization of regions. In other words, regional alignment matters more for

the productivity growth in diversified regions than that in specialized regions. This result suggests that regional

alignment tends to increase the value of Jacob’s externalities and thus materializes if the regional industrial

structure is sufficiently diversified.

In addition to the simple synergies between science and technology, we argue that regional alignment

contributes to productivity growth because it actually reveals the efficiency of coordination mechanisms, which

Aghion et al. 2009 (p. 2) call "the intimate and multiple connections of technological change and innovation with

advances in science, on the one hand, and the set of socio-economic institutions operating in a given context,

on the other." (Aghion et al. 2009, p. 2). Synergistic relations between scientists and engineers can only be

effective if there are spaces for dialogue contributing to a shared understanding among different communities,

which allow knowledge to be shared despite high cognitive distance (Sabel, 2001; Lester and Piore, 2004, Lowe

and Feldman, 2008, Cohendet et al., 2014). This study may explain why, everything else being equal, despite

a low level of R&D investment, aligned regions can change their steady state growth path better than other

regions. Further works should analyze the micro-processes that lead to effective regional alignment.

It follows that regional alignment could be an important guide for policy makers (especially for low-intensive

R&D regions) who are willing to boost TFP growth in both the short and long run. The question, then, is to

discuss possibilities to generate and reinforce alignment. In this respect, regional alignment is not orthogonal

to smart specialization policy design (Foray et al., 2009; 2011; McCann and Ortega-Argilés, 2015). They both

recognize the importance of taking into account the heterogeneity of regional trajectories based on industrial,

institutional, cultural and historical specificities. However, unlike the related variety interpretation of smart

specialization (Balland et al., 2018), regional alignment does not focus on a technology driven policy. Rather,

synergies between technological fields and scientific domains only reveal systemic dynamics, the effectiveness of

decisions made by heterogeneous actors and the level of efficiency in resource allocation processes. It would be

interesting to understand better the mechanisms underlying the emergence of those synergies, in particular to

design policies dedicated to laggard regions.
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Appendix A: List of scientific domains and technological fields

List of Scientific domain

Number Name Number Name

1 Agriculture Fisheries and Forestry 12 General Arts & Humanities

2 Biology 13 General Science & Technology

3 Biomedical Research 14 Historical Studies

4 Built Environment Design 15 Information & Communication Technologies

5 Chemistry 16 Mathematics & Statistics

6 Clinical Medicine 17 Philosophy & Theology

7 Communication & Textual Studies 18 Physics & Astronomy

8 Earth & Environmental Sciences 19 Psychology & Cognitive Sciences

9 Economics & Business 20 Public Health & Health Services

10 Enabling Strategic Technologies 21 Social Sciences

11 Engineering 22 Visual & Performing Arts

List of Technological field

Number Name Number Name

1 Electrical machinery, apparatus, energy 19 Basic materials chemistry

2 Audio-visual technology 20 Materials, metallurgy

3 Telecommunications 21 Surface technology, coating

4 Digital communication 22 Micro-structural and nano-technology

5 Basic communication processes 23 Chemical engineering

6 Computer technology 24 Environmental technology

7 IT methods for management 25 Handling

8 Semiconductors 26 Machine tools

9 Optics 27 Engines, pumps, turbines

10 Measurement 28 Textile and paper machines

11 Analysis of biological materials 29 Other special machines

12 Control 30 Thermal processes and apparatus

13 Medical technology 31 Mechanical elements

14 Organic fine chemistry 32 Transport

15 Biotechnology 33 Furniture, games

16 Pharmaceuticals 34 Other consumer goods

17 Macromolecular chemistry, polymers 35 Civil engineering

18 Food chemistry
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Appendix B: The parametric measure of synergies λjk

Number of patents with technology j

To smooth the importance of patents associated with a particular technology j (or a scientific domain k), all

patents are counted using a five year moving sum.

Let P tnj = 1 if patent n is assigned to technology j and 0, otherwise. The total number of patents assigned

to technology j in t is thus Ctj =
∑
n P

t
nj . Let P tnk = 1 if patent n mentions an article published in a journal

associated with the scientific domain k in the non-patent citations section and 0, otherwise. The total number

of patents assigned to scientific domain k in t is thus Ctk =
∑
n P

t
nk. Since technology j and scientific domain

k may be assigned to the same patent document, then Cj ∩ Ck 6= � and thus the number Cjk of the observed

co-occurences of j and k is Ctjk =
∑
n P

t
njP

t
nk. Applying the latter to all possible pairs of technologies, we obtain

a matrix Ω(J∗K) with J = 35 technological fields and K = 22 scientific domains.

This number of joint occurrences is used to construct our measure of synergy by relating it to some measure

of its expected frequency Ĉjk under the hypothesis of random joint occurrence. There is no authoritative

measure of Ĉjk, but we propose a parametric-based measure in this paper. More precisely, we assumre that

the number Cjk of patents assigned to j and k is a hypergeometric random variable. Thus, the probability of

drawing C patents with both technology j and scientific domain k follows the hypergeometric density function.

P (Xjk = x) =

Cj
x


N − Cj
Ck − x


N

Ck


where is Xjk is the number of patents assigned to both technology j and scientific domain k, x is the

hypergeometric random variable and N is the total number of patents. The mean value (expected frequency)

and variance of random co-occurrence are:

Ĉjk = µjk = E(Xjk = x) = CjCk
N

σ̂2
jk = µjk

(
N − Cj
N

)(
N − Ck
N − 1

)
If the actual number Cjk of co-occurrences observed between j and k greatly exceeds the expected value µjk of

random co-occurrences, then j and k are synergistic; that is, they are more productive than a random association.

Conversely, when Cjk < µjk, then technologies j and k are poorly synergistic (their combined use produces fewer

patents than expected when drawing a random combination). Hence, the level of synergy between j and k is

defined as:

τjk = Cjk − µjk
σjk
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Equation (4) has two interesting features. First, τjk is a real number that can be either positive or negative,

with no lower or upper bounds: τjk ∈ R :]−∞; +∞[ the sign is a straightforward and intuitive interpretation.

Second, τjk is similar to a t-student, so that if τjk ∈] − 1.96; +1.96[, then the null hypothesis H0 (no

synergistic relations exist between technology j and k) can be safely accepted. Third, τjk is a matrix of science

technological relations that can be seen as an approximation of scientific and technological knowledge represented

as a hierarchical tree (Popper, 1972).

Appendix C: The productivity growth rate in a multi-regional model

We start with equation (10)

gi = RAµi RD
λ
i (TFPi)−1(WiTFP )φ

Rewriting (WiTFP ) = TFPi + W̃iTFP , we thus have

TFPi = [Wi − W̃i]TFP

Next, we rewrite the level of productivity in region i as:

TFPi = [Wi − W̃i][(W
′

iWi)−1W
′

iWi]TFP = [Wi − W̃i][(W
′

iWi)−1W
′

i ][WTFP ]

Inserting this last expression of TFPi into equation (10) leads to:

gi = RAµi RD
λ
i

[
[Wi − W̃i][(W

′

iWi)−1W
′

i ][WiTFP ]
]−1

(WiTFP )φ

= RAµi RD
λ
i

[
[Wi − W̃i][(W

′

iWi)−1W
′

i ]
]−1

(WiTFP )−1(WiTFP )φ

= RAµi RD
λ
i

[
[Wi − W̃i][(W

′

iWi)−1W
′

i ]
]−1

(WiTFP )φ−1

Appendix D. The TFP measure

The productivity measure

We compute total factor productivity (TFP) by using the so-called multilateral productivity index, which was

first introduced by Caves and al.(1982) and extended by Good and al. (1997). Contrary to Olley-Pakes (1996)

measure, this is a non-parametric measure of TFP that does not impose a functional form for the production

function. This methodology consists of computing the TFP index for firm z at time t as follows:

lnTFPzt = ln Yzt − ln Yt +
t∑

τ=2

(
ln Yτ − ln Yτ−1

)
−


N∑
n=1

1
2 (Snzt + Snt) (ln Xnzt − ln Xnt)

+
t∑

τ=2

N∑
n=1

1
2 (Snτ + Snτ−1) (ln Xnτ − ln Xnτ−1)

 (14)
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where Yzt denotes the real gross output produced by firm z at time t using the set of n inputs Xnzt, where

input X is alternatively capital stocks (K) and labor, in terms of hours worked (L) and intermediate inputs

(M). Snzt is the cost share of input Xnzt in the total cost. Subscripts τ and n are indices for time and inputs,

respectively. Symbols with an upper bar correspond to the measures for the reference point (the hypothetical

firm), which are computed as the means of the corresponding firm level variables, over all firms in year t. Note

that (14) implies that the reference points lnY and lnX are the geometric means of the firm’s output quantities

and input quantities respectively, whereas the cost shares of inputs of the representative firms S is computed

as the arithmetic mean of the cost share of all firms in the dataset.

Equation (14) allows us to estimate the productivity stock of each firm in our sample. To produce a regional

measure of productivity, we calculate the average level of productivity for firms located in region i:

TFP it =
∑z=N
z=1 TFPzt

N
(15)

and then apply the following formula:

TFPit =
(
TFP it ×

Lit
Lt

)
(16)

where Lit is the employment level in region i at time t, and Lt is the employment in France at time t.

All nominal output and inputs variables are available at the firm level. Industr-level data are used for price

indexes, hours worked and depreciation rates.

Output

Gross output deflated using sectoral price indexes published by INSEE (French system of national accounts).

Labor

Labor input is obtained by multiplying the number of effective workers (i.e., the number of employees plus

the number of outsourced workers minus workers taken from other firms) by average number of hours worked.

The annual series for hours worked are available at the 2-digit industry level and provided by the Groningen

Growth Development Center (GGDC)). This choice was made because there are no data on hours worked in

the EAE survey.

Capital input

Capital stocks are computed from the investment and book value of tangible assets following the traditional

perpetual inventory method (PIM):

Kt = (1− δt−1) Kt−1 + It (17)

where δt is the depreciation rate, and It is real investment (deflated nominal investment). Both the

investment price indexes and depreciation rates are available at the 2-digit industrial classification level from

the INSEE data series.

29



Intermediate inputs

Intermediate inputs include the purchase of materials, merchandise, transport, traveling, and miscellaneous

expenses. Intermediate inputs are deflated using sectoral price indexes for intermediate inputs published by

INSEE.

Appendix E: Estimated β-convergence in a mono-regional model

LSDV IV-2SLS IV-GMM

Variable Coeff. S.E. P-Value Coeff. S.E. P-Value Coeff. S.E. P-Value

ln[TFPt−1] -0.093 0.022 0.000 -0.103 0.033 0.002 -0.121 0.031 0.000

ln[RDt] 0.002 0.002 0.386 0.013 0.005 0.20 0.013 0.005 0.004

ln[RAt] 0.002 0.001 0.001 0.014 0.004 0.000 0.017 0.003 0.000

Table 2bis: Conditional β-convergence of TFP growth (using TFPi instead of WTFP )

Appendix F. Details on the variables used

In this appendix, we provide details on the variables used in the simultaneous equation model (SEM).

Entry (EN) and exit (EX) rates of establishments at the NUTS 3 level

We compute these measures using the FICAS and FARE databases. The measures of industry churning

account for the capacity of a region to rejuvenate, that is, to devote private resources to new entrepreneurial

projects. We do this by measuring firm entry into and exit from the local area. The entry rate is simply the

ratio of the number of establishments new to a NUTS 3 region over the overall number of establishments in

that region. For each year, we count the number of new establishments in a given NUTS 3 region using the

SIRET administrative number. Entry in the database may not accurately trace entry in the region, due to

the fact that inclusion in the FICUS and FARE databases implies that company revenues exceed the minimum

threshold of 75,000 euros. Likewise, the exit rate is the ratio of the number of establishments exiting a NUTS

3 region over the overall number of establishments in that region. Exit from the database may not accurately

trace liquidation or relocation, due to the threshhold of 75,000 euros.

Concentration indices for industry, technology and science (H, HT and HS): the computation

of HHI

In this paper, we also account for the industry, technological and scientific structure of region i by computing

the Hirschman-Herfindahl Index (HHI).

To compute the HHI index for indusry (denoted H), we use the FICUS and FARE databases and calculate

the following statistics:

Hi =
∑
z

s2
iz
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where s is firm z’s market share in the NUTS 3 region i, including all sectors. A value close to unity indicates

market concentration, the polar case being unity, where all the market is supplied by a unique monopolistic

company. Hence, the HHI is usually used to account for the degree of competition in an industry, most often

within a country or geographic unit. In our case, however, we aim to determine the weight of large firms within

a region across all productive activities. Hence, this measure of competition considers the local industrial

structure rather than the degree of competition that most often spans over single NUTS 3 regions.

To compute the HHI index for technologies (denoted as HT), we use the PATSTAT database and calculate

the following statistics:

HTi =
∑
j

s2
ij

where s is technology field j’s share in the NUTS 3 region i, including all the patents that have been granted.

A value close to unity indicates strong technology concentration, the polar case being unity, where all the

patents granted in a region belong to one technological field. Hence, the HHI for technology indicates the local

technological structure of NUTS 3 regions.

To compute the HHI index for sciences (denoted HS), we use the WOS database and calculate the following

statistics:

HSi =
∑
k

s2
ik

where s is scientific domain k’s share in the NUTS 3 region i, including all publications. A value close to unity

indicates a strong scientific concentration, the polar case being unity, where all the publications produced in

a region belong to one scientific domain. Hence, the HHI for science indicates the local scientific structure of

NUTS 3 regions.

R&D subsidies (SUB)

We use the second and third files of the R&D survey to calculate the level of public R&D subsides received

by firms at the NUTS 3 level.The second file of the R&D survey describes the financial sources used by firms

to develop their R&D activities. From this file, we can calculate the share of R&D expenditures financed by

public funds by firm and sector. However, this file only includes 11,000 R&D firms. To correctly geo-localize

the R&D subsidies in each NUTS 3 region, we had to match the information calculated from the second file of

the R&D survey with the information contained in the third file, i.e, the R&D executed by firms at the NUTS

3 level. Thus, we are able to redistribute the subsidies proportionally to the R&D executed in each NUTS 3

region (taking into account the size and sectorial composition of the firms in the region) .
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