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Abstract

We view political activity as an interaction between forces seeking to achieve

a political agenda. The viability of a situation depends on the compatibility of

such agendas. However even in a conflictual situation a compromise may be pos-

sible. Mathematically a political structure is modeled as a simplicial complex

and a viable configuration as a simplex. A represented compromise is a viable

configuration obtained by the withdrawal of some agents in favor of some friendly

representatives. A delegated compromise is a sophisticated version of a com-

promise obtained by the iteration of the withdrawal process. Existence of such

solutions depends on the discrete topology of the simplicial complex. In partic-

ular we prove that the existence of a delegated compromise is equivalent to the

strong contractibility of the simplicial complex.

Keywords: Delegation, compromise, simplicial complex, contiguity, strong ho-

motopy.

JEL Classification: C70, C79, AMS Classification: 91A70.

1 Introduction

We study conflict resolution as the search for a compromise in a political context.

Political activity is viewed as an interaction between forces seeking to achieve a political

agenda. Only a viable government (Commonwealth, State) allows the achievement of

political projects. However such a government may not be achievable if the forces do

not agree on some common ground. In normal circumstances, the struggle for power is

regulated by rules (e.g. Constitution) that guarantee a peaceful and consensual outcome
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of the process. This includes commonly accepted mechanisms for breaking deadlocks

once they occur (for instance elections, referendum or justice ruling). However many

political entities, under special circumstances, incur a blocked governance process while

the current order fails to provide a clue for a solution. This is a political crisis or a

stalemate. For instance, one can witness the formation of a crisis in a place where a

military conflict left the entity with a pre-state, pre-constitutional configuration, that

is, where a universally accepted rule does not prevail; or where the threat of a violent

action impedes the regular unfolding of the political process; or else where the risk

of disrupting the ongoing process is wielded by a force that accumulates discontent

with the current establishment. The general question that we ask is therefore : What

happens in a crisis configuration that is unsolvable by the current institutions, or put

more explicitly what can be expected if a configuration composed by many parties

with incompatible political agendas lacks the institutional mechanism that enforces a

settlement?

Modeling politics has a long history starting from early greek philosophers. Foun-

dations of political order in a City or a Commonwealth - the State - have been the

main object of political philosophy. The object of political activity being to achieve

coexistence, in a common space, of entities with conflicting wills, the notion of conflict

is at the center of such a thought. One has to explain locally the emergence of an

order between agents, and globally the coexistence of many such orders with different

agendas. The difficulty (but also the interest) in modeling the notion of conflict lies in

the fact that the latter is, by definition, a situation that erupts as a crisis of the current

order and therefore unsolvable by existing institutions: being disruptive the new game

has no rules ....

One of the main concepts that marked the modern analysis of conflict is the notion

of enemy. According to political thinkers that promote this view the essential moment

of politics is the dichotomy friend/enemy (cf. e.g.[11]). This binary choice prevails

in situations of disruption, when the political body is in danger, war or civil strife.

Although we admit that the conflict is produced in a disrupted situation, we depart

from the idea that politics is bi-polar: political action may well be drawing a line of

separation from (or the destruction of) an enemy, but it is mainly the search of a viable

situation from a disrupted one. Political forces in presence can be either compatible

for an inclusive governance or not. In many situations the search for viability may be

accomplished through complex processes that could lead to a compromise.

Our model starts by the description of a configuration of forces and the viability

relation. This is an abstraction of the typical though extremely stylized situation that

prevails after a civil war or an invasion by military forces has destroyed the previous

State. A less dramatic but formally similar situation prevails locally in political entities

where elections or other rules result in a distribution of forces unable to coexist in a
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single government. Coexistence means that the coalition would not explode and that a

viable order can be established. With the viability structure as only datum we seek to

determine whether a compromises exists or not. Mathematically a political structure

is represented by a simplicial complex.

A fundamental notion in our approach to crisis resolution in this framework is

friendly delegation: An agent can delegate power to another agent only when the latter

is at least as well situated in the viability distribution as the delegating agent. Friendly

delegation by an agent is possible if any viable configuration containing the agent re-

mains viable if the delegate joins the configuration. The idea is that no viable occasion

is lost if the agent withdraws in favor of the delegate. The result of withdrawal will

be a new configuration which is simplified to some extent, since some of the sources of

conflict have been removed. In this model we do not address the question of whether

an agent decides to delegate or not since our agents are not endowed with any decision

power. Instead we investigate in detail what can emerge as a result of delegation, giving

rise to the notion of representation and represented compromise. One can view viability

as a sort of potential, distributed in the political configuration with a gradient pointing

in the direction of decreasing conflict, and our study consists in the determination of

optimal configurations. The process of delegation can be iterated and in this context a

new type of solution called a delegated compromise is defined.

As announced in the title, our theory of compromise is qualitative; this is the case

because from a formal point of view, the model falls within the field of discrete topol-

ogy; both the representations and the delegations can be studied using the theory of

homotopy in finite simplicial complexes, and the relevant concepts are introduced when

needed. The category of simplicial complex is the right category needed in order to

define meaningfully notions like viability or compatibility and friendly delegation.

The paper is organized as follows: In the following Section 2, we introduce the basic

notion of a political structure which has the the mathematical structure of a simplicial

complex, and we define the notion of a delegation, giving rise to representations and

represented compromises. As we proceed, examples show how these notions apply

to games and to network models of communication. In the following Section 3, the

formalism is developed somewhat further so we can use results from homotopy theory

of finite complexes to investigate delegation in political structures. The main results on

the structure of represented compromises are presented in Section 4, which also points

to some of the shortcomings. This leads to the consideration of the somewhat iterated

form of delegation and its consequences, the weaker notion of delegated compromises,

in Section 5. Finally, Section 6 contains some concluding comments.
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2 Basic definitions

We consider a situation described by a nonempty ordered pair (E,K) where E is a finite

set and K is a collection of nonempty subsets of E. The elements of E represent the

basic political entities and they are called agents. Subsets of E are called configurations

and the elements of K are called viable configurations. In concrete cases, agents may

be individuals, but they may as well be groups of individuals or even political issues

or institutions. Agents are the basic forces or entities of the political situation, they

are characterized collectively by the viability relations described by K. In our context

viability is interpreted as the possibility of coexistence; a configuration is viable if the

different political agendas of its components are compatible, for instance a governance

including the entities that form the configuration can live without being disrupted; a

non viable configuration is conflictual. In this paper we assume that the set K of viable

configuration is given. We shall give concrete examples of situations where the set of

viable configurations comes as a result of political bids or strategic interaction. The

use of the word “agent” must not be misinterpreted; in fact an agent is not endowed

with any choice power or even preferences. The only driving motive will be the search

for viability via the principle of decreasing conflict. Our purpose is to study if and

how with this principle one can reach a viable configuration or compromise. In what

follows we assume that there is given a set K of viable configurations, with the property

that any singleton {x}, where x ∈ E, is viable, and any non empty subset of a viable

configuration is viable, so that formally K is a simplicial complex with set of vertices

E. The pair (E,K) is called a political structure.

Since the viable configurations are given, our analysis starts at a possibly disrupted

situation. In the extreme case where the all-embracing configuration E is viable, our

model has nothing to tell. Below we give several examples of political structures by

describing first the upstream interactions that lead to them. In the sequel the power

set of any set X will be denoted P(X), and P(X) \ {∅} will be denoted P0(X).

Example 1 (Effectivity structures). Let N and A be finite nonempty sets (of players

and alternatives, respectively). An effectivity structure on (N,A) is a subset of P0(N)×

P0(A), so that elements of E are pairs (S,B) with S ⊆ N , B ⊆ A. In the interpretation,

elements of E are potential cases of exercising power: the coalition S can make sure

that outcome of any decision made in the community must belong to B, or equivalently,

S can prevent choices outside B. One can consider E as a (partially defined) effectivity

function: that is E : P0(N) → P(P0(A)) where E(S) stands for {B ∈ P0A|(S,B) ∈ E}

(cf Abdou and Keiding [1]).

In order to make of E a political structure with elements (S,B) as agents we have to

describe the viable configurations. For that purpose we need to specify the environment

in which the power expressed by (S,B) may be exercised: Let L(A) denote the set of

linear orders on A, and define (preference) profiles as maps R : N → L(A), so that
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the set of profiles is L(A)N . If for some i ∈ N , the alternative a is (strictly) preferred

to the alternative b in the profile R, then we write aR+
i b, and for a ∈ A, the set of

alternatives preferred to a by all members of S in the profile R is

P (a, S, R) = {b ∈ A | bR+
i a, all i ∈ S}.

With this notation, we get that the coalition S is induced to exercise its objection

power at the profile R if an alternative c ∈ A is suggested such that P (c, S, R) contains

a subset B with (S,B) ∈ E.

Let P ⊆ L(A)N . We shall say that a configuration ∅ 6= s ⊆ E is stable at P if it

is always able to select an alternative against which none of its members will exercise

their objection power, that is if for each profile R ∈ P there is some a ∈ A such that B

is not contained in P (a, S, R) for some (B, S) ∈ s. Considering the configuration s ⊆ E

as an effectivity function, stability of s at P amounts to stability of s in the usual sense

of the non-emptiness of the core for all profiles in P (see e.g. Moulin and Peleg [4],

Abdou and Keiding [1]). It is easy to see that the family K of all stable configurations

in E is indeed a simplicial complex, so that the ordered pair (E,K) can be considered

as a political structure. The standard political structure associated with (E,P) is the

one where the set of viable configurations is taken as the set of stable configurations.

There is another political structure that can be associated to (E,P). Let s ⊆ E

and (S,B) ∈ E. (S,B) is said to be absorbable in s if there exists (S ′, B′) ∈ s such that

S ⊆ S ′ and B ⊆ B′. Denote by ŝ the set of all (S,B) that are absorbable in s. s is

said to be strongly stable at P if the set ŝ is stable at P. The strong political structure

associated to (E,P) is the one where viable sets are precisely strongly stable sets. It

will be denoted (E, K̂). Remark that s ∈ K̂ if and only if ŝ ∈ K. ©

Example 2 (TU games). A TU (Transferable Utility) game is a pair (N, v), where

N is a nonempty set of players and v is a map defined on the set P0(N) of nonempty

subsets of N (coalitions) that assigns to each S ∈ P0(N) a number v(S) interpreted

as the money or utility gain that the coalition can obtain for its members. A payoff

vector in (N, v) is a vector x ∈ R
N . An feasible allocation is a payoff vector satisfying

∑

i∈N xi ≤ v(N); let V (N) be the set of all feasible allocations. For S ∈ P0(N), let

A(S) =
{

x ∈ V (N)
∣

∣

∑

i∈S xi ≥ v(S)
}

be the set of feasible allocations that cannot be

improved by the coalition S, in the sense that its members get at least as much as they

could get from the coalition alone in case of secession. A family of coalitions is viable if

there is a feasible allocation which cannot be improved by any coalition in the family.

A political structure (P0(N),Kv) is defined by positing :

Kv = {σ ⊆ P0(N) | ∩S∈σA(S) 6= ∅}.

Note that A(S) 6= ∅ and therefore the set of vertices is indeed P0(N). Moreover

P0(N) belongs to Kv if and only if there is a payoff vector which cannot be improved by
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any coalition, equivalently if and only if the core of (N, v) is nonempty. A closer study

of Kv may however be helpful in the nontrivial case where P0(N) /∈ Kv. It should be

noticed that here, the agents are coalitions, and configurations are families of coalitions.

©

Since our overall purpose is the investigation of conflictual situations and their

possible resolution, we are mainly interested in ways in which to eliminate non-viable

configurations. Our approach will be to allow agents to delegate their influence to other,

more centrally placed agents. In our present setup we formulate this by the notion of

delegation.

Definition 1. Let y ∈ E and d ⊆ E, y /∈ d. A delegation from d to y is a map

δd : E → E such that δd(x) = y if x ∈ d and δd→y(x) = x if x /∈ d. A simple delegation

is a delegation δd→y where d is a singleton, d = {x}, and it is written as δx→y.

A delegation δd→y is said to be friendly if s ∪ {y} ∈ K for all s ∈ K such that

s ∩ d 6= ∅.

A delegation from d to y can be seen as a political action by which the agents

in d withdraw from the political interaction in favor of the agent y. A delegation is

friendly whenever any agent in d can ensure that every viable configuration to which

she participates remains viable after delegation, and moreover, the agent receiving the

delegation is present in every configuration which contained the delegating agent. A

withdrawal in favor of a delegate is more likely to happen if the delegation is friendly. In

our analysis, the possibility of friendly delegations constitutes the only driving principle

behind potential moves that reduce conflicts in a political structure.

Example 3 (Networks). The use of formal networks has a long history in the social

sciences, with its beginning in the 1930s; for a survey of its history, see e.g. [12]. A

social structure is a graph G = (V, E), where V is a finite set of vertices and E is a

set of two-element subsets {v0, v1} of E . In the interpretations, V are individuals, and

two individuals v0, v1 are socially connected if {v0, v1} ∈ E . A graph (V, E) can be seen

as a simplicial complex (V,K) where s ∈ K if and only if s is a nonempty subset of

an element of E . This amounts to a simplicial complex where E is the set of maximal

simplexes. Equivalently a graph is a simplicial complex where simplices have dimension

0 or 1. The degree of a vertex v is the number of edges with extremity v.

There is a simple friendly delegation from x to y only if (x, y) ∈ E and if for any z

such that (x, z) ∈ E, one has y = z otherwise {x, y, z} is a simplex, a contradiction. It

follows that an agent can friendly delegate if and only if it has degree 1. On the other

hand if the x and y where x delegates friendly to y, have both degree 1, then it follows

that there is also a friendly delegation from y to x and this can only happen if {x, y}

is a connected component of the graph. We conclude that for a connected graph with

|V | ≥ 3 any delegate have degree ≥ 2. ©

6

 
Documents de travail du Centre d'Economie de la Sorbonne - 2018.33



v0•

v4•

v3•

v1•

v2•

Figure 1: Point centrality in a network: The vertex v0 with degree 4 is connected to all the
other vertices with an edge, whereas the other vertices are connected only to v0.

The following property of delegations is immediate.

Proposition 1. For any ∅ 6= d = {x1, . . . , xn} ⊆ E and y /∈ d, if δd→y is a delegation,

then

δd→y = δx1→y ◦ · · · ◦ δxk→y.

Moreover, δd→y is friendly if and only if δxj→y is friendly for j ∈ {1, . . . , n}. �

As a result of the delegations, there may be fewer agents with conflicting interests.

We introduce the notion of a compromise as a counterpart of real world solutions to

political conflicts, where agents (or issues, or power groups) will have to step aside since

they will not be accepted as partners in a political deal but on the other hand can be

represented by other, more acceptable, agents.

Definition 2. A nonempty subset F of E is a representation of E if for any x /∈ F ,

there exists some y ∈ F such that δx→y is a friendly delegation.

Example 4 (Empirical case). A recent stalemate in Lebanese politics and its resolu-

tion through compromise provides an illustration of the concepts introduced above. The

political configuration inherited by the Lebanese society after the Taef Agreement (Oc-

tober 1989) [15], that put an end to the civil war, prevailed in its principal components

until the assassination of Prime Minister Rafic Hariri (February 2005).

The polarizing issue that divided political forces can be described schematically as

East-West, although viability is not exclusively determined by this issue. East is a

shorthand for a political view supported by neighboring countries Iran and Syria and

locally by the Islamic Resistance, while West is a shorthand for US-Saudi-Israeli-led

policy supported locally by the Future Movement. We assume that the viability of

the agendas of the local forces was mainly dictated by that issue. Independently of

viability, the National Pact, partially renewed by the Taef Agreement, requires that all

the three major confessions participate in the governance. The complexity of modern

Lebanese politics is widely viewed as a result of the entanglement of these two levels of
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LF FUT AMA

HIZFPM

Figure 2: Friendly delegation and political compromise in Lebanese politics

political interaction. This configuration can be described by the simplicial complex of

Fig.2. The major forces present in the conflict are the Future Movement (FUT), AMAL

(AMA), Hezbollah (HIZ), Free Patriotic Movement (FPM), and Lebanese Forces (LF).

In Fig.2, brown color has been assigned to Christians (Maronites), blue to Sunnis,

and green to Shias. Shaded triangles represent the maximal viable configurations (sim-

plices). Viability of a configuration means that its components can coexist in some form

of governance. A non viable configuration cannot form a stable government because

clashes would soon occur and block the main institutions.

The clearest expression of the deadlock that we are analyzing was the vacancy of the

Lebanese Presidency after the end of the term of President Michel Suleiman (24 May

2014): Lebanon had no President after 25 May 2014, and no consensus existed about

who would be elected as President of the Lebanese Republic. It is very instructive to

understand why a consensus is needed to elect a president in the Lebanese political

configuration. In fact the parliament convened for the purpose of electing a President,

but there were 45 failed attempts to achieve a parliamentary quorum. No law has been

broken regarding the constitution, and it is clear that the failure could be repeated

indefinitely since a Parliament Member has the right not to show up for a meeting. In

many countries the constitution provides for this type of failure by requiring weaker

conditions for convening after a few failed attempts with the required quorum. But

the Lebanese constitution does not allow such a provision. The country entered in a

deadlock with no solution dictated by the law in sight. If the quorum was to be reached

there must be a consensus about the name of the President before the meeting of the

Parliament.

After a long search, a compromise was reached that respects the National Pact, as

represented by the middle shaded triangle. Presumably this compromise is the result

of a friendly delegation from LF to either FPM or FUT, and from AMA to either FUT

or HIZ. This compromise was formally implemented by the election of Michel Aoun

as President (October 2016) [16] and the formation of a government by Saad Hariri

(December 2016). ©

In the following we shall study delegation and compromise using tools of finite
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homotopy theory, and for this purpose it is convenient to consider delegation from

another angle, emphasizing that agents are removed from direct participation.

Definition 3. Let ∅ 6= F ⊆ E. A retraction to F is a map r : E → E such that

r(E) = F and r(x) = x for all x ∈ F . F is said to be a retract if there is a retraction

to F .

A retraction r is friendly if x ∈ s ∈ K implies {r(x)} ∪ s ∈ K, and a friendly retract

is a retract F such that there exists a friendly retraction to F .

A retraction is a political action by which the conflictual political structure (E,K)

is reduced to the (sub) configuration (F,KF ), withdrawing agents not in F in favor

of suitable agents in F , their representatives. A retraction is friendly if any viable

configuration containing a retracting agent as a member remains viable when he is

replaced by his representative. Clearly, a delegation δd→y is a retraction to E\d, and a

retraction r to F such that r(E\F ) = {y} is a delegation from E\F to y. We have the

following characterization:

Proposition 2. F ⊆ E is a representation if and only if F is a friendly retract.

Proof: Let F be a representation. Define a map r : E → E as follows: r is the identity

on F , and if x /∈ F then put r(x) = y where y is some element of F such that there

is a friendly delegation from x to y. It is clear that r is a retraction on F . Moreover

if x /∈ F for any s ∈ K such that x ∈ s, we have that{r(x)} ∪ s ∈ K; and for any

x ∈ F and s ∈ K such that x ∈ s, we have that {r(x)} ∪ s = s ∈ K. The converse is

straightforward. �

The notion of friendly retraction characterizes a representation as the result of with-

drawal of some agents, in what follows we consider whether a representation can result

from of a sequential process of delegations.

Definition 4. A progressive delegation is a sequence δx1→y1, . . . , δxp→yp of simple del-

egations where the elements x1, · · · , xp are distinct and yk /∈ {x1, . . . , xk} for all k =

1, . . . , p. A progressive delegation is friendly if each of the simple delegations that com-

pose it is friendly. The configuration c = δxp→yp ◦ · · · ◦ δx1→y1(E) is called the outcome

of the progressive delegation.

Thus, when performing a progressive delegation, agents are successively delegating

their influence to other agents, and in this case it seems natural that once an agent has

renounced on influence through delegation, she cannot herself be an object of delegation.

Proposition 3. Let δx1→y1 , . . . , δxp→yp be a progressive delegation with φ = δxp→yp ◦

· · · ◦ δx1→y1. Then φ is a retraction to E \ {x1, . . . , xp}, and

fixφ = {x ∈ E | φ(x) = x} = φ(E) = E \ {x1, . . . , xp} 6= ∅. (1)
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Conversely, any retraction φ : E → E to some F ⊆ E can be obtained through a

progressive delegation. Moreover all the involved delegations can be chosen to be friendly

if and only if the retraction is friendly.

Proof: (i) Put F = E \ {x1, . . . , xp}. It is clear that F ⊆ fixφ. Conversely, for any

k ∈ {1, . . . , p} φ(xk) = yℓ with ℓ ≥ k and by progressivity, yℓ 6= xk, so that fixφ ⊆ F

and consequently fixφ = F .

Now, F ⊆ φ(E). In order to prove the opposite inclusion, let x ∈ E. Then either

x ∈ F and therefore φ(x) = x ∈ F , or x = xk and φ(x) = yℓ for ℓ ≥ k. It follows that

yℓ 6= xk′ for k
′ ≥ ℓ and by progressivity of the sequence yℓ 6= xk′ for k

′ < ℓ and finally

yℓ ∈ F . We conclude that F = φ(E).

For any k ∈ {1, . . . , p} let φk = δxk→yk ◦ · · · ◦ δx1→y1 and Fk = E \ {x1, . . . , xk}.

By convention F0 = E and φ0 = IdE. Then, by the first part of the proof φk is a

retraction onto Fk and one has φk = δxk→yk ◦ φk−1. We prove by induction that φk is

friendly. Clearly φ0 = IdE is friendly. Assume that φk−1 is friendly. If x ∈ s ∈ K then

{φk−1(x)}∪s ∈ K by the induction hypothesis and C ≡ {δxk→yk(φk−1(x))}∪ (φk−1(x)∪

s) ∈ K since δxk→yk is a friendly delegation. But {φk(x)} ∪ s is a subset of C, therefore

{φk(x)} ∪ s is a simplex. Thus our claim is proved.

For the converse implication, if φ is a retraction to F and E\F = {x1, . . . , xp}, we

consider δx1→xp
, . . . , δxp→yp where yk = φ(xk) for k = 1, . . . , p. It is easily seen that

φ = fxp→yp ◦ · · · ◦ δx1→y1. For any x ∈ E such that x 6= φ(x) one has x = xk for some

k, so that δxℓ→yℓ(x) = φ(x) if ℓ = k and δxℓ→yℓ(x) = x if ℓ 6= k. It is easily seen that

if x ∈ s ∈ K, one has s ∪ δxℓ→yk(x) ⊆ s ∪ φ(x). It follows that δxk→yk is friendly if φ is

friendly. �

Corollary 4. F ⊆ E is a representation if and only if there exists a friendly progressive

delegation with outcome F .

3 Topology of representations

Let K be a simplicial complex on a set E and let s = {x0, . . . , xr} be a simplex in K.

The closed simplex s is the set of formal convex combinations
∑r

i=0 λixi with λi ≥ 0 for

i = 0, . . . , r and
∑r

i=0 λi = 1. Each closed simplex is a metric space under the metric

based on Euclidean distance. The geometric realization of |K| of the simplicial complex

K is the union of all closed simplices s for s ∈ K endowed with the topology for which

U ⊆ |K| is open if U ∩ s is open in s for each s ∈ K. Given simplicial complexes K

on a set E and L on F , a map φ : E → F is simplicial if it takes simplices in K to

simplices in L, that is if φ(s) ∈ L for each s ∈ K, or, otherwise put, if it extends to a

map φ : K → L. We associate to ϕ the map |ϕ| : |K| → |L| obtained from ϕ by linear

extension.

It is easily seen that friendly retractions are simplicial.
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Two simplicial maps ϕ, ψ : (E,K) → (F,L) are said to be contiguous if for any

s ∈ K, φ(s) ∪ ψ(s) ∈ L. Denote by ≈ the contiguity relation in E. ≈ is symmetric

but generally not transitive. Let ∼ be the transitive closure of ≈. By definition, f ∼ g

if there exists a sequence f = f0, . . . , fp = g such that fk ≈ fk+1 for k = 0, . . . , p − 1.

Then ∼ is transitive and symmetric, hence an equivalence relation, the classes of which

are called contiguity classes. Moreover ≈ and therefore also ∼ are compatible with

composition. A simplicial map ϕ : (E,K) → (F,L) is a strong equivalence if there

exists ψ : (F,L) → (E,K) such that ψ ◦ ϕ ∼ IdE and ϕ ◦ ψ ∼ IdF . It is worthwhile

noting that two simplicial maps that have the same contiguity class are homotopic, but

that the converse is not true (cf. e.g. Spanier [14] Chap. 3).

Let (E,K) be a political structure. For any configuration F we define KF as the

set of all elements of K that are included in F . It is clear that (F,KF ) is a political

structure, the agents of which are the elements of F . Moreover KF is a full subcomplex

of K. Clearly one has K = KE .

Lemma 5. A map ϕ : E → E is contiguous to IdE if and only if for all x ∈ s ∈ K one

has {ϕ(x)} ∪ s ∈ K.

Proof. Assume that ϕ has the announced property, and {x1, . . . xp} = s ∈ K. Then by

induction on k, s ∪ {ϕ(x1), . . . , ϕ(xk)} = s ∪ {ϕ(x1), · · · , ϕ(xk−1)} ∪ {ϕ(xk)} is in K,

therefore s∪ϕ(s) ∈ K and ϕ is contiguous to IdE . Conversely If ϕ is contiguous to IdE

and if x ∈ s ∈ K then {ϕ(x)} ∪ s ⊆ ϕ(s) ∪ s ∈ K �

In particular we have the following:

Proposition 6. A retraction is friendly if and only if it is contiguous to IdE.

Remark 1. To a retraction r to F we associate the map rF : E → F which is just

r with restricted range F . If i : F → E is the inclusion map, then by definition

rF ◦ i = IdF . Conversely, any rF : E → F such that rF ◦ i = IdF gives rise to the

retraction r by putting r = i ◦ rF . We use the same terminology of a retraction for rF
when no confusion is possible.

In view of Proposition 2 and Lemma 5, we can have the following characterization

of representations:

Proposition 7. F is a representation of (E,K) if and only if rF : (E,K) → (F,KF )

is a strong equivalence.

Proof: In view of Lemma 5, r is friendly if and only if r is contiguous to IdE , and in

view of the Remark 1 this happens if and only if

i ◦ rF = r ∼ IdE .

11
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x0•

x4•

x3•

x1•

x2• x1

x2

x3

x0

x1

x2

x3

x0

Figure 3: Political structures represented as points connected by lines (1-simplices) or trian-
gles (2-simplices). In both of the above political structures, the retraction onto x0 is contiguous
to the identity. Consequently {x0} is a representation.

Since rF ◦ i = IdF , this implies that rF is a strong equivalence. �

The set of simple friendly delegations in a political structure can be used to define

a binary relation ⊲ on E as follows,

x, y ∈ E, x ⊲ y if either x = y or the delegation δx→y is friendly.

Lemma 8. For any x ∈ E, let σx be the set of all maximal simplices containing x.

Then x ⊲ y if and only if σx ⊆ σy.

Proof: If x⊲ y and x 6= y, then there is a friendly delegation δx→y, so that every maximal

simplex containing x contains y as well. Conversely, if σx ⊆ σy, then the map δ taking

x to y and leaving all other elements of E unchanged is a friendly delegation. �

It follows from Lemma 8 that that ⊲ is transitive and reflexive so that (E,⊲) is a

preordered set.

Minimal representations. As usual it is of special interest to investigate the simplest

possible cases of a particular object, in this case a representation.

Definition 5. A representation F of (E,K) is said to be minimal if there is no repre-

sentation that is strictly included in F .

Proposition 9. A representation F of (E,K) is minimal if and only if for any x, y ∈ F ,

x⊲ y implies x = y.

Proof: If F is not minimal for inclusion then there exists some F ′ ⊆ F , x ∈ F \F ′, and

y ∈ F ′ such that x⊲ y. Conversely If there exists x, y ∈ F x 6= y such that x⊲ y then

F ′ = F \ {x} is easily seen to be a representation contradicting minimality of F . �

Lemma 10. Let ∅ 6= F ⊆ E be arbitrary.

(i) If x ⊲ y for all x, y ∈ F , then F ∈ K.

(ii) E ∈ K if and only if for any x, y ∈ E, x⊲ y.

12
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Proof. Assume that F /∈ K and let s be a maximal simplex included in F . Since s 6= F

there exists some y ∈ F, y /∈ s. Let x ∈ s. Since, by the maximality of s, s ∪ {y} /∈ K

one has that δx→y is not a friendly delegation. This proves (i). (ii) follows immediately

from (i) �

One may exploit constructions developed for simplicial complexes to obtain a mea-

sure of the possibility of delegation. For this purpose, we introduce (cf. Barmak [2])

the nerve N (K) of K as the simplicial complex in which the set of vertices is the

set of maximal simplices in K, say KM , and the set of simplices is the set of sub-

sets {s0, . . . , sr} ⊆ KM such that ∩r
i=0si 6= ∅. Repeating the construction, one gets

N 2(K) = N (N (K)) and in generel, N k(KE) = N (N k−1(K)).

We consider the second nerve N 2(K) in more detail since it plays a role in the

characterization of minimal representations. A vertex in N 2(K) is a maximal set σ =

{s0, . . . , sr} of maximal simplices in K such that ∩r
i=0si 6= ∅. Let Φ be the set of all maps

ϕ from N 2(K) to E assigning to σ = {s0, . . . , sr}, a vertex of N 2(K), some element of

∩r
i=0si. Notice that the set Φ is nonempty since ∩s∈σs 6= ∅ for every σ ∈ N 2(K).

Proposition 11. The set Φ has the following properties:

(i) Any ϕ ∈ Φ is a simplicial map from N 2(K) to K and an isomorphism onto its

image.

(ii) For any ϕ ∈ Φ the image ϕ(N 2(K)) is a minimal representation.

(iii) For each minimal representation F ⊆ E, there is ϕ ∈ Φ such that F =

ϕ(N 2(K)).

Proof: (i) Let ϕ ∈ Φ. If {σ0, . . . , σk} is a simplex in N 2(K), then ∩k
i=0σi 6= ∅, so that

there exists a maximal simplex s in K which belong to all the sets σ0, . . . , σk. By its

definition, ϕ(σi) belongs to s for i = 0, . . . , k, therefore {ϕ(σ1), . . . , ϕ(σk)} is a simplex

in K. This shows that ϕ is a simplicial map.

Next, we show that ϕ is an injective map. Suppose that ϕ(σ1) = ϕ(σ2) = x. If

σ1 = (s10, . . . , s
1
r), σ2 = (s20, . . . , s

2
p), then by our construction x ∈ s1i for i = 0, 1, . . . , r

and x ∈ s2i for i = 0, 1, . . . , p, so that σ1 ∪ σ2 is a family of maximal simplices from

K with nonempty intersection. Since σ1 and σ2 are already maximal collections of

simplices from K with nonempty intersection, we have that σ1 = σ2, so that f is indeed

injective.

Finally we prove that the inverse map ϕ−1 defined on the image F of ϕ is simplicial.

Let s = {x1, . . . , xk} ⊆ F be a simplex (i.e. an element of KF ) and let σi = ϕ−1(xi)

i = 1, . . . k. Denote by s′ a maximal element of K containing s. For any i ∈ {1, . . . , n],

any element of σi has xi as a member, therefore any element of σi ∪ {s′} has xi as a

member. In particular σi ∪ {s′} is a simplex in N (K). Since σi is maximal, we have

that s′ ∈ σi. Since every σi i = 1, . . . , k, contains s′ it follows that {σ1, . . . , σk} is a

simplex.
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(ii) Let ϕ ∈ Φ and let F be the image by ϕ of the vertices of N 2(K). For any x ∈ E,

let σx be the set of all maximal simplices in K containing x. σx is thus a simplex of

N (K). If x /∈ F , let σ be a maximal element of N (K) containing σx, and let y = ϕ(σ).

Then σx ⊆ σ = σy, so that by Lemma 8, x ⊲ y. This proves that F is a representation.

If x ∈ F , there exists σ maximal such that x = ϕ(σ) so that σ ⊆ σx and therefore

σ = σx. Similarly, if y ∈ F then σy is maximal and ϕ(σy) = y, but if x ⊲ y, then

σx ⊆ σy, and by maximality of σx one has σx = σy and therefore y = x. It follows from

Proposition 9 that F is a minimal representation.

(iii) Conversely, let F be a minimal representation. We claim that for any y ∈ F

the set σy is a maximal element of N 2(K). Suppose not; then there must be x 6= y with

σy ⊆ σx. By Lemma 8, y ⊲ x, and by Proposition 9, x /∈ F . But then there must be

z ∈ F , such that x ⊲ z. By transitivity of ⊲ we get that y ⊲ z, and by Proposition 9

y = z. It follows that σx ⊆ σy, a contradiction. We conclude that σy is indeed maximal

for each y ∈ F .

Remark that for any maximal σ one has σx = σ for all x ∈ ∩s∈σs. We claim

that there exists some x ∈ F such that σ = σx. If not then σ = σy only for some

y /∈ F . But y ⊲ z for some z ∈ F and therefore σ ⊆ σz and since σ is maximal

σz = σ, a contradiction. In fact such an x is unique since σx = σy where x, y ∈ F

implies x = y (Proposition 9). One therefore may define ϕ by putting ϕ(σ) = x where

x is the unique F such that σ = σx. By our construction, ϕ belongs to Φ and by

the preceding paragraph every element of F is an image of some maximal σ, that is

ϕ(N 2(K)) = F . �

It follows from Proposition 11 that there is a bijection between Φ and the set of

minimal representations of (E,K).

Irreducible political structures. We conclude this section by a study of the particular

case where no friendly delegations exist.

Definition 6. A political structure (E,K) is irreducible if it has no friendly delegation.

Example 5. Let E = {1, . . . , n} and K = P0(E) \ {E}. Then (E,K) is irreducible.

Indeed if x 6= y a delegation from x to y cannot be friendly, otherwise x ∈ E \ {y} ∈ K

would imply E = E \ {y} ∪ {y} ∈ K, a contradiction. In Example 1, a configuration E

is irreducible if and only if E is not stable but any proper subset of E is stable. ©

It is clear that (E,K) is irreducible if and only if its only friendly retract is the

identity or equivalently if E is a minimal representation in (E,K). The following result

can be found in Barmak [2], Chap.5.

Lemma 12. Let (E,K) be irreducible and let f : E → E be contiguous to IdE. Then

f = Id.
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Proof: Let x ∈ E and let s be a maximal simplex containing x. Then f(s) ∪ s is a

simplex, and f(x) ∈ f(s) ∪ s = s, where the last equality follows from the maximality

of s. Thus, every maximal simplex containing x contains f(x) as well. If x 6= f(x),

there would be a friendly delegation δx→f(x) and E\{x} contradicting the irreducibility.

We conclude that f = IdE . �

The lemma has a useful consequence, which is stated below as a corollary.

Corollary 13. A strong equivalence between two irreducible political structures (F1,KF1
)

and (F2,KF2
) is an isomorphism.

As a corollary of Proposition 11 we have :

Corollary 14. A political structure (E,K) is irreducible if and only if it is isomorphic

to N 2(K).

In particular if (E,K) is irreducible then Φ is a singleton.

4 Represented compromises

Definition 7. Let (E,K) be a political structure. A subset F of E is a represented

compromise (shorthand: an R-compromise) for (E,K) if F is a representation and F is

viable.

A minimal R-compromise is a compromise that does not contain a strictly smaller

R-compromise for inclusion.

A pure R-compromise is an element y ∈ E such that {y} is an R-compromise.

In this section we are interested in the structure of R-compromises and the existence

of such solutions.

Lemma 15. If Z is a representation and if Z ⊆ Z ′ then Z ′ is representation.

Proof: (i) Let r be a friendly retraction to Z, and let r′ be the map defined by :

r′(x) =

{

r(x) x ∈ E\Z ′,

x x ∈ Z ′.

Clearly r′ is a retraction to Z ′. Moreover for any x ∈ s ∈ K, either x ∈ E\Z ′ and

s∪{r(′x)} = s∪{r(x)} ∈ K, or x ∈ F and s∪{r(′x)} = s∪{x} = s ∈ K. We conclude

that r is friendly. �

Corollary 16. Any viable configuration that includes an R-compromise is an R-com-

promise.
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Remark 2. It is not true that a subset of an R-compromise is an R-compromise. Figure

4 presents an example where there is a represented compromise but where there is no

pure represented compromise.

Let RE be the set of all R-compromises and let RE be the set of all pure R-

compromises.

Proposition 17. If RE 6= ∅ then minimal R-compromises are exactly minimal R-

representations.

Proof: Let F be a minimal R-compromise and let F ′ ⊆ be a representation, then

F ′ ∈ K and therefore F ′ is an R-compromise. Sine F is minimal F ′ = F so that F is a

minimal representation. Conversely let F be a minimal representation and let C be an

R-compromise (by assumption there is one). Then C contains a minimal R-compromise,

say C ′, which by the first part of the proof is also a minimal representation. In view of

Proposition 11, F and C ′ are isomorphic. In particular F ∈ K. We conclude that F is

also an R-compromise, and even a minimal one. �

Proposition 18. If RE 6= ∅, then RE ∈ K, that is the set of all pure R-compromises

is an R-compromise.

Proof: Assume that RE is nonempty, and let s be a maximal (for inclusion) subset of

RE that also belongs to K. Let x ∈ RE be arbitrary, and let r be the retraction to {x}.

Since r is contiguous to IdE , one has that r(s) ∪ s is a simplex in K. Since r(s) = {x},

it follows that {x} ∪ s is a simplex contained in RE . By the maximality of s, we have

that x ∈ s. Since x is arbitrary we conclude that s = RE . �

Corollary 19. RE = E if and only if E ∈ K.

The following result gives some more information about the structure of the R-

compromises even in the absence of pure R-compromises. It is interesting politically in

the search for an inclusive R-compromise. It shows that when an R-compromise exists

then there is one that intersect all R-compromises.

Proposition 20. Let I be an arbitrary subset of RE. Then there exists a subset of

∪F∈IF which belongs to RE and intersects all members of I.

In particular, if RE 6= ∅, then there exists an element of RE that intersects all

elements of RE.

Proof: Let F ∈ I and denote by rF a friendly retraction on F . The collection of

simplices included in ∪F ′∈IF
′ and containing F is nonempty and has a maximal (for

inclusion) element which we denote c. Let F ′ ∈ I and let r be a retraction to F ′ that is

contiguous to IdE , so that r(c)∪c is a simplex. Since r(c)∪c ⊆ ∪F ′∈IF
′, it follows from
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the maximality of c that r(c) ⊆ c. Since ∅ 6= r(c) ⊆ F ′, we conclude that c ∩ F ′ 6= ∅.

Now we prove that c is a friendly retract. Let rc be defined by:

rc(x) =

{

x x ∈ c

rF (x) x /∈ c.

If s ∈ K, then rc(s)∪s = rc(s\c)∪s ⊆ rF (s)∪s ∈ K. We conclude that rc is contiguous

to IdE, so that c ∈ RE . �

Example 6 (Networks continued). Let (V,K) be the political structure of a graph

(V, E). We want to find those political structures, of this category, that have an R-

compromise. Assume that the graph is connected and |V | ≥ 3 then, by the analysis

conducted in Example 3, it has a unique minimal representation C composed by all ver-

tices of degree ≥ 2. If (V,K) has an R-compromise, then C is a minimal R-compromise

(as follows from Proposition 17). Therefore either C is a singleton {x}, or C = {x0, y0}

and (x0, y0) ∈ E . It follows that such a graph is of the type that we now describe (see

figure 4) :

Type Γ : Γ(x0, y0, x1, . . . xm, y1, . . . yn) m ≥ 0, n ≥ 0 where E = {(x0, x1), . . . (x0, xm)}∪

{(x0, y0)} ∪ {(y0, y1), . . . (y0, yn)}

By convention the graph with a single node (and no edges) will be called trivial.

x0•

x4•

x3•

x1•

x2•

x0• y0•

x1•

x2•

y1•

y2•

Figure 4: The graph in the left panel represents the class of graphs with a pure R-compromise,
and the one in the right panel represents those with an R-compromise containing two agents.
Any graphs with a nonempty R-compromise belongs to one of the two classes.

Proposition 21. The political structure of a non trivial graph (V, E) has an R-compromise

if and only if it is of type Γ.

Proof. It is clear that any graph of type Γ has a minimal representation: if m ≥ 1 and

n ≥ 1 then {x0, y0} is the unique minimal representation; if m = 0 and n ≥ 1 then

{y0} is the unique minimal representation; if m ≥ 1 and n = 0 then {x0} is the unique

minimal representation, and finally if m = 0 and n = 0 then both {x0} and {y0} are two

minimal representations. We see that in all cases minimal representations are viable,

therefore they are R-compromises. Conversely, by the above comments, if (V,K) has

an R-compromise, then it is connected and it is of type Γ. ©
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We now introduce an important concept of the theory of simplicial complexes: The

political structure (E,K) is strongly contractible if (E,K) ∼ {x0}, for some x0 ∈ E; this

is equivalent to saying that the identity map on E belongs to the same contiguity class as

some constant map. It is interesting to compare this notion with the standard concept

of contractibility. (E,K) is contractible if there exists a homotopy from the identity

map of |K| to some constant map. It is known that strong contractibility implies

contractibility (cf. [14] Chap. 3, Section 5) but not the converse (cf. [3], Example 2.13).

Proposition 22. If E has a R-compromise then E is strongly contractible.

Proof. Let x ∈ F , where F is an R-compromise. Let r be a contraction to F that

is contiguous to IdE , and let rx be the contraction to {x}, that is rx is the constant

map taking all elements in E to x. For any s ∈ K, r(s) ∪ rx(s) ⊆ F , so r ≈ rx. Since

r ≈ IdE , one has rx ∼ IdE . We conclude that E is strongly contractible. �

The converse of Proposition 22 is not true. A configuration may be strongly con-

tractible but fail to have an R-compromise. In the example to the right in Fig.5, no

represented compromise exists in E, however it is clear that E is strongly contractible.

x1• x2•

x3•

x4•

x5•

x6•

x1• x0
• x2•

x3•

x4•

x5•

x6•

Figure 5: In the political structure to the left there is no pure represented compromise,
but the configuration {x1, x2} is an R-compromise. In the political structure to the right no
R-compromise exists. Both structures are strongly contractible.

A configuration may have an R-compromise but fail to have a pure R-compromise:

In the example to left in Fig.5 neither δx1→x2
nor δx2→x1

are contiguous to identity, so

one can verify that no retraction to a singleton exists. Therefore no pure R-compromise

exists in E. Let φ = δx4→x1
◦ δx3→x1

and η = δx6→x2
◦ δx5→x2

. Then η ◦ φ is a retraction

to {x1, x2}. It can be checked that φ and IdE are contiguous, and that also η and IdE

are contiguous, so that η◦φ is contiguous to IdE. Therefore η◦φ is a friendly retraction

to {x1, x2}, and {x1, x2} is an R-compromise.

Some other simple cases of political structures are shown in Fig.6. Again it may be

noticed that all are strongly contractible but that R-compromises exist only in two of

them, and only one has a pure R-compromise. As a consequence of Lemma 11 we have

necessary and sufficient conditions for the existence of an R-compromise. Precisely:

Proposition 23. Let (E,K) be a political structure. The following assertions are equiv-

alent:
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x1
•

x2
•

x3
•

x1
•

x2
•

x3
•

x4
•

x1
•

x2
•

x3
•

x4
•

x5
•

Figure 6: To the left the central point x2 is a represented pure compromise; in the middle
the central 1-simplex {x2, x3} is an R-compromise and no pure R-compromise exists; to the
right there is no R-compromise.

(i) There exists an R-compromise,

(ii) One (and therefore any) minimal representation is viable,

(iii) The second nerve N 2(K) is a simplex.

Corollary 24. In a political structure (E,K), a pure R-compromise exists if and only

if N 2(K) is a singleton.

More generally, when an R-compromise exists, the dimension of any minimal R-

compromise is equal to the dimension of N 2(K).

5 Delegated compromise

In the previous section we have seen that R-compromises, where the agents that delegate

from the political contentions remain represented by suitable representatives in the sense

that the representing agent enters into all the viable configurations where the delegating

agent might have been present, leaving the latter out of the new configuration, be it

a representation or an R-compromise. Unfortunately, R-compromises may not exist;

indeed we saw that the existence of R-compromises implies that the political structure,

viewed as a simplicial complex, is strongly contractible, in itself a rather restrictive

property, but this was not enough, since even a strongly contractible political structure

may fail to exhibit R-compromises. This shortcoming has to do with the restrictions

that we have put on a delegation. In an R-compromise, the delegation δx→y amounts

to removing x from the outcome, but it does not imply the withdrawal of x from the

search for a compromise. This happens since any other other delegation δx′→y′, in order

to be friendly, must secure that {y′} ∪ s be viable for all s that contain x′, and the

simplex s may contain x. In this sense x is not yet absent from the search for an

R-compromise even after the delegation. In the following we present a slightly weaker

notion called delegated compromise, in which a delegation from x to y implies that x

withdraws from the process, so that further delegations need not take x into account.

This clearly makes the search for a solution easier.

Definition 8. A configuration F of (E,K) is a narrowing of E if there exists a decreas-

ing sequence E = F0 ⊃ F1 ⊃ · · · ⊃ Fn = F and friendly retractions ri of (Fi−1,KFi−1
)

onto Fi for i = 1, . . . , n.

19

 
Documents de travail du Centre d'Economie de la Sorbonne - 2018.33



Notice that the retractions ri are relative to the simplicial complex (Fi−1,KFi−1
).

It follows from Proposition 7 that this is equivalent to requiring that the associated

r̂i : (Fi−1,KFi−1
) → (Fi,KFi

) is a strong equivalence for i = 1, . . . , n. Therefore we have

the following:

Proposition 25. If F is a narrowing of (E,K) then (F,KF ) is strongly equivalent to

(E,K).

In view of Proposition 3 any narrowing F can be obtained by a progressive delegation

δx1→y1, . . . , δxp→yp such that δxp→yp ◦ · · · ◦ δx1→y1(E) = F and such that the restrictions

of δxk→yk to E \ {x1, . . . , xk−1}, k = 1, . . . , p, are friendly. We are ready to introduce

the main concept of solution of this section:

Definition 9. A configuration F of (E,K) is a delegated compromise (D-compromise

for short) if F is a narrowing of (E,K) and F ∈ K.

The obvious way of looking at delegated compromises is to see them as repeated

compromises; in the first step, F1 is an R-compromise for E, in the next step an

R-compromise F2 in F1 is obtained, etc. It should be noted however, that the sets Fi

themselves need not be R-compromises in the original structure since we do not demand

that they belong to K. It is clear that an R-compromise is a delegated compromise, but

the converse need not be true. Note that a D-compromise must be a viable configuration

(a simplex).

The D-core. Given a political structure, one may search for a D-compromise following

a process of successive friendly delegations, but is there a narrowing that leads to a

positive outcome, namely a viable configuration? In order to capture the best narrowing

that can be obtained from such a search, we need to know what are the minimal

configurations that can be achieved as outcome.

The idea of best narrowing is captured by the following:

Definition 10. A configuration F of (E,K) is a delegated core (shorthand: a D-core1)

of (E,K) if F is a narrowing of (E,K) and (F,KF ) is irreducible.

Now we can state and prove the main result about D-cores of political structures:

Proposition 26. Let (E,K) be a political structure. Then the following hold:

(i) (E,K) has a D-core,

(ii) (E,K) is strongly equivalent to its D-core,

(iii) the D-core is unique up to isomorphism.

1The term ”core” is used by Barmak [2], Chap.5, for the same notion in the context of abstract
finite spaces.
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Proof: (i) Either (E,K) is irreducible, in which case it is itself a D-core, or one can

find a non trivial friendly retract F1. If F1,KF1
is irreducible, otherwise we repeat the

operation on (F1,KF1
) and so on we thus construct a narrowing E = F0 ⊃ F1 ⊃ · · · ⊃

Fk ⊃ · · · . Since the sequence is strictly decreasing and E is finite we reach eventually

an index n with irreducible simplicial complex (Fn,KFn
). Clearly this is a D-core. (ii)

follows from Proposition 25. It remains only to prove (iii): Suppose that (F1,KF1
) and

(F2,KF2
) are two D-cores of (E,K). Then by (ii) we have that

(F1,KF1
) ∼ (E,K) ∼ (F2,KF2

),

and by the Corollary to Lemma 12, (F1,KF1
) and (F2,KF2

) are isomorphic. �

Using the D-core as a formal description of conflict resolution may seem attractive

in view of these results. On the other hand, it should be remembered that the D-core

does not point to a single configuration, rather it is an indication of the limits beyond

which conflicts cannot be solved by delegation alone.

Existence of D-compromises. We now investigate the existence of a D-compromise in

a political structure. By definition, if the D-core is viable, then it is a D-compromise.

The D-core always exists (Proposition 26); on the other hand, being irreducible, if it is

viable it must be a singleton. These considerations are made precise by the following

propostiion.

Proposition 27. Let (E,K) be a political structure. Then the following hold:

(i) (E,K) has a D-compromise,

(ii) (E,K) has a pure D-compromise,

(iii) (E,K) is strongly contractible,

(iv) The D-core is a singleton.

Proof: (i)⇔(ii). If F is a D-compromise, then, since F is a simplex, there exists a

friendly retraction to any of its points {x}. It follows that {x} is a narrowing of (E,K)

an therefore that {x} is a pure D-compromise.

(ii)⇒(iii). Since {x} is a narrowing, we have that (E,K) ∼ {x}, so that (E,K) is

strongly contractible.

(iii)⇒(iv). Let F be a D-core. From (E,K) ∼ (F,KF ) and (E,K) ∼ {x}, we get

that (F,KF ) ∼ {x}. Since both (F,KF ) and {x} are irreducible, they are isomorphic

by the Corollary to Lemma 12.

(iv)⇒(ii) is straightforward, since the D-core being a singleton is also a pure D-

compromise. �

We may exploit the results on nerves of simplicial complexes obtained earlier to

obtain additional information about narrowings of the political structure.
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If (E,K) is not irreducible, N 2(K) is not isomorphic to (E,K), but the number of

vertices in N 2(K) is no greater than that of (E,K), and one may proceed to the derived

nerves N k(K)) for k > 3. Clearly, there will be some number d ≥ 1 such that N 2d+2(K)

and N 2d(K) have the same number of vertices. By convention N 0(K) = K.

Definition 11. Let (E,K) be a political structure. The depth of delegation of (E,K),

written d(E,K), is the smallest number d such that the N 2d+2(K) and N 2d(K) have the

same number of vertices.

Using Lemma 11, we get the following proposition.

Proposition 28. N 2k(K) is isomorphic to the D-core of (E,K) if and only if k ≥ d(E,K).

Clearly the depth provides the smallest number of iterated representations in a

narrowing to achieve the D-core.

In the remaining part of this section, we consider political structures associated

to graphs, as in Example 3. We established that such political structures have R-

compromises if and only they are trees with a simple structure (Proposition 21). Here

the existence of a delegated compromise is equivalent to being a tree.

Proposition 29. Let (E,K) be a political structure of a graph. The following are

equivalent:

(i) (E,K) is a tree,

(ii) each x ∈ E is a pure delegated compromise in (E,K),

(iii) the simplicial complex K is strongly contractible,

(iv) the topological space |K| is contractible.

Proof: (i)⇒(ii). Let x ∈ E be arbitrary, and for each y ∈ E, define the distance

from y to x, d(y, x), as the number of edges in a path from x to y; since (E,K) is a

tree, d(x, y) is well-defined. Let D = {x1, . . . , xk} ⊆ E be the set of all vertices in

E with maximal distance from x; then each x ∈ D has degree 1. Let E1 = E\D.

Each x ∈ D is connected to some y(x) ∈ E which does not belong to D since (E,K)

is a tree. There is a friendly delegation δx→y(x) from x to the vertex y(x), and the

composition δxk→y(xk) ◦ · · · ◦ δx1→y(x1) is progressive and defines a narrowing from (E,K)

to (E1,KE1
). The political structure (E1,KE1

) is a graph which is connected and has

no cycles, hence it is a tree. Moreover E1 has strictly less elements than E. Repeating

the above procedure, we successively obtain substructures (Ei,KEi
) and narrowings

(Ei,KEi
) → (Ei+1,KEi+1

), for i = 1, . . . , p, untill we obtain a structure (Ep+1,KEp+1
)

in which no agent has degree 1. But a tree without vertices of degree 1 consists of the

point x, which consequently is a delegated compromise of (E,K).

(ii)⇔(iii) is a consequence of Proposition 27, (iii)⇒(iv) is a consequence of Lemma

2 in Chapter 3, Section 5 in Spanier [14], and finally (iv)⇒(i) is Lemma 1 in Chapter

3, Section 7 in Spanier [14]. �
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It is seen that delegated compromises exist if and only if the political structure is

strongly contractible. The topology of the political structure, and precisely its strong

homotopy, is the basic determinant for the possibility of a compromise. When delegated

compromises exist, they may take the form of single agents (pure D-compromise) or a

viable configuration. The question whether some D-compromise may seem unacceptable

(dictatorial) is irrelevant in our setting. This is due to the fact that in our model we

are concerned only with the viability of the solution. In this sense the model may

look underdetermined: It may be the case that the political environment requires some

further conditions for viable configurations to be acceptable, as seen in the empirical case

in Example 4, where the confessional composition of any compromise is an indispensable

pre condition which must be satisfied by a viable configuration. Future research must

therefore consider viability with some formal kind of acceptability.

6 Concluding remarks

In the present paper, we have presented a formal model of compromise in contexts of

political conflict. This model is that of a political structure, mathematically a simplicial

complex in which vertices are interpreted as political agents and simplices as viable

configurations. In this context, the fundamental motive of action is founded on the

notion of delegation. Delegation can be formulated as a mapping taking the delegating

agent to another agent, to whom power is to be transferred, and the idea of handling over

influence to another agent is formalized through the notion of friendliness. The analysis

of delegation and its consequences can now exploit the theory of maps between simplicial

complexes, and due the discrete character of the model the relevant mathematics appear

to be that of strong homotopy.

Two fundamental types of delegation are of interest. In the first one, influence may

be transferred but the receiver must be able to respond back and cannot delegate fur-

ther. This gives rise to the notions of representations and R-compromises. Allowing for

repeated delegation opens up for further concentration of power, expressed by notions

of D-cores and D-compromise.

Since a general theory must be assessed in terms of the insights, which it offers

in particular applications, we have briefly considered some such applications of the

theory, namely to TU and in particular simple games, to effectivity functions, and

to network models of political influence. The notion of delegation indicates how to

analyse situations where decisions are not immediately obtainable so that compromises

are called for. We have only touched upon this area of research where there are several

directions of future developments of the theory. One of such directions is to consider

situations where acceptability conditions in addition to viability are required for a

compromise. Those conditions appear as restrictive rules such as plurality, inclusiveness,
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parity etc. Another direction must address the limits of our notion of delegation. In our

model the delegate is not modified by the delegation; the delegating agent is removed

but the delegate does not keep any mark of the delegation. This drawback is due to

the extreme simplicity of the model (only a simplicial complex). We think that any

future research on compromise must address this question by enriching the model, for

instance by introducing an operation of creation of new forces as well as an operation

of annihilation, thus acting on both sides of ”delegation”.
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