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1 Introduction

In response to the market failures revealed by the global 2007-2008 �nancial crisis, the

Basel Committee on Banking Supervision (BCBS) has adopted the Basel III accords to

improve the banking sector's ability to absorb shocks arising from �nancial and economic

stress (BCBS, 2010). Among the number of fundamental reforms that must be implemented

until January 1st, 2022 (BCBS, 2019), the BCBS has substituted Value-at-Risk (VaR) by

Expected Shortfall (ES) for the calculation of market risk capital requirements. Expected

Shortfall, also referred to as Conditional VaR (CVaR) or Tail VaR (TVaR), measures the

expected loss incurred on an asset portfolio given that the loss exceeds VaR. That is, ifL t is

the (integrable) ex-post loss on a portfolio at time t,
 t � 1 is the information at time t � 1,

and QL t (:) is the quantile function of L t , the � -level ES and VaR are given by

ESt (� ) = E[L t j L t � V aRt (� ) ; 
 t � 1] ;

V aRt (� ) = QL t (� ; 
 t � 1) :

As an alternative tail risk measure, ES o�ers a number of appealing properties that

overcomes the de�ciencies of the more-familiar VaR. In particular, ES iscoherent meaning

that it satis�es the properties of monotonicity, sub-additivity, homogeneity, and translational

invariance (see Artzner et al., 1999; Acerbi and Tasche, 2002). Furthermore, ES gives infor-

mation about the expected size of the loss given that a loss bigger than VaR is experienced,

while VaR only captures the likelihood of an incurred loss, and tells us nothing about tail

sensitivity. In its revised standards for market risk, the BCBS emphasizes the important role

of ES in place of VaR "to ensure a more prudent capture of "tail risk" and capital adequacy

during periods of signi�cant �nancial market stress" (BCBS, 2016, page 1).

Although ES is considered as the new standard for risk management and regulatory re-

quirements, there are still outstanding questions about the modeling of ES (see e.g., De Roon
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and Karehnke, 2017; Patton et al., 2019; Taylor, 2019; Hautsch and Herrera, 2020), and the

validation of the ES forecasts, or backtesting. Jorion (2006) de�nes backtesting as a for-

mal statistical framework that consists of verifying if actual losses are in line with projected

losses. Because ES is unobservable, its evaluation cannot be done conventionally as a direct

comparison of the observed value with its forecast, and thus generally relies on the elic-

itability property. A risk measure is elicitable if there exists a loss function such that the

solution of minimizing the expected loss is the risk measure itself. However, it has been

established that, in contrast to VaR, ES does not meet the general property of elicitability

(Gneiting, 2011), but satis�es narrower properties such as conditional elicitability (Emmer

et al., 2015), or joint elicitability with VaR (Acerbi and Szekely, 2014; Fissler and Ziegel,

2016), making its evaluation trickier than VaR in practice. Several contributions are tied to

these properties, and provide backtests by making explicit reference of the ES forecasts in

the testing procedure (McNeil and Frey, 2000; Acerbi and Szekely, 2014; Nolde and Ziegel,

2017; Bayer and Dimitriadis, 2020).

To circumvent the lack of elicitability of ES, several alternative testing strategies have

been proposed in the literature. Following the recent classi�cation of Kratz et al. (2018),

these backtests enter the category ofimplicit backtests, as they focus on the tail distribution

characteristics of the model rather than directly on ES. They generally exploit the fact that

ES can be expressed as a function of VaR, which itself is elicitable. Assume the law ofL t

is continuous. The de�nition of a conditional probability and a change of variable yield a

useful representation of ES in terms of VaR

ESt (� ) =
1

1 � �

Z 1

�
V aRt (u) du: (1)

Using this connection, Costanzino and Curran (2015) derive a coverage backtest for spectral

risk measures such as ES in the spirit of the traditional VaR coverage backtests. Du and
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Escanciano (2017) de�ne a cumulative violation process for ES that generalizes the violation

process for VaR and propose two backtests of ES. Starting with the same process, Löser et al.

(2019) develop a backtest of ES that is theoretically valid in �nite out-of-sample size and

that can be easily extended to a multivariate setting. Costanzino and Curran (2018) provide

a Tra�c Light backtest for ES which extends the so-called Tra�c Light backtest for VaR.

More largely, several additional techniques have been proposed to assess the whole return

distribution encompassing ES as a special case (Berkowitz, 2001; Kerkhof and Melenberg,

2004; Wong, 2008). See the survey of Argyropoulos and Panopoulou (2016) for more details.

This article reviews the relation between ES and VaR to o�er an original way for back-

testing ES that has the advantage of examining a limited number of VaRs in the tail loss

distribution. Indeed, the de�nition of a Riemann sum gives a handy approximation of ES,

ESt (� ) �
1
p

pX

j =1

V aRt (uj ) ;

where the risk leveluj is de�ned by uj = � +( j � 1)1� �
p for j = 1; 2; : : : ; p. This representation

suggests thatp quantiles with appropriate risk levels would be convenient to assess the

performance of an ES model. In other words, an estimate/forecast ofESt (� ) issued from a

given model could be considered valid if the sequence ofV aRt (uj ) estimates/forecasts issued

from the same model is itself valid. This testing strategy is fully consistent with the general

recommendation of �nancial supervisors, indicating that "Backtesting requirements [for ES]

are based on comparing each desk's 1-day static value-at-risk measure [...] at both the 97.5th

percentile and the 99th percentile" (BCBS, 2016, page 57).

The main contribution of this article is to propose an original backtesting methodology to

ES based on the theory of multi-quantile regression. We develop a multivariate framework,

focusing on multi-quantile regression, to jointly assess VaR at multiple levels in the tail

distribution of the risk model. The method extends the seminal idea of Gaglianone et al.
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(2011) to evaluate the validity of a single VaR relying on a single quantile regression.

Our procedure has many advantages. First, it encompasses the regulatory standards that

consist of verifying the validity of two given quantiles. Second, it o�ers �exibility since the

risk manager or the supervisor may select both the number of risk levels and their magni-

tude depending on the objective in mind (regulatory guidelines, ES statistical approximation,

etc.). Third, it enters the category of regression-based backtests and complements the ex-

isting literature on regression-based risk forecast evaluation (see e.g., Engle and Manganelli,

2004; Christo�ersen, 2011; Bayer and Dimitriadis, 2020). It also represents an alternative

to the multiple VaR exceptions backtests (see e.g., Colletaz et al., 2013; Kratz et al., 2018).

Finally, the procedure may be useful for systemic risk measures that involve VaR and ES

estimation (see e.g, Benoit et al., 2015; Tarashev et al., 2016; Van Oordt and Zhou, 2019).

Formally, we show that the parameters of the multi-quantile regression model have spe-

ci�c properties under the hypothesis of valid ES forecasts. We propose four backtests which

correspond to various linear restrictions on these parameters. These restrictions are implica-

tions of a Mincer-Zarnowitz representation (Mincer and Zarnowitz, 1969). Then, we test the

resulting parameter restrictions using Wald-type inference. We apply QML estimation for

the quantile regression parameters and we implement a pairs bootstrap algorithm (Freed-

man, 1981) to correct the �nite sample size distortions of our backtests. Finally, we introduce

a procedure deduced from our regression framework to adjust the invalid risk forecasts.

Several Monte Carlo experiments are reported and an empirical application with the

S&P500 series is conducted. Our backtests deliver good performances to �ag misleading ES

risk forecasts. We also �nd that the use of asymptotic critical values is prone to substantial

size distortions, while the implementation of bootstrap critical values provides satisfactory

size performances regardless of the sample size. The latter should hence be preferred when

asymptotic theory does not apply conveniently.
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Our empirical results suggest an update of the current regulatory guidelines. First, we

show that the BCBS recommendation of assessing quantiles at risk levels 97.5% and 99% is

not always su�cient to identify misspeci�ed ES models. The use of additional quantiles is

recommended to improve the soundness of the decision. Second, our results suggest to limit

the number p of quantiles in small samples (with typicallyp � 6) and to consider higher

values if the historical sample covers longer periods. Finally, we show numerically that our

approximation of ES as a combination of several VaRs is close to its theoretical counterpart,

which strongly supports its implementation in a risk management viewpoint.

The rest of the paper is structured as follows. In Section 2, we introduce the multi-

quantile regression framework. Section 3 describes the null hypotheses, the test statistics,

their asymptotic properties, and the implementation of the bootstrap critical values. Section

4 studies the �nite sample properties of our backtests from a set of Monte Carlo experiments.

Section 5 applies our methodology to the S&P500 index and introduce a procedure to adjust

the imperfect ES risk forecasts. We conclude the paper in Section 6.

2 Multi-quantile regression framework

This section describes our proposed multi-quantile regression approach. In the �rst part, we

discuss the usefulness of approximating ES via a �nite sum of VaRs. In a second part, we

describe the multi-quantile regression model that we employ in our testing strategy. The

last part is devoted to the description of the estimation method and the asymptotic theory.

2.1 ES as an approximation of VaRs

Our backtesting procedure exploits the relationship between VaR and ES. We suppose that

ES can be approximated as an average of VaRs. This assertion stems from the representation

of ES as the limit of a Riemann sum when the partition becomes in�nitely �ne.
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De�nition 1 (ES approximation). Let � 2 ]0; 1[ denote the coverage level. The� -level ES

approximation is de�ned as a �nite Riemann sum involvingp VaRs such as

ESt (� ) �
1
p

pX

j =1

V aRt (uj ) ; (2)

where risk levelsuj , j = 1; 2; : : : ; p, satisfy uj = � + ( j � 1)1� �
p , and p denotes the number

of subdivisions taken in the de�nite integral.

Our approximation of ES averages VaRs in the upper tail distribution of the risk model.

The number of quantiles involved in the sum is given byp and characterizes the approxima-

tion accuracy. In particular, p = 1 involves a single VaR at coverage level� , while increasing

p to in�nity leads Equation (2) to converge to the theoretical ES. As we rely on a Riemann

sum, the approximation assigns equal weights1=p to each element in the sum, and the risk

levelsuj , j = 1; 2; : : : ; p, are determined so that the interval is equally partitioned between

the two boundaries� and 1. Several alternatives for the approximation of a de�nite integral

are available. Here, we rely on a Riemann sum for its simplicity and ease of implementation.

We show how to derive the above formula in Appendix A.

In practice, p may be chosen small as the interval of the de�nite integral is restricted to

the extreme upper tail distribution. For instance, Gouriéroux and Liu (2012) identify for

a large class of distributions a common linear conversion pattern between VaR and ES, so

that a few VaRs are generally enough to get a good approximation of ES. Daníelsson and

Zhou (2016) show that VaR and ES are in most cases related by a small constant and are

hence almost equally informative.

Our approximation is useful for at least two reasons. First, this simple formula is ap-

pealing in a regulatory and risk management viewpoint since the estimation of VaR is well-

established and its computation is easier compared to ES. Secondly, and it is the purpose of

this paper, the above relationship greatly simpli�es the assessment of ES, by focusing on the
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validity of several VaRs, and is more intelligible in the context of banking regulation. This

approach is fully consistent with the BCBS guidelines on ES assessment stating that "Back-

testing requirements [for ES] are based on comparing each desk's 1-day static value-at-risk

measure [...] at both the 97.5th percentile and the 99th percentile" (BCBS, 2016, page 11).

2.2 Multi-quantile regression model

In the sequel, we consider an asset or a portfolio, and denote byL t the corresponding loss

observed at timet, for t = 1; 2; : : : ; T. In addition, we denote by
 t � 1 the information set

available at time t � 1, with (L t � 1; L t � 2; : : :) � 
 t � 1. Formally, the 
 t � 1 conditional VaR at

level uj of the L t distribution is the quantity V aRt (uj ) such that

Pr (L t � V aRt (uj ) j
 t � 1) = uj : (3)

A VaR model is said to be correctly speci�ed (at coverage leveluj ) as soon as Equation (3)

holds for all t. In practice, VaR forecasts are assessed through the evaluation of this simple

equality. Given the ES approximation introduced in De�nition 1, this equality may arguably

be adapted for the assessment of ES models. The chief insight is to evaluate Equation (3)

for a number p of risk levels as set out in De�nition 1. Accordingly, one should conclude to

the appropriateness of a given ES model as soon as the sequenceV aRt (uj ), t = 1; 2; : : : ; T,

issued by the ES model satis�es Equation (3) jointly forj = 1; 2; : : : ; p.

We refer to the original idea of Gaglianone et al. (2011) who derive a backtest of VaR at

a single coverage level, introducing VaR as a regressor of a quantile regression model. We

generalize their approach for the assessment of multiple VaRs. To do so, we regress the ex-

post lossesf L t ; t = 1; 2; : : : ; Tg on the p VaR forecastsf V aRt (uj ) ; t = 1; 2; : : : ; Tgj =1 ;2;:::;p

in a multi-quantile regression model as follows:

L t = � 0 (uj ) + � 1 (uj ) V aRt (uj ) + � j;t 8 j = 1; 2; : : : ; p; (4)
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where� 0 (uj ), and � 1 (uj ), respectively, denote the intercept and the slope parameters at level

uj , and where� j;t is the error term at risk leveluj and time t, such that the uj -th conditional

quantile of � j;t satis�es Q� j;t (uj ; 
 t � 1) = 0 . This speci�cation could be interpreted as a

multi-quantile regression version of Koenker and Xiao (2002) and is related to the multi-

quantile CaViAR model (MQ-CaViAR) of White et al. (2015) which allows a joint modeling

of multiple conditional VaRs. Given the multi-quantile regression model of Equation (4),

the uj -th conditional quantile of L t is de�ned as

QL t (uj ; 
 t � 1) = � 0 (uj ) + � 1 (uj ) V aRt (uj ) 8 j = 1; 2; : : : ; p: (5)

This equation is central for our backtesting methodology as it establishes a direct link be-

tween the VaR forecasts (issued from the external ES model), with the true unknown condi-

tional quantile (issued from the ex-post observed losses). Our procedure consists in verifying

if there exists a perfect match betweenV aRt (uj ) and QL t (uj ; 
 t � 1). Consistently with

Gaglianone et al. (2011), we rely on the regression parameters, and test if the intercept

parameter � 0 (uj ), and the slope parameter� 1 (uj ), are respectively equal to zero, and one,

for j = 1; 2; : : : ; p. For these values, and given De�nition 1, the risk model is accepted as a

valid proxy of the true unknown data generating process to deliver the ES forecasts.

2.3 Parameter estimation and asymptotic properties

Our backtesting procedure requires to consistently estimate the parameters� 0 (uj ), and

� 1 (uj ), for j = 1; 2; : : : ; p. Under the hypothesis that a sequence of VaR is valid, coe�cients

satisfy � 0 (uj ) = 0 , and � 1 (uj ) = 1 , for j = 1; 2; : : : ; p. In what follows, we denote by

� (uj ) = ( � 0 (uj ) ; � 1 (uj ))
0 the vector of parameters for theuj -th quantile index, and we

write � =
�
� (u1)0; � (u2)0; : : : ; � (up)0

� 0
the stacked vector of2p coe�cients. We assume

that the sequencef uj ; j = 1; 2; : : : ; pg is ordered in the sense thatu1 < u 2 < : : : < u p < 1.

In order to estimate � , we consider a QML estimator dedicated to multi-quantile regres-
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sion, given by

b� = arg min
� 2 R2p

T � 1
TX

t=1

0

@
pX

j =1

� u j (L t � � 0 (uj ) � � 1 (uj ) V aRt (uj ))

1

A ;

where � u j (x) = x u j (x) is the standard "check function", and u j (x) = uj � 1 (x � 0)

is the usual quantile step function. Under suitable regularity conditions, it is shown that

this estimator is consistent and asymptotically normally distributed. The conditions are

described in Appendix B and a discussion is provided on how these assumptions are ful�lled.

Under Assumptions A0-A2 in Appendix B, the asymptotic distribution of the QML

estimator is given by
p

T
�

b� � �
�

d! N (0; �) ;

where � denotes the asymptotic covariance matrix which takes the form of a Huber

(1967) sandwich. Its expression is given by� = A � 1V A� 1, with V = E[� t � 0
t ], � t =

P p
j =1 r QL t (uj ; 
 t � 1)  u j (� j;t ), A =

P p
j =1 E[f j;t (0) r QL t (uj ; 
 t � 1) r 0QL t (uj ; 
 t � 1)], where

r QL t (uj ; 
 t � 1) denotes the 2p gradient vector di�erentiated with respect to � , � j;t =

L t � QL t (uj ; 
 t � 1), and f j;t (0) denotes the pdf of� j;t evaluated at zero. In Appendix C,

we provide a consistent estimatorb� of � that will be used to compute our test statistics.

Finally, Appendix D provides a discussion on the rate of convergence and interplay of

p and T when T tends to in�nity. Under this asymptotic framework, it is shown that p is

increasing with T. We consider a simple illustration assumingp takes the form of a power

function. Under this assumption,T needs to diverge faster thanp in order to maintain the

asymptotic theory. This condition is not importantly restrictive but suggests the existence

of an (asymptotic) upper limit for p which depends on the sample size. Section 4 provides

several Monte-Carlo experiments with various values forp and T to give guidelines on how

to choose these parameters jointly in �nite samples. In Section 5, we suggest an avenue of

research using extremal conditional quantile models (Chernozhukov, 2005; Chernozhukov and

Fernández-Val, 2011) that allows examining deeper the tail distribution of ES risk models.
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3 Backtesting ES

In this section, we present our backtests for ES. Our procedures assess whether the parame-

ters � 0 (uj ) and � 1 (uj ) coincide with their expected values for risk levelsuj , j = 1; 2; : : : ; p.

To this end, we propose four backtests that analyze various settings on the regression co-

e�cients. In the sequel, we introduce the null hypotheses, the test statistics, and establish

their asymptotic properties. Finally, we discuss the use of �nite sample critical values and

provide a bootstrap algorithm when the asymptotic theory does not apply conveniently.

3.1 The backtests

Formally, our goal is to test � 0 (uj ) = 0 , and � 1 (uj ) = 1 , for j = 1; 2; : : : ; p. As highlighted

by Gaglianone et al. (2011) for a unique quantile regression, the aforementioned set of re-

strictions retains a Mincer and Zarnowitz (1969) interpretation for each quantile regression

in (4). Here, we propose to test various implications of these coe�cient restrictions by taking

into consideration four distinct null hypotheses based on a reduced number of constraints.

Many backtests test implications of a more general hypothesis. In this context, Du and

Escanciano (2017) assess two implications for the martingale di�erence sequence of their

cumulative violation process. McNeil and Frey (2000) and Nolde and Ziegel (2017) propose

to test the zero mean hypothesis of their residuals which more largely behave as white noise.

De�nition 2 (Null hypotheses). Denote byJ1, J2, I , and S, the four backtests. The corre-

sponding null hypothesesH0;J1 , H0;J2 , H0;I , H0;S, are de�ned as follows:

H0;J1 :
pX

j =1

(� 0 (uj ) + � 1 (uj )) = p; (6)

H0;J2 :
pX

j =1

� 0 (uj ) = 0 ; and,
pX

j =1

� 1 (uj ) = p; (7)

H0;I :
pX

j =1

� 0 (uj ) = 0 ; (8)
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H0;S :
pX

j =1

� 1 (uj ) = p; (9)

where notationsJ1 and J2 indicate the "joint" backtests, and whereI and S refer to the

"intercept" backtest and to the "slope" backtest, respectively.

Equations (6)-(9) of De�nition 2 gives the null hypothesesH0;J1 , H0;J2 , H0;I , H0;S. They

are devised to assess various implications that the regression coe�cients should satisfy when

the ES risk forecasts are valid. The coe�cients are summed across risk levelsuj , j =

1; 2; : : : ; p. This aggregation substantially reduces the number of constraints.H0;J2 is hence

characterized by two constraints, andH0;J1 , H0;I , H0;S involve a single constraint.

Our null hypotheses analyze various settings on the regression coe�cients. The null of

the joint backtests, H0;J1 and H0;J2 , look at the expected value of both the intercept and

slope parameters� 0 (uj ) and � 1 (uj ) for j = 1; 2; : : : ; p. H0;J1 sums the two types of coe�cient

together, while H0;J2 sums the coe�cients separately depending on whether they are slope

parameters or intercept parameters. Finally, the null hypotheses of the intercept backtest and

the slope backtest,H0;I and H0;S, focus solely on one of the two parameter components.H0;I

is built to examine the intercept parameters� 0 (uj ), j = 1; 2; : : : ; p, and H0;S is devoted to

the analysis of the slope parameters� 1 (uj ), j = 1; 2; : : : ; p. These additional null hypotheses

complement the joint backtests to identify the nature of the misspeci�cation. If the joint

hypotheses are rejected, separate tests for these two types of measurement error should

be considered. They are inspired by the prediction-realization framework of Mincer and

Zarnowitz (1969). WhenH0;I is rejected, the intercept parameters,� 0 (uj ) ; j = 1; 2; : : : ; p,

do not sum to 0, and hence, the average of VaR risk forecasts either underestimate or

overestimate the true quantiles, if the sign of the sum is positive or negative, respectively.

The rejection ofH0;S indicates that the sum of the slope parameters� 1 (uj ) ; j = 1; 2; : : : ; p,

does not equalp, which highlights correlation between the forecasting errors and the quantile
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series.

De�nition 3 (Wald-test statistics). Let us denote byW 2 f J1; J2; I; Sg the generic notation

for the test statistic, and consider the classical formulation of a Wald-type test such asH0;W :

RW � = qW . The general expression of the test statistics is given by

W = T
�
RW

b� � qW

� 0�
RW

b� R0
W

� � 1 �
RW

b� � qW

�
; (10)

where T is the out-of-sample size, andb� denotes a consistent estimator of the asymptotic

covariance matrix.

To assess our null hypotheses we consider Wald-type inference. Equation (10) of De�ni-

tion 3 gives the general expression of the test statistics. According to our notations, substitut-

ing W by J1, J2, I , and S, yields the four test statistics. For ease of presentation, the null hy-

potheses are now presented in a classical formulation, such thatH0;W : RW � = qW . Given the

null hypotheses of De�nition 2, the quantitiesRW and qW are as follows:RJ1 = �p 

�
1 1

�
,

qJ1 = p, RJ2 = �p 
 I 2, qJ2 =
�
0 p

� 0
, RI = �p 


�
1 0

�
, qI = 0, RS = �p 


�
0 1

�
, qS = p,

where�p is a p-row unit vector, and I 2 denotes the identity matrix of size 2.

Proposition 1 (Chi-squared distribution). Consider the multi-quantile regression model in

Equation (4), Assumptions A0-A3 in Appendix B, and the null hypotheses of De�nition 2,

the test statisticsJ1, I , and S, converge to a chi-squared distribution with 1 degree of freedom,

and the test statisticJ2 converges to a chi-squared distribution with 2 degrees of freedom.

Proposition 1 gives the asymptotic distribution of the Wald statisticsJ1, J2, I , S under

their respective null hypothesesH0;J1 , H0;J2 , H0;I , H0;S. As a result of coe�cients' aggre-

gation, the asymptotic distributions are based on a small and �xed number of degrees of

freedom no matter howp is chosen. Thus, the four backtests have unchanged critical values

whatever the number of quantiles considered in the ES approximation. Note that we provide

in Appendix E the proof for consistency of the tests under �xed untrue hypothesis.
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3.2 Finite sample inference

Our four backtests are asymptotically chi-squared distributed and we can employ them if

the asymptotic conditions are ful�ll for realistic sample sizes. However, in the case of ES

assessment, the focus is on the extreme tail distribution, that is for risk levels above the

regulatory coverage level, i.e.� = 0:975. This may induce scarce information and a�ect the

inference when the sample size is not large enough. Furthermore, our asymptotic framework

implicitly assumes that (1 � up)T diverges to in�nity, where up denotes the highest level of

the multi-quantile regression. Chernozhukov (2005) and Chernozhukov and Fernández-Val

(2011) provide a re�nement of this assumption based on the extreme value theory allowing

(1 � up)T ! k < 1 . However, to date this literature has only considered single conditional

extremal quantile models and it is not obvious how the results for the single quantile models

extend to multi-quantile models. To overcome these typical de�ciencies, we implement a

bootstrap procedure to adjust the critical values of our test statistics in �nite samples.

In the following, we propose a pairs bootstrap algorithm (Freedman, 1981) in order to

correct the �nite sample size distortions of our backtests. This is a fully non-parametric

procedure that can be applied to a very wide range of models, including quantile regression

model (Koenker et al., 2018). This approach consists in resampling the data, keeping the

dependent and independent variables together in pairs. The procedure is valid for any

sample sizesT, and large levelsuj , j = 1; 2; : : : ; p, and ideally applies in our case when the

constraints of the null hypothesis are linear in the parameters. The algorithm is as follows:

1. Estimate� and � on the original dataf L t ; V aRt (uj )gj =1 ;2;:::;p , t = 1; 2; : : : ; T, to obtain

b� and b� , and compute the unconstrained test statisticW given by

W = T
�
RW

b� � qW

� 0�
RW

b� R0
W

� � 1 �
RW

b� � qW

�
:

2. Build a bootstrap sample by drawing with replacementT pairs of observations from
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the original data f L t ; V aRt (uj )gj =1 ;2;:::;p , t = 1; 2; : : : ; T.

3. Estimate the model on the bootstrap sample, to obtainb� b and b� b, and compute the

bootstrapped test statisticW b under the null hypothesis as follows:

W b = T
�
RW

b� b � RW
b�
� 0�

RW
b� bR0

W

� � 1 �
RW

b� b � RW
b�
�

:

4. RepeatB � 1 times steps 2 and 3, to obtain the bootstrap statisticsW b, b= 1; 2; : : : ; B.

Two remarks should be made about the algorithm. First, when we use the pairs boot-

strap we cannot impose the null hypothesis on the bootstrap data generating process since

imposing restrictions on� is unfeasible. To overcome this issue, we calculate the bootstrap

statistics by considering the di�erenceRW � � RW
b� rather than RW � � q. Since the estimate

of � from the bootstrap samples should, on average, be equal tob� , at least asymptotically,

the null hypothesis tested byW b becomes "true" for the pairs bootstrap data generating

process. Second, the critical valuec� is obtained as the� -quantile of the bootstrap statistics

W b, b= 1; 2; : : : ; B. The decision rule is as follows. If the original test statisticW is greater

than the � -level bootstrapped critical valuec� , we conclude to the rejection of the null

hypothesis. In addition, we compute the p-value of the test asP = B � 1 P B
b=1 1

�
W b > W

�
.

4 Simulation study

In this section, we provide Monte Carlo simulations to illustrate the �nite sample properties

(empirical size and power) of our four backtests. The simulation study is performed on 5000

replications, and we consider sample sizesT = 250; 500; 1000; 2500. The results associated

with the bootstrap critical values are based onB = 1000 bootstrap samples. Finally, the

backtests are computed with� = 0:975that is the current banking regulation coverage level.

Beyond the traditional size and power analysis, a second important objective of this

section is to characterize the in�uence of the numberp of quantiles used to assess the ES
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forecasts. We aim at examining whether an ES backtest based on a large number of quantiles

may provide better performances than a backtest based on a small number of quantiles, as

it is recommended by the current BCBS guidelines. For that, we consider di�erent choices

for the number of risk levels, namelyp = 1; 2; 4; 6; 8; 10; 12. The p risk levelsu1; u2; : : : ; up

are computed in accordance with De�nition 1. Notice thatp = 1 coincides with the VaR

backtest at level � of Gaglianone et al. (2011). Withp = 2 risk levels, our backtests are in

accordance with the number of quantiles of the regulatory guidances. Finally, the casep = 4

corresponds to the framework considered by Emmer et al. (2015).

The correct data generating process is given by the AR(1)-GARCH(1,1) speci�cation

with Student innovations. This class of model is some of the most widely used for capturing

variance dynamics in daily asset returns (see e.g., Berkowitz and O'Brien, 2002; Berkowitz

et al., 2011; Du and Escanciano, 2017; Löser et al., 2019). The ex-post portfolio lossL t ,

t = 1; 2; : : : T, is given by

L t = � 0 + � 1L t � 1 + � t ;

� t = � t � t ; � t � tv;

� 2
t =  0 +  1� 2

t � 1 +  2� 2
t � 1;

(11)

wheretv denotes the Student'st distribution with v degrees of freedom. Given the model in

Equation (11), the true ES and VaR at coverage level� are given by

ESt (� ) = � 0 + � 1L t � 1 + � tm (� ) ; (12)

V aRt (� ) = � 0 + � 1L t � 1 + � tF � 1
v (� ) ; (13)

with m (� ) = E[� t j� t � F � 1
v (� )], and whereF � 1

v (� ) denotes the� -quantile of the Student

distribution with v degrees of freedom. As a robustness check of the above model, Ap-

pendix F provides simulation results for the simple case of a GARCH(1,1) model that

excludes the conditional mean component withL t = � t where � t is as in Equation (11).
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Both models are calibrated using the opposite of the daily log-returns of the S&P500 index

over the period from January 2, 2013 to December 29, 2017, with
�

b� 0; b� 1; b 0; b 1; b 2; bv
�

=

(� 0:085; � 0:093; 0:034; 0:214; 0:748; 5) and (b 0; b 1; b 2; bv) = (0 :034; 0:197; 0:763; 5), respec-

tively for the AR(1)-GARCH(1,1) model and the GARCH(1,1) model. Finally to investigate

the power, we consider several misspeci�ed alternatives forL t :

A1 : AR(1)-GARCH(1,1) model with underestimated conditional variances:L t is as Equation

(11), with � 2
t =

�
 0 +  1� 2

t � 1 +  2� 2
t � 1

�
� (1 � � ) , where� = 0:25; 0:50; 0:75; respectively:

A2 : GARCH in mean model: L t = � � � 2
t + � t ; � t = � t � t ; � 2

t =  0 +  1� 2
t � 1 +  2� 2

t � 1; � t � tv,

where� = +2 :5; � 2:5, respectively.

A3 : AR(1)-GARCH(1,1) model with mixed normal innovations: L t sati�es Equation (11), with

� t �
�
0:5X + + 0:5X �

�
=
p

10, whereX + � N (3; 1) and X � � N (� 3; 1) :

A4 : 12-month historical simulation model : VaR and ES are given by their empirical counterparts

from the 250previous trading days such thatV aRt (� ) = percentile
�
f L t � i g250

i =1 ; 100�
�

, and

ESt (� ) =
1

P 250
i =1 1(L t � i � V aRt � i (� ))

250X

i =1

L t � i � 1(L t � i � V aRt � i (� )) :

In A1, the conditional variance of the series� t is alternately underestimated of 25%,

50%, and 75% to examine whether our tests are able to detect an underestimation of ES

stemming from a misleading appreciation of volatility. InA2, the misspeci�cation occurs

in the conditional mean by assuming a GARCH in mean model. InA3, the distribution

of the innovations � t is incorrect and should imply misleading ES predictions compared to

the t-distribution. Finally in scenario A4, the time-varying dynamics is incorrectly captured

by the historical simulation method. It should be noticed that our alternatives are in line

with the existing literature on tail risk assessment. Bayer and Dimitriadis (2020) look at

an alternative close toA1 by varying the coe�cients related to the GARCH component. A2

and A3 were applied by Du and Escanciano (2017) to illustrate the performance of their
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unconditional and conditional ES backtests. Finally, scenarioA4 was extensively studied by

Kratz et al. (2018), Bayer and Dimitriadis (2020), Gaglianone et al. (2011), among others.

FIGURES 1-2 ABOUT HERE

Figure 1 displays graphically empirical sizes of the tests at 5% signi�cance level. The

�rst row reports the results of the asymptotic tests and the second row embeds those of the

bootstrap based tests. Each column is for a given sample sizeT, and the results are shown as

a function of p for comparison. As previously discussed, the use of conventional asymptotic

critical values (based on a� 2 distribution) induces important size distortions. For instance,

with sample sizeT = 500, and p = 6, the four test statistics J1, J2, I , and S, display

empirical sizes equal to0:126, 0:273, 0:165, 0:216, respectively. These distortions are caused

by poor inference made on regression parameters in the extreme upper tail when the sample

size is not su�ciently large. On the contrary, the backtests based on bootstrap critical values

display empirical sizes that are close to the nominal size of 5% for all reported sample sizes

and risk levels. For large coverage levels and moderate samples, we thus recommend to use

bootstrap critical values rather than the standard asymptotic ones.

To reply about the interrelationship betweenp and T, we note that the size of the four

bootstrap-based backtests slightly deteriorates forp > 6 with T = 250 and T = 500 revealing

that the tests are sensitive to the choice ofp in small samples. In details, the slope backtest

is the most a�ected by these distortions, while theJ1 backtest is well-sized most of the time.

On the contrary, for larger sample sizes, typicallyT = 1000 and T = 2500, these distortions

are negligible. Our recommendation is hence to restrict the numberp of quantiles when

applying the tests in small samples, with typicallyp � 6, and to consider higher values if

the historical sample covers longer periods.

To provide robustness check of these results, Figure 7 in Appendix F reports empirical

sizes when the data generating process is given by a GARCH(1,1) model. We observe the
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same �ndings as those provided with the AR(1)-GARCH(1,1) model. The asymptotic tests

are largely oversized, while the bootstrap tests are close to the nominal size of 5% for all

reported sample sizes and risk levels. Finally, there is also an asymptotic re�nement of the

empirical sizes asT increases for both asymptotic and bootstrap tests.

Figure 2 reports the empirical powers (size-corrected) associated with our seven alter-

natives. Here, we only present the simulation results associated with the bootstrap critical

values. The simulation results obtained with the asymptotic critical values are overall the

same (see Figure 6 in Appendix F). Overall, the tests correctly �ag the misspeci�ed alter-

natives A1, A2, A3, A4, and we verify that there is a general improvement of powers as the

sample sizeT increases (from row 1 to row 4), suggesting that these tests are consistent for

these alternatives. For instance, withT = 500, and p = 4, the test statistic J1 identi�es the

misleading scenarioA3 in 49.3% of times, while it reaches 98.1% of times withT = 2500.

Second, the joint test statistics,J1 and J2, generally deliver higher power performances

compared to the intercept and slope test statisticsI and S. This �nding comes from the

de�nition of the joint null hypotheses that focus on both intercept and slope coe�cients and

are thus more conservative than the null of the intercept and slope backtests. In details for the

two joint tests, we �nd that J1 performs generally better to detectA1 and A4, while J2 more

often identi�es A2 and A3, which suggests complementarity between the two joint backtests.

Although the intercept and slope backtests exhibit lower power performances, they provide

useful informations on the type of misspeci�cation. In details, the slope backtest performs

better in alternatives A1 and A3, while the intercept backtest is superior for alternativeA4.

Thus, A1 and A3 mainly a�ect the expected value of the slope parameters meaning that

the errors are correlated and proportional to the true quantiles. In contrast, alternativeA4

induces distortions in the expected value of the intercept coe�cients suggesting that the

origin of errors is more global as they are not related to the true quantiles.
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Third, we observe that the selection of numberp of risk levels is di�cult to link with the

rejection frequencies in alternativesA1, A2, A3, since reported powers are slightly a�ected

by p in general. This �nding is explained by the nature of these alternatives for which the

misspeci�cation is relatively uniform along the tail, and does not require many levels. On the

contrary, in alternative A4, an increase ofp is bene�cial for detecting the misleading one-year

historical simulation method as power is unequivocally increasing withp, especially whenT

is large. This is due to the fact that, for this alternative, the error made along the tail is more

irregular and requires the use of additional levels. In the same spirit as in the Portmanteau

tests when selecting an optimal number of lags to �ag serial correlation (Ljung and Box,

1978; Box and Pierce, 1970), it follows that considering successive valuesp = 1; 2; : : : ; pmax

with pmax = 12, as illustrated above, may o�er useful information to improve the statistical

decision.

Finally, we provide a robustness check of the powers with the GARCH(1,1) model (see

Figures 8 and 9 in Appendix F). The rejection frequencies are very close to those associated

with the AR(1)-GARCH(1,1) model. Consequently, the decision whether to introduce or

not a conditional mean in the risk model does not a�ect the power performances.

5 Empirical application

In this section, we apply our backtests to the daily returns of the S&P500 index. In addition,

we provide a method for the adjustment of imperfect risk forecasts relying on our backtesting

framework. In the sequel, we set� = 0:975 to coincide with the regulatory ES coverage

level. The probability levelsuj , j = 1; 2; : : : ; p, are calculated accordingly with De�nition

1. In addition, we consider the risk levels suggested by the BCBS, i.e.u1 = 0:975, and

u2 = 0:990, respectively. Finally, for comparison purposes and to provide useful backtesting

recommendations, we consider several valuesp = 1; 2; 4; 6; 8; 10; 12.
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5.1 Data

We consider the daily adjusted closing prices of the S&P500 index over the period January

1, 1997 - December 31, 2012. The in-sample period spans from January 1, 1997 to June

30, 2007, and we use two out-of-sample periods (1) from July 1, 2007 to June 30, 2009,

corresponding to the subprime mortgage crisis, and (2) from July 1, 2007 to December 31,

2012, which pools the subprime mortgage crisis and the European sovereign debt crisis, two

major episodes of �nancial instability. We compute the daily log-returns and denote byL t

the opposite returns. In line with our notations, a positive value indicates a loss.

FIGURE 3 ABOUT HERE

The S&P500 series is depicted in Figure 3 with the three aforementioned sub-periods.

The in-sample period (1997-2007) is weakly volatile, while the out-of-sample crisis periods

(2007-2009 and 2007-2012) display more severe levels of volatility, with several extreme

events. Figure 3 also provides some descriptive statistics. The variance and the average ex-

post losses are higher in the out-of-sample periods than in the in-sample period, especially

for the period 2007-2009. In addition, the series is right-skewed and has a kurtosis excess.

To predict the ES risk measure, we �t an AR(1)-GARCH(1,1) model with Student inno-

vations, as de�ned in (11), using the S&P500 daily losses of the in-sample period. The ES and

VaR forecasts are de�ned as in Equations (12) and (13), respectively. The set of unknown

parameters is estimated by maximum likelihood. We obtain the following coe�cient esti-

mates
n

b� 0; b� 1; b 0; b 1; b 2; bv
o

= f� 0:057; � 0:032; 0:007; 0:060; 0:936; 9g. As a robustness check,

we also �t a GARCH(1,1) model on the same period as de�ned in the simulation study and

for which we obtain the following estimatesf b 0; b 1; b 2; bvg = f 0:007; 0:059; 0:937; 9g.
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5.2 Empirical results

We start by evaluating the relevancy of the ES approximation of De�nition 1, consisting

in averaging several quantiles in the tail of the risk model. To do so, we compare the

approximation consideringp = 1; 2; 4; 6; 8; 10; 12 quantiles, with what we refer to as "exact

ES". The latter corresponds to an ES which is computed via an exact method of calculation.

The technique relies on simulations and is described in Appendix G.

FIGURE 4 ABOUT HERE

Figure 4 reports the in-sample ES estimates obtained with the approximation and the

exact calculation method. Two remarks should be made here. First, the ES risk forecasts

issued from the approximation and the exact method strongly correlate regardless of the value

p. The approximation performs very well to capture the ex-post losses information. Second,

we observe that the approximation is substantially improved whenp slightly increases and

coincides almost completely with the exact ES using six (or more) quantiles.

Because the approximation is obtained by combining VaRs, our �nding is in accordance

with several papers. Gouriéroux and Liu (2012) study the relationship between VaR and ES

and show that they are related through their risk levels by some link function. Daníelsson

and Zhou (2016) argue that the two measures of risk are related by a small constant and

are conceptually equally informative. This similarity also comes from the structure of the

model used to compute the risk measure. For instance, VaR and ES issued by an AR(1)-

GARCH(1,1) model have common conditional mean and variance across risk levels implying

that these risk measures are closely related (see Equations (12) and (13)). Finally, Figure 10

in Appendix H displays the same results using a GARCH(1,1) model. Removing the condi-

tional mean component does not a�ect the approximation accuracy as the two computation

methods match almost perfectly forp � 6. For its ease of implementation and accuracy, the
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approximation is appealing to compute and evaluate the performance of ES risk forecasts.

Table 1: p-values of the backtesting tests (AR(1)-GARCH(1,1) model)

p J ( b)
1 J ( b)

2 I ( b) S( b)

Panel A. 2007-2009

1 0.035 0.051 0.125 0.949
2 0.014 0.041 0.038 0.200
4 0.009 0.040 0.023 0.103
6 0.009 0.038 0.021 0.123
8 0.099 0.049 0.154 0.564
10 0.029 0.061 0.053 0.432
12 0.023 0.052 0.038 0.223
2 (regulatory levels) 0.024 0.047 0.053 0.351

Panel B. 2007-2012

1 0.056 0.040 0.176 0.554
2 0.004 0.013 0.014 0.215
4 0.002 0.004 0.003 0.096
6 0.004 0.005 0.009 0.196
8 0.008 0.008 0.041 0.538
10 0.007 0.010 0.021 0.410
12 0.004 0.006 0.008 0.245
2 (regulatory levels) 0.006 0.012 0.032 0.448

Note: p-values of the four backtests computed with p = 1 ; 2; 4; 6; 8; 10; 12 risk levels successively, and the two regulatory levels

u1 = 0 :975, u2 = 0 :990. Reported p-values are obtained using bootstrap critical values. Panel A gives the results for the period

2007-2009 and Panel B provides results for the period 2007-2012.

Table 1 reports the p-values of the backtests. For a sake of clarity, we only report the

p-values obtained with the bootstrap critical values and the results are discussed at 5%

signi�cance level. Panel A provides the results over the sample 2007-2009. The test statistic

J1 leads to reject the validity of the ES predictions regardless of the numberp of quantiles

(except for p = 8 where the rejection occurs at a 10% signi�cance level). Interestingly, we

observe that the largerp, the smaller the p-value until p = 6, indicating that the rejections

are more severe when the number of risk levels increases until an optimal numberp. It

supports the existence of an upper limit forp relative to the sample size asT is relatively

small (T = 504), and p should not be chosen too large. The test statisticJ2 displays higher

p-values in general. The backtest based on a single VaR no longer rejects the validity of

the ES predictions, and the p-value based on the regulatory levels of the BCBS is close to

5%, making the decision rule more unclear for those number of risk levels. Finally, given the

p-values of the test statisticI for p = 2; 4; 6; 12, we tend to reject the expected value on the
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intercept coe�cients, and there is a global bias in the quantile estimates issued by the ES

model. On the contrary, the statisticS leads to the conclusion that the slope parameters are

as expected under the null hypothesis, and thus, the magnitude of errors is not related to the

true quantiles. Panel B contains the p-values for the period 2007-2012. Overall, we obtain

similar results, but the rejections are more severe in this enlarged sample. Rejections ofJ1

are now experienced at a 1% signi�cance level and even forp > 6, as opposed to panel A.

This highlights the underlying link betweenp and T as panel B usesT = 1384 observations

enabling the use of additional quantiles. Table 3 of Appendix H displays the p-values of

the backtests when applying a GARCH(1,1) model. The results are similar. Note however,

for p = 1, that the p-values are generally higher with the GARCH(1,1) model than for the

AR(1)-GARCH(1,1) model. For instance, the p-value ofJ1 in panel B is 0.056 with the

AR(1)-GARCH(1,1) model, while it reaches 0.199 with the GARCH(1,1) model. For that

model, additional quantiles are needed to increase the rejection capabilities of the tests.

In sum, we should be cautious in using a single quantile to assess the tail distribution

of the risk model. Such procedures may lead market practitioners to select a model that

generates mistaken ex-post forecasts. Furthermore, the results issued from the regulatory

guidelines are contrasted. Two risk levels are not always enough to provide a sound conclusion

about the correctness of the ES forecasts. We recommend the use of additional risk levels

beyond the regulatory coverage level� = 0:975 to improve the reliability of the decision.

Table 2 displays the coe�cient estimates of the multi-quantile regression of Equation

(4) for p = 6 risk levels, to help understand the reasons that explain the rejections of the

ES forecasts. Panels A and B provide the results for periods 2007-2009 and 2007-2012,

respectively. It must be recalled that, if the risk model is correctly speci�ed, the intercept

coe�cient � 0 and the slope coe�cient � 1 take values zero and one, respectively. We observe in

both panels that the coe�cients � 0 are overestimated for all the risk levelsu1; u2; : : : ; u6, while
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Table 2: QML coe�cient estimates (p = 6, AR(1)-GARCH(1,1) model)

u1 u2 u3 u4 u5 u6

Panel A. 2007-2009

� 0 0.661 0.696 0.808??
��� 0.846 ??

��� 0.965 ?
��� 1.076 ?

���
(0.295) (0.296) (0.227) (0.240) (0.429) (0.265)

� 1 1.005 0.953 0.911? 0.847 ??
��� 0.804 0.689 ??

���
(0.093) (0.088) (0.056) (0.053) (0.142) (0.042)

joint ? ? ?? ?? ??

Panel B. 2007-2012

� 0 0.376 0.510 ? 0.692 ???
��� 0.808 ???

��� 0.777 ??
��� 0.784

(0.200) (0.182) (0.195) (0.186) (0.284) (0.611)
� 1 1.031 0.974 0.902 0.851?? 0.826 0.787

(0.073) (0.067) (0.065) (0.050) (0.107) (0.232)
joint ?? ?? ?? ?? ??

Note: Standard errors are reported in parentheses. ? , ?? , and ??? indicate statistical signi�cance at the 10%, 5% and 1% level,

respectively, and are obtained with the pairs bootstrap algorithm. � , �� , and ��� , indicate statistical signi�cance at the same

levels and are obtained with the procedure of Chernozhukov and Fernández-Val (2011). Panel A gives estimation results for

the period 2007-2009 and Panel B provides estimation results for the period 2007-2012.

the coe�cient � 1 is overestimated for the �rst levelu1, and it becomes underestimated for all

the remaining risk levelsu2; u3; : : : ; u6. The average errors of� 0 and � 1 are respectively equal

to 0.84 and -0.13 in panel A, and 0.66 and -0.10 in panel B, indicating that the magnitude

of errors is more important in panel A than in panel B, and that the intercept coe�cients

are more a�ected than the slope coe�cients. Finally, we observe that the distortion of

the regression coe�cients with respect to their expected values is more pronounced for the

highest risk levels suggesting that the errors are more severe far in the tail.

Furthermore, we provide in Table 2 one by one inference on the regression parameters

with the pairs bootstrap algorithm. The results are depicted with the symbol "� " and are

discussed at a 5% signi�cance level. We observe that the intercept parameters are statistically

not equal to zero for the intermediary levelsu3 and u4 in panel A, and the additional u5

risk level is also signi�cantly di�erent from zero in panel B. For the slope coe�cients, the

u4 and u6 order quantiles are statistically di�erent from one in panel A, and only the level

u4 is misspeci�ed in panel B. In addition, we report joint inference, i.e. looking at both

the intercept and slope coe�cients. The results are provided in the row labeled as "joint"
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(bottom of the panels). Similarly to the previous �ndings, we �nd that the intermediary, and

highest order quantilesu3, u4 and u6 are misleading in panel A, whereas in panel B, all the

quantiles are misspeci�ed (except for the highest, presumably because the coe�cients have

large standard errors), meaning that the entire tail distribution is incorrectly estimated.

We conclude the study by suggesting an avenue of research to backtesting tail risk mea-

sures under the extreme value (EV) theory. As pointed out in Section 3.2, our baseline

regression implicitly assumes that(1 � up)T ! 1 when T ! 1 . Chernozhukov (2005)

shows that EV laws apply under the condition that(1 � up)T ! k < 1 when T ! 1 .

We consider the extremal conditional quantile model of Chernozhukov and Fernández-Val

(2011) which is valid under that extremal condition. The procedure allows testing individ-

ual restrictions while assuming the above EV theory. In the same spirit, Bee et al. (2018)

have proposed a new conditional quantile model with EV theory re�nements that overcomes

the issue of unstable inference in the tails where data are sparse. The results are depicted

in Table 2 with the symbol "� ". Overall, we �nd similar results between EV theory and

pairs bootstrap. Rejection of the null is mostly experienced at the same levels in panel A

and panel B. However, we observe that the procedure of Chernozhukov and Fernández-Val

(2011) is generally more powerful than pairs bootstrap at the highest risk levels. For in-

stance, the expected value of the intercept parameters� 0(uj ) in panel A is rejected at level

1% for j = 3; 4; 5; 6 with the EV procedure, while the pairs bootstrap rejects the null at

larger levels (5% or 10%). This robustness check greatly illustrates the superiority of EV

theory when applied to multi-quantile regression models and tail risks. We get overall the

same results with the GARCH(1,1) model (see Table 4 in Appendix H).
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5.3 Adjusted ES forecasts

In this section, we devise an adjustment for the ES risk forecasts deduced from our backtests.

Our routine accounts for both misspeci�cation and estimation uncertainty, without having to

change the misspeci�ed risk model. The procedure serves at identifying whether the model

overestimates or underestimates the true unknown ES, by comparing the initial forecast with

its adjusted counterpart, which may be useful for risk managers and regulatory agencies.

The correction of imperfect risk forecasts is not new in the �nancial literature. Gouriéroux

and Zakoïan (2013) adjust VaR forecasts a�ected by estimation uncertainty. Boucher et al.

(2014) adjust imperfect VaR forecasts based on backtesting frameworks and Lazar and Zhang

(2019) recently apply the same strategy to adjust imperfect ES forecasts. The typical method

consists of modifying the coverage level� of the risk measure to meet the null hypothesis of

valid risk forecasts. Here, the originality stems from the fact that we use a regression-based

method to correct the ex-ante forecasts, while available techniques are based on the concept

of violation (Christo�ersen, 1998; Kupiec, 1995) . This allows adjusting the risk forecasts by

application of a regression model, without having to rescale the coverage level� .

For ease of notation, we assume the parameters of the multi-quantile regression to be

known. Formally, the adjusted VaR forecast at leveluj , and time t, is de�ned as the ex-ante

prediction of the multi-quantile regression model, namelyQL t (uj ; 
 t � 1). In view of Equation

(5), the initial imperfect VaR forecast is subsequently weighted by the regression parameters

� 0 (uj ) and � 1 (uj ), which provides an adjustment corresponding to the global bias caused

by misspeci�cation and estimation uncertainty. The adjusted ES forecast at coverage level

� and time t is derived from the ES approximation as follows:

ES �
t (� ) =

1
p

pX

j =1

QL t (uj ; 
 t � 1) :

The adjusted ES forecasts are robust to model risk, as they meet the desirable properties
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on the regression coe�cients. Indeed, if we compute the backtesting procedure with the

sequencef QL t (uj ; 
 t � 1)gp
j =1 instead of the initial misleadingf V aRt (uj )g

p
j =1 , the parameters

would exactly coincide with the expected values under the null hypothesis, i.e.� 0 (uj ) = 0 ,

and � 1 (uj ) = 1 , for the risk levelsu1; u2; : : : ; up.

FIGURE 5 ABOUT HERE

Figure 5 reports the ES predictions and adjusted ES predictions for the period 2007-2009

and p = 1; 2; 4; 6; 8; 10; 12 quantiles. The adjusted ESs are issued from the parameters� 0(uj )

and � 1(uj ), 8j , that are estimated using the observations over 2007-2009, enabling us to

disentangle whether the ES forecasts are overestimated or underestimated. We observe that

the AR(1)-GARCH(1,1) model generally provides underestimated forecasts compared to the

adjusted predictions. This �nding is consistent with Begley et al. (2017) for the VaR who

calculate the average number of exceptions of bank's self-reported level of VaR and show that

the number of exceptions increases considerably during the period 2007-2009. Di�erently,

De Nicolò and Lucchetta (2017) show that AR-type models often underestimate tail risks for

horizons up to one year ahead, while there is probably a room for improvement using factor-

augmented quantile models. Note also that the skewness of the daily losses is positive in our

sample (see Figure 3), and it would be useful to account for asymmetry considering an asym-

metric power distribution as proposed by Komunjer (2007). Using the AR(1)-GARCH(1,1),

we observe that the underestimation is more pronounced for the smallest predictions, the

error being more severe when the risk forecasts are originally small. Finally, the ES forecasts

are slightly overestimated when the variance of the series is larger, suggesting that the risk

model may overestimate the true volatility in turbulent �nancial times. This is due to the

volatility persistence in the GARCH component. Our �ndings are robust to (1) the use of

a simple GARCH(1,1) model, (2) the use of the two BCBS regulatory levels, and (3) the

extended period 2007-2012 (see Figures 11, 12, 13, and 14 in Appendix H).
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6 Conclusion

The �nancial crisis of 2007-2008 and its aftermath has led to a reassessment of risk-

management practices and �nancial market regulation through the Basel III accords (BCBS,

2010). Among the number of fundamental reforms for the market risk, the BCBS has adopted

ES in place of VaR as the new standard for risk management. One of the major obstacle to

its implementation was the de�cit of simple tools for the evaluation of its forecasts. This ar-

ticle introduces four easy-to-use regression-based backtests of ES. Our econometric approach

consists in regressing the ex-post losses on the VaRs forecasts in a multi-quantile regression

model, and then, testing the resulting parameter estimates using Wald-type inference.

Several simulation studies are provided. We �nd that the use of asymptotic critical values

may lead to important size distortions if the sample size is not large enough. We propose a

pairs bootstrap algorithm to correct these small-sample biases (Freedman, 1981) and show

that our regression-based tests are reasonably sized within this bootstrap framework. We

consider several misleading alternatives in line with the existing literature on risk assessment

(Gaglianone et al., 2011; Du and Escanciano, 2017; Bayer and Dimitriadis, 2020; Kratz

et al., 2018, etc.). Our methodology detects misspeci�cations in all considered simulation

experiments. In particular, they identify the most frequent inaccuracies in risk modeling,

namely mean, variance, tail, and dynamic misspeci�cations.

We apply our tests to the S&P500 index over the period 2007-2012. During this period

of �nancial turmoil, our backtests clearly reject the validity of the ES forecasts based on a

AR(1)-GARCH(1,1) and a GARCH(1,1) model. We also highlight the importance of choos-

ing a su�cient number of quantiles to assess ES. The use of one or two quantiles is inadvisable

as they are not always enough to identify improper risk forecasts. On the contrary, four or

more quantiles (until an optimal number) deliver much more sound decisions, suggesting an

update of the regulatory guidelines to the evaluation of more than two quantiles.
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FIGURES

Figure 1: Empirical size of the tests at 5% signi�cance level (AR(1)-GARCH(1,1) model)
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Note: Size of the four backtests are displayed as a function of p. The �rst row reports the results computed with the asymptotic

critical values, and the second row those computed with the bootstrap critical values. The columns correspond to di�erent

sample sizesT .
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Figure 2: Empirical power of the tests at 5% signi�cance level (AR(1)-GARCH(1,1) model,
bootstrap critical values)
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Figure 3: S&P500 daily losses (%), and descriptive statistics
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Nb of obs 2641 504 1384
Mean -0.028 0.105 0.005
Median -0.059 -0.032 -0.067
Variance 1.280 4.932 2.643
Skewness 0.090 0.059 0.242
Kurt. exc. 3.171 4.028 6.943
Minimum -5.574 -10.957 -10.957
Maximum 7.113 9.470 9.470

Note: The sample covers the period from January 1, 1997 to December 31, 2012. Source: �nance.yahoo.com website.
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Figure 4: In-sample ES estimates issued from the approximation and the exact calculation
method (AR(1)-GARCH(1,1) model)
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Figure 5: ES forecasts and adjusted ES forecasts over the period 2007-2009 (AR(1)-
GARCH(1,1) model)
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Appendix

A - Application of a �nite Riemann sum to ES

In the sequel, we show how to derive the approximation of ES suggested in De�nition 1.

Consider the following improper Riemann integral,

Z b

a
f (t)dt; (14)

wheref (:) is given by the increasing function 1
1� � V aRt (:) and wherea and b are respectively

� and 1 so that the above expression is identical to the ES de�ned in Equation (1). De�nition

of a Riemann sum yields a useful approximation of Equation (14),

Sp(f ) =
b� a

p

pX

j =1

f

 

a + ( j � 1)
b� a

p

!

;

wherep is the number of subdivisions or quantiles taken in the de�nite integral to approxi-

mate ES. Replacinga, b, and f (:), by their corresponding quantities leads,

1
1 � �

Z 1

�
V aRt (u)du �

1
1 � �

Sp(V aRt ) =
1
p

pX

j =1

V aRt

 

� + ( j � 1)
1 � �

p

!

:

This veri�es the ES formula of De�nition 1 where risk levelsuj are given by� + ( j � 1)1� �
p .

B - Assumptions

This section introduces the assumptions needed to establish the asymptotic normality and

the consistency of the QML estimator and to ensure the validity of Proposition 1.

Assumption A0 : f L t ; V aRt (uj )g
p
j =1 is a stationary and ergodic process and measurable

with respect to 
 t � 1.

Assumption A1 : L t has conditional (on 
 t � 1) distribution function Ft , with continuous

and positive densityf t at conditional quantile QL t (u; 
 t � 1) = F � 1
t (uj
 t � 1) for all u 2 (0; 1).
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Assumption A2 : We have E[jL t j] < 1 . Furthermore, consider the quantity D0;t =

max
t=1 ;:::;T

max
j =1 ;:::;p

supjQL t (uj ; 
 t � 1) j, then we haveE[D0;t ] < 1 .

Assumption A3 : The matrices A =
P p

j =1 E[f j;t (0) r QL t (uj ; 
 t � 1) r 0QL t (uj ; 
 t � 1)] and

V = E[� t � 0
t ] are positive de�nite.

Assumption A0 is standard in modeling �nancial times series. It is broadly accepted that

asset prices are integrated at order one, so that �nancial returns are stationary. This data

assumption is hence satis�ed. Assumption A1 allows for nonidentical distributions as we

enableL t to be conditional on an unknown information set
 t � 1. Assumption A2 imposes

moment conditions, and in particular ensures �nite expectation forL t . This is satis�ed by

the vast majority of �nancial time series models, including stationary and invertible ARMA

processes, GARCH processes, etc. Assumption A3 is standard in Wald-type inference to

ensure that the variance-covariance matrix� is positive de�nite. Furthermore, Assumptions

A0 through A2 are standard in QML estimation (e.g., White, 1994), and are also widely used

in the literature on quantile regression models (e.g., Koenker and Machado, 1999; Koenker

and Xiao, 2002). They are of great importance to establish consistency and to apply the

central limit theorem of White (2001, theorem 5.24) based on the method proposed by Huber

(1967).

C - Consistent variance-covariance matrix estimation

In what follows, we provide a consistent estimator of the variance-covariance matrix� .

The methodology is derived from White et al. (2015). A consistent estimate of� can be

obtained from the decomposition of the Huber (1967) sandwich form and is thus given by

b� = bA � 1 bV bA � 1. In the sequel, we provide consistent estimatorsbA and bV. To obtain bV, we
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apply a simple plug-in estimator as follows:

bV = T � 1
TX

t=1

b� t b� 0
t ;

where b� t is given by its estimated counterpart b� t =
P p

j =1 r bQL t (uj ; 
 t � 1)  u j (b� j;t ), with

bQL t (uj ; 
 t � 1) = b� 0 (uj ) + b� 1 (uj ) V aRt (uj ), and b� j;t = L t � bQL t (uj ; 
 t � 1).

The estimation ofA is trickier because it requires to consistently estimatef j;t (0), namely

the density of the error term � j;t given 
 t � 1 evaluated at zero. Because the function is

unknown, we follow Powell (1984) and use a non parametric estimator. The method was

implemented by Engle and Manganelli (2004) for instance to estimate the variance-covariance

matrix of a set of coe�cients issued from the so-called CaViaR model. Then,bA is given by

bA = (2 bcT T)� 1
TX

t=1

pX

j =1

1 (jb� j;t j � bcT ) r bQL t (uj ; 
 t � 1) r 0bQL t (uj ; 
 t � 1) ;

where bcT is a bandwidth parameter that must verify bcT =cT
p

! 1, with cT a nonstochastic

positive sequence satisfyingcT = o(1), and c� 1
T = o(T1=2). Throughout the paper, we select

a bandwidth parameterbcT = T � 1=7 which veri�es the above properties.

D - On the rate of convergence and interplay of p and T

Let us consider the highest risk levelup issued from the sequenceuj ; j = 1; 2; : : : ; p. Given

De�nition 1, we have

up = 1 � (1 � � )=p;

wherep is the number of VaRs used to approximate ES and� is a constant number represent-

ing the coverage level of ES. For a numberp of subdivisions large enough, the approximation

of De�nition 1 is close to the theoretical ES andup is close to one. In what follows, we study
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this limiting case. Let us de�neup as a function of the sample sizeT such as,

up = 1 � � T ; (15)

where the nonstochastic positive sequence� T = (1 � � )=p satis�es � T ! 0 when T ! 1 .

Equation (15) is a common representation to extremal quantile regression (Chernozhukov,

2005; Chernozhukov and Fernández-Val, 2011). Given the de�nition of� T and since� is a

constant parameter, it follows thatp is increasing withT. To illustrate this point, assumep

takes the form of a power function,

p = T  ; (16)

with  > 0. Next, we consider a QML estimator which implicitly assumes thatT(1� up) ! 1

as T goes to in�nity. Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011)

relate this condition to an intermediate order quantile regression. Our goal is to identify a

suitable rate of convergence ofp and T which ensures the above condition. We have

T �T ! 1 : (17)

Then, combining Equations (16) and (17), we get

(1 � � )T1�  ! 1 : (18)

Equation (18) is only satis�ed when < 1. Looking at Equation (16), this condition implies

that T needs to diverge faster thanp to guarantee asymptotic theory.
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E - Proof of consistency under �xed untrue hypothesis

Proof. In line with our previous notations, we termW the generic notation of the test

statistic such that W 2 f J1; J2; I; Sg. The test statistic is given by

W = T(RW
b� � qW )0(RW

b� R0
W )� 1(RW

b� � qW ):

The null hypothesis of the proposed Wald-type test can be written asH0;W : RW � � qW = 0,

against the two-sided alternativeH1;W : RW � � qW 6= 0. The continuous mapping theorem

implies underH1;W that

RW
b� � qW

p
! RW � � qW 6= 0:

Rearranging the termT in the test statistic and using the continuous mapping theorem leads

WT � 1 p
! (RW � � qW )0(RW � R0

W )� 1(RW � � qW ):

Because (RW � R0
W )� 1 is positive de�nite, we get under H1;W : (RW � �

qW )0(RW � R0
W )� 1(RW � � qW ) > 0. Multiplying (RW � � qW )0(RW � R0

W )� 1(RW � � qW ) by

T under H1;W hence gives

lim
T ! + 1

W = + 1 ;

and therefore we get

lim
T ! + 1

P(W > � 2
1� � (dW ) jH1;W ) = 1 ;

where� 2
1� � (dW ) is the fractile of order1 � � of the chi-square distribution with dW degrees

of freedom, and where� is the signi�cance level of the test.�
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F - Robustness checks of the simulation study

Figure 6: Empirical power of the tests at 5% signi�cance level (AR(1)-GARCH(1,1) model,
asymptotic critical values)
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Note: Power of the four backtests are displayed as a function of p. The rows correspond to di�erent sample sizes T , and the
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Figure 7: Empirical size of the tests at 5% signi�cance level (GARCH(1,1) model)
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Figure 8: Empirical power of the tests at 5% signi�cance level (GARCH(1,1) model, boot-
strap critical values)
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Figure 9: Empirical power of the tests at 5% signi�cance level (GARCH(1,1) model, asymp-
totic critical values)
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G - Exact calculation method of ES

This section describes the methodology for the exact computation of ES forecasts at coverage

level � . Several techniques are available in practice. As the distribution of the innovations is

parametric, we rely on Monte Carlo simulations. For ease of notation, we assume parameters

to be known while in practice we use estimated parameters. The algorithm is as follows:

1. Randomly draw S pseudo standardized innovationsf � s
t gS

s=1 from the Student distri-

bution, with degrees of freedom v. We set the numberS = 100000 in the empirical

application.

2. Compute the ES at time t of the standardized innovation � t as the Monte Carlo
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average of the simulated innovations such thatm (� ) = 1P S
s=1

1(� s
t � F � 1

v (� ))
P S

s=1 � s
t �

1 (� s
t � F � 1

v (� )) , whereF � 1
v (� ) is the � -quantile of the innovation distribution and is

obtained asF � 1
v (� ) = percentile

�
f � s

t gS
s=1 ; 100�

�
.

3. Compute the ES at timet as ESt (� ) = � 0 + � 1L t � 1 + � tm (� ) :

H - Robustness checks of the empirical application

Figure 10: In-sample ES estimates issued from the approximation and the exact calculation
method (GARCH(1,1) model)
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Table 3: p-values of the backtesting tests (GARCH(1,1) model)

p J ( b)
1 J ( b)

2 I ( b) S( b)

Panel A. 2007-2009

1 0.060 0.082 0.141 0.853
2 0.027 0.054 0.045 0.233
4 0.014 0.048 0.027 0.106
6 0.016 0.046 0.026 0.135
8 0.153 0.053 0.229 0.673
10 0.036 0.067 0.052 0.448
12 0.026 0.058 0.042 0.223
2 (regulatory levels) 0.036 0.064 0.085 0.406

Panel B. 2007-2012

1 0.199 0.076 0.401 0.839
2 0.011 0.029 0.050 0.458
4 0.005 0.012 0.015 0.196
6 0.008 0.011 0.036 0.317
8 0.029 0.015 0.102 0.563
10 0.010 0.020 0.021 0.360
12 0.012 0.020 0.043 0.415
2 (regulatory levels) 0.005 0.015 0.014 0.230

Note: p-values of the four backtests computed with p = 1 ; 2; 4; 6; 8; 10; 12 risk levels successively, and the two regulatory levels

u1 = 0 :975, u2 = 0 :990. Reported p-values are obtained using bootstrap critical values. Panel A gives the results for the period

2007-2009 and Panel B provides results for the period 2007-2012.

Table 4: QML coe�cient estimates (p = 6, GARCH(1,1) model)

u1 u2 u3 u4 u5 u6

Panel A. 2007-2009

� 0 0.600 0.683 ? 0.769 ?? 0.811 ??
��� 0.972 ?

��� 1.065 ���

(0.307) (0.298) (0.264) (0.257) (0.446) (0.266)
� 1 1.011 0.955 0.917 0.853?? 0.804 0.692 ??

���
(0.093) (0.089) (0.059) (0.055) (0.143) (0.043)

joint ? ? ? ?? ??

Panel B. 2007-2012

� 0 0.338 0.388 ��� 0.601 ??
��� 0.743 ???

��� 0.753 ??
��� 0.603

(0.303) (0.198) (0.197) (0.189) (0.293) (0.799)
� 1 1.025 0.987 0.911 0.860?? 0.829 0.832

(0.122) (0.069) (0.066) (0.056) (0.109) (0.308)
joint ? ? ? ?? ??

Note: Standard errors are reported in parentheses. ? , ?? , and ??? indicate statistical signi�cance at the 10%, 5% and 1% level,

respectively, and are obtained with the pairs bootstrap algorithm. � , �� , and ��� , indicate statistical signi�cance at the same

levels and are obtained with the procedure of Chernozhukov and Fernández-Val (2011). Panel A gives estimation results for

the period 2007-2009 and Panel B provides estimation results for the period 2007-2012.
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Figure 11: ES forecasts and adjusted ES forecasts over the period 2007-2012 (AR(1)-
GARCH(1,1) model)
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Figure 12: ES forecasts and adjusted ES forecasts over the period 2007-2009 (GARCH(1,1)
model)
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Figure 13: ES forecasts and adjusted ES forecasts over the period 2007-2012 (GARCH(1,1)
model)

50



Figure 14: ES forecasts and adjusted ES forecasts over the periods 2007-2009 (on the left)
and 2007-2012 (on the right) with the two BCBS regulatory risk levels (AR(1)-GARCH(1,1)
model, GARCH(1,1) model)
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